
w
w
w
.j
p
r
r
.o
r
g

Journal of Pattern Recognition Research 1 (2016) 74-110

Received November 2, 2016. Revised December 6, 2016. Accepted November 23, 2016.

Surveying Biometric Authentication
for Mobile Device Security

Tempestt J. Neal tempesn@ufl.edu
Dept. of Computer and Information Science and Engineering, University of Florida
Gainesville, FL 32611, USA

Damon L. Woodard dwoodard@ufl.edu

Dept. of Electrical and Computer Engineering, University of Florida

Gainesville, FL 32611, USA

Abstract
Mobile devices, such as smartphones and tablets, are frequently used for creation and
transmission of private and sensitive messages and files. While personal identification
numbers and passwords have been the standard for mobile device security, users tend
to forget complex character combinations or reuse them for multiple accounts. These
disadvantages have caused researchers to explore biometric authentication for accurate
and convenient mobile device security by taking advantage of refined sensing technologies
which capture environmental, positional, and interactive information. This information
has been found useful in uniquely modeling physical and behavioral characteristics such
that biometric recognition is feasible. In this paper, over 100 biometric approaches to
mobile device security are surveyed. The advantages and research challenges associated
with ten biometric modalities are provided, along with discussion of various commercial
implementations and biometric template protection schemes.
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1. Introduction
The expansion of storage and computational capabilities on mobile platforms offers the
potential to completely revolutionize the technology market. Moreover, expansions in lo-
cal memory and cloud storage encourages use of mobile devices for file manipulation and
transmission, and a recent survey finds such information housed in these devices the most
important aspect to consumers [1]. With this comes great responsibility for mobile device
manufacturers to revamp and, perhaps, reconsider current security measures. Technical
workarounds for device access, such as a recent hack discovered on Android devices, jeop-
ardize distribution of private and/or sensitive information [2]. Moreover, according to a
leading cybersecurity company, 10% of smartphone owners are phone theft victims, with
consequences ranging from productivity and corporate data loss to fraudulent charges. Even
worse, 9% of phone theft victims have suffered from identity theft [3]. Initiatives, such as
Secure Our Smartphones, are strong indicators that mobile device theft is a quickly growing
issue [4, 5].

Mobile devices currently employ methods based on user knowledge, such as personal
identification numbers (PINs) and alphanumeric passwords. However, the simplicity and
lack of use (it is shown that approximately half of mobile device users use PINs [3, 6–9])
associated with such methods coupled with authentication restricted to the point-of-entry
may lead to great security breaches [10]. Of over 200,000 four-digit numeric passwords,
it was found that 10 of these made up 15% of the collection, while the top two included
patterns as simple as ‘1234’ and ‘0000’ [11]. Similar studies suggest identical trends, mainly
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due to the undesired burden of remembering complex combinations of characters [12]. In
fact, a survey conducted in 2008 found that 55.7% of its participants had at some point
forgotten their PIN [13]. How, then, should manufacturers incorporate security measures
that simultaneously offer convenience and flexibility? One option is a token-based method
which would establish an identity based on some object, such as an identification card.
Though an approach is presented which embeds fingerprint recognition into the device’s
charger such that the charger serves as a token, there lacks empirical evidence to support
such techniques without limiting the key advantage of mobility [14]. Hence, biometric
researchers have attempted to address these concerns via consideration of physiological and
behavioral authentication solely on the device.

Physiological biometric authentication uses the distinctiveness of physical characteristics,
such as fingerprint and iris patterns, for access control. Apple and Google (Android) have
implemented biometric authentication via fingerprint and face recognition, respectively, in
recent years. Currently, fingerprint recognition technology relies on cutting-edge hardware
to capture fine details of fingerprint patterns. Because no two patterns are alike, the service
relies on this uniqueness to accurately match a new fingerprint scan with an existing one [15].
On the other hand, face recognition relies on measurements of facial features, such as shape
and position, to create a unique face representation [16]. A 2010 study found that 95% and
64% of subjects felt fingerprint and face recognition, respectively, to be secure. While 95%
of the subjects also felt that they would use fingerprint recognition, only 27% reported to
likely use face recognition, reflecting an obvious disconnect between perceived security and
usability [17]. Furthermore, physiological systems may result in the need for refined sensors
for data capture, such as in the proposed electrocardiogram based system [18,19], and may
fail when presented with an engineered characteristic, such as a fingerprint mold.

On the other hand, behavioral biometrics measure the consistency and distinctiveness of
behavioral tendencies. In the context of mobile devices, such tendencies could include appli-
cation use [20], calling habits [6], and keystroke statistics [21]. Hence, while knowledge-based
methods require users to remember and re-enter passwords as needed, behavioral biometrics
have no memory load and can continuously monitor device usage for active and transpar-
ent authentication. Further, compared to both knowledge-based methods and physiological
biometrics, behavioral biometrics rely on data captured as the user naturally interacts with
the device. As a result, behavioral biometrics provide cost-effective and intuitive access con-
trol, and have appropriately been referred to as “transparent, continuous, implicit, active,
passive, non-intrusive, non-observable, adaptive, unobtrusive, and progressive” [22].

This survey aims to provide thorough insight into mobile device security via biometrics.
The overall intent is to provide fundamental knowledge of several modalities, while offer-
ing experimental evidence from various implementations which support the applicability of
biometric solutions on mobile device platforms. Unlike previous surveys [23–26], this sur-
vey includes discussion of ten biometric modalities and multimodal approaches and is the
first to include periocular recognition. This survey also details various motion-based imple-
mentations beyond gait recognition and includes discussion on template security. Finally,
this paper reviews the most recent publications while providing details on commercially
available implementations. As a result, this survey is arguably the most up-to-date and
comprehensive.

The paper is outlined as follows: Section 2 motivates the use of biometric recognition via
discussion of the flaws found in point-of-entry techniques. Section 3 provides fundamental
definitions regarding biometric authentication. Sections 4 and 5 survey various physiolog-

75



Neal and Woodard

ical and behavioral biometric implementations on mobile devices, respectively. Section 6
provides information on various multimodal schemes. Section 7 discusses several security
concerns regarding inappropriate access to the device and biometric templates. Finally,
Section 8 describes the various research challenges associated with biometric recognition on
mobile devices, followed by conclusions in Section 9.

2. Motivation
Manufacturers have employed knowledge-based methods as the core security scheme on mo-
bile platforms. As implicated by the name, knowledge-based methods rely on the knowledge
of the consumer; the consumer must know a certain (alpha)numeric password, PIN, graph-
ical sequence (typically based on connecting a subset of nine nodes in a 2D grid), or more
recently, picture gesture [27] for device access. While these methods are generally accepted
due to ease of implementation, design simplicity, and user familiarity, knowledge-based
methods suffer from memory load, shoulder surfing and smudge attacks 1, password reuse,
and user inconvenience from frequent re-entering [28–31]. Knowledge-based methods also
assume an equivalent security level across all applications [32]. For instance, while accessing
bank records is a more private action compared to creating a new contact, a password-based
method can only provide the same level of security for both actions. Further, it is suggested
that biometric authentication can allow for adaptable authentication via sensing of environ-
mental factors and adjusting accordingly for use of the most suitable trait (i.e., fingerprint
recognition is used instead of face recognition when poor lighting is detected [33]). Thus,
knowledge-based methods fail to offer application-specific and adaptable security [34].

Researchers have attempted to address some of these issues by proposing more complicated
security schemes that are mostly variations of existing implementations. For instance, Yu
et al. [35] propose 3D graphical passwords for mobile devices. The authors claim that 3D
passwords are easier to remember and have a larger password space. Hence, sequences of
touched cubes in a 3D virtual space are recorded, which are later translated into a unique
password. The user is only responsible for remembering his or her sequence. Unfortunately,
the authors provide very little experimental support for this technique. Furthermore, a
commercial hand tracking device is employed for capturing the user’s activity in the virtual
space, which may not be commercially available to the average consumer. The authors also
neglect to analyze the usability of this approach. While Amin et al. [30] claim that graphical
sequences are easier to remember than typical passwords, a recent study revealed that 2D
patterns are possibly as equally predictable as textual passwords, as 40% of patterns start
in the top-left corner and most users only use five of the nine nodes [36].

Shin et al. [37] propose an alternative lock scheme similar to graphical passwords. Six
circles are presented, where the user can touch each circle up to seven times. Each touch
changes a circle’s color. Once each circle is the appropriate color, the phone will unlock.
This work decreases the chances that an intruder can easily guess the correct circle color
combination, given that more password combinations are possible. The number of password
combinations can be increased further by allowing more circles on the screen or allowing
more colors. However, this requires the user to remember complex combinations, which is
a core flaw in knowledge-based methods.

To combat the need to remember complicated codes, a Rutgers University study investi-
gates free-form gestures, or doodling, as a security scheme [38, 39]. Users have the liberty

1 Shoulder surfing is the direct observation of a password as it is being entered, while smudge attacks are
the inferring of passwords based on finger residue left on the screen.

76



Biometric Authentication for Mobile Device Security

to draw any shape with any number of fingers. The study indicated that utilizing free-form
gestures reduced log-in time by 22% compared to passwords and claims that doodling is
easier to remember and harder to hack. However, it is unclear how this approach can reduce
shoulder surfing and smudge attacks.

Each of these solutions carry at least one fundamental problem of knowledge-based se-
curity, such that coupling these methods with biometric solutions offers improvements in
accuracy and usability. For example, two similar implementations display many images
to the user, where he or she is instructed to either draw a line connecting the images or
select an image, during which touch gesture and keystroke dynamic measurements are col-
lected [21, 40]. These implementations support the need for and advantages of stronger
security measures on mobile devices via biometric authentication.

3. Biometric Authentication
Biometric authentication is defined as the use of physical and/or behavioral traits for human
identification or verification via application of pattern recognition and machine learning
techniques. Verification is the main mode considered in mobile device security as it is
the responsibility of the biometric system to verify that the person using the device is the
rightful owner. Verification implies a one-to-one match, where an individual’s captured
trait is compared to his or her supposed template. The individual claims an identity, and
it is the responsibility of the system to verify if the claimed identity is correct based on a
given threshold. This scenario is represented mathematically in Eq. 1, where S measures
the similarity between input characteristic X and template Y , t is an established threshold
value, and C can take on values c1 (genuine match) or c2 (impostor match).

C =

{
c1 if S(X,Y ) ≥ t

c2 if S(X,Y ) < t
(1)

Figure 1 depicts the verification process and the separate modules of the biometric sys-
tem. Biometric traits are detected and captured for feature extraction, in which important
attributes, or features, are stored as a biometric template in a database. This phase is
typically referred to as enrollment. On subsequent visits to the system, the template is re-
trieved, and the individual re-presents his or her trait for feature extraction. These features
are compared to the template to obtain a matching score, which indicates if the subject
can access the respective system. Therefore, these separate components have been termed
sensing, feature extraction, matching, and database modules.

Mobile device sensors, such as accelerometers and gyroscopes, play a key role in the
sensing phase of the biometric system. Understanding sensor operation and proper resource
management when using these sensors is key to efficient utilization of the information they
provide [41]. As this survey will show, this information has proven valuable in enhancing
mobile device security as researchers continue to exploit these measurements for exploration
of “on-the-move biometry” [42].

Analysis of biometric systems is key in determining its success and ability to generalize
to different populations. This is very important for mobile devices, as the chosen feature
representation and matching algorithms should accommodate a very large and diverse pop-
ulation. Thus, several metrics are available for assessing system performance, i.e., how often
a biometric system succeeds and fails. Two popular metrics include false accept and false
reject rates (FAR and FRR, respectively.) In the case of mobile device security, a false
accept occurs when an intruder is allowed access to the device and a false reject occurs
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Fig. 1: Biometric authentication for mobile devices operating in verification mode.

when the true owner of the device is denied access. Additional metrics include equal error
rate (EER), true positives and negatives, false positives and negatives, accuracy, precision,
and recall. The EER is the point at which the FAR is approximately equal to the FRR,
and it is one of the most commonly used metrics for analyzing system error. True positives
and negatives occur when the true owner and impostor are identified as such. False posi-
tives and negatives occur when the true owner and impostor are classified as an intruder
and owner, respectively. Accuracy is the ratio of true positives and negatives to true posi-
tives, true negatives, false positives, and false negatives. Precision measures how often the
system gets positive classifications correct as the ratio of true positives to true and false
positives. Recall measures how often the system correctly classifies positive samples when
it encounters them as the ratio of true positives to true positives and false negatives.

4. Physiological Biometrics
The growing need to identify individuals with unquestionable precision has allowed biomet-
ric recognition to penetrate several areas of human life. Fingerprint recognition is likely
the most used biometric due to its reliability, cost-effective implementation, and high user
acceptance. A prime example is the use of fingerprints in law enforcement for the iden-
tification of criminals. Biometric technology is also useful in health care, and has been
projected to significantly simplify several administrative procedures. For instance, it is sus-
pected that nurses will soon be able to use biometric recognition to access digital records,
and patients will be allowed to use biometric traits to authenticate themselves instead of
wearing wristbands. This is expected to significantly reduce medication and billing errors
and assist when patients are physically unable to provide identifying information [43].

Additional applications include fingerprint recognition for monitoring student activity
in schools [44], fingerprint, hand geometry, and iris recognition for tracking inmates in
correctional facilities [45,46], Malaysia’s MyKad fingerprint-based governmental smart card
system [47], and well-known Touch ID on Apple’s mobile devices [48]. However, all of these
applications require knowledge of the service by the user. The user must actively interact
with the biometric scanner and is aware that his or her trait is being captured. This is
termed overt recognition.

Overt recognition is a key characteristic of physiological biometry. Thus, in regards to
physiological biometrics, emphasis is placed on the intrusive nature of the authentication
process. ‘Intrusiveness’ in this context represents the disruptive and/or invasive aspects
of the authentication procedure. Because use of physiological traits on mobile platforms
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is an overt process, there is an unavoidable requirement for the user to present his or her
biometric, yielding the disruptive aspect. Further, these systems are similar to knowledge-
based methods in that they authenticate at the point-of-entry. However, physiological
biometrics reduce the need to remember complex passwords or pictorial representations
of lock patterns. As a result, several modalities have been considered for securing mobile
devices, including face, periocular, fingerprint, and iris.

4.1 Face

Face recognition applications range from controlled (e.g., mug-shots) to dynamic settings
(e.g., airport) [49]. Face recognition has been applied to surveillance security, border control,
forensics, etc. [50,51]. While face recognition is highly studied, its usability and acceptance
on mobile platforms has been questionable. A recent survey analyzed the opinions of individ-
uals that use, have used, or have never used face unlocking services on capable devices [52].
It was found that 36% of participants considered the service annoying, slow, inconvenient,
and difficult to use. Further, it was felt that capturing facial images for authentication is a
socially awkward procedure. Moreover, the group of participants that had never used the
service were unaware that it existed on the device, suggesting a lack of manufacturer mar-
keting efforts, while the group that had previously used the service discontinued its use due
to usability frustration. Overall, the survey suggested likability with fingerprint recognition
due to convenience and positive emotional feedback, such as describing its functionality as
‘fun’ and ‘awesome’. Nonetheless, face recognition is a promising security option for mobile
devices.

Face recognition involves the following steps [53]:
1. Detection: Face detection captures and scales the face.
2. Normalization: The image is geometrically normalized to a fixed resolution, followed

by enhancements to reduce the effects of illumination and rotation.
3. Feature Extraction: Two main approaches are generally used to extract the most

discriminative information from the image: (1) location, shape, and spatial relations
of facial attributions, such as the nose and mouth, are extracted, or (2) a global
representation via the weighted combination of several faces serves as a model [54].

4. Matching: Various machine learning and pattern recognition algorithms are used to
match gallery and probe feature vectors for authentication.

A number of facial recognition databases are publically available [55–57], which have
allowed a sufficient amount of experimentation on constrained and unconstrained cases.
However, state-of-the-art performance is restricted to frontal images with limited influences
from pose, illumination, expression, and occlusions. While an ideal face recognition system
should reliably capture the face and allow accurate classification regardless of these factors,
robustness under uncontrolled conditions remains the fundamental research challenge of fa-
cial recognition. However, it has been shown that motion-based sensors, i.e., accelerometers
and gyroscopes, assist in decreasing noise introduced by rotation, particularly on mobile
devices [58]. Accelerometer and gyroscope measurements indicate the device’s orientation;
when devices are held at inconsistent angles, these sensors prove very beneficial in assisting
in the normalization phase.

Fathy et al. attempt to derive a benchmark dataset which captures various elements
of noise and other challenges found in real-world mobile device images, such as varying
distances from the device’s camera, vibrations and blurring from holding the device, partial
capturing of the face, and illumination and background variations [59]. The authors employ
the well-known and open-source Viola-Jones face detector which scans a frontal face image
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with a set of Haar-like filters of various window sizes to form reference shapes around the
eyes, nose, and mouth [60]. Various classification methods are explored; however, results
suggest that current algorithms have yet to cope with the challenges presented in facial
recognition on mobile devices.

The effects of noise, specifically illumination, are further evaluated in a work by Riesch et
al. [61]. The authors acknowledge the challenges of facial recognition due to unconstrained
data capture coupled with the constraints of processing resources, such as power efficiency,
hardware capabilities, network limitations (i.e., authentication should be performed solely
on the device instead of on back-end servers), and end-user acceptability. As a result, the
authors attempt to capture Local Binary Patterns as texture descriptors of facial images
captured in various lighting conditions. Support vector machines (SVMs) are trained for
nine subjects under each condition to allow recognition in various environments. The au-
thors report a 91.3% control accuracy and a 100% accuracy in other environments, providing
a strong notion that while face recognition on mobile devices may be hindered in several
scenarios, it is particularly robust in regards to illumination.

Despite the challenges associated with face recognition, Tao and Veldhuis [62] argue that
face recognition addresses three core issues regarding security implementations on mobile
devices: runtime advanced security, convenience, and reduced complexity as indicated by
low error rates, transparency at run-time, and storage and authentication primarily on the
device with low computational requirements. The authors employ the Viola-Jones detector
to form a reference shape indicated by 13 facial landmarks. A feature space is subsequently
obtained from construction of a subspace via Eigenfaces, which is further reduced to two
features, DIFS (distance in feature space) and DFFS (distance from feature space) using
the Singular Value Decomposition. The experimental setup included a collection of 8,000
320x240 images from six subjects combined with a probability-based Parzen classifier to
deliver an EER of 1.2%.

Research Challenges

Face recognition on mobile devices introduces new challenges beyond those traditionally
found in non-mobile face recognition systems. An attractive aspect of face recognition
on mobile devices is the fact that most users capture photos of themselves while being
close to the device. As a result, photographs are typically head shots with direct eye
contact. On the contrary, the liberty to take a photo whenever and wherever introduces
significant variations between similar photographs, including image blur, angles and/or
rotations, varying amounts of background and illumination, and partial images [59]. While
these are all issues prevalent in most facial recognition applications, mobile devices further
complicate this task due to the inability to expect consistent and/or cooperative behavior.
Further, while it is likely that users will be instructed on how to present his or her face during
data enrollment, it is very unlikely that this controlled presentation will be reciprocated in
the future for authentication as users will expect a fast and casual authentication experience.
Moreover, in static face recognition systems, the face is typically captured by the same
camera of high caliber for all individuals. On mobile devices, however, the hardware can
vary depending on the device. This is especially true for front cameras, which are usually
lower in quality compared to the rear. As a result, a universal protocol across all devices
may not be a suitable or realistic solution.
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4.2 Periocular

The periocular area of the face is the surrounding regions of the eyes. Given the avail-
ability of high-definition cameras on mobile devices, the periocular region can be reliably
extracted from facial images. Periocular recognition is particularly useful when the face
is occluded, while the area around the eyes remains available for feature extraction, and a
general consensus among researchers is that the periocular region is better suited for bio-
metric authentication compared to other regions of the face [63]. Periocular features can
be extracted at two levels:

1. Level 1 features are general and holistic, and include attributes regarding eye folds,
eyelids, moles, and wrinkles.

2. Level 2 features are more detailed, including characteristics such as texture and hair
follicles [64].

Raja et al. implement periocular recognition on mobile devices using Scale Invariant
Feature Transform (SIFT), Speeded Up Robust Features (SURF) and Binarized Statistical
Image Features (BSIF) for representation of periocular keypoints [65]. SIFT features are
robust against scaling and rotation factors, while SURF features are robust against scaling,
rotation, illumination, and variations in contrast [66]. The proposed method allows data
capture via front and back cameras, with an audio signal indicating when the image is
captured successfully. The matching phase employs the Fast Library for Approximate
Nearest Neighbors algorithm and Bhattacharya distance measure on 32 subjects to achieve
genuine match rates ranging from 80% to 95.31% using BSIF features. The authors note,
however, that performance is maximized using the rear camera; currently, rear cameras offer
higher resolution, such that the results suggest a correlation between camera resolution and
performance.

The authors continue with periocular recognition via investigation of cross-smartphone
performance and introduction of a new feature extraction technique [67]. Cross-smartphone
authentication involves matching between two data samples acquired from different devices.
This inherently introduces variations in data quality between the two samples, which often
results in performance degradation. To handle such variations, the authors employ feature
extraction via sparse, decomposed Laplacian pyramids for image enhancement in spatial
and frequency domains. Results indicate that the proposed feature extraction method
outperforms BSIF features, achieving 8.33% to 31.02% EERs.

Research Challenges

The periocular area of the face provides an attractive option for biometric recognition. It is
easy to capture and contains texture, color, and shape information, all of which are reliable
biometric features. However, on mobile devices, the periocular region is problematic for
several reasons. First, periocular recognition suffers from the same problems encountered
in face recognition. Beyond this, however, is the fact that occlusions which hinder accuracy
in face recognition are likely found in the periocular region, such as eye glasses, hair, and
hats. Because the user has sole control over the sensor, these occlusions and unpredictable
angles and distances from the camera hinder segmentation of the periocular region. Hence,
periocular recognition on mobile devices is highly dependent on the user’s ability to present
a relatively controlled image. Facial recognition could potentially simplify this process if
the algorithm considers several regions of the face as separate components, and can reliably
authenticate based on a few regions (for instance, the nose and mouth when eye glasses are
worn). Periocular recognition, however, leaves very little room for such flexibility, and as a
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result, an implementation may require inconvenient and unnatural restrictions for adequate
use of the service.

4.3 Fingerprint

Fingerprints are composed of ridges and valleys found in the skin on the finger tips, where
hair and oil glands are not present. Fingerprint features are typically described at three
levels:

1. Level 1 fingerprint features consist of a ridge orientation map that defines the texture
pattern of the finger. Level 1 features identify locations where ridge orientations
change, termed loops and deltas. These features are very coarse, and the flow of ridge
patterns is visible to the eye under normal circumstances.

2. Level 2 features describe the minutiae of the fingerprint, or areas of the ridges that
merge, split, begin, and end. Level 2 features appear as an outline, or a single pixel
representation, of Level 1 features.

3. Level 3 features are the most detailed, and represent sweat pores and edges of ridges.
Capture of Level 3 features requires advanced imaging technology; as a result, these
features are typically only used when minutiae are not available, such as in latent, or
partial, fingerprints.

Level 2 fingerprint features are usually extracted for fingerprint recognition due to the
compact representation, robustness against degradation, and discriminating capabilities of
minutiae. Hence, matching typically involves minutiae detection and extraction from the
probe image, alignment for coordinate system normalization between the template and
probe, establishing correspondence of minutiae pairs, and score generation [60]. Minutiae
detection on mobile devices, however, is a non-trivial task due to the smaller touch sensors.
The sensor size results in the need for several enrollment images to detect a sufficient number
of minutiae points. This increases user effort, which decreases a core advantage of biometric
approaches – convenience. Yamazaki et al. [68] addresses this problem via proposal of
merging images using the SIFT algorithm during enrollment due to its robustness against
rotation, scale, and illumination. SIFT features are extracted by identifying local extrema
as candidate keypoints via convolution with a Gaussian filter, filtering of ideal keypoints by
excluding those with low contrast and poor localization, and assigning the orientation of
the gradient to each keypoint. SIFT keypoints cover a wider area than minutiae, thereby
reducing the number of images required to represent the fingerprint region.

Fingerprint recognition has widely established itself as a prominent biometric technology
on modern mobile devices for authentication and e-commerce transactions. Apple boasts its
fingerprint technology as a “seamless” biometric password, incorporating advanced hard-
ware and software that aids in fingerprint detection, capture, and privacy. The service also
self-improves, as each recognition attempt increases the quality of the enrolled template.
Furthermore, the manufacturer states that there is only a 1 in 50,000 chance of misclassify-
ing different fingerprints, while the chances of guessing a 4-digit password are 1 in 10,000.
Moreover, privacy concerns are addressed by only storing a mathematical representation of
the fingerprint instead of the image itself [15]. Due to these advantages, it is no surprise
that 90% of current users feel that fingerprint recognition is more convenient than PINs [69].

Research Challenges

Fingerprint recognition is affected by skin and sensor conditions. For instance, authentica-
tion is problematic when fingers are wet or the surface of the device is dirty [69]. Other fac-
tors, such as scars and workplace injuries, could complicate data capture and matching [60].
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Such skin conditions also increase the need for preprocessing, which could add to resource
overhead on mobile platforms. For instance, Yamazaki recommends highpass filtering, low-
pass filtering, ridge direction detection, and ridge enhancement for preprocessing images
for brightness normalization and noise reduction [68]. Finally, as currently implemented
commercially, after five failed attempts, a user can access the device via a password [15],
thereby subjecting the user to the same disadvantages of a typical knowledge-based system
and opening the door for circumvention and adversarial attacks.

Palmprint Recognition

Related to fingerprint recognition is palmprint recognition. There is limited research in
regards to palmprint recognition on mobile devices; however, while palmprint recognition
traditionally required large and expensive palm scanners, advanced imaging from modern
smartphones are likely capable of capturing sufficient palmprints for authentication [24].
Unfortunately, according to [70], research regarding palmprint recognition on smartphones
is limited because of no public, standard dataset. Finally, due to the lack of constraints
in image capture on mobile devices, palmprint applications would have to cope with illu-
mination and rotation variations which are usually addressed in controlled environments
through uniform color backgrounds and finger pegs [71, 72]. However, Javidnia et al. con-
sider eliminating illumination variations via a local normalization algorithm prior to feature
extraction on mobile platforms [70]. Gaussian smoothing filters are suggested to produce
uniform neighborhoods in terms of mean and variance, which improves illumination varia-
tions and shading artifacts. Preliminary results suggest that the matching score threshold
for preprocessed images via the proposed technique should provide a much smaller false
acceptance rate in comparison to images that are not processed.

4.4 Iris

The iris region of the eye arguably provides the most accurate biometric trait [73]. The
frontal portion of the iris contains visible muscle which can be captured and used for bio-
metric authentication. The muscles consist of texture patterns which are highly unique and
stable over time. Traditional iris recognition systems typically require subjects to present
the eye area in a very controlled manner. Several near-infrared images are taken from which
a high-quality image is retained [60].

Jeong et al. presents an implementation specifically for mobile devices which employs
adaptive Gabor filtering for deriving iris features with the intentions of reducing the pro-
cessing power needed for authentication [73]. After iris detection, blurring and sunlight
exposure are measured and compensated for via altering the parameters (i.e., kernel, fre-
quency, and amplitude) of the Gabor filter. Moreover, instead of using the typical nor-
malization technique based on Daugmans rubber sheet model, the authors extract the iris
code directly from the pixel coordinates. Subsequently, matching is performed using the
Hamming distance. Using a database of 80 subjects, the authors report an EER of 0.14%.

Though premature in regards to mobile device application, commercial vendors are begin-
ning to explore the reality of iris recognition on popular smartphones. Given the inclusion
of an infrared light source on the front of the device, Samsung has recently included iris
recognition as an authentication method. The company’s president boasts introduction of
the biometric service as “new experiences we can create with the phone” [74]. Such ad-
vances open opportunities for exploration of additional biometric modalities which rely on
near-infrared light, such as the use of vein structures found within the finger [75].
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Research Challenges

There are several challenges associated with iris recognition in general, but these challenges
are further complicated on mobile devices. First, the iris is a moving organ inside of another
moving organ (the eye) [60]. Combining this motion with the inevitable movement of the de-
vice during data capture creates an immense stabilization problem. Second, iris recognition
systems are usually developed for optimal operation indoors [76]. However, mobile devices
are used in a variety of environmental conditions. Localization and segmentation of the iris
region in non-ideal lighting conditions is an open research problem. According to Cho et al.,
generalizing the usual method for iris localization (i.e., circular edge detection) to mobile
platforms is inefficient due to the constant dilation and constriction of the pupil as light
conditions change, ghost regions around the iris, and homogeneous gray levels across several
components of the eye [76, 77]. These conditions are all observed when the eye is captured
outdoors. Further, near-infrared illumination of the eye is preferred to preserve the iris tex-
ture, particularly for dark-colored irides [60]. This imposes hardware and usability issues for
mobile device users; the device must be equipped with a near-infrared sensor, the user must
be cautious of the distance between the eye and the sensor to avoid any eye damage, and
the user must actively cooperate with the system for adequate data capture. Finally, the
iris region is described as a “stochastic texture containing numerous edge like features that
are randomly distributed” [60]. This implies the need for sophisticated modeling algorithms
which have the potential to overwhelm the device’s resources. Traditionally, iris recogni-
tion involves several steps beyond localization and segmentation, including normalization,
encoding, and quality assessment, all of which are expensive mathematical processes.

5. Behavioral Biometrics
According to Clarke and Furnell, an efficient mobile device authentication system should
improve security beyond point-of-entry methods, reduce authentication attempts via trans-
parent authentication, provide continuous authentication throughout the entire session of
use, and maintain functionality across all mobile platforms regardless of hardware, software,
and networking differences [78]. Though physiological biometrics are capable of accomplish-
ing the first task, they fail to provide transparent and continuous authentication and are
largely hardware-dependent. Thus, behavioral biometrics are more suitable, as they meet
all of the said goals without the need for specific hardware requirements. Moreover, be-
havioral biometrics allow protection during “user abandonment” [79], or the time in which
the owner of the device is not present while the device remains unlocked. Compared to
knowledge-based methods, behavioral biometrics decrease the need for the legitimate owner
of the device to authenticate by 67% [80], indicating a significant increase in usability. It
is also shown that an intruder can complete over 1,000 tasks once access to the device is
obtained with only a single knowledge-based authentication attempt; however, multimodal
behavioral biometrics reduced this to only the completion of one successful task after over
6,000 attempts. Such advantages are likely the influential factors that resulted in 90% of a
survey’s participants in favor of transparent authentication [31]. Hence, several behavioral
modalities, such as motion, gait, touch gestures, voice, and profiling, have been extensively
analyzed for mobile device security.

5.1 Motion

Mobile devices allow motion detection via embedded accelerometers and gyroscopes. The
accelerometer measures acceleration is three orthogonal spatial dimensions, x, y, and z,
where each axis represents either the vertical, forward-to-backward, or left-to-right com-
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ponents [81]. The gyroscope measures the rotation about each of these axes [82]. The
combination of these measurements provide a feature space capable of modeling user move-
ment. Hence, various techniques have been proposed to take advantage of such information.

Such an implementation includes an air-written signature [83, 84]. Signatures (using pen
and paper) are a known behavioral biometric used for various government and commer-
cial applications [49, 85, 86]. While the subject is holding the device, he or she motions a
signature in the air while accelerometer measurements are recorded. The service requires
the user to run an application for data capture, such that it is not covert nor transparent.
Further, matching is performed on a server, which poses a security threat if the communi-
cation channel is intercepted. However, the algorithm is tested on ten volunteers achieving
a promising 1.46% FAR and 6.87% FRR. Nonetheless, while seemingly accurate and robust
against shoulder surfing [87], this technique shares several characteristics with knowledge-
based methods: (1) the user must actively engage with the authentication service, (2)
continuous authentication is not feasible, and (3) the user must know and correctly present
a password, which in this case, is the signature. Due to these similarities, the user may
be inclined to choose simple signatures for the same reasons of choosing simple passwords
or PINs. Similar efforts, such as evaluation of waving gestures [88], free-form gestures [82],
and ‘picking-up’ motion (i.e., retrieving the phone from a pocket or table, raising the arm,
and placing the phone near the ear) [89] are also proposed.

Research Challenges

An unfortunate characteristic of motion-based methods is the need to initiate data collec-
tion. For instance, the implementation which analyzes picking-up motion requires activation
and deactivation of data collection via button presses in a custom application [89]. While it
is shown that the curvature of this movement has distinctive qualities given the influences
of arm length, upper body shape, and muscles near the wrist, as evident by 12% to 16%
EERs, the non-intrusive advantage of behavioral biometrics is unavailable.

5.2 Gait

Gait recognition is the identification of an individual via how he or she walks based on ma-
chine vision techniques, floor sensors, or wearable sensors [90]. Machine vision approaches
use a segmented portion of images captured while a subject is walking [91]. Floor sensor ap-
proaches place sensors in the floor such that gait-related metrics are captured as the subject
walks on them [92, 93]. Wearable sensor approaches, which is the approach investigated in
mobile devices, are applicable when the subject has the sensing technology somewhere on his
or her person [94]. Gait recognition has been found useful as a motion-based, transparent
authentication approach through evaluation of accelerometer measurements.

There are four main phases in gait recognition. These include data acquisition, data
preprocessing, walk detection, and analysis [81]. Data acquisition involves placement of
the device such that walking activity can be recorded. Past efforts have placed the device
inside of a holster/pouch [95], in the pants pocket [81, 96], or have had the subjects carry
the device in hand [97]. Data collection typically includes 50 subjects or less [95–97], while
data is usually collected in controlled conditions; as a result, most studies have little influ-
ence from outside factors, such as the effect of different shoes [98]. Only a few studies have
attempted real-world data collection in at least one area of data acquisition (i.e., realistic
walking patterns, but ideal flooring) [98]. Once the data is acquired, it is preprocessed to re-
duce the noise introduced by various environmental factors, such as gravitational force, the
individual’s shoes, or the condition of the floor on which the subject is walking. Moreover,
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there seems to be a consensus that accelerometer sensors are quite irregular and highly sen-
sitive, which introduces further noise [96]. As a result, linear interpolation is typically used
to create equal intervals between samples, followed by filtering to reduce additional noise
due to misplacement of the device, screen taps, or automatic vibrations. Environmental
noise further complicates the next task of walk detection; to alleviate this problem, activity
recognition has been suggested to eliminate any non-relevant data [95].

With normalized data, walks can be detected via cycle or machine learning approaches.
Cycles are defined as the time between two steps identified by local maximums or minimums
in the three axes. Once an average cycle length is established, cycles are found throughout
the data by starting from the middle of the data stream and progressively moving forward
(and backward, subsequently) in distances of the average cycle length with some small cor-
rection factor. While cycle-based methods are most often used for walk detection, machine
learning techniques have been found useful for automatic detection of walking activity [98].
Machine learning techniques work in two steps; first, all data except the very beginning
and end are extracted (these excluded values correlate with device manipulation for data
collection). Second, a filter is applied to enhance the differences between high and low
acceleration values. Walks are then extracted based on some threshold value. Finally, an
analysis of the walking signals is required for feature extraction and matching.

Analysis can occur in both time and frequency domains. Time domain features include
various cycle statistics, such as average maximum and minimum acceleration and average
cycle length and frequency. Further, acceleration moments may be used as features to
describe cycle variance and stability [81,90]. Using such features, the cyclic rotation metric
is computed for matching cycle patterns. In the frequency domain, the data is operated
on using the Discrete, Discrete Cosine, or Fast Fourier Transforms. The first few output
coefficients from each conversion are the most useful in distinguishing between two gait
patterns, such that these coefficients serve as biometric features [81].

Research Challenges

Gait recognition is not robust against various aforementioned environmental factors. Fur-
ther, it is only useful as an authentication method when the user is walking. Once the user
is still, an alternative security method is required. Hence, gait recognition is most useful
in a multimodal scheme to avoid performance degradation due to various outside factors,
and to avoid the lack of authentication when accelerometer data is unavailable. Further, it
is interesting to consider how often an average mobile device user will access high-security
applications while walking. Intuition suggests that, while possible, it may be more likely
that an individual would prefer to access more sensitive data while sitting or standing still
to ensure privacy and enhance concentration on the task at hand. Thus, it would interesting
to evaluate any experimental correlation between application sensitivity and gait activity.

5.3 Keystroke Dynamics

Keystroke dynamics are a cost-effective solution to biometric authentication on mobile de-
vices [99]. Additional hardware is not required, given that a user must operate the device
via key input, continuous authentication is feasible, and typing behavior is unique. Recog-
nition via keystroke dynamics involves the analysis of keystrokes and typing patterns [100].
Common features include:

• Key press/down, or the time of a key press event.
• Key release/up, or the time of a key release event.
• Latency, or the time from press-to-press, release-to-release, or release-to-press events.
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• Hold time, or the duration of a key press event (i.e., how long the key was pressed).
• Pressure, or the measurement of the finger’s pressure on the screen.
• Size, or the area of the screen pressed by the finger.
• Error rate, or the number of times the user presses a backspace or delete key due to

erroneous input.
Analysis of keystroke dynamics has traditional application on computers with similar

features [101]. However, it is found that authentication on computers is easier as the
feature space is less complex. Nonetheless, Joyce and Gupta assert that the physiology of the
neurological system responsible for the uniqueness in written signatures are the same factors
which establish typing consistencies [102]. Moreover, inclusion of motion detection sensors
have shown to improve keystroke authentication; this additional information is unavailable
on desktop computers [103, 104]. Mobile devices offer a unique platform for evaluation of
keystroke dynamics, given that input mechanisms can vary from the dated 4x3 multiplexed
3D keys to 3D QWERTY keyboards to resistive or capacitive touchscreens [105]. It is
unclear, however, how current methods generalize to all of these input forms; this remains
as an open research area in keystroke dynamics on mobile devices. Nonetheless, several
methods have been proposed.

For instance, McLoughlin and Naidu propose use of key press and release, duration to
next key press, and the mean and variance of key timing distances as keystroke features,
arguing that the latter two account for the statistical similarities and differences in keystroke
behavior [105]. Weights are also employed to reduce the effect of inconsistent keystrokes;
values with lower variance are assigned higher weights. Verification is performed at down,
up, and all timings to deliver a reported accuracy that exceeded 90%. Hence, the authors
argue that keystroke dynamics is an efficient biometric with low computational overhead
and user impact.

Similarly, Zahid et al. analyze keystroke behavior from 25 phone users [106]. The au-
thors extract hold time, error rate, and digraph measurements, where a digraph is the time
between releasing and pressing keys. An identification system composed of three modes,
learning, impostor detection, and verification, is presented. The learning mode trains a
fuzzy classifier, impostor detection classifies real-time keystroke measurements, and verifi-
cation is invoked if the user is identified as a potential impostor, where the user is then
required to enter an eight-character PIN code. It is argued that a fuzzy classifier is better
suited for classification of keystroke behavior, given that a data point is assigned a de-
gree of membership to all classes which accounts for the diffused nature of the features.
Furthermore, Particle Swarm Optimization and Genetic Algorithms are employed for im-
proving solution optimization. The authors report 0% and 2% FRR and FAR, respectively,
suggesting user-friendliness and high security potential. Moreover, this work suggests that
considering classification of keystroke behavior as an optimization task is a more robust
approach compared to a distance-based approach [107].

As suspected, however, keystroke dynamics are somewhat inconclusive and have been
joined with stronger modalities for improvement in accuracy. For instance, Hwang et al.
recommend incorporating rhythm and tempo into keystroke dynamics [108]. As a result, a
user must follow a specific timing pattern and demonstrate consistency in keystroke behavior
for correct authentication. For example, “8374” can be entered as “8 3 7 4”, with two
short and one long pause between digits. Pauses are controlled via tempo cues similar to a
metronome to aid in counting pause durations. Average EER decreased from 8% to 4% for
natural rhythmic input without cues to incorporating artificial rhythms with tempo cues.
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However, though tempo cues are given, they require rhythmical sense at some level, along
with memorization of established pauses.

Sensor-enhanced keystroke dynamics have also been suggested for improving performance.
For instance, Wu et al. incorporate velocity measurements to achieve an average accuracy
of 98.6% using an SVM classifier and data from ten users [109]. Similarly, Giuffrida et al.
join samples of keystroke, accelerometer, and gyroscope data, where results indicate that
accelerometer measurements are more useful than gyroscope measurements, and combining
movement data with keystroke features provides approximately equivalent performance of
movement-related features alone [110]. While sensor-related features appear to be more
robust than keystroke dynamics, use of such sensors is power consuming. A balanced
solution could mostly rely on keystroke dynamics, while periodically including accelerometer
readings.

Research Challenges

There remains a need for performance evaluations under uncontrolled conditions, such as
typing while walking or lying down. A user may type differently according to his or her
emotional or physical state. Injuries to the hands, temporal changes to the device’s screen,
and even changes in typing speed could result in performance degradations. These are all
non-trivial scenarios that are most likely the future of keystroke dynamics for mobile device
security [100].

5.4 Touch Gestures

A 2013 study predicted doubling of touchscreen panel shipments by 2016 to reach an aston-
ishing three billion units [111]. Furthermore, the touchscreen market has extended beyond
mobile devices for modern updates of LCD monitors, cameras, navigation devices, automo-
biles, and more [112]. Hence, authentication via touchscreen gestures is convenient, cost-
effective, and may, at some point, become necessary. Therefore, several researchers have
investigated such gestures (e.g., swipes [113,114], flicks [115,116], pinches, and slides [117]),
as well as handwriting as behavioral biometrics [118].

Touch gestures differ from keystroke dynamics in the implication of a touchscreen-enabled
device for data acquisition. Keystroke dynamics are mainly based on the nature of pressing
and releasing keys. Keystroke dynamics are applicable to a wider range of devices, while
touch gestures encompass a wider range of input forms. Similar to keystroke dynamics,
however, touch gestures elicit accelerometer measurements as a result of device vibrations
when interacting with the screen [115, 119]. Hence, a few efforts have extended touch
gestures to include motion-based features [120]. Further, it has been shown that touch
gesture features allow authentication with accuracy as high as 99% and EERs as low as
0.03% with simple classifiers such as k-Nearest Neighbors [121] or distance calculations [119].

For feature extraction, researchers take advantage of mobile device-specific operating sys-
tem calls for logging of x and y-coordinates, gravity, pressure, velocity, finger area, corre-
lation values in multi-finger gestures, average duration of the gesture, and other relevant
metrics that help to describe the statistics of the gesture [121–125]. For instance, Antal
and Szabó investigate the accuracy of swipe gestures using touch duration, swipe trajectory
length, average velocity, acceleration, midstroke finger pressure and area, and mean grav-
ity values in three dimensions [126]. Fifty-eight samples were collected from 40 subjects,
and one and two-class classification were performed. Bayes Net, k-Nearest Neighbor, and
Random Forests were compared in the two-class problem, where Random Forests provided
a 0.004% EER. Parzen density estimators, Gaussian mixtures, incremental Support Vector
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Data Descriptors, and k-Nearest Neighbors were compared in the one-class problem. In-
cremental Support Vector Data Descriptors provided the lowest EERs, while the one-class
problem provided higher EERs than the two-class problem. Results also indicated that
device movement and holding position were the most user specific and one-class techniques
performed better at classifying negative classes than positive.

Touch gestures have also been used in soft biometric classification, which is particularly
useful in criminal investigations, where touch gestures indicate gender and proportional
relationships that infer otherwise unknown physical characteristics, such as hand size, fore-
arm length, and height. For instance, Miguel-Hurtado et al. propose use of swipes for sex
prediction via extraction of length, width, height, area, thickness, pressure, speed, accelera-
tion, arc distance, and start-to-end angle as features [127]. Differences were shown between
male and female width, area, angle, speed and distance features. Additionally, the authors
find that the multilinear logistic regression classifier was most reliable for sex prediction,
obtaining 71% accuracy based on an individual swipe direction (down-to-up). Decision-level
fusion of all swipe directions rendered a higher accuracy of 78%.

Similarly, Bevan and Fraser consider an interesting approach which analyzes the correla-
tion between swipe gestures, thumb length, and gender [128]. Because one-handed interac-
tions are typically only completed by the thumb, the authors obtain thumb measurements
and 21,360 swipe gestures in multiple directions from 178 subjects. Gesture length, comple-
tion time, thickness, pressure, speed, and acceleration are extracted as features, revealing a
statistically significant relationship between thumb length and swipe gestures, particularly
in completion time, speed, and acceleration. Furthermore, results show that male subjects
complete gestures faster than women.

The advantages associated with touch gestures have further prompted researchers to con-
sider such screen interactions for improving security schemes on devices used by individuals
with disabilities. For instance, PassChords is introduced for those with vision impairments,
such that a password equates to a certain sequence of screen taps [129]. Likewise, Zaliva
et al. investigate the finger’s proximity to the screen prior to making contact via modeling
the trajectory and posture of the finger [130]. Such an implementation could accommodate
users with finger injuries given that contact with the device is no longer necessary.

The research literature suggests that touch data is application-dependent, such that re-
searchers should not expect generalized performance across applications, but should instead
consider “context-aware” implementations [131–134]. Khan and Hengartner suggest such
an approach with the claim that performance can be improved if the biometric service is
controlled by the individual applications themselves, allowing fine tuning of features and
more specific classifiers [34]. The core of this work is to investigate the advantages and dis-
advantages of device and application level authentication. For experimentation, the authors
develop four applications (browser, navigation, launcher, and comic viewer) for 32 users to
use in an in-the-wild manner for ten weeks. Touchscreen features were recorded, including
metrics such as touch point coordinates, finger pressure, area, and finger and screen orienta-
tion. For application-specific feature tuning, the authors employ the Kullback-Leibler (KL)
divergence measure, where KL-divergence scores differ by application, implying that the sig-
nificance of features differs according to the application. Experimental results also suggest
that this approach is more accurate than the device-centric approach as false acceptance
rates decrease.
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Research Challenges

It is shown that touch gesture information is hard to mimic, and as a result, it is a secure
option compared to knowledge-based methods [135]. Specifically, touch gesture features
are independent, suggesting that an intruder’s ability to accurately repeat one feature is
no indication of his ability to repeat another. Because implementations consider multiple
characteristics of touch behavior, it is hard to deceive an authentication system in every
dimension simultaneously. Further, when sampling rates are small, it becomes more difficult
to precisely learn and mimic touch gestures. Finally, touch gestures are largely dependent
on biological anatomy, such that an intruder must consciously be aware of the user’s hand
geometry. On the other hand, it is shown that the accuracy of systems which depend
on touch gestures is affected by the screen’s orientation (i.e., portrait or landscape), the
device’s location (i.e., placed on a flat surface versus held in hand), and the screen size,
and as a result, it is suggested that implementations consider posture-dependent feature
templates [136]. Research also suggests that due to the behavioral and unconstrained nature
of touch gestures, data is further affected by the dominant hand, mobility, usage changes
over time, and user location [132].

5.5 Voice

Voice/speaker recognition combines physiological and behavioral characteristics for the iden-
tification of a speaker based on his or her speech [49]. Anatomical aspects, such as the vocal
tract and lips, coupled with behavioral characteristics, such as age or emotion-related tones,
offer a rich feature space which can be statistically analyzed [137,138].

Two voice recognition modalities exist [139]:
1. Text-dependent: In text-dependent systems, users are asked to speak a predetermined

phrase, and are therefore aware of the biometric service (hence, this is not a covert
system). Because of the use of a fixed phrase, the system is more accurate.

2. Text-independent: In text-independent systems, the service attempts to recognize the
speaker independent of what is spoken. Text-independent systems are useful when
there is less control over the input, such as when the user is not aware of the service,
which subsequently allows greater flexibility. However, achieving high performance
in text-independent voice recognition is more challenging due to its unconstrained
nature.

The components of a voice recognition system work cohesively as a pattern recognition
system. Having collected speech samples, features are extracted from the raw data similar
to feature extraction in face recognition. Such features are categorized into short-term spec-
tral, voice source, spectro-temporal, prosodic, and high-level features. Short-term spectral
features are extracted from 20-30ms frames to describe resonance properties of the vocal
tract. Voice source features model voice modulation as a result of the openings between
the vocal cords. Prosodic and spectro-temporal features cover longer frames to include
intonation and rhythm. High-level features represent conversation-level attributes, such as
frequent word use. Ideal voice recognition features should differ between various users, but
be similar within samples from the same user. Further, these features should be minimally
affected by outside noise, behavior, and health, are quantifiably measurable, occur often
and naturally, and be hard to mimic [140]. It is found that no one feature has all of these
properties; however, though the simplest, spectral features are the most discriminative [139].
Following feature extraction, features are matched via models such as vector quantization,
Gaussian mixture models, and SVMs [140].
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Traditionally, voice recognition has been applied to access control, law enforcement, and
personalization (e.g., intelligent answering machines) [139]. Recently, voice recognition has
been used in banking for automatic recognition of customers during telephone transactions.
This service supposedly eliminates the need for security questions, and can recognize cus-
tomers despite voice changes and even gender reassignments [141]. This application shows
the true potential of voice recognition beyond forensic and criminal investigations.

Research Challenges

Voice recognition is likely the most universal implementation available for mobile devices.
The purpose of mobile devices (specifically, cellular phones) is to facilitate communication
primarily through phone calls. Therefore, voice recognition can be applied to any device
that can support the required biometric software. However, voice recognition on mobile
devices is often considered a weak biometric, and should, therefore, be used in multimodal
systems [142–146]. Given the mobility of mobile device users and the lack of controlled
environments, voice captured on these devices is often contaminated with various sources of
noise. Hence, Section 6 discusses various implementations which have combined voice with
additional biometric modalities.

5.6 Behavioral Profiling

This section emphasizes use of mobile device usage data, defined as the output or log of
trackable activity carried out via available application services. This data is largely based
on interactive-level sensing, where the focus is on how the user interacts with the device,
such as in making phone calls, sending text messages, and application usage [147]. This is
often referred to as behavioral profiling.

Previous efforts regarding interactive data mostly involve handling of nominal data in an
unsophisticated manner, such as through frequency counts and categorical representations.
This is mainly due to the inability to process these values mathematically. Interactive data
values usually represent visited entities, such as the names of applications opened or closed
or Wi-Fi network names in which the user connects the device for internet access [148].
Therefore, these values rarely reflect any notion of order and any numerical representation
typically does not imply meaningful numeric computations. Features are categorized as
follows [149]:

• Categorical Features: Categorical feature representations group interactive data val-
ues. For example, instead of listing the names of each social networking application,
the feature vector could simply include ‘social networking’ itself as the feature. Hence,
if there are five social networks that a user visits, the feature vector will only state
that the applications were for social networking without providing the exact details of
the application. Bassu et al. have considered this approach for modeling application
traffic by categorizing applications according to marketplace themes [150]. The time
of data capture is also grouped according to the time of day (e.g., morning) and the
device’s movement and location values are discretized to values such as fast and office,
respectively. Similarly, Branscomb categorizes application traffic into groups such as
audio, messaging, and settings [151]. Obviously, this method reduces the feature val-
ues to a smaller set, which may be too general to allow distinction among users when
used as a stand-alone method.

• Frequency Features: Frequency-based feature representation is seen often in the re-
search literature for interactive data, given that it is trivial to count how many times
an action is taken [152]. It is also intuitive to consider the most frequented actions
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taken to distinctively model user behavior. Fridman et al. considers frequency repre-
sentation for application and web browsing activity [153].

• Sequential Features: Sequences of actions are also considered as features [153, 154].
Here, researchers assume that the order in which actions are taken is significant and
unique to each user. This approach is similar to the n-gram representation of text
in stylometry applications, where classification is based on frequent n-tuples found in
documents as indicators of an author’s style.

Various implementations have been considered for behavioral profiling. For instance,
Cao et al. investigate behavioral profiling as a means of associating contexts with frequent
behavior [155]. While this work may be more beneficial for marketing platforms where man-
ufacturers want to customize advertisements to the personal interests of their consumers, it
supports the notion of behavioral profiling on mobile devices. Moreover, fifty students were
recruited for this study for one month in which GPS, GSM, system, call log, sensor, and
interaction data were recorded. All volunteers were able to confirm that 95% of associations
discovered by the researchers were correct.

Similarly, Seifert et al. consider context-specific behavioral profiling as a means of mobile
device security [156]. TreasurePhone is proposed to allow access to specific applications
depending on the location of the device. Users are free to set these locations, which are
considered spheres, where each sphere allows a different security level. Thereafter, spheres
are automatically activated based on location detection. For instance, the sphere that
correlates with a work location would restrict access to email and messaging applications,
whereas the home sphere would allow access to gaming, email, and calling applications.
Hence, the authors couple location and application usage to develop various profiles. This
concept suffers, however, in the need for location detection and the requirement of user
cooperation for establishing the various spheres. In the event that a user travels often, he
or she may need several spheres, which would require an increase in user effort. Additionally,
location detection via sensors such as GPS is power-consuming and could cause excessive
battery drain on the device [153,157].

Behavioral profiling has also served as a tool for classifying malicious malware, as Jang
et al. propose Andro-prolifer as a means to utilize system calls, their arguments, and
system logs for detecting malicious and benign software on mobile devices [158]. This work
attempts to address the shortcomings found in previous efforts for malware detection that
focused mainly on the frequency of system calls, as the number of calls is typically low.
The authors employ a database of 709 malware samples and 350 benign samples to reach
an average classification accuracy of 99%.

Research Challenges

The research suggests a lack of standard datasets from which benchmark results can be ob-
tained. While several benchmark datasets exists for physiological traits, several behavioral-
based studies are based on the actions taken by 10 to 50 subjects, significantly limiting
any generalized conclusions. For instance, it seems that accuracy is context-dependent,
such that it is important to match templates which arise from the same data source [159].
However, requiring context-dependent feature templates could increase the resources nec-
essary to store such templates. It is also shown that a dependency exists between samples
and the time intervals in which samples are obtained, along with an introduction of a bias
when using raw samples [160]. There is also uncertainty on how much data is needed for
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authentication [161]. A large-scale and real-world database is key to evaluation of such
issues.

6. Multimodal Authentication
Biometric systems which rely on a single trait (i.e., unimodal) are often problematic. Mul-
timodal systems are often used for enhanced performance and robustness via combination
of several modalities. Multimodal systems typically reduce problems associated with uni-
versality and enrollment, increase flexibility, and reduce the effectiveness of adversarial
attacks [60]. While biometric fusion can indicate the use of multiple sensors, multiple
matching algorithms, and multiple samples, the following describes the fusion levels of mul-
tiple biometric traits, given that this survey focuses on various traits available from mobile
devices. In this context, biometric traits are commonly fused at feature, matching, and
decision levels:

• Feature Level Fusion: Features from each (or the same) modality are combined im-
mediately after extraction from the raw data and fed into the matching algorithm.
Normalization of features is usually required when handling heterogeneous represen-
tations.

• Matching/Score Level Fusion: Matching scores from each modality are combined as a
single score, which is subsequently used at the decision level. Such combinations are
based on various rules, such as min, max, product, and sum.

• Decision Level Fusion: Matching decisions from each modality are all considered to
determine an overall decision. Various rules, such as majority voting, are applied to
determine the final decision.

In the context of mobile devices, it is argued that multimodal biometrics is an affordable
solution to mobile security given the availability of already-present sensors [162]. However,
as with unimodal systems, biometric authentication is data-dependent, such that poor data
samples from multiple modalities could fail to boost performance despite the known ad-
vantages. Moreover, use of multiple physiological modalities requires use of multiple sen-
sors, which has the potential to increase operating costs [163]. Despite said considerations,
overall, multimodal authentication has shown to increase the robustness of mobile device
security [164].

Such an implementation combines gait and voice data from 31 subjects [97]. For gait
collection, an accelerometer is attached to the hip pocket, breast pocket, and carried while
subjects walk at normal and hurried speeds. Correlation and FFT similarity scores are
used for matching accelerometer signals. These same subjects also provided speech samples
from which MFCC features were extracted. Various noise levels were examined using three
SNR measures - 20, 10 and 0 dB. It is found that error rates decrease from 13.7–17.2%
and 2.82%–43.09% using gait and voice recognition, respectively, to 1.97%–11.8% using the
combined system. However, in the event that the user is not walking or speaking, the service
is ineffective.

A similar effort joins face and voice to address sample quality and lack of training data in
mobile device authentication [162]. It is stated that sample quality is particularly poor when
captured on mobile devices due to unconstrained conditions during data capture and the
inclusion of low-cost sensors. Further, the authors argue that consumers are less inclined
to offer several training instances during enrollment, though increasing training samples
correlates with increases in performance. Therefore, using multiple modalities addresses
these issues by increasing the chances of obtaining a larger amount of high-quality samples.
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The Fisherface technique is used for face recognition given its robustness in unconstrained
conditions (i.e., variations in expression, pose and illumination). Hidden Markov Models
and Linear Discriminant Analysis are used for voice recognition when using score-level
and feature-level fusion, respectively. Further, quality-based fusion is employed, such that
each modality is weighted based on the sample quality while ensuring that high quality in
one sample and very poor quality in the other does not essentially equate to a unimodal
system. In other words, both weights must meet some threshold to avoid full dependence
on one modality. Both score and feature-level fusion decreases error rates, while the best
improvement is observed using feature-level fusion (4.29% and 34.72% for face and voice,
respectively, to 2.14% for the combined system).

An additional work combines face, voice, and signature for securing PDAs [165]. While
experimental results suggest the common trend of considerable improvement in accuracy
when all traits are combined (i.e., 3.38%-29.87% to 0.56% decrease in error rates), there
are many other points worth mentioning. First, the voice module used the text-dependent
approach, as the authors felt that a text-independent system would create large models
to compensate for various phonetic variations, and such models would be computationally
expensive on mobile devices. Second, the authors take into account the risks and privacy
issues associated with processing the data on a server by choosing to perform all processing
locally on the device. Further, the authors collect face and voice samples from the same
subjects, but include signature samples from different subjects. While the authors assume
no correlation between face, voice, and signature such that the presented data collection
procedure is valid, this data collection procedure indicates the lack of datasets for performing
such multimodal experiments.

Similar works include the combination of face, iris, and periocular recognition [66, 166],
authentication based on eye gaze and touch gesture for addressing shoulder surfing-like
attacks [167], a multimodal approach which joins linguistic and behavioral profiling with
keystroke dynamic features from text messages [168], and the combination of application,
Bluetooth, and Wi-Fi traffic [152].

Table 1 summarizes several biometric approaches for mobile devices.

7. Template and System Security
A major aspect of biometrics on mobile devices is security and privacy. For widespread
acceptance, users must be confident that their biometric features are protected from outside
sources and used for the intended purpose. Unfortunately, biometric systems are vulnerable
to adversarial attacks, such as spoofing via fingerprint molds and use of images during face
detection. For instance, it is shown that, prior to software patches, it was possible to derive
malware capable of acquiring the fingerprint image stored in the local memory of the device,
extract the fingerprint template, and restore the fingerprint features [175]. Much research
has been directed towards preventing such occurrences in standard biometric systems; these
and new implementations are now applied to mobile platforms.

Zafar and Shah note two attack types: direct and indirect [176]. Direct attacks operate on
the sensor through the presentation of fake or false traits; this is often referred to as spoofing
or presentation attacks. This is alarming on mobile devices as the sensor is an always-
available component. For instance, Vasquez-Fernandez et al. note that facial recognition is
susceptible to spoofing [177]. Anti-spoofing techniques, such as blink detection or analysis
of background illumination, are often used to determine if the subject is actually alive;
however, due to the flexibility in which mobile devices are handled, the authors indicate
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Table 1: Biometric implementations for mobile device security.

Physiological Modalities

Ref. Modality Features Subj. Matcher Performance

Crouse et al.
[58]

Face Biologically Inspired Model (BIM) features
from the forehead, periocular area, eyes, nose,
and mouth.

10 SVM classifier with a RBF kernel. 65% TAR at 1%
FAR

Fathy et al.
[59]

Face Holistic and mouth, eye, and noise pixel in-
tensity values.

50 Eigenfaces, Fisherfaces, Large-margin Nearest
Neighbors, Sparse Representation-based Clas-
sification (SRC), Affine/Convex Hull-based
Image Set Distance, Sparse Approximated
Nearest Points, Dictionary-based Face Recog-
nition, and Mean-Sequence SRC.

17.6% - 74.9% ACC

Raja et al.
[166]

Face and periocular SIFT, SURF, and BSIF features. 46 Bhattacharya distance and Fast Approximate
Nearest Neighbor Search.

0.99% - 4.69% EER
using feature-level
fusion.

Riesch et al.
[61]

Face Local binary patterns. 9 SVM 91.3% - 100% ACC

Raja et al.
[67]

Periocular Concatenated histograms of Short Term
Fourier Transform responses from Laplacian
pyramid images at various scales.

75 L1 minimization. 8.33% - 31.02%
EER

Raja et al.
[66]

Face, iris, and peri-
ocular

Iris texture, SIFT, SURF, and BSIF features. 78 Bhattacharya distance and Fast Approximate
Nearest Neighbor Search.

0.68% EER

Tao et
al. [62]

Face DIFS (distance in feature space) and DFFS
(distance from feature space) values.

6 Probability-based Parzen classifier. 1.2% EER

Sarkar et al.
[169]

Face Features from the first five layers of a deep
convolutional neural network.

50 SVM 88% - 96% ACC

Raghavendra
et al. [170]

Fingerprint Minutiae 25 BOZORTH3 comparator. 3.74% EER

Han et al.
[171]

Palmprint Sum-difference ordinal codes. 40 Hamming distance. 0.92% EER

Behavioral Modalities

Shih et al.
[120]

Touch gesture Time, pressure, and size. 10 Naive bayes, SMO, and J48 classifiers. 88% - 100% ACC

Nickel et al.
[95]

Gait Mean, minimum, maximum, and standard de-
viation in tri-directional accelerometer read-
ings, MFCCs, and BFCCs.

36 k-Nearest Neighbors with Euclidean distance. 3.67% - 5.48% FMR

Saevanee et
al. [121]

Keystroke dynam-
ics

Finger pressure, inter-key time, and hold time. 10 k-Nearest Neighbors 1% - 35% EER

Vildjiounaite
et al. [97]

Gait and voice Gait: normalized steps and Fast Fourier
Transform coefficients. Voice: MFCCs.

31 Correlation Score, FFT Score, and Gaussian
Mixture Models.

9.1% - 11.8% EER

Li et al. [6] Behavioral profiling Application usage. 76 Dynamic rule-based classifier 12.91% FRR

Fridman et
al. [153]

Behavioral profiling Text (n-grams), application usage, Wi-Fi traf-
fic, and location.

200 Maximum likelihood and SVM with a RBF
kernel.

1% - 5% EER

Antal et al.
[126]

Touch gestures Duration, trajectory length, velocity, acceler-
ation, pressure, area, gravity.

40 Random Forests, Bayes Net, k-Nearest Neigh-
bors, Parzen density estimation, Gaussian
mixture models, Incremental Support Vector
Data Description

0.002% EER using
Random Forests

Nickel et al.
[98]

Gait MFCCs and BFCCs 48 Hidden Markov Models 7.45% EER

Kwapisz et
al. [172]

Gait Acceleration, time between peaks, and binned
distributions.

36 Decision trees and neural networks. 82.1% - 92.9% ACC

Mondal et al.
[114]

Touch gestures Stroke duration, initial coordinates, direction,
trajectory, velocity, pressure, and area.

71 SVM and Counter Propagation Artificial Neu-
ral Network (CPANN)

98% ACC

Feng et al.
[173]

Touch gestures Coordinates, direction, speed, pressure, and
distance between multi-touch gestures.

40 Decision trees, Random Forest, and Bayes net. 4.66% FAR and
0.13% FRR

Feng et al.
[89]

Motion Trajectory, duration, mean, variance, and
standard deviation from accelerometer and
gyroscope measurements.

31 SVM and Discrete Fretchet Distance 3.67% EER

Cai et
al. [174]

Touch gestures Speed, pressure, distance between fingers. 20 Distance Time Warping and Manhattan dis-
tances, Neural Networks, SVM, and Bayesian
Networks.

4.05% FAR at
3.27% FRR using
SVM

Wu et
al. [109]

Touch gestures Pressure, position, and area. 10 SVM 98.6% ACC

that a single anti-spoofing measure is not the ideal approach. Further, current methods may
not respond to new attacks, which are likely given the widespread use of mobile devices.

Indirect attacks operate on software or interfaces between modules, such as a transmission
channel. The service is intercepted at some point, and identifying information is retrieved
or altered. Malware is also a big concern for mobile devices; because applications are
freely developed and made publicly available, bypassing application permissions during
installations can be detrimental. Template protection is key to preventing indirect attacks.
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Template protection plays a key role in ensuring user privacy within and across multiple
applications. Unlike passwords, biometrics are permanently embedded. They cannot be
changed or reissued if compromised, and exposure of biometric features to the wrong indi-
vidual is likely disastrous. As a result, there are five common properties associated with
protected templates [178,179]:

1. Protected biometric features should be noninvertible such that derivation of the orig-
inal template is computationally difficult.

2. A protected template is revocable given generation of a new template derived from
the original features.

3. Templates should be unlinkable given access to multiple protected traits; in other
words, it should be difficult to determine if multiple templates were provided by the
same individual.

4. Protected templates should be diverse across different applications.
5. System performance should be maintained when using protected templates.

Salting, noninvertible transform, key-binding biometric cryptosystem, and key-generating
biometric cryptosystem are four common template protection schemes [180]. Salting pro-
vides protected templates through a key or password that the user provides during authen-
tication. Therefore, while the user must ensure the security of the key, the template is
revocable if the key is compromised by simply generation of a new key without having to
regenerate biometric features. Template differences between users is also enhanced through
the user-specified key [181]. Further, the transformed template is invertible. However, main-
taining performance is a concern, particularly on mobile devices, as matching is performed
in the transformed space. Because users will likely exhibit large variations in their biomet-
ric traits, matching in the transformed space will likely be faulty as even minor changes in
the original space result in major deviations in the transformed space [181]. Noninvertible
transform is similar to salting where a one-way function which depends on a key and the
biometric features maps the features to a new space. Unlike salting, noninvertible transform
does not require the user to maintain a secret key, and knowledge of the key does not imply
the ability to revert the protected template back to its original state. Because protected
templates can be regenerated with only a new key, salting and noninvertible transform are
considered cancelable biometrics [179]. Biometric cryptosystem approaches use helper data
to either bind or generate a key based on the biometric data presented during an authenti-
cation attempt. The helper data uses error correction schemes to derive a match between
the gallery and probe templates.

Hybrid approaches are often superior, similar to multimodal biometrics. For example,
Supriya and Manjunatha derive a secure implementation of iris recognition using chaotic
theory, biometric cryptography, and noninvertible transform [182]. Chaos introduces a high
level of randomness due to the inability to predict future behavior; as such, including chaotic
output into the transformation process lends a suitable protected template with a significant
amount of entropy. While their method is not directly stated to operate within mobile
devices, elements of the technique may actually scale well to mobile units. For instance,
the template transformation is done through simple bitwise XNOR and XOR operations
on the iris code and the chaotic key, which is claimed to have a space of 2319. Therefore,
resource-draining computations are avoided, which is necessary on mobile devices, and it
becomes very computationally difficult to derive the chaotic key used in the transformation.

However, a challenge for typical protection schemes is the requirement of simple match-
ers or distance calculations [178]. This ‘challenge’, however, may be beneficial on mobile
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platforms. If feature vectors are simple, complex algorithms may not be required. As a
result, resource drain is controlled and fast and secure authentication is carried out. An
additional challenge is the tradeoff between maintaining noninvertibility and satisfactory
performance. Noninvertibility implies that the protected template does not reveal any
identifying information which would allow an intruder to produce the original template
from the protected template. However, high performance implies that the templates retain
the maximum amount of discriminating information. Hence, there is an obvious issue of
maintaining discrimininability while simultaneously suppressing it. Nandakumar and Jain
claim that to achieve both properties, the protection scheme should use the knowledge of
the underlying statistical structure of the features. However, deriving complex distributions
is often non-trivial [178]. On the other hand, the authors also state that the majority of
protection schemes are optimized for verification schemes (i.e., one-to-one matching). While
this may be problematic in larger applications, this is ideal for mobile devices as the au-
thentication process is a verification problem. Therefore, applying existing techniques may
be a suitable solution to protecting mobile device authentication.

Fortunately, modern devices are developed to handle sensitive transactions and processes
via application of template protection schemes along with various protocols [183]. These
protocols work to provide private and secure environments to avoid data leaks and mal-
ware intrusions. Such environments are consequently highly beneficial in securing local
biometric systems and much effort has been directed towards providing isolated processing
environments for biometric authentication on mobile devices. The Fast Identity Online
Alliance (FIDO), Biometric Open Protocol Standard (BOPS), Trusted Execution Environ-
ment (TEE), Trusted Mobile Zone (TMZ), and Secure Enclave Processor (SEP) provide
the necessary protocols and specifications to achieve said tasks.

According to Stokkenes et al., FIDO and BOPS are protocols to support and regulate
biometric authentication. FIDO is developed as a cohesive effort by several organizations
to produce specifications for the Universal Authentication Framework. This framework
facilitates local authentications (such as biometric identifications on mobile devices) via
cryptography and the FIDO authenticator. Hoyos Labs’ BOPS is similar to FIDO; however,
it provides more detailed specifications regarding biometric services, including guidelines for
liveness detection and error rate thresholds. The TEE works to prevent unauthorized access
to sensitive applications, such as a biometric service, by providing an isolated and secure
operating environment. “Trusted systems” operate within these environments, which is
referred to as ARM’s TrustZone technology on mobile devices [183]. TrustZone extends
security to various hardware components, dividing the memory space and other hardware
into secure and normal zones. Components designated as secure are restricted in how
they interact with, accept, and deliver information. For instance, Zhang implements facial
recognition for mobile devices within TrustZone for a secure authentication process [184].
Every phase of the biometric service is housed within a secure environment; it is claimed that
the service is protected even from those having root access to the operating system. Paul and
Irvine discuss secure fingerprint recognition on mobile devices via TrustZone as well [185].
However, the authors note that non-secure applications often access the sensing device,
indicating that the isolation desired in TEEs is perhaps a work-in-progress concept [186].
Apple introduced the SEP as a means of securing its fingerprint recognition service [187].
It serves as a TEE acting as a separate operating system.

The many attack points of biometric systems reflect serious privacy concerns, particularly
when biometric systems are implemented on unattended platforms such as mobile devices.
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There has to be some level of technical understanding from mobile device users of biometrics
to ensure proper use of the service without unintended exposure of the trait to others.
Second, users must be reassured that all data is gathered for authentication purposes, and
proper measures will be taken to encrypt and/or anonymize the data accordingly. Further,
in the event that the service is intercepted, manufacturers, service providers, and consumers
must be knowledgeable of the steps required for addressing the potential issues associated
with such occurrences. These concerns leave several questions, such as who is responsible
for the biometric service – service providers or manufacturers? Is authentication possible
without network access? Should the data be stored on the device, on a back-end server, or
in the cloud?

8. Open Problems
Biometric authentication is often considered a stronger form of security compared to knowledge-
based methods for obvious reasons; biometric traits cannot be forgotten or stolen and are
hard to spoof. However, these benefits do not implicate a flawless and seamless authentica-
tion experience. Several issues remain a bottleneck in terms of precision, generalization, and
scalability in biometric systems. Beyond template security, four specific research challenges
regarding mobile devices have proven difficult to address; these include hardware limita-
tions, environmental and user-induced noise, inconsistent data, and balancing transparency
with usability.

8.1 Hardware Limitations

A major concern in terms of hardware lies in constant user access to the sensor. In tradi-
tional biometric systems, users only have temporary and brief encounters with the sensor.
Further, the sensor is likely tailored to the biometric modality in which it is engineered to
capture (i.e., finger pegs are included for palmprint recognition). On mobile devices, how-
ever, the sensor is a general component of the device’s architecture, lacking any mechanisms
for preventing tampering with and spoofing of the sensor. As a result, an open problem is
how to properly secure the device’s sensor without inhibiting its intended operation beyond
biometric authentication.

Second, there are variations in hardware specifications from one device to the next. While
one biometric modality is suitable for one device, the sensor it requires may be unavailable on
other platforms. This implies the need for platform-specific implementations. Additionally,
hardware variations, such as those which affect sensor quality, introduce sources of undesired
noise. Outdated sensors may provide poor data samples which lack discriminating features.
If, for instance, a camera produces blurry images, the quality of facial images could be too
poor to extract reliable information for face recognition.

Finally, some modalities may impose additional hardware costs, reduce the convenience
of the device’s design, or require additional storage or processing power. For example, there
are suggested implementations which require unrealistic items for operation, such as an
approach which combines touch gesture features with sensor information from a digitalized
glove [173]. Important aspects of mobile devices are usability and portability, but inclusion
of biometric technology has the potential to significantly reduce normal operation of the
device.

8.2 Environmental and User-Induced Noise

Environmental influences consist of variations in lighting, background scenes, and other
noise sources that all affect the ability to properly capture a high-quality sample. Such
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influences require segmentation algorithms to separate the actual biometric characteristic
from environmentally-induced noise [188]. Further, modality-specific noise poses a chal-
lenge, such as cuts on fingers, make-up and accessories in facial recognition, and illnesses
that affect the vocal tract in voice recognition. Hence, while the biometric characteristic
can be reliably captured, there are noisy aspects of the sample that degrade performance.
Algorithms, such as Principal Component Analysis, are denoising techniques which can
assist in reducing this noise, but further challenges are how to distinguish between noise
and discriminating information, and how to balance the computational load on resource
restrained mobile devices when implementing such algorithms. Further, there is little re-
search to address how to properly quantify data quality, recognize when the sample is poor,
and instruct the subject on how to re-present him or herself to the sensor to allow proper
data collection [189].

The unpredictable use of mobile devices introduces further noise sources that complicate
the authentication process. Individuals are free to use mobile devices in various settings;
physiological traits in particular are highly influenced by these settings. It becomes non-
trivial to reduce these characteristics given the restrictions of the device’s resources, the
inability to predict and quantify these noise sources, and the inability to expect consistent
and/or cooperative interaction from the user.

8.3 Inconsistent Data

Physical and/or behavioral variations introduce inconsistencies in data samples that usually
correspond with lower quality data samples or poor matching. Physical variations include
unavoidable changes such as aging and illness. The effects of aging are prominent in nearly
all biometric modalities, and a core research challenge lies in the ability to identify the
same subject over extended periods of time [188]. On the other hand, behavioral changes
are likely influenced by emotion, and include changes such as facial expression and typing
behavior. When such variations are introduced, it could result in mismatches between
gallery and probe features.

Behavioral modalities in particular are not as distinct or stable as physiological biometrics.
For instance, though no two iris patterns are identical between different individuals, groups
of individuals may share a common call pattern or connect to the same Wi-Fi networks.
Moreover, implementations must consider conscious and unconscious behavioral changes
that can occur on a daily basis, requiring constant updates to enrolled templates. Such
requirements debunk the expectation of behavioral systems that consistent user behavior is
exhibited; these same requirements introduce additional needs for software which maintains
updated biometric templates.

8.4 Balancing Transparency with Usability

Physiological modalities may be inconvenient to users as they require as many authentica-
tion attempts as knowledge-based methods. These traits also fail to provide transparent and
continuous protection [22]. On the other hand, there is a lack of transparency in behavioral
systems due to the inability to authenticate when the user is not providing the information
that the system is created to monitor. Due to the sporadic nature of human behavior,
it currently seems impossible to solely rely on a behavioral system. Hence, some explicit
form of authentication is required at some point when biometric methods fail to provide a
high enough confidence level to allow device access. In such cases, services, such as PRISM
(Policy-driven Risk-based Implicit Locking for Improving the Security of Mobile End-user
Devices) which allows users to understand and alter its decisions, are reasonable solutions
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for minimizing the need for knowledge-based authentication [190]. PRISM monitors loca-
tion and application usage for hierarchical decision-making functionality based on several
user-defined policies. These policies were shown to reduce knowledge-based authentication
attempts by up to 75%. However, in these cases, the system is no longer transparent [22].
These challenges reflect the balancing of transparency with usability as an open research
problem.

Table 2 summarizes the impact of the discussed open problems on each of the aforemen-
tioned biometric modalities. This table helps to put into perspective the various challenges
which may be significant issues for each service. Each open problem is ranked from 1 to 5,
where rank 1 implies minimal impact and rank 5 implies maximal impact.

9. Conclusion
Mobile devices offer services ranging from location detection and navigation to web brows-
ing. Consumers now benefit from these high-tech devices, performing tasks normally requir-
ing a standalone computer in a mobile and efficient manner. Moreover, the growing resources
available in these devices, such as increases in memory and processing power, along with
optimization of battery consumption, have allowed sufficient storage and use of various file
formats. In regards to smartphones in particular, studies suggest that consumers are more
inclined to use these devices for practical reasons (i.e., utilities, communication, and pro-
ductivity), in comparison to the typical entertainment and gaming use of tablets, leaving
manufacturers and consumers increasingly concerned about mobile device security [191].

Security methods on mobile devices have relied on user knowledge, such as in numerical
and graphical passwords. These methods, however, are susceptible to theft, given that
they do not address shoulder-surfing attacks. Password and PINs are also easily forgotten,
posing an inconvenience to the user to retrieve or change the password. Hence, consumers
are inclined to use those easiest to remember, such as those with repetitive and consecutive
characters or digits. Knowledge-based methods are also efficient only at the point-of-entry;
once a user has been authenticated, the device and its content is available to anyone with
possession of the device. Therefore, these security measures do not ensure continuous and
robust protection.

Biometric authentication has been explored to address the issues associated with knowledge-
based techniques. Physiological modalities, such as face, periocular, fingerprint, and iris,
depend on user cooperation and various sensing technologies for data capture. These traits
reduce the need for remembering passwords and PINs, and offer improved mobile device
security. Behavioral modalities, like keystroke dynamics, touch gestures, and behavioral
profiling, also improve upon knowledge-based methods by allowing continuous and trans-
parent authentication. However, biometric security on mobile devices remains a complex
procedure due to hardware limitations, noisy and inconsistent data, and adversarial attacks.
Nonetheless, this survey aims to present the many advantages associated with biometric au-
thentication, while encouraging further research of mobile device security beyond familiar
standards.
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Table 2: Impact of open problems on each biometric modality.

Modality Hardware Limitations Noise Data Inconsistency Usability and Trans-
parency

Face/Pericular 3: Performance may vary
across users given differences
in camera resolution. Though
front cameras continue to im-
prove in resolution, rear cam-
eras capture higher quality
images and have adaptive
abilities per variations in the
environment.

3: Numerous sources of
motion along with varia-
tions in rotation, angles,
distances, and backgrounds
complicate the recognition
process. These factors can be
minimized with operating in-
structions to the user.

4: Variations in facial ex-
pression and occlusions affect
recognition. Facial attributes
also change over time.

5: Face recognition is a
point-of-entry technique, and
is not a transparent ser-
vice. Users frustrated with
multiple authentication at-
tempts required in password-
based security may similarly
be frustrated with face recog-
nition.

Fingerprint 5: While fingerprint recogni-
tion is becoming increasingly
popular on mobile devices, a
large portion of devices have
yet to incorporate fingerprint
scanners. Once scanners are
included, users have access
to the sensor component, re-
sulting in concerns regarding
hardware integrity.

3: Dirty sensors and handling
the device at various angles
when presenting the finger af-
fect the recognition process.

3: Wet or injured fingers
affect recognition, but it is
likely that these factors can
be compensated for via on-
screen instructions and/or ro-
bust feature extraction algo-
rithms.

3: While fingerprint recog-
nition is non-transparent and
quite intrusive, a large ma-
jority of users have suggested
that the service is a user-
friendly and convenient secu-
rity option in multiple sur-
veys.

Iris 5: Few devices have a near-
infrared light source.

5: Iris images captured out-
doors are contaminated with
ghost regions, homogeneous
gray levels, and size varia-
tions.

5: The iris region constantly
changes size as the environ-
ment and lighting conditions
is always changing due to the
mobility of the user. These
factors are harder to avoid as
they are largely based on bi-
ological processes.

5: Iris recognition is a non-
transparent service, and it
is quite intrusive as near-
infrared light can potentially
damage the eye.

Motion/Gait 3: Devices should be
equipped with accelerometers
and gyroscopes. Sensor
quality and specifications
may vary across devices.

5: The device is constantly
moving, so a significant por-
tion of signals will be noise in-
stead of meaningful data.

4: Users will move differently
based on various factors; an
overall pattern should be no-
ticeable, but exact movement
and walking behavior across
consecutive samples is not
possible.

3: While movement-based
recognition is transparent,
users will have idle periods.
During these times, an alter-
native service is required.

Keystroke Dy-
namics/Touch
Gestures

3: The majority of today’s
mobile devices use a touch
screen as the input mecha-
nism; when this is not the
case, however, only keystroke
dynamic statistics can be ex-
tracted as biometric features.

3: Algorithms which in-
clude accelerometer and gy-
roscope measurements intro-
duce noise into data samples
from device movement.

4: Users type differently
based on emotional state, lo-
cation, finger injuries, envi-
ronmental conditions, etc.

1: Touch behavior is ex-
pected to operate the device;
hence, it is a transparent ser-
vice which offers guaranteed
data.

Voice 1: Mobile devices are
equipped with microphones
to facilitate phone calls.

4: Background noise will
widely vary on mobile devices
as the user’s environmental
conditions change.

4: Various components of
voice (i.e., pitch) are always
changing according to the
user’s emotional state and
health. These changes will be
reflected as feature inconsis-
tencies.

3: Voice recognition is trans-
parent as long as the user
is speaking, but it may re-
quire combination with a
non-transparent service as it
is often considered a weaker
biometric.

Behavioral Pro-
filing

1: Hardware restrictions pose
little to no issues for behav-
ioral profiling; however, it
should be possible to access
system logs for tracking usage
data.

2: Use of the device’s ser-
vices may be affected by en-
vironmental factors or the
condition of the user, but
compared to other modalities
(mostly those which require
a sensor), intuitively, outside
noise sources will likely be
minimal or expected and fil-
tered.

5: Though human behavior
tends to be habitual, it is
highly unpredictable with no
guarantee that what was once
a repetitive action will contin-
uously be observed in the fu-
ture.

1: Behavioral profiling is
completely transparent which
provides continuous and user-
friendly authentication.
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