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Abstract. Spatial indexes, such as those based on the
quadtree, are important in spatial databases for efficient execu-
tion of queries involving spatial constraints, especially when
the queries involve spatial joins. In this paper we present a
number of techniques for speeding up the construction of
quadtree-basedspatial indexes, specifically thePMRquadtree,
which can index arbitrary spatial data. We assume a quadtree
implementation using the “linear quadtree”, a disk-resident
representation that stores objects contained in the leaf nodes
of the quadtree in a linear index (e.g., a B-tree) ordered based
on a space-filling curve.We present two complementary tech-
niques: an improved insertion algorithm and a bulk-loading
method. The bulk-loading method can be extended to handle
bulk-insertions into an existing PMRquadtree.Wemake some
analytical observations about the I/O cost and CPU cost of our
PMR quadtree bulk-loading algorithm, and conduct an exten-
sive empirical study of the techniques presented in the paper.
Our techniques are found to yield significant speedup com-
pared to traditional quadtree building methods, even when the
size of a main memory buffer is very small compared to the
size of the resulting quadtrees.
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1 Introduction

Traditional databasesystemsemploy indexesonalphanumeric
data, usually based on the B-tree, to facilitate efficient query
handling. Typically, the database system allows the users to
designate which attributes (data fields) need to be indexed.
However, advanced query optimizers also have the ability to
create indexes on un-indexed relations or intermediate query
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results as needed. In order for this to be worthwhile, the index
creationprocessmust not be too time-consuming, asotherwise
the operation could be executed more efficiently without an
index. In other words, the indexmay not be particularly useful
if the execution time of the operation without an index is less
than the total time to execute it when the time to build the index
is included. Of course, if the database is static, then we can
afford to spend more time on building the index as the index
creation time can be amortized over all the queries made on
the indexed data. The same issues arise in spatial databases,
where attribute values may be of a spatial type, in which case
the index is a spatial index (e.g., a quadtree).

In the research reported here, we address the problem of
constructing and updating spatial indexes in situations where
the database is dynamic. In this case, the time to construct or
update an index is critical, since database updates and queries
are interleaved. Furthermore, slowupdates of indexes can seri-
ously degrade query response, which is especially detrimental
in modern interactive database applications. There are three
ways in which indexes can be constructed or updated for an
attribute of a relation (i.e., a set of objects). First, if the attribute
has not been indexed yet (e.g., it represents an intermediate
query result), an index must be built from scratch on the at-
tribute for the entire relation (knownasbulk-loading). Second,
if the attribute already has an index, and a large batch of data
is to be added to the relation, the index can be updated with all
the new data values at once (known asbulk-insertion). Third,
if the attribute already has an index, and a small amount of data
is to be added (e.g., just one object), it may be most efficient
to simply insert the new objects, one by one, into the exist-
ing index. In our work, we present methods for speeding up
construction and updating of quadtree-based spatial indexes
for all three situations. In particular, we focus on the PMR
quadtree spatial index [46].

The issues that arise when the database is dynamic have
often been neglected in the design of spatial databases. The
problem is that often the index is chosen on the basis of the
speedwith which queries can be performed and on the amount
of storage that is required.Thequeries usually involve retrieval
rather than the creation of newdata. This emphasis on retrieval
efficiency may lead to a wrong choice of an index when the
operations are not limited to retrieval. This is especially evi-
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dent for complex query operations such as the spatial join. As
an example of a spatial join, suppose that given a road rela-
tion and a river relation, we want to find all locations where
a road and river meet (i.e., locations of bridges and tunnels).
This can be achieved by computing a join of the two relations,
where the join predicate is true for road and river pairs that
have at least one point in common. Since computing the spa-
tial join operation is expensive without spatial indexes, it may
be worthwhile to build a spatial index if one is not present for
one of the relations. Furthermore, the output of the join may
serve as input to subsequent spatial operations (i.e., a cascaded
spatial join aswould be common in a spatial spreadsheet [34]),
so it may also be advantageous to build an index on the join
result. In this way, the time to build spatial indexes can play
an important role in the overall query response time.

The PMR quadtree is of particular interest in this context
because an earlier study [32] showed that the PMR quadtree
performs quite well for spatial joins compared to other spatial
data structures such as the R-tree [29] (including variants such
as the R∗-tree [12]) and the R+-tree [57]. This was especially
true when the execution time of the spatial join included the
time needed to build spatial indexes1. Improving the perfor-
mance of building a quadtree spatial index is of interest to
us for a number of additional reasons. First of all, the PMR
quadtree is used as the spatial index for the spatial attributes
in a prototype spatial database system built by our research
group called SAND (Spatial and Non-Spatial Data) [6,7,22],
which employs a data model inspired by the relational alge-
bra. SAND uses indexing to facilitate speedy access to tuples
based on both spatial and non-spatial attribute values. Sec-
ond, quadtree indexes have started to appear in commercial
database systems such as the Spatial Data Option (SDO) from
the Oracle Corporation [48]. Therefore speeding their con-
struction has an appeal beyond our SAND prototype.

In this paper, we introduce a number of techniques for
speeding up the construction of quadtree-based spatial in-
dexes. Many of these techniques can be readily adapted to
other spatial indexes that are based on regular partitioning,
suchas thebuddy-tree [56] and theBANGfile [24].Wepresent
two complementary techniques for the PMR quadtree, an im-
proved insertion algorithm and a bulk-loading method for a
disk-basedPMRquadtree index. The improvedPMRquadtree
insertion algorithm can be applied to any quadtree represen-
tation, and exploits the structure of the quadtree to quickly
locate the smallest quadtree node containing the inserted ob-
ject, thereby greatly reducing the number of intersection tests.
The approach that we take in the PMR quadtree bulk-loading
algorithm is based on the idea of trying to fill up memory with
as much of the quadtree as possible before writing some of its
nodes on disk (termed “flushing”). A key technique for mak-
ing effective use of the internal memory quadtree buffer is to
sort the objects by their spatial occupancy prior to inserting
them into the quadtree. This allows the flushing algorithm to
flush only nodes that will never be inserted into again. Our
treatment of PMR quadtree bulk-loading has several other el-

1 Note that fast construction techniques for the R-tree, such as the
packed R-tree [52] and Hilbert-packed R-tree [37], were not taken
into account in this study as they tend to result in a worse space
partitioning from the point of view of overlap than the standard R-
tree construction algorithms.

ements, including alternative strategies for freeing memory in
the quadtree buffer and a technique for achieving high stor-
age utilization. In addition, we show how our bulk-loading
method can be extended to handle bulk-insertions into an ex-
isting quadtree index.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 describes the PMR quadtree,
and the disk-based quadtree representation used in SAND.
Section 4 introduces an improved PMR quadtree insertion al-
gorithm. Section 5 presents our PMR quadtree bulk-loading
approach. Section 6 discusses how the PMR quadtree bulk-
loading algorithm can be extended to handle bulk-insertions.
Section 7 presents some analytical observations. Section 8
discusses the results of our experiments, while concluding re-
marks are made in Section 9.

2 Related work

Methods for bulk-loadingdynamic access structures have long
been sought. The goal of such methods is to reduce the load-
ing time, the query cost of the resulting structure, or both. The
B-tree, together with its variants, is the most commonly used
dynamic indexing structure for one-dimensional data. Rosen-
berg and Snyder [50], and Klein, Parzygnat, and Tharp [40]
introduced methods for building space-optimal B-trees, i.e.,
ones having the smallest number of nodes, or equivalently,
the highest possible average storage utilization. Their meth-
ods yield both a lower load time, and lower average query
cost due to the improved storage utilization. Both methods
rely on pre-sorting the data prior to building the tree; a similar
approach can be used to bulk-load B+-trees (e.g., see [53]).
Huang and Viswanathan [33] took a more direct approach to
reducing query cost, while possibly increasing loading time.
However, no experiments were reported. They introduce a
dynamic programming algorithm, inspired by existing algo-
rithms for binary search trees, that builds a tree that yields the
lowest expected query cost, given the access frequencies of
key values. Another example of bulk-loading algorithms for
non-spatial structures is the one by Ciaccia and Patella [19]
for the M-tree, a dynamic distance-based indexing structure.

Although targeting a different usage scenario, the B+-tree
bulk-update methods of O’Neil et al. [47] and Jagadish et
al. [36] have some similarities with our methods. These meth-
ods assume a heavy stream of insertions intermixed with com-
paratively rare queries. Both make use of an internal memory
buffer, portionsofwhichareperiodicallymoved todisk,which
is also true of our bulk-loading method (see Sect.5). In addi-
tion, these methods use merging to support bulk-insertions in
a somewhat analogous manner as our bulk-insertion method
(see Sect.6). Furthermore, the external merge sort variant that
we introduce in Sect.5.4.2 is closely related to the “stepped
merge” algorithm of Jagadish et al. [36] (although developed
independently). However, our sorting algorithm is able to
achieve near-optimality due to its more restricted usage as-
sumptions, beside the minor difference that the algorithm of
Jagadish et al. [36] builds a B+-tree for each “sorted run” to
support intervening queries, while our algorithm need not do
so.

In recent years, many bulk-loading algorithms for spatial
indexingstructureshavebeen introduced.Mostof theattention
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has been focused on the R-tree and related structures. Among
the exceptions are two algorithms for the grid file. Li, Rotem
and Srivastava [43] introduced a dynamic programming algo-
rithm that operates in a parallel domain, and primarily aims
at obtaining a good grid partitioning. A much faster solution
was introduced by Leutenegger and Nicol [42], which results
in grid file partitions that are in some ways better.

Most bulk-loading strategies that have been developed for
the R-tree have the property that they result in trees that may
be dramatically different from R-trees built with dynamic in-
sertion rules [12,29]. Some of these methods use a heuristic
for aggregating objects into the leaf nodes [37,41,52], while
others explicitly aim at producing good partitioning of the
objects and thus a small level of overlap [4,14,25,59]. Rous-
sopoulos and Leifker [52] introduced a method (termed the
packed R-tree) that uses a heuristic for aggregating rectan-
gles into nodes. First, the leaf nodes in the R-tree are built by
inserting the objects into them in a particular order. The non-
leaf nodes are built recursively in the same manner, level by
level. The order used in the packed R-tree method [52] is such
that the first object to be inserted into each leaf node is the
remaining object whose centroid has the lowestx-coordinate
value, whereas the rest of the objects in the node are itsB− 1
nearest neighbors, whereB is the node capacity2. Kamel and
Faloutsos [37] devised a variant of the packed R-tree, termed
a Hilbert-packed R-tree, wherein the order is based purely on
theHilbert code of the objects’centroids. Leutenegger, L´opez,
and Edgington [41] proposed a somewhat related technique,
which uses an ordering based on a rectilinear tiling of the data
space. The advantage of packing methods is that they result
in a dramatically shorter build time than when using dynamic
insertion methods. Unfortunately, the heuristics they use to
obtain their space partitioning usually produce worse results
(i.e., in terms of the amount of overlap) than the dynamic ones.
This drawback is often alleviated by the fact that they result
in nearly 100% storage utilization (i.e., most R-tree nodes
are filled to capacity). DeWitt et al. [21] suggest that a better
space partitioning can be obtained with the Hilbert-packed R-
tree by sacrificing 100% storage utilization. In particular, they
propose that nodes be initially filled to 75% in the usual way.
If any of the items subsequently scheduled to be inserted into
a node cause the node region to be enlarged by toomuch (e.g.,
by more than 20%), then no more items are inserted into the
node. In addition, a fixednumber of recently packed leaf nodes
are combined and resplit using the R∗-tree splitting algorithm
to further improve the space partitioning. Gavrila [28] pro-
posed another method for improving the space partitioning of
R-tree packing, through the use of an optimization technique.
Initially, an arbitrary packing of the leaf nodes is performed,
e.g., based on one of the packing algorithms above. Next, the
algorithm attempts to minimize a cost function over the pack-
ing, by moving items from one leaf node to a nearby one.

2 The exact order proposed by Roussopoulos and Leifker [52] for
the packed R-tree appears to be subject to a number of interpreta-
tions. Most authors citing the packed R-tree describe it as using an
order based solely on thex-coordinate values of the objects’ cen-
troids which produces node regions that are highly elongated in the
direction of they-axis, whereas this is not exactlywhatwas originally
proposed.

The bulk-loading strategies for the R-tree that aim at im-
proved space partitioning have in common that they operate
on the whole data set in a top-down fashion, recursively sub-
dividing the set in some manner at each step. They differ
in the particular subdivision technique that is employed, as
well as in other technical details, but most are specifically in-
tended for high-dimensional point data. Since buildingR-trees
with good dynamic insertionmethods (e.g., [12]) is expensive,
thesemethods generally achieve a shorter build time (but typi-
callymuch longer than the packingmethods discussed above),
as well as improved space partitioning. One example of such
methods is theVAMSplit R-tree ofWhite and Jain [59], which
uses a variant of a k-d tree splitting strategy to obtain the space
partitioning. Garc´ıa, López, and Leutenegger [25] present a
similar technique, but they introduce the notion of using a
user-defined cost function to select split positions. The S-tree
of Aggarwal et al. [4] is actually a variant of R-trees that is
not strictly balanced; the amount of imbalance is bounded,
however. The technique presented by Berchtold, B¨ohm, and
Kriegel [14] also has some commonality with the VAMSplit
R-tree. However, their splitting method benefits from insights
into effects that occur in high-dimensional spaces, and is able
to exploit flexibility in storage utilization to achieve improved
space partitioning.A further benefit of their technique is that it
can get by with only a modest amount of main memory, while
being able to handle large data files.

Twomethods have been proposed for bulk-loadingR-trees
that actuallymakeuseof dynamic insertion rules [9,15].These
methods are in general applicable to balanced tree structures
which resemble B-trees, including a large class of multidi-
mensional index structures. Both techniques are based on the
notion of the buffer-tree [8], wherein each internal node of the
tree structure contains a buffer of records. The buffers enable
effective use of available main memory, and result in large
savings in I/O cost over the regular dynamic insertion method
(but generally in at least as much CPU cost). In the method
proposed by van den Bercken, Seeger, and Widmayer [15],
the R-tree is built recursively bottom-up. In each stage, an
intermediate tree structure is built where the lowest level cor-
responds to the next level of the finalR-tree.Thenonleaf nodes
in the intermediate tree structures have a high fan-out (deter-
mined by available internal memory) as well as a buffer that
receives insertions. Arge et al. [9] achieve a similar effect by
using a regular R-tree structure (i.e., where the nonleaf nodes
have the same fan-out as the leaf nodes) and attaching buffers
to nodes only at certain levels of the tree. The advantages of
their method over the method in [15] are that it is more effi-
cient as it does not build intermediate structures, and it results
in a better space partition. Note that the algorithm in [15] does
not result in an R-tree structure identical to that resulting from
the corresponding dynamic insertion method, whereas the al-
gorithm in [9] does (assuming reinsertions [12] are not used).
In addition, the method of [9] supports bulk-insertions (as op-
posed to just initial bulk-loading as in [15]) and bulk-queries,
and in fact, intermixed insertions and queries.

With the exception of [9], all the methods we have men-
tioned for bulk-loading R-trees are static, and do not al-
low bulk-insertions into an existing R-tree structure. A few
other methods for bulk-insertion into existing R-trees have
been proposed [18,39,51]. The cubetree [51] is an R-tree-like
structure for on-line analytical processing (OLAP) applica-
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tions that employs a specialized packing algorithm. The bulk-
insertion algorithm proposed by Roussopolous, Kotidis, and
Roussopolous [51] works roughly as follows. First, the data
set to be inserted is sorted in the packing order. The sorted list
is mergedwith the sorted list of objects in the existing data set,
which is obtained directly from the leaf nodes of the existing
cubetree. A new cubetree is then packed using the sorted list
resulting from themerging. This approach is also applicable to
theHilbert-packedR-tree [37] and possibly other R-tree pack-
ing algorithms. Kamel, Khalil, and Kouramajian [39] propose
a bulk-insertion method in which new leaf nodes are first built
following the Hilbert-packed R-tree [37] technique. The new
leaf nodes are then inserted one by one into the existing R-
tree using a dynamic R-tree insertion algorithm. In themethod
presented by Chen, Choubey, and Rundensteiner [18], a new
R-tree is built from scratch for the new data (using any con-
struction algorithm). The root node of the new tree is then
inserted into the appropriate place in the existing R-tree using
a specialized algorithm that performs some local reorganiza-
tion of the existing tree based on a set of proposed heuristics.
Unfortunately, the algorithms of [18,39] are likely to result
in increased node overlap, at least if the area occupied by the
new data already contains data in the existing tree. Thus, the
resulting R-tree indexes are likely to have a worse query per-
formance than an index built from scratch from the combined
data set.

None of the bulk-loading techniques discussed above are
applicable to quadtrees. This is primarily because quadtrees
use a very different space partitioning method from grid files
and R-trees, and because they are unbalanced and their fan-
out is fixed. Additional complications arise from the use of
most disk-resident representationsof quadtrees (e.g., the linear
quadtree), as well as from the property that each non-point ob-
jectmaybe represented inmore thanone leaf node (sometimes
termed “clipping”; see Sect.3). Nevertheless, some analogies
can be drawn between our bulk-loading methods and some
of the above methods. For example, like many of the above
algorithms, we rely on sorting the objects in our algorithm and
we use merging to implement bulk-insertions as done in the
cubetree [51] (although ourmerging process is very different).

In addition to the numerous bulk-loading and bulk-
insertion algorithms proposed for the R-tree, several different
proposals exist for improving dynamic insertions [5,11,12,
26,38]. Most have been concerned with improving the qual-
ity of the resulting partitioning, at the cost of increased con-
struction time, including the well known R∗-tree method of
Beckmann et al. [12], and the polynomial time optimal node
splitting methods of Becker et al. [11] and Garc´ıa, López,
and Leutenegger [26]. In addition, [12] and [26] also intro-
duced heuristics for improving storage utilization. Ang and
Tan [5] developed a linear time node splitting algorithm that
they claim produces node splits that are better than the origi-
nal node splitting algorithms [29] and competitive with that of
the R∗-tree. The Hilbert R-tree of Kamel and Faloutsos [38]
employs the same heuristic as the Hilbert-packed R-tree [37],
maintaining the data rectangles in strict linear order based on
the Hilbert codes of their centroids. This is done by organiz-
ing themwith a B+-tree on the Hilbert codes, augmented with
the minimum bounding rectangle of the entries in each node.
Thus, updates in the Hilbert R-tree are inexpensive, while it

often yields query performance similar to that of the R∗-tree
(at least in low dimensions).

Recently,Wang,Yang, andMuntz [58] introduced the PK-
tree, a multidimensional indexing structure based on regular
partitioning. In [60], they proposed a bulk-loading technique
for the PK-tree, which is based on sorting the data in a specific
order, determined by the partitioning method. Their method
resembles our bulk-loading techniques in that a space-filling
curve is used to order the data prior to building the tree.

Themain topic of this paper is a bulk-loading technique for
PMRquadtrees.This subject hasbeenpreviously addressedby
Hjaltason, Samet, and Sussman [31]. The bulk-loading tech-
nique presented in this paper is an improvement on the al-
gorithm in [31]. In particular, our flushing algorithm (which
writes to disk some of the quadtree nodes from a buffer) is
guided by the most recently inserted object, whereas the one
in [31] relied on a user-defined parameter. Unfortunately, it
was unclear how to choose the optimal parameter value or how
robust the algorithm was for any given value. Moreover, the
heuristic employed by the flushing algorithm in [31] did not
always succeed in its goal, and sometimes flushed nodes that
intersected objects that had yet to be inserted into the quadtree.
A further benefit of our improved approach is that it permits
a much higher storage utilization in the disk-based quadtree,
which reduces the I/O cost for constructing the quadtree as
well as for performing queries.

3 Quadtrees and their implementation

In this section, we first briefly discuss the general concept of
quadtrees. Next we define the PMR quadtree, followed by a
description of the implementation of quadtrees in SAND.

3.1 Quadtrees

By the termquadtree[54,55] we mean a spatial data structure
based on a disjoint regular partitioning of space; that is, a
partitioning where each partition operation divides a region
into mutually disjoint sub-regions of equal size and shape,
and all partition operations result in the same number of sub-
regions. Each quadtree block (also referred to as acell) covers
a portion of space that forms a hypercube ind-dimensions,
usually with a side length that is a power of 2. Quadtree blocks
may be further divided into2d sub-blocks of equal size; i.e.,
the sub-blocks of a block are obtained by halving the block
along each coordinate axis. Figure 1 shows a simple quadtree
partitioning of two-dimensional space.

One way of conceptualizing a quadtree is to think of it
as an extended2d-ary tree, i.e., a tree in which every nonleaf
node has2d children (e.g., seeFig. 1b). Thus, belowweuse the
terms quadtree node and quadtree block interchangeably. In
this view, the quadtree is essentially atrie, where the branch
structure is based on space coverage. For a given quadtree
block, we use the termpartition levelto indicate the level of
the block in this tree view.Another way to view the quadtree is
to focus on the space partitioning, in which case the quadtree
can be thought of as being an adaptive grid (e.g., see Fig. 1a).
Usually, there is a prescribed maximum partition level (i.e., a
limit on the height of the tree), or equivalently, aminimumsize
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Fig. 1. a The block partitioning andb tree structure of a simple
quadtree, where leaf blocks are labeled with numbers and nonleaf
blocks with letters

for a quadtree block. For two-dimensional quadtrees, such as
the one shown in Fig. 1, we often use the compass directions to
refer to particularquadrants(i.e., one of the four sub-regions
resulting from a partitioning). Thus, for example, the block
labeled “1” in the figure is a South-West (abbreviated “SW”)
quadrant of the root block.

Many different varieties of quadtrees have been defined,
differing in the rules governing node splitting, the type of
data being indexed, and other details. An example is the PR
quadtree [54], which indexes point data. Points are stored in
the leaf blocks, and the splitting rule specifies that a leaf block
must be split if it containsmore than one point. In other words,
each leaf blockcontainseither onepoint or none.Alternatively,
we can set a fixed bucket capacityc, and split a leaf block if
it contains more thanc points (this is termed a bucket PR
quadtree in [54]).

Quadtrees can be implemented in many different ways.
One method, inspired by viewing them as trees, is to imple-
ment each block as a record, where nonleaf blocks store2d

pointers to child block records, and leaf blocks store a list of
objects. However, this pointer-based approach is ill-suited for
implementing disk-based structures. A general methodology
for solving this problem is to represent only the leaf blocks
in the quadtree. The location and size of each leaf block are
encoded in some manner, and the result is used as a key into
an auxiliary disk-based data structure, such as a B-tree. This
approach is termed alinear quadtree[27].

Quadtrees were originally designed for the purpose of in-
dexing two- and three-dimensional space. Although the defi-
nition of a quadtree is valid for a space of arbitrary dimension
d, quadtrees are only practical for a relatively low number of
dimensions. This is due to the fact that the fan-out of internal
nodes is exponential ind, and thus becomes unwieldy ford
larger than 5 or 6. Another factor is that the number of cells
tends to grow sharply with the dimension even when data size
is kept constant3, and typically is excessive for more than 4–8
dimensions, depending on the leaf node capacity (or splitting
threshold) and data distribution. For a higher number of di-
mensions, we can apply the k-d tree [13] strategy of splitting
the dimensions cyclically (i.e., at each internal node, the space
is split into two equal-size halves), for a constant fan-out and
improved average leaf node occupancy. The resulting space

3 This is due to the fact that average leaf node occupancy tends to
fall as the number of dimensions increases.

partitioning can be effectively structured using the PK-tree
technique [58], for example. In the remainder of this paper,
we will usually assume a two-dimensional quadtree to sim-
plify the discussion. Our methods are general, however, and
work for arbitrary dimensions.

3.2 PMR quadtrees

ThePMR quadtree[46] is a quadtree-based dynamic spatial
data structure for storing objects of arbitrary spatial type. A
sample PMR quadtree for a collection of line segments is
shown in Fig. 2, where we show both the space partitioning
and the resulting tree structure. Since the PMR quadtree gives
rise to a disjoint partitioning of space, and objects are stored
only in leaf blocks, this implies that non-point objects may be
stored in more than one leaf block. Thus, the PMR quadtree
would be classified as applyingclipping, as we can view an
object as beingclippedto the region of each intersecting leaf
block. The part of an object that intersects a leaf block that
contains it is often referred to as aq-object; for line segments,
we usually talk ofq-edges. For example, segmenta in Fig. 2a
is split into three q-edges as it intersects three leaf nodes, so
that there are three references toa in leaf nodes of the tree
structure shown in Fig. 2a.

A key aspect of the PMR quadtree is its splitting rule, i.e.,
the condition under which a quadtree block is split. The PMR
quadtree employs a user-determinedsplitting thresholdt for
this purpose. If the insertion of an objecto causes the num-
ber of objects in a leaf blockb to exceedt andb is not at the
maximum partitioning level, thenb is split and the objects in
b (includingo) are inserted into the newly created sub-blocks
that they intersect. These sub-blocks are not split further at
this time, even if they contain more thant objects. Thus, a leaf
block at depthD can contain up tot +D objects, where the
root is at depth 0 (there is no limit on the number of objects in
leaf nodes at the maximum depth). The rationale for not im-
mediately splitting newly formed leaf blocks is that this avoids
excessive splitting. This aspect of the PMRquadtree gives rise
to a probabilistic behavior in the sense that the order in which
the objects are inserted affects the shape of the resulting tree.
As an example, in Fig. 2, if line segmentg were inserted after
line segmenti instead of after line segmentf, then the parti-
tioning of the SE quadrant of the SW quadrant of the root,
wherec, d, andi meet, would not have taken place. Neverthe-
less, it is rarely of importance which of the possible quadtree
shapes arise from inserting a given set of objects. We exploit
this observation later on, by re-ordering the objects to allow a
more efficient quadtree construction process (see Sect.5.1).

3.3 Quadtree implementation in SAND

The implementation of quadtrees used in the SAND spatial
database is based on a general linear quadtree implementa-
tion called theMorton Block Index(abbreviatedMBI). Our
bulk-loading methods are applicable to any linear quadtree
implementation, and should be easily adaptable to any other
disk-based representation of quadtrees. Nevertheless, for con-
creteness, it is helpful to review some of the details of our
system.
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3.3.1 Morton codes

The MBI represents quadtree blocks usingMorton codes, an
encoding of the sequence of splits that result in the block,
or, equivalently, of the path in the tree representation of the
quadtree that leads to the block. In particular, ind-dimensional
space, the child blocks resulting fromapartitioning canbe rep-
resented with the numbers0, 1, . . . , 2d−1. Thus, the Morton
code of a block consists of a sequence ofd bit numbers, where
the length of the sequence represents the partition level of the
block. For example, for the two-dimensional quadtree shown
in Fig. 1, the leaf block labeled “4” can be encoded with the
sequence “2,1”, assuming that quadrants resulting from a split
are numbered in the order SW, SE, NW, and NE, respectively.
To define the particular “split encoding” (i.e., numbering of
child blocks resulting from a split) used for Morton codes,
think of the two halves resulting from the split along each axis
as representing 0 and 1, respectively, with the half with lower
coordinate values receiving the lower number. In other words,
the split along each axis is represented with a bit. Given some
fixed ordering of the axes, the encoding, then, is the binary
number obtained by the concatenation of the bits representing

the split along all axes. For two dimensions, assuming that
thex axis is ordered before they axis, this results in the en-
coding given above (i.e., S and W represent 0, while N and
E represent 1, so SW=00b=0, SE=01b=1, NW=10b=2, and
NE=11b=3, where “b” indicates binary).

For efficiency of implementation, the split sequences of
Morton codes are typically represented as integers of a fixed
precision. In particular, ifw is the user-determined maximum
partition level,w bits for each dimension are required, so the
total number of bits for the split sequences isd ·w; in our im-
plementation,w can beany value between1and32.Of course,
for a block at partition levell, the number of bits required to
represent its split sequences isd · l, in which case the split se-
quence number is padded by setting the trailingd · (w− l) bits
in the split sequence number to zero. For example, ifw = 4,
block 4 in Fig. 1 has the split sequence “2,1”, so it is repre-
sented with the integer 10010000b, where the last four binary
digits are padding. Unfortunately, in this scheme, there is no
way to tell the partition level of a block from the split sequence
number alone, since thed bit padding sequence of zeros is a
legal split encoding (i.e., indicating the first child block). For
example, the split sequencenumber00000000bapplies toboth
block 1 and the root block in Fig. 1. Thus, in our implementa-
tion, Morton codes of quadtree blocks are represented as pairs
(s, l), wheres is the fixed-width split sequence number andl
is the partition level; internally, we actually storew− l which
represents the side length of the block.

Typically, the region of space covered by a quadtree (i.e.,
by the root block) is a hypercube, or a square in two dimen-
sions – that is, the side lengths along all dimensions are equal.
However, the side lengths do not necessarily have to be equal,
so, in general, the quadtree data space has a hyper-rectangular
shape. Clearly, all quadtree blocks will have the same side
length proportions as the root block. Furthermore, the space
coverage of any quadtree blockb can be efficiently determined
given the space coverageof the root block and theMorton code
of b. In particular, thenatural coordinate systemof a quadtree
with maximum partition level ofw is such that the lower left
corner of the root block is at the origin and its side length is
2w (i.e., the side length of quadtree blocks of minimum size
is 1). In this coordinate system, the split sequence number of
the Morton code(s, l) of b is the result of applying bit inter-
leaving to the coordinate value of the bottom left corner ofb,
whose side length is2w−l. Thus, the hypercube-shaped region
covered byb in the natural coordinate system is obtained by
“de-interleaving” the split sequence numbers to obtain the
lower left corner, and using the partition levell to obtain the
side length.Any other space coverage of the root block simply
means that an appropriate scaling and translation is applied on
this hypercube to obtain the actual space coverage ofb.

Figure 3a illustrates the Morton code order imposed on
the quadtree blocks for the quadtree in Fig. 2. The contents of
the MBI for this PMR quadtree are partially shown in Fig. 3b,
where the order in the list corresponds to Morton code order.
For further illustration of actual Morton codes, assume again
thatw = 4 (i.e., the side length of the data space in the natu-
ral coordinate system is24 = 16). The split sequence of the
block labeled 18 in Fig. 3a is “3,0,2”, which is represented
with the integer 11001000b = 200 (last two binary digits are
padding), so the Morton code for the block is(200, 3). To ob-
tain the space coverage of this block in the natural coordinate
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system, we de-interleave the split sequence number to yield
the lower-left corner of(1000b, 1010b) = (8, 10), and get the
side length from the partition level, yielding24−3 = 21 = 2.
If block 18 had to be split, the split sequence numbers of the
child blocks would be 11001000b, 11001001b, 11001010b,
and 11001011b. In other words, onlyd bits of the original split
sequence number are modified. Similarly, the split sequence
number of the parent block of block 18 is 11000000b.

Below, when we talk of the Morton code of a pointp, we
mean the result of applying bit interleaving to the coordinate
values ofp, after mapping into the natural coordinate system
of the quadtree. Alternatively, the Morton code ofp is the
split sequence number for the quadtree block of side length 1
that containsp (assuming that such a quadtree block exists).
Hence,Mortoncodes representamapping fromd-dimensional
points to one-dimensional scalars. When thed-dimensional
points are ordered on the basis of their corresponding Mor-
ton codes, the order is called aMorton order [45], an exam-
ple of a space-filling curve. This order is also known as a
Z-order [49] since it traces a ‘Z’ pattern in two dimensions.
Many other space-ordering methods exist, such as the Peano-
Hilbert, Cantor-diagonal, and spiral orders, and each of these
can be used to define an encoding. The most commonly used
encoding methods for quadtree blocks are Morton, Hilbert,
and Gray codes (Hilbert codes are based on Peano-Hilbert or-
der and Gray codes [23] are related to Morton codes; see [1,
35] for a more detailed descriptions of these and other en-
coding methods, and for studies of their relative “goodness”).
Figure 4 presents an example of the ordering resulting from
these three encodingmethods.The advantage ofMorton codes
over Hilbert codes and Gray codes is that it is computation-
ally less expensive to convert between a Morton code and
its corresponding coordinate values (and vice versa) than for
the other two encoding schemes, especially compared to the
Hilbert code. In addition, various operations on Morton codes
for quadtree blocks, e.g., computing the Morton code for sub-
blocks, can be implemented through simple bit-manipulation
operations. Nevertheless, Hilbert and Gray codes have the ad-
vantage that they preserve locality somewhat better, which
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Fig. 4a–c.Ordering imposed by code values in a 4 by 4grid when
usingaMorton code,b Gray code, andcHilbert code

may reduce query cost [2]. However, for the most part, oper-
ations on the quadtree are independent of the actual encoding
scheme being used, and in particular, this is true of our bulk-
loading method. Thus, in most of this paper, any mention of
Morton codes (or Z-order) can be replaced by Hilbert or Gray
codes (or the ordering induced by them).When warranted, we
mention issues arising from the use of Hilbert or Gray codes.

3.3.2 B-tree

TheMBI uses aB-tree to organize the quadtree contents4, with
Morton codes serving as keys. When comparing two Morton
codes,weemploy lexicographic ordering on the split sequence
number and partition level.When only quadtree leaf nodes are
represented in the MBI, which is the case for most quadtree
variants, comparing only the split sequence number is suffi-
cient, as the MBI will contain at most one block size for any
given sequence number. For a quadtree leaf node withk ob-
jects, the corresponding Morton code is representedk times
in the B-tree, once for each object. In the B-tree, we main-
tain a buffer of recently used B-tree nodes, and employ an
LRU (least recently used) replacement policy to make room
for a new B-tree node. In addition, we employ a node locking
mechanism in order to ensure that the nodes on the path from
the root to the current node are not replaced; this is useful in
queries that scan through successive items in the B-tree, since
the nodes on the path may be needed later in the scan.

3.3.3 Object representation

The amount of data associated with each object in the MBI is
limited only by the B-tree node size. This flexibility permits
different schemes for storing spatial objects in quadtree in-
dexes implemented with the MBI. One scheme is to store the
entire spatial description of the object, while another scheme
is to store a reference ID for the object, which is actually
stored in an auxiliary object table. A hybrid scheme can also
be employed, wherein we store both the spatial description
of the object and an object ID. The disadvantage of the first
scheme is that it potentially leads to much wasted storage for
non-point objects, as they may be represented more than once
in the PMR quadtree. The drawback of the second scheme is
that a table lookup is necessary to determine the geometry of

4 The MBI can also be based on a B+-tree. This has some advan-
tages, notably when scanning in key order. However, the difference is
not very significant, and is offset to some degree by a slightly greater
storage requirement for the B+-tree.
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an object once it is encountered in a quadtree block. Neverthe-
less, we must use that scheme (or the hybrid one) if we wish
to associate some non-spatial data with each object (e.g., for
objects representing cities, we may want to store their names
and populations).

As previously mentioned, SAND employs a data model
inspired by the relational algebra. The basic storage unit is
an attribute, which may be non-spatial (e.g., integers or char-
acter strings) or spatial (e.g., points, line segments, polygons,
etc.).Attributes are collected into relations, and relational data
is stored as tuples in tables, each of which is identified by a
tuple ID. In SAND relations, the values of spatial attributes
(i.e., their geometry) are stored directly in the tuples belong-
ing to the relation. When the PMR quadtree is used to index
a spatial attribute in SAND, the tuple ID of the tuple storing
each spatial object must be stored in the quadtree (i.e., we
use the second scheme described above). For simple fixed-
size spatial objects (such as points, line segments, rectangles,
etc.), SAND also permits storing the geometric representation
in the index (i.e., resulting in a hybrid scheme). This allows
performing geometric computations during query evaluation
without accessing the tuples. Alternatively, a separate object
table associated with the index can be built for only the val-
ues of the spatial attribute. Object IDs in that table are then
represented in the index, while the tuple ID is stored in the
object table. This is advantageous when the size of the spatial
attribute values (in bytes) is small compared to the size of a
whole tuple. A further benefit is that this object table can be
clustered by spatial proximity, such that nearby objects are
likely to be located on the same disk page. Spatial clustering
is important to reduce the number of I/O operations performed
for queries, as stressed by Brinkhoff and Kriegel [16].

3.3.4 Empty leaf nodes

Another design choice is whether or not to represent empty
quadtree leaf blocks in the MBI. Our implementation sup-
ports both of these choices. Representing empty quadtree leaf
blocks simplifies insertion procedures as well as some other
operations on the quadtree and makes it possible to check the
MBI for consistency, since the entire data space must be rep-
resented in the index. However, for large dimensions, this can
be very wasteful, since a large number of leaf blocks will tend
to be empty.

4 PMR quadtree insertion algorithm

Like insertion algorithms formost hierarchical data structures,
the PMR quadtree insertion algorithm is defined with a top-
down traversal of the quadtree. In other words, starting at the
rootnode,wevisit childnodes that intersect theobject to insert,
andadd theobject to any leaf nodes that areencountered.Thus,
the CPU cost for inserting an object is roughly proportional to
the depth of the leaf nodes intersecting it, due to the intersect
tests that are performed during the traversal.

Fortunately, the cost of insertions can be considerably re-
duced bymaking use of the regularity of quadtree partitioning,
effectively allowing us to short-circuit the traversal and yield-
ing a cost that is roughly proportional to the number of leaf

a b c

Fig. 5. aComputation of the minimum bounding block for an object,
denotedbyheavy lines.Broken lines indicatepotential quadtreeblock
boundaries. The minimum bounding block canb coincide with a
nonleaf node orc be enclosed by a leaf node

nodes intersecting theobject.The key insight is that basedonly
on the geometry of an object, we can compute the (hypothet-
ical) quadtree block that minimally encloses the object. This
is illustrated in Fig. 5a, where we indicate potential quadtree
partition boundaries with broken lines. Hence, the insertion
traversal can be initiated at the partition level of the minimum
enclosing quadtree block (e.g., see Fig. 5b). Frequently, how-
ever, the object is completely enclosed by an existing quadtree
leaf node, in which case the minimum enclosing quadtree
block is inside, or coincides with, the existing leaf node (e.g.,
see Fig. 5c).

A PMR quadtree insertion algorithm based on the idea of
minimum enclosing quadtree block is shown in Fig. 6. Pro-
cedureInsertObject uses the functionsComputeEnclos-
ingBlock andFindEnclosingNode to locate the smallest
node in the quadtree index that containsobject, and invokes
Insert on that node. (At worst,nodeis the root node of the
quadtree, in caseobjectstraddles the partition boundaries for
the root node.) The task of locating the smallest node contain-
ing the object is divided into two functions since it naturally
decomposes into two subtasks. The first,ComputeEnclos-
ingBlock, is based only on the geometry of the object and
computes its minimum enclosing quadtree block, while the
second,FindEnclosingNode, accesses the quadtree index
to locate an actual quadtree node. TheSplit procedure splits
the given leaf node, thereby turning it into a nonleaf node, and
reinserts the objects into the appropriate child nodes; observe
that the child nodes are not split even if the splitting threshold
is exceeded. The firstforeach loop in procedureSplitmakes
use of the minimum enclosing block, as computed byCom-
puteEnclosingBlock, for objects that are fully enclosed in
one of the child nodes (as determined byChildContaining).
The secondforeach loop then reinserts objects that remain on
objList, namely any object that intersects more than one of the
child nodes and/or that is not fully enclosed bynodeitself.

The algorithm shown in Fig. 6 can be used for either
a pointer-based implementation or a linear quadtree imple-
mentation of a PMR quadtree (e.g., the Morton Block In-
dex), given an appropriate definitions of blocks and nodes
and of the various utility routines. Thus, in the MBI im-
plementation,nodeandenclosingBlockare both represented
with a Morton code. Furthermore, the functionsChildCon-
taining,ComputeEnclosingBlock, Intersects, andSize
merely operate on object geometries andMorton codes, while
the other routines (i.e.,AddToLeaf, FindEnclosingNode,
IsLeaf, MakeNonLeaf, ObjectCount, andObjectList)
obtain their results by accessing the MBI B-tree. In particular,
AddToLeaf inserts into the B-tree,MakeNonLeaf deletes
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procedure InsertObject(object)→
enclosingBlock← ComputeEnclosingBlock(object)
node← FindEnclosingNode(enclosingBlock)
Insert(node, object)

procedure Insert(node, object)→
if (IsLeaf(node)) then
AddToLeaf(node, object)
if (ObjectCount(node) > threshold) then
Split(node)

else
foreach (childNodeof node) do
if (Intersects(object, childNode)) then
Insert(childNode, object)

procedureSplit(node)→
objList← ObjectList(node)
MakeNonLeaf(node)
/* make use of minimum enclosing block if possible */
foreach (objectin objList) do
enclosingBlock← ComputeEnclosingBlock(object)
if (Size(enclosingBlock) < Size(node)) then
childNode← ChildContaining(node, enclosingBlock)
AddToLeaf(childNode, object)
Delete(objList, object)

/* apply intersect check for remaining objects inobjList */
foreach (childNodeof node) do
foreach (objectin objList) do
if (Intersects(object, childNode)) then
AddToLeaf(childNode, object)

Fig. 6.PMR quadtree insertion algorithm

from the B-tree,FindEnclosingNode and IsLeaf perform
a lookup, whileObjectCount andObjectList perform a
lookup followed by a linear scan. Observe that in the case of
a linear quadtree implementation, the nonleaf nodes are not
physically present in the MBI. However, the insertion algo-
rithm is based on a top-down traversal of the tree and thus
simulates their existence by constructing their corresponding
Morton code.

In a naive PMR quadtree insertion algorithm theInsert-
Object procedure would simply invokeInsert on the root
node, and the firstforeachloop inSplitwould not be used. By
using the minimum enclosing blocks, the algorithm in Fig. 6
achieves significantCPUcost savings, due to a reduction in the
number of intersection tests. Nevertheless, these savings are
temperedby the cost of invokingComputeEnclosingBlock,
whose CPU cost is similar to that ofIntersects. This is espe-
cially true for procedureSplit, sinceComputeEnclosing-
Blockmust be recomputed for each object, and the intersec-
tion tests must be invoked anyway if the enclosing block is
larger than or equal to the leaf node being split. To reduce un-
necessary invocations ofComputeEnclosingBlock we can
retain the value computed by theComputeEnclosingBlock
invocation inInsertObject, so it need not be computed again
in Split. Of course, this is usually not practical as it increases
thestorage requirement for theobjects.Nevertheless, this tech-
nique is useful in our bulk-loading algorithm, since only a
limited number of nodes is kept in memory, while the nodes
that have been written to disk are never split again. Although

not treated in the experimental section (Sect.8), we observed
a speedup of approximately 70–110% in terms of CPU cost
over the naive insertion algorithm when bulk-loading 2D line
segment data (Sect.8.2), and around 40–80% for loading the
same data using dynamic insertions.

5 Bulk-loading PMR quadtrees

PMR quadtrees represented with the linear quadtree method,
such as our MBI implementation described in Sect.3.3, per-
formwell for dynamic insertions (especially with the insertion
algorithm described in Sect.4) and a wide range of queries.
Nevertheless, we found that bulk-loading large data sets into
MBI based PMR quadtrees with dynamic insertions takes a
considerable amount of time relative to the size of the data
set. As is true for most indexing structure, the primary rea-
son for sub-optimal performance of dynamic insertions in this
setting is the fact that successive insertions typically involve
different disk blocks in the external representation, a B-tree in
the case of the MBI, assuming arbitrary ordering of the data
set. Thus, unless the entire structure fits into the B-tree buffer,
each insertion is likely to require reading a B-tree block that
has already been written to disk, so each B-tree block will
eventually be written multiple times to disk. In addition to
this excessive I/O, we identified several areas that exhibited
considerable overhead in CPU time, the chief of which is the
high cost of splitting quadtree nodes. In particular, when a
quadtree node is split, references to objects must be deleted
from the B-tree, and then reinserted with the Morton codes of
the newly created quadtree nodes. Thus, in addition to local
reorganizations within B-tree blocks, such sequences of dele-
tions and insertions to the B-tree can cause repeated merging
and splitting of the same B-tree blocks.

Our bulk-loading method addresses inefficiencies of dy-
namic insertions in terms of both I/O and CPU cost. The basic
idea is to reduce the number of accesses to the B-tree as much
as possible by storing parts of thePMRquadtree inmainmem-
ory. The end result is that there are only insertions into the B-
tree (i.e., no deletions), and those insertions occur in a strictly
sorted order, which allows building the B-tree with minimal
number of I/Os and with no CPU cost overhead for reorga-
nizations. As shown below, the above properties can only be
achieved by pre-sorting the data objects in a certain manner.
Of course, the cost of pre-sorting must therefore be taken into
account in the overall cost of our bulk-loading method. This
is done in both the analysis presented in Sect.7 and in the
experiments conducted in Sect.8.

The remainder of this section is organized as follows: In
Sect.5.1wepresent anoverviewof our bulk-loadingapproach.
Next, in Sect.5.2, we present the details of our flushing algo-
rithm, which frees up space if none is left in the main memory
buffer. In Sect.5.3 we describe an alternative method for free-
ing memory which is used if the flushing algorithm fails to
do so. Our bulk-loading approach requires sorted input, so we
discuss two efficient external sort algorithms in Sect.5.4. Fi-
nally, in Sect.5.5 we show how the MBI B-tree can be built
efficiently and with a high storage utilization.
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5.1 Overview

In our bulk-loading approach, we build a pointer-based
quadtree in main memory, thereby bypassing the MBI B-tree.
Of course, this can only be done as long as the entire quadtree
fits in main memory. Once available memory is used up, parts
of the pointer-based quadtree are flushed onto disk (i.e., in-
serted into the MBI). When all the objects have been inserted
into the pointer-based quadtree, the entire tree is inserted into
theMBI and the quadtree building process is complete; we use
the termquadtree bufferto refer to the memory block used for
thememory-resident portion of the quadtree. In order tomain-
tain compatibility with the MBI-based PMR structure, we use
Morton codes to determine the space coverage of thememory-
resident quadtree blocks. Note that it is not necessary to store
the Morton codes in the nodes of the pointer-based structure,
as they canbecomputedduring traversals of the tree.However,
a careful analysis of execution profiles revealed that a substan-
tial percentage of the CPU timewas spent on bit-manipulation
operations onMorton codes5.Thus,we chose to store theMor-
ton codes in the nodes, even though this increased their storage
requirements.

How do we choose which quadtree blocks to flush when
available memory has been exhausted?Without some knowl-
edge of the objects that are yet to be inserted into the quadtree,
it is impossible to determine which quadtree blocks will be
needed later on, i.e., which quadtree blocks are not inter-
sected by any subsequently inserted object. However, care-
fully choosing the order in which the objects are inserted into
the tree provides exactly such knowledge. This is illustrated
in Fig. 7, which depicts a quadtree being built. In the figure,
the shaded rectangle represents the bounding rectangle of the
next object to insert. If the objects are ordered in Z-order based
on the lower-left corner of their minimum bounding rectangle
(i.e., the corner closest to the origin), we are assured that none
of thequadtreeblocks in the striped regionwill ever be inserted
into again, so they can be flushed to disk. The reason why this
works is that the lower-left corner of a rectangle has the low-
est Morton code of all points in the rectangle. Thus, using this
order, we know that all points contained in the current object,
as well as in all subsequently inserted objects, have a higher
Morton code, and we can flush quadtree blocks that cover
points with lower Morton codes. As demonstrated in Fig. 7,
this strategy can be thought of as a variation of plane sweep,
where the customary sweep line is replaced by a piecewise
linear curve (e.g., the thick boundary in the figure).

When using Hilbert or Gray codes, we also would use
the lowest code value for points in the minimum bounding
rectangle of an object as a sort code. However, in this case the
lowest code value occurring in a rectangle is typically not in
the lower-left corner, but can occur anywhere on its boundary.
Thus, the lowest code value is somewhat more expensive to
compute when using Hilbert or Gray codes than when using
Morton codes. One way to do so is to recursively partition the
space, at each step picking the partition having the lowest code
value that intersects the rectangle.

5 For most other encoding methods for quadtree blocks, such as
Hilbert and Gray codes, this overhead can be expected to be even
greater.
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Fig. 7.A portion of a hypothetical quadtree, where the leaf nodes are
labeled in Z-order. The shaded rectangle is the bounding rectangle of
the next object to insert

The flushing process is described in greater detail in
Sect.5.2. Under certain conditions, this flushing method fails
to free any memory, although this situation should rarely oc-
cur. In Sect.5.3 we explain why, and present an alternative
strategy that can be applied in such cases.

5.2 Flushing algorithm

Informally, the flushing algorithm can be stated as follows:

1. Letp be the lower-left corner of the bounding rectangle of
the object to insert next (see Fig. 7).

2. Visit the unflushed leaf blocks in the pointer-based
quadtree in increasing order of the Morton code of their
lower-left corner (e.g., for Fig. 7, in increasing order of
the labels):
(a) if the quadtree block intersectsp (e.g., the leaf block

labeled 20 in Fig. 7), then terminate the process;
(b) otherwise, insert the leaf block into the MBI.

Figure 8 presents a more precise portrayal of the algo-
rithm in terms of a top-down traversal of the pointer-based
quadtree. The flushing algorithm is embodied in the function
FlushNodes in Fig. 8 and is invoked byInsertObjectwhen
the pointer-based quadtree is taking too much space in mem-
ory. For each nonleaf node,FlushNodes recursively invokes
itself exactly once, for the child node whose region intersects
p, while it invokesFlushSubtreeToMBI to flush the sub-
trees rooted at all unflushed child nodes that occur earlier in
Morton code order. Thus,FlushNodes traverses the pointer-
based tree down to the leaf nodewhose region intersectsp. For
example, in Fig. 7, the function traverses the tree down to the
node labeled 20, while it flushes the entire subtrees contain-
ing nodes 1 through 10 and nodes 11 through 17, as well as
the leaf nodes labeled 18 and 19. TheFlushSubtreeToMBI
function removes the given subtree from the quadtree buffer,
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and marks it flushed. That way, we will know in subsequent
invocations whether a given quadtree node is merely empty,
or has already been flushed. When all objects have been in-
serted into the quadtree,FlushSubtreeToMBI is invoked on
the root node, resulting in the final tree on disk.

procedure InsertObject(object)→
if (available memory falls below a threshold)then

p← lower left corner of the bounding rectangle ofobject
FlushNodes(root, p)

/* remainder of procedure same as in Fig. 6 */

procedureFlushNodes(node, p)→
if (not IsLeaf(node)) then
foreach (unflushedchildNodeof node) do
/* child nodes are visited in Morton code order */
if (Contains(childNode, p)) then
/* childNodeis on the path from root to leaf containingp */
FlushNodes(childNode, p)
return /* exit function */

else
/* childNodehas a smaller Morton code thanp */
FlushSubtreeToMBI(childNode, false)

procedureFlushSubtreeToMBI(node, freeNode)→
if (nodehas already been flushed)then
return

if (IsLeaf(node)) then
foreach (objectin node) do
MBIInsert(node, object)

else
foreach (childNodeof node) do
FlushSubtreeToMBI(childNode, true)

if (freeNode) then
FreeNode(node)

else
marknodeas having been flushed and turn into empty leaf node

Fig. 8.Pseudo-code for flushing process

The functionContains used in procedureFlushNodes
can be efficiently implemented using the Morton code ofp,
which can be computed before flushing is initiated (i.e., in
procedureInsert). In particular, letmp be the Morton code
of p, and letmlo andmhi be the smallest and largest Morton
codes, respectively, for a quadtree blockb (mlo is the Morton
code of its lower-left corner, whilemhi is the Morton code
of the “pixel” in the upper-right corner). For example, for the
block of size 4 by 4 with lower-left corner(0, 0), mhi is the
Morton code for the point(3, 3). Testing for intersection ofb
andp is equivalent to checking the conditionmlo ≤ mp ≤
mhi. This test can be efficiently implemented with bit-wise
operations. Specifically, if the size ofb is 2wb × 2wb , then all
but the low-order2wb bits ofmlo andmp mustmatch (the2wb

low-order bits ofmlo are all 0 and those ofmhi are all 1).

5.3 Reinsert freeing

The problemwith the flushing algorithm presented in Sect.5.2
is that it may fail to flush any leaf nodes, and thus not free
up any memory space. In the example in Fig. 7 this would
occur if all the nodes in the striped region have already been

flushed. In this case, the objects that remain in the pointer-
basedquadtree intersect leaf nodes labeled20orhigher, but the
lower-left corners of their minimum bounding rectangles fall
into leaf nodes labeled 20 or lower (due to the insertion order).
Thus, if r is a bounding rectangle of one of these objects,
then eitherr intersects the boundary of the striped region or
the lower-left corner ofr falls into the leaf node labeled 20
(i.e., the unflushed leaf node with the lowest Morton code).
This condition rarely applies to a large number of objects, at
least not for low-dimensional data and reasonable quadtree
buffer sizes as discussed in Sect.7. Nevertheless, we must be
prepared for this possibility.

If the flushingalgorithm is unable to freeanymemory, then
we cannot flush any leaf nodes without potentially choosing
nodes that will be inserted into later. One possibility in this
event is to flush someof these leaf nodes anyway, chosen using
someheuristic, and invoke the dynamic insertion procedure on
any subsequently inserted objects that happen to intersect the
flushed nodes. The drawback of such an approach is that we
may choose to flush nodes that will receive many insertions
later on. In addition, this means that we lose the guarantee that
B-tree insertions are performed in strict key order, thereby re-
ducing the effectiveness of the B-tree packing technique intro-
duced inSect.5.5 (i.e., adapted to tolerate slightly out-of-order
insertions). Furthermore, our bulk-insertion algorithm would
not be applicable (although a usually more expensive variant
could be used; see Sect.6.3). The strategy we propose instead,
termedreinsert freeing, is to freememory by removing objects
from the quadtree (allowing empty leaf nodes to be merged)
and scheduling them for reinsertion into the quadtree at a later
time. This strategy avoids the drawbacks mentioned above,
but increases somewhat the cost of some other aspects of the
bulk-loading process as described below.

In reinsert freeing, we must make sure that objects to be
reinserted get inserted back into the quadtree at appropriate
times. We do this by sending the objects back to the sorting
phase, with a new sort key (in Sect.5.4 we discuss how to
extend a sorting algorithm to handle reinsertions). This is il-
lustrated in Fig. 9 where the shaded rectangle is the bounding
rectangle of an object that is to be reinserted (broken lines in-
dicate the bounding rectangle of the last inserted object). The
object intersects nodes labeled 18 and 21 through 24. Since
node 21 is the existing node with the lowest Morton code that
intersects the object, the appropriate time for inserting the ob-
ject back into the quadtree is when all nodes earlier than node
21 in Morton order have already been inserted into. Thus the
location used to form the new sort key of the object should
intersect node 21. One choice is to compute the lower-left in-
tersection point of the bounding rectangle and the region for
node 21, shown with a dot and pointed at by the arrow. Alter-
natively, to avoid this computation, we could simply use the
lower-left corner of node 21 as the new sort key. Observe that
in either case, the new sort key is larger than the original sort
key for the object. As the example illustrates, we must make
sure to reinsert each object only once, even though it may oc-
cur in several leaf nodes, and the sort key is determined from
the leaf node intersecting the object having the smallest Mor-
ton code.Notice that when the object in the figure is eventually
inserted again into the quadtree, it is not inserted into node 18,
since that node has already been flushed.



120 G.R. Hjaltason, H. Samet: Speeding up construction of PMR quadtree-based spatial indexes

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

19

1 2

3 4
5

(0,0)

y

x

6
7 8

9 10

12 13

14 15
11

16 17

18
20

21 22

23 24

25

Fig. 9.An example of an object that is to be reinserted (shaded rect-
angle). The striped region represents quadtree nodes that have been
flushed, while the broken lines indicate the bounding rectangle of the
object that was inserted last

A second issue concerning reinsert freeing is how to
choose which objects to remove from the quadtree. Whatever
strategy is used, it is important that we not reinsert the objects
occurring in the leaf nodeb intersecting the lower-left corner
of the most recently inserted object; e.g., the leaf node labeled
20 in Fig. 9. A simple, but effective, strategy is to remove all
objects except those occurring in leaf nodeb, and merge all
child nodes of non-leaf nodes not on the path from the root to
b. Thus, the only nodes retained in the pointer-based quadtree
are the nodes on the path from the root tob, and their chil-
dren. This is the strategy that we use in our experiments (see
Sect.8.6). Another possible strategy is to visit the leaf nodes
in decreasing Morton order (i.e., the ones with the highest
Morton codes first), and remove the objects encountered un-
til some fraction (say, 50%) of the quadtree buffer has been
freed. One complication in this strategy is that once we have
made enough buffer space available, wemust then remove the
objects chosen for reinsertion from the leaf nodes that remain
in the buffer. Although perhaps somewhat counter-intuitive,
we found that the second strategy (which frees only a portion
of the buffer) usually led to a higher number of reinsertions
than the first (which frees nearly the entire buffer), unless a
large fraction of the buffer was freed. At best, the reduction
in the number of reinsertions of the second strategy was only
marginal, and even in those cases, the first strategy was usu-
ally slightly faster since the number of invocations of flushing
or reinsertion freeing is reduced (i.e., cost savings of fewer
reinsertions of the second strategy were overwhelmed by the
cost increase of more traversals when performing flushing or
reinsertion freeing).

An important point is that an object can only be reinserted
a limited number of times, thus ensuring thatwedonot reinsert
the same object indefinitely. This is guaranteed by the prop-
erty that reinsertions always produce sort keys that are greater
than the sort key of the object that was last delivered by the

sorting phase, since we do not reinsert objects occurring in the
leaf node intersecting the sort key of the object that was in-
serted last (e.g., objects occurring in leaf node 20 in Fig. 9 are
not reinserted). Thus, this property and the correctness of the
sorting phase guarantee that objects are delivered by the sort-
ing phase in a strictly non-decreasing order of sort keys and
that an object is never reinserted twice with the same sort key.
Another way to view this is that some progress always occurs
between two successive reinsertions for the same object.

The total number of insertions (original and reinsertions)
for an objecto is bounded from above by the number of
quadtree nodes (leaf and nonleaf) in the final quadtree that are
intersected byo. A tighter bound can be obtained by assuming
that we apply a somewhat more expensive method of con-
structing sort keys during reinsertions than the one described
above. In particular, letb be the block used to compute the sort
key for objecto for some reinsertion ofo. To compute the new
sort keys for o, we compute theminimum bounding rectangle
of the portion ofo that is insideb, and use the lower-left corner
of this rectangle in computings. This construction guarantees
thatwheno is eventually (re)inserted into thememory-resident
quadtree with the sort keys, the then-current leaf nodebl that
intersectss is either a leaf node in the final quadtree, orbl is
a nonleaf node in the final quadtree having at least two child
nodes that intersecto. Thus, the number of insertions foro is
at most twice the number of leaf nodes intersectingo.

5.4 Sorting the input

Our bulk-loading approach requires the input to be in a spe-
cific order for it to be effectivewhen the entire quadtree cannot
fit in the amount of memory allotted to the bulk-loading pro-
cess. The input data will usually not be in the desired order,
so it must be sorted prior to bulk-loading. Since we cannot
assume that the data fits in memory, we must make use of an
external memory sorting method. Whatever method is used,
instead of writing the final sorted result to disk, it is preferable
that the sorting phase and quadtree building phase operate in
tandem, with the result of the former pipelined to the latter.
This avoids the I/O cost of writing the final sorted result, and
permits dealing with reinsertions (see Sect.5.3).

Sorting a large set of objects canbeexpensive.However, as
we will see in our experiments, sorting a set of objects prior to
insertion is often a much less expensive process than the cost
of building the spatial index. More importantly, the savings in
execution time brought about by sorting far outweigh its cost.
Note that some form of sorting is commonly employed when
bulk-loading spatial access structures (e.g., [4,37,40,41,52,
59,60]).

We implemented two external sorting algorithms suitable
for our application. The first algorithm is a variation of the
standarddistributionsort [3],whereweemployanapplication-
specificpartitioning scheme.This is thealgorithm thatweused
in most of our experiments, where we found it to have very
good performance. Unfortunately, our partitioning scheme is
not always guaranteed to distribute sufficiently evenly to yield
optimal cost (although it works well for typical data sets). In
addition, the algorithm is difficult to adapt to support reinser-
tions (Sect.5.3) in an efficient manner. The second algorithm
that we implemented is externalmerge sort [3]. This algorithm



G.R. Hjaltason, H. Samet: Speeding up construction of PMR quadtree-based spatial indexes 121

≤M/B

M/B

M/B

AA
AA
AA
AA
A
A
A
A

A
AA
AA

A
AA
AA
A
A

N/M initial runs

log
M/B

(N/M)
iterations

a b

Fig. 10a,b.Depiction of external merge sorting:a regular, andbwith
reinsertions. Ina, squares represent runs created from the input while
circles representmerged runs. Inb, thewhite squares represent active
runs, the white circles represent future merged runs, and the shaded
square represents a partial run being created in memory

has the advantage of being provably optimal, having an I/O
cost ofO(N

B logM/B
N
B ), whereN is the number of data ob-

jects,M the number of objects that fit into an internal memory
buffer used for sorting, andB is the number of objects in a
block transfer (typically the size of a disk page). Furthermore,
in the presence of reinsertions, it is at worst only slightly sub-
optimal. Below, we briefly describe the external merge sort
algorithm and how it can be modified to handle reinsertions.

5.4.1 Merge sort

The external merge sort algorithm [3] first sorts the data in
memory, generating short sortedrunson disk. These are then
merged to generate longer runs, until we have a single sorted
run. More precisely, the initial runs are of lengthM , and there
are approximatelyN/M of them. In each merge pass, groups
ofR runs aremerged together, reducing the number of runs by
a factor ofR. During amerge,B objects fromeach runmust be
kept in memory6, soR =M/B. A depiction of the process is
shown in Fig. 10a. The squares represent runs created from the
input while circles representmerged runs. The run represented
by the circle at the “root” contains the entire sorted data set.

As we mentioned above, this algorithm is I/O optimal.
Each iteration decreases the number of runs by a factor of
M/B, so we need aboutlogM/B(N/M) iterations until we
have a single run. The initial formation of runs as well as
each iteration require aboutN/B I/Os, so we have a total of
O(N

B (1 + logM/B(N/M))) = O(N
B logM/B(N/B)) I/Os.

5.4.2 Handling reinsertions

The merge sort algorithm can be modified to handle rein-
sertions so that the modified algorithm is only slightly sub-
optimal. In particular, ifNs is the number of objects plus
the number of reinsertions, the modified algorithm achieves
a comparable I/O performance as sortingNs objects from
scratch. The general scenario for the modified sorting algo-
rithm is as follows: Initially, the sort process receives a set

6 Buffer space for2B objects is needed for each run when using
asynchronous I/O and double buffering.

of N objects, each with some sort key, which are placed into
the sort set. Subsequently, the sort process must respond to
getNext andreinsert requests, until no object remains
in the sort set. OngetNext requests, the sort process deliv-
ers the object with the smallest sort key in the sort set (and
removes it from the set), while onreinsert requests, an
object that has been previously delivered is inserted again into
the sort set with a different sort key. We use the termobject
instanceto denote an object with a particular sort key; hence,
each reinsertion results in a new object instance, and the to-
tal number of object instances isNs. Clearly, if the sort key
in a reinsertion is no smaller than the sort key of the object
that was last delivered (which is the case for our bulk-loading
algorithm), the sort keys of the objects delivered by the sort
process are monotonically non-decreasing. Furthermore, as-
suming thatreinsert requests only occur for objects not
currently present in the sort set (which is also the case for
our bulk-loading algorithm), the number of object instances
present in the sort set never exceedsN .

The basic idea behind our modified merge sort algorithm
is to use a portion of the sort buffer (i.e., the internal mem-
ory buffer of sizeM used by the algorithm) to store newly
reinserted objects, which are maintained in a heap structure
termed thereinsert heap, allowing fast retrieval of the object
with the smallest sort key. The remainder of the sort buffer is
used to buffer the merging of a set ofactiveruns, since each
run beingmerged requires buffer space ofB objects. In partic-
ular, the sort proceeds as in the original merge sort algorithm
until reaching the final iteration, wherem′ ≤ M/B runs are
being merged. Thesem′ runs become the initial set of active
runs, which are used by the algorithm to respond togetNext
requests, in the same way that runs are merged in the original
algorithm. Furthermore, as objects get inserted into the rein-
sert heap due to reinsertions, the reinsert heap also participates
in this merging. This process can go on until the sort buffer is
full upon areinsert request, i.e., when the reinsert heap
containsM − a · B objects, wherea is the number of active
runs. At this point, there are two options: 1) write the reinsert
heap to disk as a sorted run; or 2) merge the active runs into a
single sorted run.With the first option, we obtaina+ 1 active
runs and an empty reinsert heap, while with the second we
obtain a single active run, with room in the sort buffer for the
reinsert heap to grow.We adopt the convention that option 1 is
taken only if the reinsert heap contains at leastM/2 objects,
so option 2 is taken only if the number of active runs is at least
1
2M/B.

The algorithm that we sketched above can be expected to
perform well as long as the number of reinserted objects in
the sort set is not too large, which is usually the case in our
bulk-loading algorithm. Unfortunately, in extreme cases, the
numberof I/Oscanbemuch larger than theO(Ns

B logM/B
Ns

B )
that we are aiming for. In particular, in the proof of the opti-
mality of merge sort, we make use of the fact that each object
gets written into approximatelylogM/B(N/M) increasingly
large sorted runs. However, in the algorithm above, a large
number of reinsertions may cause many object instances to
be written into substantially more thanlogM/B(Ns/M) runs,
leading to greatly sub-optimal behavior. To see why, consider
the scenario that the originalm′ runs have been merged into
one, and subsequent overflows of the sort buffer have caused
the creation of so many new active runs that the sort buffer is
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full while the reinsert heap contains less thanM/2 objects.
Thus, upon the nextreinsert request, we would merge all
the active runs into one, which will include objects from the
originalm′ runs (i.e., that have not been reinserted). Depend-
ing on the number of reinsertions, the above scenario may
occur arbitrarily often, thereby causing object instances to be
written arbitrarily often into new runs.

The cause of the above dilemma is that the algorithm re-
sults in runs consisting of object instances of different “ages”,
where the age of an object instance is defined as the number
of times that the object instance has been written into a new
run. To resolve the dilemma, our modified sorting algorithm
maintains a hierarchy of active runs, as depicted in Fig. 10b,
where the level of an active run depends on the age of the
object instances in the run. Thus, the partial run being formed
in the reinsert heap is at the lowest level (the shaded square
in Fig. 10b), indicating an age of zero, the runs created by
writing out the reinsert heap at the level above, and so on.
Furthermore, them′ original runs are approximately at level
�logM/B(N/M)�. When a merge is necessary (i.e., by the
conditions outlined above), the algorithm merges runs at the
level in the hierarchy containing the greatest number of runs.
Notice that the active runs are continuously being read from
in response togetNext requests. This means that object in-
stances do not necessarily travel up the entire hierarchy, and
that runs at lower levels may become depleted and thereby
removed from the hierarchy.

Anadvantageof ourmethod is that theallocationof thesort
buffer is dynamically adapted to the number of reinsertions
and the number of active runs at each level. When merging,
the number of runs beingmergedmay be as large asM/B, but
never smaller thanM2hB , whereh is the height of the hierarchy,
initially about logM/B(N/M). In order for our method to be
optimal, the number of runs being merged each time must
be sufficiently high. In particular,log( M

2hB ) = log(M/B) −
log(2h) must beO(log(M/B)), or in other words,log h =
log logM/B(N/M) must be a constant. Unfortunately, this
is not quite the case, but for all practical purposes it is. For
example, even ifM is only 10 times larger thanB, h is less
than 16 as long asN is less than1016 times larger thanM
(for comparison, note that a terabyte is around1012 bytes), so
log2 h is less than 4. Thus,log M

2hB < 5, andlog M
2hB

Ns

B <

2 logM/B
Ns

B . In other words, the number of I/Os is at most
doubled given theassumptions,which are virtually guaranteed
to hold.

5.5 B-tree packing

As a byproduct of sorting the input and using the flushing
algorithmdescribed inSect.5.2, the leaf blockswill be inserted
into the MBI, and thus the B-tree, in strict Morton code order.
Since Morton codes are the sort key of the B-tree, this has
the unfortunate effect that most of the nodes in the B-tree
become only about half full. The reason for this is that the
conventional B-tree node splitting algorithm splits a node so
that the two resulting nodes are about half full. However, since
insertions occur in strict key order, the node receiving entries
with smaller key values will never be inserted into again, and
thus will remain only half full. Therefore, in general all nodes
will be half full, except possibly the right-most nodes on each

level (assuming increasing keys in left-to-right order). This
low storage utilization increases build time, since more nodes
must be written to disk, and decreases query efficiency, as
more nodes must be accessed on average for each query.

The seemingly negative behavior of inserting in strict key
order can easily be turned into an advantage, by using B-
tree/B+-trees bulk-loading algorithms that exploit the sorted
insertionorder (e.g., [50,53]). Inessence, suchalgorithmssim-
ply fill the leaf nodes of the tree in order, which also leads to
ordered insertion into the non-leaf nodes. In this way, we can
precisely determine the storage utilization of all but the right-
most nodes on each level, setting it to be anywhere between
50% to nearly 100%.Thus, we can achieve substantially better
storage utilization than that typically resulting from building
B-trees, which is about 69% for random insertions [61].

As mentioned above, our flushing algorithm is guaranteed
to lead to B-tree insertions that are strictly in key order. In
other circumstances, insertions into the B-tree are mostly in
key order but sometimes slightly out of order. For example,
the alternative to reinsert freeing mentioned in Sect.5.3 (i.e.,
flushing nodes that may be needed later using a heuristic) can
cause out of order insertions.As another example, in Sect.6.3,
we discuss a variant of our bulk-insertion approach that in-
volves updating an existing B-tree. There, the insertions are
strictly in key order, but usually do not fall beyond the range
of keys already in the tree (which is the case when inserting
into a previously empty B-tree).

For our experiments, we implemented a B-tree packing
algorithm that is similar to that of [50] (their algorithm was
presented in terms of compacting a 2-3 tree, a precursor of
B-trees, but it can easily be adapted to building a B-tree from
sorted data; in contrast, the algorithm of [40] is not appli-
cable in this context, as it requires knowing the number of
records to insert). However, our algorithm has the advantage
that it alwaysmaintains a fully connected tree structure, which
enabled us to adapt it to gracefully handle situations where B-
tree insertions occur somewhat out of order7. Of course, it is
not possible to ensure 100% storage utilization in the face of
out-of-order insertions. In our experiments, we found that a
reasonable compromise was achieved by aiming for 85% stor-
age utilization in the algorithm in such cases (which affects
how nodes are split). A similar approach can be taken when
using B+-trees, leading to an algorithm related to the B+-tree
bulk-loading algorithm described in [53].

6 Bulk-insertions for PMR quadtrees

Our bulk-loading algorithm can be adapted to the problem of
bulk-inserting into an existing quadtree index. In other words,
the goal is to build a PMR quadtree for a data set that is a
combination of data that is already indexed by a disk-resident
PMR quadtree (termedexisting data) and data that has not yet
been indexed (termednew data). This may be useful, for ex-
ample, if we are indexing data received from an earth-sensing

7 When insertions occur in order, only the rightmostB-treenodeon
each level is affected by insertions, so no tree traversals are necessary.
When our algorithm detects that an insertion occurs that does not fall
into the current node, it traverses to the proper leaf node andmakes it
the current node in case the succeeding insertions fall into that node.



G.R. Hjaltason, H. Samet: Speeding up construction of PMR quadtree-based spatial indexes 123

satellite, and data for a new region has arrived. Frequently, the
new data is for a region of space that is unoccupied by the
existing data, as in this example, but this is not necessarily the
case. The method we describe below is equally well suited to
the case of inserting into previously unoccupied regions and
to the case of new data that is spatially interleaved with the
existing data.

6.1 Overview

Recall that our flushing algorithm writes out the quadtree leaf
nodes in Morton code order. This is also the order in which
leaf nodes are stored in the B-tree of the MBI. The idea of
our bulk-insertion algorithm is to build a quadtree in memory
for the new data with our bulk-loading algorithm. However,
the flushing process is modified in such a way that it essen-
tially merges the stream of quadtree leaf nodes for the new
data with the ordered stream of quadtree leaf nodes in the
PMR quadtree for the existing data. The merging process is
somewhat more complicated than this brief description may
imply. In particular, in order tomerge two leaf nodes theymust
be of the same size, and the content of the resulting merged
leaf node must obey the splitting threshold. Below, we use the
termsold quadtreewhen referring to the disk-resident PMR
quadtree for the existing data,new quadtreewhen referring
to the memory-resident PMR quadtree for the new data, and
combined quadtreewhen referring to the disk-resident PMR
quadtree resulting from themergeprocess (which indexesboth
the existing data and the new data). Similarly, we useold leaf
nodeandnew leaf nodefor leaf nodes in the old and new
quadtrees, respectively.

Figure 11 illustrates the three cases that arise in the merg-
ing process, where the new data is denoted by dots (the old
data is not shown). The square with heavy borders denotes a
leaf block from the old quadtree, while the squares with thin
borders denote leaf blocks in the new quadtree. The first case
arises when an old leaf nodebo coincides with a nodebn in
the new quadtree, wherebn is either a nonempty leaf node
or a nonleaf node, implying thatbo intersects new data (see
Fig. 11a, wherebn is a nonempty leaf node). Thus, the ob-
jects contained inbo must be inserted into the subtree rooted
atbn, subject to the splitting threshold. The second case arises
when an old leaf nodebo is contained in (or coincides with) an
empty leaf nodebn in the new quadtree (see Fig. 11b). When
this occurs, the contents ofbo can be written directly into the
combined quadtree, without the intermediate step of being in-
serted into the new quadtree. The third case arises when an
old leaf nodebo is contained in a larger nonempty leaf node
bn in the new quadtree (see Fig. 11c). In this case,bn is split,
andbo is recursively checked against the new child nodes of
bn (in Fig. 11c, case 1 would apply to the new SW child of
bn).

6.2 Algorithm

Our merge algorithm is shown in Fig. 12. The algorithmmod-
ifies proceduresFlushNodes and FlushSubtreeToMBI
from Fig. 8, while the actual merging is coordinated by pro-
cedureMergeSubtrees. The parameteroldTreein the pro-
cedures is a reference to the old quadtree. The old quadtree

a b c

Fig. 11a–c.A simple PMR quadtreeTn consisting of points and the
three cases that arisewhenmergingwith an existing quadtreeTo with
our bulk-insertion algorithm:a A leaf node inTo coincides with a
nonleaf node or a nonempty leaf node inTn, b a leaf node inTo

is contained in an empty leaf node inTn, andc a leaf node inTo

is contained in a larger non-leaf node inTn. Squares with a heavy
border correspond to leaf nodes inTo, but the objects inTo are not
shown

is accessed inMergeSubtrees by the functionsCurLeafN-
ode andCurLeafObject, which return the current node re-
gion and object, respectively, for the current leaf node item,
and by the procedureNextLeafNode, which advances the
current leaf node item to the next one in the order of Mor-
ton codes. Observe that two successive leaf node items can be
two objects belonging to the same leaf node. For simplicity of
the presentation, we assume in Fig. 12 that empty leaf nodes
are not represented in the disk-based quadtree. In addition,
we do not explicitly test for the condition that the entire con-
tent of the existing quadtree has already been read, assuming
instead that the current leaf node region is set to some spe-
cial value when that happens so that it does not intersect any
of the leaf nodes in the memory-resident quadtree. The three
cases arising in merging enumerated above are represented
in MergeSubtrees. The first case triggers the firstdo loop,
where objects in the old quadtree are inserted into the new
memory-resident quadtree (whichmay cause node splits). The
second case triggers the seconddo loop, where leaf node items
are copied directly from the old quadtree and into the com-
bined quadtree. The third case triggers an invocation ofSplit,
which splits the new leaf and distributes its content among the
child nodes as appropriate. ProcedureMergeSubtrees will
be invoked later on the child nodes. SinceMergeSubtrees
is invoked on nodes in the new quadtree in top-down fashion,
CurLeafNode(oldTree) is never larger thannode, and the leaf
node splitting (for case 3) ensures that, eventually, either case
1 or case 2 will apply to every leaf node in the old quadtree.

6.3 Discussion

The cost of bulk-inserting a data set into an existing quadtree
is at least as large as the cost of bulk-loading the combined
data set minus the cost of bulk-loading the original data set,
sinceourbulk-insertionalgorithm isbasedonourbulk-loading
algorithm. In other words, lettingcL(S) denote the cost of
bulk-loading aquadtree indexwith a data setS, andcI(S1, S2)
denote the cost of bulk-inserting thedata setS2 into anexisting
index for data setS1, the relation

cI(S1, S2) ≥ cL(S1 + S2) − cL(S1)

holds. Furthermore, define the “excess” cost of bulk-inserting
S1 as the costcI(S1, S2) − (cL(S1 +S2) − cL(S1)). Clearly,
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procedureFlushNodes(node, p, oldTree)→
if (not IsLeaf(node)) then
MergeSubtrees(node, oldTree)
/* remainder of procedure is same as in Fig. 8 */

procedureFlushSubtreeToMBI(node, freeNode, oldTree)→
MergeSubtrees(node, oldTree)
/* remainder of procedure is same as in Fig. 8 */

procedureMergeSubtrees(node, oldTree)→
if (Contains(node, CurLeafNode(oldTree))) then
if (Size(node) = Size(CurLeafNode(oldTree))
and not (IsLeaf(node) and IsEmpty(node))) then
/* node regions are equal (see Fig. 11a) */
do
Insert(node, CurLeafObject(oldTree))
NextLeafNode(oldTree)

while (EqualCoverage(node, CurLeafNode(oldTree)))
elseif(IsLeaf(node)) then
if (IsEmpty(node) then
/* current inoldTreeis same size or smaller (see Fig. 11b) */
do
MBIInsert(CurLeafNode(oldTree))
NextLeafNode(oldTree)

while (Contains(node, CurLeafNode(oldTree)))
else
/* current inoldTreeis smaller (see Fig. 11c) */
Split(node)

Fig. 12.Pseudo-code for quadtree merging

based on the above observations, the excess cost is nonzero,
and the lower its value, the better the bulk-insertion algorithm.

We believe that our bulk-insertion algorithm is very ef-
ficient in terms of the excess cost. From the standpoint of
CPU cost, the excess is primarily due to B-tree operations on
the intermediate B-tree (i.e., writing it during bulk-loading
and reading during bulk-insertion), as well as memory alloca-
tion and handling of nodes in the new quadtree that are also
present in the old tree. However, intersection tests, which are
a major component of the CPU cost, should not significantly
contribute to the excess CPU cost. Furthermore, besides the
cost of accessing the intermediate quadtree, the bulk of the
CPU cost ofMergeSubtrees is involved in work that must
also be performed when bulk-loading the combined data set,
while other operations performed by it take little time if imple-
mented efficiently (typically less than 5%of the total CPUcost
ofMergeSubtrees in our tests). From the standpoint of I/O
cost, the excess cost comes from writing out the intermediate
quadtree (during bulk-loading) and reading it back in (during
bulk-insertion). This can be expected to be partially offset by
slightly lower I/O cost of sorting the two smaller data sets as
opposed to the combined set.

Our bulk-insertion algorithm essentially merges a new
quadtree being built in memory with an existing disk-
resident quadtree, andwritesout anewcombineddisk-resident
quadtree. It is easy to transform this “merge-based” algorithm
into an “update-based” algorithm that instead updates the old
disk-resident quadtree: 1) after inserting objects from the old
quadtree into the new memory-resident quadtree, the corre-
sponding B-tree entries would be deleted; 2) instead of the

seconddo loop (where entries in the old quadtree are copied
into the combined quadtree), wewould look up the next B-tree
entry that does not intersectnode. Unfortunately, in the worst
case, we would still need to read and modify every B-tree
node. Furthermore, the B-tree packing technique discussed in
Sect.5.5 is less effective when adapted to handle updates of an
existing B-tree. Thus, the excess I/O cost is often higher than
with our method due to worse storage utilization, and, in addi-
tion, the excess CPU cost is typically significantly higher due
to the cost of updating the existing B-tree nodes.A further ad-
vantage of the merge-based algorithm over the update-based
one is that the old quadtree index can be used to answer incom-
ing queries while the bulk-insertion is in progress, without the
need for complex concurrency control mechanisms. Never-
theless, as we shall see in Sect.8.7, where we report expected
results for both variants, theupdate-basedvariant is sometimes
more efficient than our merge-based one when the new data
covers previously unoccupied regions in the existing quadtree.

A drawback of our quadtree merging approach is that it
results in a quadtree structure that corresponds to first inserting
all the new data and then the existing data (due to theInsert
invocations in the firstdo loop). Since the structure of a PMR
quadtree depends on the insertion order, the resulting structure
may be different than when first inserting the existing data
and then the new data. However, this should not be much of
a concern, as the difference is usually slight: only a small
percentage of the quadtree blocks will be split more in one
tree than in the other. Another potential problem is that the
size of the memory-resident quadtree (in terms of occupied
memory) may increase during the merging, before any parts
of it can be freed. To see this, letbn be the non-empty leaf
node in the new memory-resident quadtree with the smallest
Morton code (among unflushed leaf nodes).Without merging,
bn would be the first leaf node to be flushed. In addition, letbo
be the next leaf node in the old quadtree, and assume that the
region ofbo intersects that ofbn. Beforebn can be flushed and
its content freed frommemory, the memory-resident quadtree
can grow in two ways: 1) if the region ofbn is larger than
that ofbo, thenbn is split; and 2) ifbo is non-empty, then its
contents are inserted into thememory-resident quadtree. Since
the numbers of objects inbn andbo are limited, the amount of
memory consumed by these actions should not be very large.
Furthermore, most or all the extra memory consumed is freed
soon afterwards. Thus, it should be sufficient to allow for only
a small amount of extra memory to handle such cases and thus
prevent a memory overflow situation.

7 Analytic observations

In this sectionwemake someobservations about the execution
cost of our bulk-loading algorithm. The discussion is for the
most part informal, and is meant to give insight into general
trends, rather than being a rigorous treatment. We make the
simplifying assumption that the objects occupy a fixed amount
of storage (suchas is the case for elementary geometric objects
like line segments and rectangles, but unlike for complex ones
like polygons). We also assume a disk-based representation
of the quadtree that has similar characteristics as the Morton
Block Index (MBI), described in Sect.3.3.
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Our experiments, as reported in Sect.8, suggest that I/O
cost and CPU cost both contribute significantly to the total
execution cost (although the I/O cost contribution is usually
higher). Therefore, we discuss each separately below. First,
however, we introduce the symbols used in evaluating the
costs, and discuss important issues that affect the cost.

7.1 Preliminaries

The I/O and CPU cost of our algorithm can be attributed to
three activities: 1) sorting; 2) construction of quadtree parti-
tioning; and 3) B-tree loading. Of these, the second activity
does not directly involve I/O operations. As we shall see, the
cost of each activity depends on a) its input size, b) the number
of internalmemorybuffers available to theoverall process, and
c) the unit of block transfer for I/O operations. The following
table defines symbols that denote quantities of relevance in
these cost factors:

The number of:
N data objects
Ns object instances (counting reinsertions) for sorting
Nq q-objects
Nb B-tree entries
M objects that fit into internal memory buffers
Ms objects that fit into sorting buffer
Mq objects that fit into quadtree buffer
Mb objects that fit into B-tree buffer
B objects that fit into a disk page

(or the desired unit of block transfers)
Bs objects in a disk page for sorting
Bb entries in a B-tree node

Clearly,N is the input size for the overall bulk-loading
process, but the input size of sorting and the partitioning ac-
tivities is Ns, while it is Nb for the B-tree loading. Below,
we examine the relationship betweenN and the differentN∗
values (i.e.,Ns, Nq, andNb). As we shall see, given some
reasonable assumptions on the distribution of the location and
sizes of the objects, the differentN∗ values are asymptotically
the same asN . Furthermore, the differentM∗ andB∗ values
can also be shown to be asymptotically equivalent toM and
B, again, given some assumptions (butmoremodest ones than
for N ). In particular, assuming the same disk page size in the
B-tree as for sorting,Bb is slightly smaller thanBs, since each
entry in the B-tree occupies somewhat more space (at least for
the nonleaf nodes, which store pointers to nodes at the next
lower level). However, the difference in entry sizes is only by
a small constant, so bothBb andBs can be simplified toB
without affecting asymptotic results. By the same token, the
differences in entry sizes can be ignored for theM∗ values.
Moreover, by assuming that the total buffer space is equally
divided among the different activities (i.e., the sorting activity
is performed concurrent with the quadtree building activity, as
we suggest in Sect.5.4), we can simplify asymptotic bounds
by usingM forMs,Mq, andMb, the buffer sizes of each indi-
vidual activity. Nevertheless, in our experiments (see Sect.8),
we found that a relatively modest buffer space was sufficient
for the quadtree buffer, while for the B-tree loading, buffering

of only as much as a single node at each level is sufficient (see
Sect.5.5). Thus, most of the total buffer space can be allotted
to sorting.

The primary reason for the fact that analyzing our algo-
rithm is difficult is that its behavior depends on the distribu-
tion of the geometric positions and sizes of the spatial objects.
In particular, this applies to the relationship betweenN and
the quantitiesNs, Nq, andNb. Full analysis of the expected
behavior requires complex modeling of the geometric distri-
bution, which is outside the scope of this paper. Furthermore,
the geometric distribution for specific applications may differ
considerably from that assumed by the analysis. Thus, instead,
we make in Sects. 7.1.1 and 7.1.2 some informal observations
about the relationships.

7.1.1 Relationship betweenN ,Nq, andNb

First, considerN , the number of objects, andNq, the number
of q-objects. Note that for points,Nq = N . For non-point
objects, the value ofNq depends on many factors, including:
1) the splitting threshold; 2) the relative sizes of objects; 3)
how closely clustered the objects are; 4) the complexity of
the boundaries of objects; and 5) the degree of overlap. As an
extreme example, if all the objects were squares (hypercubes
for d > 2) that covered the entire data space, then the space
would be maximally partitioned into the smallest allowable
cells. In other words, we would get2wd leaf nodes, where
w is the maximum height of the quadtree, assumingN is at
leastw+ t, wheret is the splitting threshold value. Thus, each
object is broken up into2wd q-objects, andNq = 2wdN . As
another example, if the data objects are square-shaped (cube-
or hypercube-shaped ford > 2), all of the same size, the
largest number of q-objects for a square is 6, or2 · 3d−1 in
general (assumingt ≥ 2d); the average number will depend
on t. In this example, the ratio betweenN andNq is still
exponential ind. However, non-point data is rarely used in
spaces with dimensionality above 3.

As to the relationship betweenNq andNb, the difference
between the two is the number of empty quadtree leaf nodes,
if we choose to represent them in the B-tree. Unfortunately,
there can be a large number of empty leaf nodes in the tree.
As an extreme example, suppose that all the objects lie in a
single cell of the minimum size. This would cause node splits
at all levels of the tree until we have all the objects in a single
leaf node at the lowest level. Thus, given a two-dimensional
quadtree with a maximum depth ofw, we would have3w
empty leaf nodes for the single non-empty leaf node. We can
extend this example to a tree ofk non-empty leaf nodes having
as many as3(w−�log4 k�)k empty leaf nodes8, or in general
for ad-dimensional quadtree,(2d−1)(w−�log2d k�)k empty
leaf nodes. In quadtrees that give rise to such a high number of
empty leaf nodes, most internal nodes have2d − 1 empty leaf
nodesas child nodeswhile only one child is either a non-empty
leaf node or an internal node. Thus, such quadtrees are rather
contrived and unlikely to actually occur. A more reasonable
assumption is that for the majority of quadtree nonleaf nodes,

8 This is realized by havingk trees with one non-empty leaf node,
all of heightw−�log4 k�, and a complete quadtree of height�log4 k�
down to the roots of thesek trees.
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at least two child nodes are non-empty. Given this assumption,
an upper bound of about2d+1 empty leaf nodes for each non-
empty leaf node canbeestablished.Since thenumber of empty
leaves tends to grow sharply withd, it is inadvisable to store
empty quadtree nodes in the B-tree for quadtrees of dimension
more than 3 or 4.

It is interesting to consider the values ofNq andNb rel-
ative toN for actual data sets. In Sect.8 we use six data sets
consisting of non-overlapping two-dimensional line segment
data, three of which are real-world data and three of which are
synthetic. With a splitting threshold of 8, the value ofNq was
at most about2N for the real-world data sets, while it was
about2.63N for the synthetic data sets. The number of empty
leaf nodes was rather small, ranging from 2.2% to 4.7% ofN
for the real-world data sets and 3.2% to 3.8% for the synthetic
ones. With a splitting threshold of 32, the value ofNq ranged
from 1.3N to 1.6N , while the number of empty leaf nodes
was negligible. In the experiments, we also used a real-world
data set comprising two-dimensional polygons representing
census tracts in the US. The spatial extent of these polygons
had a wide range, the polygon objects touched each other’s
boundaries, and their boundaries were often very complex (up
to3700points per polygon,with anaverageof about 40).Thus,
this data set represents an extreme in the complexity of non-
overlapping two-dimensional data. With a splitting threshold
of 8, bothNq andNb were about4N , while with a splitting
threshold of 32 they were less than2N (more precisely, about
1.9N ). Thus, the values obtained forNq andNb were still rel-
atively close to the value ofN , at least for the larger splitting
threshold. Finally, we experimented with highly overlapping
synthetic line segment data. Not surprisingly, the number of
q-objects for each object is very high for such data. Even with
a relatively large splitting threshold of 32, the value ofNq was
about110N . This strongly suggests that quadtrees are not very
suitable for data of this nature, but the same can be said about
most other spatial index structures (such as the R-tree).

7.1.2 Relationship betweenN andNs

In Sect.5.3, we point out that an object intersectingq leaf
nodes can be subject to no more than2q insertions into the
memory-resident quadtree (original and reinsertions), assum-
ing that an appropriate method of computing sort keys for
reinsertions is applied. Thus, the total number of insertions
forN data objects isO(Nq). As we outlined in Sect.5.4.2, the
I/O cost of sortingN objects and reinsertingO(Nq) objects is
O(sNq/B logM/B

Nq

B ), wheres is less than 2 for all practical
values ofN ,M , andB. As we argue in Sect.7.1.1,Nq is typi-
cally proportional toN , in which caseNs is also proportional
toN based on the above argument. Even in situations where
Nq is much higher thanN , reinsertions can still be expected to
be relatively rare, since reinsertions only occur if the flushing
algorithm fails to free any memory. The informal analysis be-
low, although simplistic, suggests that the latter situation does
not arise frequently.

Recall that the flushing algorithm is unable to free any
memory if all the objects stored in the pointer-based quadtree
intersect the boundary (referred to asflushing boundarybe-
low) between flushed and unflushed nodes; e.g., the boundary
of the striped region in Fig. 7. This condition never arises if the

data objects are points and is unlikely to occur if the “space”
between adjacent data objects is generally larger than their
size. In general, however, we must make some assumptions
about the distribution of the locations and sizes of non-point
objects to be able to estimate the number of objects that in-
tersect the flushing boundary. We will make the simplifying
assumption that thedataobjects areall of the samesize, andare
equally spaced in a non-overlappingmanner so that they cover
the entire data space. In other words, for a two-dimensional
object, the bounding rectangle is approximately a square with
areaL2

N , and thus side lengthsL√
N
, whereL is the side length

of the square-shaped data space. The length of the flushing
boundary is at most2L, since starting from its top-left corner,
the boundary is monotonically non-decreasing in thex axis
and non-increasing in they axis (refer to Fig. 7 for an exam-
ple)9. Given the assumptions above, the number of objects in-
tersected by the flushing boundary is at most2L

L/
√

N
= 2

√
N ,

since the boundary is piecewise linear. For that many objects,
the quadtree buffer would be full ifM ≤ 2

√
N . Put another

way, given a buffer size ofM , the buffer can be expected to
never fill if N ≤ M2/4. For example, with a buffer capacity
of 10,000 objects, we can expect the buffer never to fill for a
data file of up to 50 million objects. If each object occupies
50 bytes, these numbers correspond to a buffer size of about
500kB and a data file size of about 2.3GB.

In general, ford dimensions, the object’s bounding hyper-
rectangles (which are nearly hyper-cubes in shape) have a
volume of aboutLd/N , so each of theird − 1 dimensional
faces has ad − 1 dimensional volume of approximately
(Ld/N)

d−1
d = Ld−1/N

d−1
d . The flushing boundary has a

d − 1 dimensional volume of at mostdLd−1, so the number
of objects intersected by it can be expected to be less than

dLd−1

Ld−1/N
d−1

d

= dN
d−1

d . Unfortunately, ifN is smaller than

dd, this value is larger thanN . However, for the relatively
low-dimensional spaces for which quadtrees are practical,N

is typically much larger thandd so dN
d−1

d is smaller than
N . Furthermore, it is not common to be working with non-
point objects in spaces of higher dimensionality than 3. For
three-dimensional space, we can expect a buffer of sizeM to
never fill ifN ≤ (M/3)3/2. For example, a buffer capacity of
10,000 objects can be expected to be enough to handle data
files of up to approximately 190,000 objects (about 9MB for
objects of 50 bytes each). Although this may not seem as dra-
matic as in the two-dimensional case, the difference between
N andM is still more than an order of magnitude.

The experiments reported in Sect.8 corroborate the above
argument, as we observed no reinsertions except when we
explicitly aimed at producing them (Sect.8.6). In the latter
experiments, we used a real-world data set of 260K line seg-
ments (employing a very small quadtree buffer) and a syn-
thetic one of 10,000 highly overlapping line segments (each
of which intersected about 110 quadtree nodes on the aver-
age). For the real-world data set, we found thatNs was only
about 8% greater thanN . However, for the synthetic data set,
Ns was more than 8 times greater thanN . Nevertheless, a

9 It is possible to show that the maximum length is even less than
this (3L/2) and the average length is still less (L), but the bound2L
suffices for our purposes.
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multiple of 8 is actually modest in this case being thatNq was
110 times greater thanN , implying that the sorting cost was
overwhelmed by the cost of quadtree construction and B-tree
loading.

7.2 I/O cost

With the groundwork laid down in Sects. 7.1 and 5.4, it is a
straight-forward exercise to establish the I/O cost of our bulk-
loading method. In particular, recall that only the sorting and
B-tree loading activities perform I/O operations. We account
for each one separately. First, as we outlined in Sect.5.4.2,
the I/O cost of sortingNs objects in the face of reinsertions
is O(sNs

B logM/B
Ns

B ), wheres is less than 2 for all practi-
cal values ofN , M , andB. Second, with the use of B-tree
packing, as presented in Sect.5.5, the I/O cost of the B-tree
loading isO(Nb

B ), since each B-tree10 node in the MBI is
written out only once (with a constant storage utilization) and
never read. The overall I/O cost of our bulk-loading algo-
rithm is thereforeO(Nb

B + sNs

B logM/B
Ns

B ). This simplifies
to O(N

B logM/B
N
B ), the lower bound on the I/O cost of in-

dexing (e.g., see [9]), under the fairly reasonable assumptions
outlined in Sect.7.1 and the assumption thats is a constant.

One way to verify the above cost formula is to perform
experiments with data sets of various different sizes, and then
attempt to fit the cost formula to the actual experiment results.
Given the results for the synthetic line segment data presented
in Sect.8.2, we found that the I/O cost (or, more precisely, the
portion of the execution time that was due to I/Os) showed
an excellent fit to the formulaaN logN + bN + c, where the
coefficientb appeared to have more significance thana, being
nearly ten times greater. For the real-world line segment data
in the same section, the fit was also good, with the coefficientb
overwhelminga in significance. In other words, the actual I/O
cost appeared to be nearly linear inN , with a smaller term that
was proportional toN logN .While the number of data points
used in the curve fitting was admittedly too small (i.e., three
in both cases) to draw a firm conclusion, it does nevertheless
provide some indication.

7.3 CPU cost

In analyzing theCPUcost of ouralgorithm,we treat eachof the
three activities separately (i.e., sorting, quadtree partitioning,
and B-tree loading, as mentioned in Sect.7.1). First, observe
that the CPU cost of sortingN objects with the external merge
sortingalgorithmgiven inSect.5.4.1 is roughlyproportional to
the number of comparison operations. The average number of
comparison operations per object when constructing the initial
runs isO(logM). Each merge step gives rise toO(log M

B )
comparisons for each object on average since at mostM/B
runs are merged each time. Thus, recalling that the number
of merge steps isO(logM/B

N
M ) = O( log(N/M)

log(M/B) ), the overall
number of comparisons per object on average isO(logM +
log(N/M)
log(M/B) log M

B ) = O(logM + log N
M ) = O(logN), and

the total cost isO(N logN), which is optimal. Even in the

10 The same would hold for the B+-tree.

presence of reinsertions (Sect.5.4.2), sorting remains nearly
optimal, or close toO(Ns logNs).

Assuming for the moment that the original insertion algo-
rithm is used instead of our improved one, the total cost of
building the pointer-based quadtree is roughly proportional to
the number of intersection tests. Recall that the intersection
tests are needed to determine whether an object should be in-
serted into a certain node. Ifoq is a q-object of objecto that
intersects a leaf noden, the number of intersection tests ono
is at least2d · Dn, whereDn is the depth ofn. Thus, in the
worst case, the total number of intersection tests needed ono
is 2d ·Dmax times the number of q-objects foro. To analyze
this further, we resort to a gross simplification: assume that
the objects are non-overlapping equal-sized squares in two di-
mensions, and that they are uniformly distributed over the data
space. In this simple scenario, the number of q-objects for an
object isO(1), while the number of empty leaf nodes tends to
be very low.Thus, the expected number of leaf nodes (and thus
all nodes) is roughly proportional toN . Since the objects are
uniformly distributed, the leaf nodes will tend to be at a sim-
ilar depth in the tree, so the average height is approximately
proportional tologN . Therefore, the total number of intersec-
tion tests isO(N logN)11, or roughlyO(Nq logNq) without
assuming constant number of q-objects. Note that in our im-
proved PMR quadtree insertion algorithm, the total number
of intersection tests is typically much smaller, and can poten-
tially be as small asO(Nq). Nevertheless, some work is still
expended in traversing the pointer-based quadtree down to the
leaf level for each object.

When traversing the pointer-based quadtree during flush-
ing, most of the nodes visited are deleted from the tree, and
thus are never encountered during subsequent flushing opera-
tions. The visited nodes that are retained (or at least a similar
number of nodes) are also visited by the insertion operation
that initiated the flushing, so the cost of visiting them is ac-
counted for in the cost of the insertion operation. Thus, the
total additional cost of tree traversal during flushing is propor-
tional to the number of quadtree nodes (O(N) in the simplified
scenario above). During flushing, somework is also expended
for every q-object in the flushed nodes. However, this work is
accounted for in the cost of building the B-tree.

In theB-tree packing algorithm introduced in Sect.5.5, the
CPU cost is proportional to the number of inserted items,Nb.
This is due to the fact that each inserted item goes directly to
its final destination, without being subsequently moved, for a
constant cost for each insertion into a B-tree leaf node. The
cost of inserting an item that is destined for a B-tree nonleaf
node is proportional to the node level relative to the leaves
(e.g.,O(logNb/B) for insertions into the B-tree root node).
However, since the number of items on each level decreases
geometrically inB, the average cost per insertion remains con-
stant. Hence, the total CPU cost of B-tree packing isO(Nb).

To summarize, we saw that the asymptotic CPU cost was
roughlyO(Ns logNs) for sorting the objects,O(Nq logNq)
for constructing the quadtree in memory (given our simplify-
ing assumptions), andO(Nb) for building the B-tree. Thus,
we see that in an ideal situation (i.e., if the data distribution

11 Of course, for arbitrary dimensions, a2d factor would be in-
volved. However, recall that the quadtree is only used for relatively
modest values ofd.
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is not too skewed and the assumptions outlined in Sect.7.1
hold), we can expect the total CPU cost of our bulk-loading
algorithm to be roughlyO(N logN), or equal to the lower
bound on the CPU cost of indexing.

We also verified the above derivation by correlating with
experimental results, in the same manner as we showed in
Sect.7.2. For the CPU cost, however, we found that the co-
efficient b when fitting toaN logN + bN + c was an even
stronger influence than we found for the I/O cost, exceeding
a by a wide margin. This suggests that the CPU cost for this
kind of data is essentially proportional toN .

8 Empirical results

Below, we detail the results of a number of experiments which
show the performance of thePMRquadtree bulk-loading tech-
nique presented in this paper. The remainder of this section is
organized as follows: In Sect.8.1, we present various details
about the experimental setup. In Sect.8.2 we go into consid-
erable detail on bulk-loading two-dimensional line segment
data, as well as describe the specifics of the PMR quadtree
loading methods used in these and subsequent experiments.
In Sect.8.3 we repeat the same experiments in SAND, our
prototype spatial database system, in order to examine the ef-
fects of using the object table approach. In Sects. 8.4 and 8.5
we show how well our method does with other types of data,
multidimensional pointsand two-dimensional polygons,again
using SAND. In Sect.8.6, we study the performance of the
algorithm when no node can be flushed and reinsert freeing
must be used. In Sect.8.7 we examine how well our bulk-
insertion algorithm for PMR quadtrees performs. In Sect.8.8,
we establish how our bulk-loading algorithm compares to two
bulk-loading techniques for R-trees. Finally, in Sect.8.9 we
summarize the conclusions drawn from our experiments.

8.1 Experimental setup

We implemented the techniques that we presented in Sects. 5
in C++ within an existing linear quadtree testbed (described
in Sect.3.3). Our quadtree implementation has been highly
tuned for efficiency, but this primarily benefits dynamic PMR
quadtree insertions (i.e., when inserting directly into theMBI).
Thus, the speedup due to bulk-loading would be even greater
than we show had we used a less tuned implementation. This
is partly the reason why we obtained lower speedup than re-
ported in [31]. The source code was compiled with the GNU
C++ compiler with full optimization (–O3) and the experi-
ments were conducted on a Sun Ultra 1 Model 170Emachine,
rated at 6.17 SPECint95 and 11.80 SPECfp95 with 64MB of
memory. In order to better control the run-time parameters, we
used a raw disk partition. This ensures that execution times re-
flect the true cost of I/O, which would otherwise be partially
obscured by the file caching mechanism of the operating sys-
tem12. The use of raw disk partitions is another reason we
obtained lower speedup than in [31], since the reduction in
CPU cost is much greater than the reduction in I/O cost. The

12 In other words, in our experiments, I/O operations block theCPU
until their completion.

maximum depth of the quadtree was set to 16 in most of the
experiments, and the splitting threshold in the PMR quadtree
to 8. Larger splitting thresholds make our bulk-loading ap-
proach even more attractive. However, as 8 is a commonly
used splitting threshold, this is the value we used. B-tree node
size was set to 4kB, while node capacity varied between 50
and 400 entries, depending on the experiment. The data files
used in the experiments are available online [30].

The sizes of the data sets we used in our experiments were
perhapsmodest compared to somemodern applications. How-
ever, we compensated for this by using a modest amount of
buffering, limiting the space occupied by the pointer-based
quadtree to 128kB. The flushing algorithm was always able
to free substantial amounts of memory (typically over 90%
but never less than 55%), except in experiments explicitly de-
signed to make it fail. In all other experiments, this level of
bufferingprovedmore thanadequateanda larger buffer didnot
improve performance.The sort bufferwas limited to 512kB.A
sort buffer size of 256kB increased running time only slightly
(typically less than 3% of the total time). For the B-tree, we
explored the effect of varying the buffer size, buffering from
256 B-tree nodes (occupying 1MB) up to the entire B-tree.
For the bulk-loading methods, however, only one B-tree node
at each level needed to be buffered, as described in Sect.5.5.

In reporting the results of the experiments, we use ex-
ecution time. This takes into account the cost of reading the
data, sorting it, establishing the quadtree structure, andwriting
out the resulting B-tree. The reason for using execution time,
rather than such measures as number of comparisons or I/O
operations, is that no other measure adequately captures the
overall cost of the loading operations. For eachexperiment, we
averaged the results of a number of runs (usually 10), repeat-
ing until achieving consistent results. As a result, the size of
the 99% confidence interval for each experiment was usually
less than 0.4%of the average value, and nevermore than about
1%. In particular, the confidence intervals are always smaller
than the differences between any two loading methods being
compared.

8.2 2D line segment data

In the first set of experiments, we used two-dimensional line
segment data, both real-world and synthetic. In these experi-
ments, we stored the actual coordinate values of the line seg-
ments in the quadtree. The real-world data consists of three
data sets from the TIGER/Line File [17]. The first two con-
tain all line segment data – roads, rail lines, rivers, etc. – for
Washington, DC and Prince George’s County, MD, abbrevi-
ated below as “DC” and “PG”. The third contains roads in the
entire Washington, DC metro area, abbreviated “Roads”. The
synthetic data sets were constructed by generating random in-
finite lines in a manner that is independent of translation and
scaling of the coordinate system [44]. These lines are clipped
to the map area to obtain line segments, and then subdivided
further at intersection points with other line segments so that
at the end, line segments meet only at end points. Using these
data sets enables us to get a feel for how the quadtree load-
ing methods scale up with map size on data sets with similar
characteristics.



G.R. Hjaltason, H. Samet: Speeding up construction of PMR quadtree-based spatial indexes 129

Table 1.Details on line segment maps

Number of Avg. q-edges B-tree size (nodes)

Data set line segments per segment File size (kB) Min Max

DC 19,185 2.08 384 301 532

PG 59,551 1.86 1176 843 1529

Roads 200,482 1.76 3928 2691 4859

Rand64K 64,000 2.61 1264 1259 2152

Rand128K 128,000 2.62 2512 2525 4322

Rand260K 260,000 2.63 5088 5146 8674

Table 2.Summary of PMR quadtree loading methods used in experiments

Method B-tree buffering Quadtree bulk-loading Sorting

BB-L yes (unlimited) no no

BB-M yes (1024 nodes) no no

BB-S yes (256 nodes) no yes

QB-75 limited yes (≈ 75% B-tree storage utilization) yes

QB-100 limited yes (≈ 100% B-tree storage utilization) yes

Table 1 provides details on the six line segment maps: the
number of line segments, the average number of q-edges per
line segment, the file size of the input files (in kB), and the
minimum and maximum number of nodes in the MBI B-trees
representing the resultingPMRquadtrees.Recall that a q-edge
is a piece of a line segment that intersects a leaf block. The
average number of q-edges per line segment is in some sense
a measure of the complexity of the data set, and a sparse data
set will tend to have a lower average. The number of items
in the resulting B-tree is equal to the number of q-edges plus
the number of white nodes. Notice the large discrepancy in
the B-tree sizes, reflecting the different storage utilizations
achieved by the different tree loadingmethods. In the smallest
trees, the storage utilization is nearly 100%. In the trees built
with the dynamic PMR quadtree insertionmethod, the storage
utilization ranged from 65% to 69%, and thus these trees were
about 45% larger than the smallest trees.

Table 2 summarizes configurations used for loading the
PMR quadtree in the experiments. Three of them use dy-
namic quadtree insertion (i.e., updating theMBI directly) with
varying levels of buffering in the MBI B-tree (denoted “BB-
L”, “BB-M”, and “BB-S”), while two use our quadtree bulk-
loading method (denoted “QB-75” and “QB-100”). In one of
the B-tree buffering configurations, “BB-S”, we sorted the ob-
jects in Z-order based on their centroids prior to insertion into
the quadtree. This has the effect of localizing insertions into
the B-tree within the B-tree nodes storing the largest existing
Morton codes, thusmaking it unlikely that a node is discarded
from the buffer before it is needed again for insertions. Thus,
the sorting ensures that the best use is made of limited buffer
space. The drawback is that the storage utilization tends to be
poor, typically about 20%worse thanwith unsorted insertions.
Since deletions occur in the B-tree and insertions do not arrive
strictly in keyorder, the regularB-treepackingalgorithmcould
not be used.When we adapted the B-tree packing approach to
handle slightly out-of-order insertions (see Sect.5.5), and set
it to yield storage utilization similar to that of unsorted inser-
tions, the speedup was at best only slight. Nevertheless, we do

notmakeuseof this inourexperiments, since it has theundesir-
able property of causing underfull nodes. For the bulk-loading
method, the B-tree packing algorithm (see Sect.5.5) was set to
yield approximately 75% (“QB-75”) and 100% (“QB-100”)
storage utilization. In this experiment, as well as most of the
others, we used the distribution sort algorithm mentioned in
Sect.5.4.

Table 3 shows the execution time for loading PMR
quadtrees for the six data sets using the five loading methods.
Figure 13 presents this data in a bar chart, where the execution
times are adjusted for map size; i.e., they reflect the average
cost per 10,000 inserted line segments. Two conclusions are
immediately obvious from this set of experiments. First, the
large difference between “QB-75” and “BB-L”, which both
write each B-tree block only once (“QB-75” due to B-tree
packing and “BB-L” due to unlimited B-tree node buffering)
and havea similar B-tree storage utilization, shows clearly that
quadtreebulk-loadingachieves largesavings inCPUcost.Sec-
ond, the dramatic increase in execution time between “BB-S”
and “BB-M”, in spite of the latter using four times as large
a B-tree buffer, demonstrates plainly that unsorted insertions
render buffering ineffective, especially as the size of the re-
sulting B-tree growswith respect to the buffer size. The reason
why the execution time of “BB-M” is lower for the real-world
data sets than the synthetic ones is that the real-world data sets
have somedegreeof spatial clustering,while the synthetic data
sets do not. The cost of sorting in “BB-S” is clearly more than
offset by the saving in B-tree I/O, even though the storage
utilization in the B-tree becomes somewhat worse.Within the
same loading method, the average cost tends to increase with
increased map size. This is most likely caused by increased
average depth of quadtree leaf nodes, which leads to a higher
average quadtree traversal cost and more intersection tests on
the average for each object. The rate of increase is smaller
for quadtree bulk-loading (“QB-75” and “QB-100”), reflect-
ing the fact that quadtree traversals are more expensive in the
MBI than in the pointer-based quadtree used in quadtree bulk-
loading.Curiously, the average cost forRoads is smaller for all
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Table 3.Execution times (in seconds) for building quadtrees for the
six data sets

Data set BB-L BB-M BB-S QB-75 QB-100

DC 12.24 14.62 11.87 4.47 3.68

PG 35.62 71.49 37.15 13.80 11.53

Roads 120.78 221.55 134.38 46.14 38.92

R64K 52.49 136.18 56.07 19.37 16.04

R128K 109.41 349.48 116.62 39.47 32.85

R260K 229.31 853.34 254.58 82.31 68.81
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Fig. 13. Execution time per 10,000 line segments for building
quadtrees for the six data sets

five loading methods than that of R64K, even though the size
of the R64K data set is smaller, and so is the average depth of
leaf nodes in the resulting quadtree (8.53 for R64K vs 9.24 for
Roads). The reason for this appears to be primarily the larger
average number of q-edges per inserted line segment for the
R64K data set (see Table 1).

A better representation of the experiment results for com-
paring the five different loading methods is shown in Fig. 14.
The figure shows the speedup of “QB-100”, quadtree bulk-
loadingwith nearly 100%B-tree storageutilization, compared
to the other four methods. Compared to “BB-L” and “BB-S”,
the speedup of “QB-100” is by a factor of between three and
four, and the speedup increases with the size of the data set.
Compared to “BB-M”, the speedup is by a factor of at least
four, andup toover 12when “BB-M”performs themostB-tree
I/O. Overall, “QB-75” was about 20% slower than “QB-100”,
which was to be expected since the MBI B-tree produced by
“QB-75” is about 33% larger.

The proportion of the execution time spent on I/O oper-
ations is shown in Fig. 15. We obtained these numbers by
recording the I/O operations performed while building a PMR
quadtree, including reading the data, and then measuring the
execution time needed to perform the I/O operations them-
selves. For the loading methods that use sorting, we include
the I/O operations executed by the sort process. For B-tree
buffering, except for “BB-M”, the relative I/O cost is small, or
only about 20–30%, compared to between 65% and 75% for
quadtree bulk-loading. This shows that the savings in execu-
tion time yielded by quadtree bulk-loading are, for the most
part, caused by reducedCPU cost (the time for performing I/O
is only 1.3–2.9s per 10,000 insertions for all but “BB-M”).
For “BB-M”, the proportion of time spent on I/O gradually
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five loading methods for line segment data

increases with larger data sizes as B-tree buffering becomes
less effective on unsorted data.

8.3 Line segment data in SAND

In the first set of experiments, we stored the actual geometry
of the objects in the PMR quadtree.As mentioned in Sect.3.3,
our quadtree implementation also allows storing the geometry
outside the quadtree. The second set of experiments was run
within SAND, our spatial database prototype, using the same
data. This time, we stored only tuple IDs for the spatial ob-
jects in the quadtree, rather than the geometry itself. Storing
the geometry in the quadtree with SAND yields results similar
to that of our previous experiments, the difference being that
SANDalsomust store the tuple ID, therebymaking for slightly
larger B-tree entries and lower fan-out. An additional differ-
ence is that in the experiments above, we used 4-byte integers
for the coordinate values of the line segments, while SAND
uses 8-byte floating point numbers for coordinate values. For
this set of experiments, we used the configurations “BB-L”,
“BB-S”, and “QB-100”, described in Table 2. In keeping with
the modest buffering in the latter two, we only buffered 128
of the most recently used disk pages for the relation tuples,
where each disk page is 4kB in size, while for “BB-L” we
used a buffer size of 512 disk pages. The PMR quadtree in-
dexes were built on an existing relation, which consisted of
only a line segment attribute, and where the tuples in the rela-
tion were initially inserted in unsorted order. Since the objects
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Fig. 16.Speedup of “QB-100” compared to the other methods for
line segment data, using object table approach

were not spatially clustered in the relation table, objects that
are next to each other in the Morton order are typically not
stored in close proximity (i.e., on the same disk page) in the
relation table. This had the potential to (and did) cause exces-
sive relation disk I/O during the quadtree construction process
when we inserted in Morton order (i.e., in “BB-S” and “QB-
100”). A similar effect arises for objects in a leaf node being
split, regardless of insertion order. Thus, in “BB-S” and “QB-
100” we built a new object table for the index, into which the
objects were placed in the same order that they were inserted
into the quadtree; this effectively clusters together on disk
pages objects that are spatially near each other.Whenmeasur-
ing the execution time for the quadtree construction, we took
into account the time to construct the new object table.

Figure 16 shows the speedup of “QB-100” compared to
“BB-L” and “BB-S” for building a PMR quadtree index in
SAND for the line segment data, using the object table ap-
proach described above. This time, the speedup for “QB-100”
compared to “BB-S” is somewhat smaller than we saw earlier,
being a little less than 3 instead of 3 to 4 before, but the same
general trend is apparent. The smaller speedup is due to the
fact that the execution cost of activities common to the two is
higher now than before, since the coordinate values in these
experiments were larger (8 bytes vs 4 bytes before), leading to
a higher I/O cost for reading andwriting line segment data. On
the other hand, “BB-L” is now considerably slower in com-
parison to “QB-100” for the “R128K” and “R260K” data sets,
which is caused by a much larger amount of relation I/O, in
spite of “BB-L” having four timesas largeabuffer.This clearly
demonstrates the value of using a spatially clustered object ta-
ble, as is the case in “QB-100” and “BB-S”. Interestingly, the
clustering was obtained as a by-product of sorting the objects
in Z-order, providing a further example of the importance of
this sorting order.

8.4 Multidimensional point data

Next, we examine the effect of the dimensionality of the space
on the performance of our bulk-loading methods, using syn-
thetic point data sets of 100,000 points each, in dimensions
ranging from 2 to 8. The sets of points form 10 normally-
distributed clusters with the cluster centers uniformly dis-
tributed in the space [20]. We used SAND for these experi-
ments, storing the point geometry directly in the index. We
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compare using the loading methods “BB-L”, “BB-S”, and
“QB-100” in Table 2, in addition to a quadtree bulk-loading
algorithm specialized for point data (denoted below by “PB-
100”). Figure 17 shows the execution time of building the
quadtree, while Fig. 18 shows the speedup of “QB-100” com-
pared to “BB-L” and “BB-S”. The speedup is considerable for
the lowest dimensions (factors of about 4 and 2.5 for “BB-L”
and “BB-S”, respectively), but becomes less as the number of
dimensionsgrows.However, this is not becausequadtreebulk-
loading is inherently worse for the larger dimensions. Rather,
it is because the cost that is common to all loading methods
(disk I/O, intersection computations, etc.) keeps growing with
the number of dimensions. Observe that with our techniques,
bulk-loading point data into a PMR quadtree takes nearly the
same time as with a quadtree bulk-loadingmethod specialized
for point data (“PB-100”).

8.5 Complex spatial types (polygons)

In the next set of experiments we built PMR quadtrees for a
polygondataset consistingofapproximately60,000polygons.
The polygons represent census tracts in the United States and
contain an average of about 40 boundary points each (which
meant that each data page contained only about six polygons
on the average), but as much as 3700 for the most complex
ones, occupying over 40MB of disk space.We performed this
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experiment in SAND with the same loading methods as be-
fore. This time, we used a splitting threshold of 32, leading to
an average of about two q-objects for each object. In contrast,
the complex boundaries of the polygons led to an excessively
large number of q-objects for a splitting threshold of 8, about
four for each object on the average (however, the speedup
achieved by our bulk-loading algorithm over the dynamic in-
sertion method was better with the lower threshold value). As
polygons have different numbers of edges, we had to use the
object table approach, where we only store object references
in the quadtree.

In the first experiment with the polygon data, the polygon
relation was not spatially clustered. In this context, spatial
clustering denotes the clustering obtained by sorting the ob-
jects in Z-order, as is done by “BB-S” and “QB-100”. For this
data,more I/Oswere required for building a spatially clustered
object table for “BB-S” and “QB-100” than when accessing
the unclustered relation table directly. To seewhy this is so, we
observe that when building a new clustered object table for a
large data set, the sorting process involves reading in the data,
writing all the data to temporary files at least once, reading it
back in, and then finally writing out a new object table. Thus,
at least four I/Os are performed for each data page, half of
which are write operations. In contrast, when the unclustered
relation is accessed directly, the data items being sorted are
the tuple IDs, so the sorting cost is relatively small. Neverthe-
less, in our experiment, this caused each data page to be read
over three times on the average for “BB-S” and “QB-100”13.
The difference between the polygon data and the line segment
data, where building a new clustered object table was advan-
tageous, is that in the polygon relation there is a low average
number of objects in eachdata page.Thus, the average I/O cost
per object is high for the polygon data when building a new
object table, whereas the penalty for accessing the unclustered
object table directly is not excessive as there are relatively few
distinct objects stored in each page. As a comparison, when
using “BB-L” to build the PMR quadtree, which does not sort
the data and for which we used a large relation buffer of 2048
data pages (occupying 8MB), the overhead in data page ac-
cesses was only about 17% (i.e., on the average, each page
was accessed about 1.17 times).

The first column (“Polys (unclust.)”) in Fig. 19 shows the
execution times for the experiment described above. The large
amount of relation I/O resulted in “QB-100” being nearly
twice as slowas “BB-L”. Nevertheless, “QB-100”was slightly
faster than “BB-S” (by 10%). In order to explore the additional
cost incurred by “QB-100” and “BB-S” for repeatedly reading
many of the data pages (due to the sorted insertions), we mea-
sured the cost of building a PMR quadtree when the polygon
relation was already spatially clustered (“Polys (clust.)”) as
well as building it on the bounding rectangles of the polygons
(“Rectangles” in Fig. 19). In the former case, we did not need
to sort the data again for “QB-100” and “BB-S”, thus only in-
curring 29%overhead in data page accesses, while in the latter
case, each polygon was accessed only once, i.e., to compute

13 Each data page is read once when preparing to sort the polygons,
since their bounding rectanglesmust be obtained. The remaining two
I/Os per page (out of the three we observed on the average for each
data page) occur when each polygon is initially inserted into the
quadtree or when a node is split.
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Fig. 19. Execution time for building PMR quadtrees for polygon
data set (labels of bars denote loading methods fromTable 2). “Polys
(unclust.)” denotes building the quadtree on an unclustered polygon
relation, “Polys (clust.)” denotes building it on an spatially clus-
tered polygon relation, while “Rectangles” denotes building it on the
bounding rectangles of the polygons

its bounding rectangle. The geometry of the bounding rectan-
gles was stored directly in the quadtree. Of course, the PMR
quadtrees for the bounding rectangles are somewhat different
from those for the polygons themselves, since some leaf nodes
may intersect a bounding rectangle but not the corresponding
polygon. In both cases, “QB-100” and “BB-S” take much less
time to build the PMRquadtree, and the speedup of “QB-100”
compared to “BB-S” is by a factor of 2. However, the speedup
of “QB-100” over “BB-L” is not quite as high when building
the quadtree on the clustered polygon relation (by a factor of
1.7) aswhenbuilding it on the bounding rectangles (by a factor
of 2.5).

8.6 Reinsert freeing

In Sect.5.3 we described a strategy we termed reinsert freeing
that is used if the flushing algorithm fails to free any mem-
ory. Although reinsertion freeing may seem somewhat com-
plicated, we actually found it to be fairly simple to imple-
ment. Furthermore, as shown in the next set of experiments,
reinsertion freeingaddsa relatively small overhead to thebulk-
loading process.

In these experiments, we used two synthetic line segment
data sets, and stored their geometry in the PMR quadtree. The
first data set, R260K, was described earlier. In order to cause
the flushing algorithm to fail when building a PMR quadtree
for R260K, we set the quadtree buffer size in the bulk-loading
method to only 8kB. The second data set, R10K, consists
of 10,000 line segments whose centroids are uniformly dis-
tributed over the data space, and whose length and orientation
are also uniformly distributed. Thus, this data set exhibits a
large degree of overlap and therefore a large number of q-
edges, causing the MBI B-tree to occupy a large amount of
disk space. For instance, the B-tree resulting from building a
quadtree for R10Kwith “QB-100” occupied over 8,000 nodes
or about 32MB. For R10K, we used a splitting threshold of
32, as a lower splitting threshold led to an even higher number
of q-edges (the speedup achieved by quadtree bulk-loading
was better at lower splitting thresholds, however). For both
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Fig. 20.Speedup of “QB-100” compared to the other methods when
re-insertions are needed (labels of bars denote loading methods from
Table 2)

data sets, we used the merge sort algorithm to sort the objects,
since it is better suited for handling reinsertions.

The number of reinsertions for R260K was about 21,000,
while it was over 72,000 for R10K (i.e., each object was rein-
serted over seven times on the average). In spite of such a
large number of reinsertions, Fig. 20 shows that quadtree bulk-
loading yields significant speedup over B-tree buffering. In
fact, B-tree buffering was so ineffective for R10K, that we in-
creased the buffer size of “BB-S” to about 3,000 B-tree nodes,
which is about 25% of the number of nodes in the resulting
B-tree. For a data set of 20,000 line segments constructed in
the same way as R10K, the speedup for “QB-100” compared
to “BB-L” was by a factor of more than 8, so it is clear that
quadtree bulk-loading with reinsertions scales up well with
data size, even if the data has extreme amount of overlap.With
“QB-100”, it took about 4.5 times as long to build the PMR
quadtree for the 20,000 line segment data set as for R10K, but
the larger data set also occupied nearly four times as much
disk space. For the more typical data set, R260K, the speedup
achieved by “QB-100” is only slightly lower than what we
saw in Fig. 14, where reinsertions were not needed.

8.7 Bulk-insertions

The next set of experiments investigates the performance of
PMRquadtree bulk-insertions (see Sect.6).We used two pairs
of line segment data sets. In the first, comprising the “DC”
and “PG” line segment data sets, the new objects cover an
unoccupied area in the existing quadtree. In the second, the
new objects are interleaved with the objects in the existing
quadtree. In this pair, the line segments denote roads (“Roads”
with 200,482 line segments) and hydrography (“Water” with
37,495 line segments) in the Washington, DC, metro area.
For the bulk-insertions, we found that interleaved read and
write operations (to the existing quadtree and the combined
quadtree, respectively) caused agreat deal of I/O overhead due
to disk head seeks. To overcome this effect, we used a small B-
tree buffer of 32 nodes (occupying 128kB) for the combined
quadtree, which allowed writing to disk multiple nodes at a

80

70

60

50

40

30

20

10

0
PG, DC DC, PG DC+PG R, W W, R R+W

BL
BI

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Fig. 21.Execution time for bulk-loading (indicated by the bars la-
beled “BL”) and bulk-insertions (indicated by the bars labeled “BI”)
for two pairs of data sets. The portions of the bars above the bro-
ken lines indicate the excess I/O cost, i.e., the I/O overhead of the
combined bulk-loading/bulk-insertion operations compared to bulk-
loading the combined data set. “R” and “W” denote the “Roads” and
“Water” data sets, respectively

time14; another solutionwouldbe to store theexistingquadtree
and the combined quadtree on different disks.

Figure 21 shows the execution time required to bulk-load
and bulk-insert the pairs of data sets in either order, as well as
to bulk-load the combined data set. In the figure, the notation
X,Y means that firstX is bulk-loaded, and thenY is bulk-
inserted into the quadtree containingX, while the notation
X + Y means that the union of the two sets is bulk-loaded.
Theexecution timesof thebulk-load (“BL”) andbulk-insertion
(“BI”) operations are indicated separately on the bars in the
figure. In addition, the topmost portion of each bar, above
the broken line, indicates the excess I/O cost (see Sect.6),
i.e., the cost of writing (during the bulk-load) and reading
(during the bulk-insertion) the intermediate PMR quadtree.
Clearly, the excess I/O cost represents nearly all the excess
cost of the bulk-insertion algorithm in terms of execution time.
Interestingly, the remainder of the excess cost was very similar
in all cases, amounting to 7–11%of theexecution timeof bulk-
loading the combined data sets. Since the pairs of data sets had
different relative space coverage and size, this demonstrates
that the performance of our bulk-insertion algorithm is largely
independent of the space coverage of the bulk-inserted data in
relation to the existing data, as well as the relative sizes of
the existing and new data sets (with the exception that the
excess I/O cost is proportional to size of the existing data set
in relation to the combined data set).

In Sect.6.3 we discussed an alternative, update-based,
variant of our bulk-insertion algorithm that updates the ex-
isting quadtree, as opposed to the merge-based approach that
builds a new quadtree on disk. Figure 22 shows the perfor-
manceof theupdate-basedbulk-insertionvariant relative to the
merge-based bulk-insertion algorithm, as well as that of using
dynamic insertions into the existing quadtree using “BB-S”. In
an attempt to make a fair comparison we made the alternative
methods as efficient as possible. In particular, for the update-
based bulk-insertion variant, we used the adapted B-tree pack-

14 Such multi-block I/Os are commonly used in bulk-loading and
bulk-insertion methods to amortize the cost of disk seeks over mul-
tiple blocks; e.g., [47].
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Fig. 22.Execution time of two alternative bulk-insertion methods
relative to the merge-based PMR quadtree bulk-insertion algorithm.
“Update” denotes the update-based variant of our algorithm, while
“BB-S” denotes dynamic insertions (see Table 2)

ing approach (see Sect.5.5), with a split fraction of 90%, and
the existing quadtree had a storage utilization of 90%. For
“BB-S”, the existing quadtree had a storage utilization of 75%
(larger values caused more B-tree node splits). Note that in
Fig. 22, we only take into account the bulk-insertion of the
new data set and not the bulk-loading of the existing one. The
two alternative approaches for bulk-insertion, that both update
the existing quadtree, are clearly much more sensitive to the
relative space coverage of the new data set with respect to the
existing one than our merge-based algorithm. In particular,
when the new data set occupies an area that is not covered
by the existing data set (as for “PG,DC”), the update-based
methods workmuch better than when the new data set is inter-
leaved with the existing data (as for “R,W”). In the latter case,
a higher fraction of the nodes in the MBI B-tree are affected
by the update operations, thus leading to more I/O. In addi-
tion, the update-based methods are also less effective when
the new data set is larger than the existing data set. Neverthe-
less, if we know that bulk-insertions involve data sets that are
mostly into unoccupied regions of a relatively large existing
quadtree, then the update-based variant of our bulk-insertion
algorithm may be preferable.

8.8 R-tree bulk-loading

It is interesting to compare the performance of our bulk-
loading algorithm to that of existing bulk-loading algorithms
for another commonly used spatial data structure, the R-
tree. We chose two bulk-loading algorithms for the R-tree:
1) Hilbert-packed R-tree [37] with the space partitioning im-
provements of [21]15; and 2) a very simplified version of the
buffer-tree approach of [9,15]. For ease of implementation we
used an unlimited buffer size for the buffer-tree approach, thus
building the entire R-tree in memory. The nodes were written
to disk once the tree was fully constructed. The CPU time of
our approach is at most equivalent to that of [9,15], while the

15 We only used the first of their improvements, wherein each node
is not quite filled to capacity if the addition of an object causes the
bounding rectangle of the node to enlarge too much. The use of re-
splitting would involvemore CPU cost, while the I/O cost would stay
the same or increase.
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Fig. 23.Relative performance of two R-tree bulk-loading algorithm
compared to “QB-100” (“P200” denotes the Hilbert-packed R-tree
algorithm with a fan-out of 200, while “B50” denotes the buffer-tree
approach with a fan-out of 50)

I/O cost is much less. Note that virtual memory page faults
were not a major issue, since the size of the R-trees (at most
27MB)wassignificantly less than the sizeof physicalmemory
(64MB). In order to obtain good space partitioning, we used
the R∗-tree [12] insertion rules, except that no reinsertions
were performed as they are not supported by the buffer-tree
approaches. Since 4kB is the physical disk page size in our
system, we used R-tree nodes of that size, which allow a fan-
out of up to 200. However, a fan-out of 50 is recommended
in [12], and this is what we used in the buffer-tree approach.A
fan-out of 200 led to amuchworse performance, bymore than
an order of magnitude. For the Hilbert-packed R-tree, on the
other hand, we use a fan-out of 200, as lower levels of fan-out
lead to a higher I/O cost. The two methods are at two ends
of a spectrum with respect to execution time. For the Hilbert-
packed R-tree, nearly all the time is spent doing I/O, whereas
for the buffer-tree approach, nearly all the execution time is
CPU time. It is important to note that the quality of the space
partitioning obtained by the Hilbert-packed R-tree approach
is generally not as high as that obtained by the R∗-tree inser-
tion method. This is in marked contrast to our quadtree PMR
quadtree bulk-loading algorithm, which produces roughly the
same space partitioning as dynamic insertions (the variation
is due to different insertion order).

Figure 23 shows the execution time performance of the
twomethods for bulk-loading R-trees for the data sets listed in
Table 1 relative to the execution timeof “QB-100”. The buffer-
tree technique with R∗-tree partitioning (“B50”) took ten to
fourteen times as much time as building the PMR quadtree.
However, building the Hilbert-packed R-tree (“P200” in the
figure) took less time, or about 50%–80% asmuch as building
a PMR quadtree. This was partly due to the small CPU cost
of the Hilbert-packed R-tree method, but primarily due to the
fact that in the PMR quadtree each object may be represented
in more than one leaf node and thus stored more than once
in the MBI’s B-tree. Thus we see that the price of a disjoint
space partitioning, which is a distinguishing feature of the
PMR quadtree, is relatively low when using our bulk-loading
algorithm.
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8.9 Summary

Our experiments have confirmed that our PMR quadtree bulk-
loading algorithmachieves considerable speedup compared to
dynamic insertions (i.e., whenupdating theMBI directly). The
speedup depended on several factors. One is the effectiveness
of buffering the B-tree used in dynamic insertions. When the
nodes in theB-treewere effectively buffered, our bulk-loading
algorithm usually achieved a speedup of a factor of 3 to 4. This
speedup was achieved, for the most part, by a dramatic reduc-
tion in CPU time. In fact, in some experiments, only about
25–35% of the execution time of our bulk-loading algorithm
was attributed to CPU cost. However, whenB-tree buffering is
ineffective so that B-tree nodes are frequently brought into the
buffer and written out more than once in dynamic insertions,
our bulk-loading approach can achieve substantially higher
speedups (up to a factor of 12 in our experiments). In situ-
ations requiring the use of reinsert freeing, our bulk-loading
algorithm was at worst only slightly slower than in situations
where the flushing algorithm was sufficient.

Another factor affecting the speedup of the bulk-loading
algorithm is the relative importance of cost factors common
to any PMR quadtree construction method, such as the cost
of reading the input data and of intersection tests. As these
common cost factors become a larger portion of the total cost,
the potential for speedup diminishes. Indeed, we found that
for point data, the speedup achieved by our PMR quadtree
bulk-loading approach diminishes as the number of dimen-
sions increases. Nevertheless, our approach was nearly as fast
as a quadtree bulk-loading method specialized for point data,
indicating that the overhead (in terms of execution time) due
to the use of the pointer-based quadtree and the associated
flushing process in the PMR quadtree bulk-loading algorithm
is minor.

Our experiments with complex polygon data showed that
a lack of spatial clustering16 in a spatial relation has an espe-
cially detrimental effect on the amount of I/O when the spatial
objects occupy a large amount of storage space (which means
that few objects fit on each data page).Without spatial cluster-
ing on the polygon relation, the PMR quadtree bulk-loading
algorithm took about twice as long to build the quadtree as
doing dynamic insertions. The difference in performance was
due to the fact that we allotted a much larger buffer space to
the latter, besides the fact that it is less affected by the lack
of spatial clustering since the objects are not sorted prior to
inserting them into the quadtree. Nevertheless, when the poly-
gon relation was spatially clustered as well as when building
thequadtreebasedon thebounding rectangles of thepolygons,
the speedup of our bulk-loading algorithm was about a factor
of 2 when a comparable amount of buffer space was used. In
situations where the relation to index is not spatially clustered
(and performing clustering is not desired), using bounding
rectangles may yield overall savings in execution time (for
building the quadtree and executing queries), even though it
means that the quadtree provides somewhat worse spatial fil-
tering and thus potentially higher query cost.

We verified that our bulk-insertion algorithm is very effi-
cient. Compared to bulk-loading the combined data set, most

16 Recall that in this context, spatial clustering denotes the cluster-
ing obtained by sorting the objects in Z-order.

of the extra cost of first bulk-loading the existing data and then
bulk-inserting the new data lies in I/O operations, while the
overhead due to larger CPU cost was minor. Furthermore, our
bulk-insertion algorithm is more robust and generally more
efficient than an update-based variant of the algorithm that
updates the existing quadtree instead of merging the exist-
ing quadtree with the quadtree for the new data. Neverthe-
less, the update-based variant is more efficient in certain cir-
cumstances, namely when the amount of new data is rela-
tively small and covers an unoccupied region in the existing
quadtree.

Our bulk-loading algorithm for PMR quadtrees compared
favorably to bulk-loading algorithms for R-trees. In particu-
lar, the price paid for the disjoint partitioning provided by the
PMR quadtree is relatively low. An R-tree algorithm having
very low CPU cost (the Hilbert-packed R-tree) was at most
about twice as fast as our algorithm. Most of the difference
can be explained by higher I/O cost for PMR quadtree bulk-
loading due to the presence of multiple q-objects per object.
When we used the object table approach in the PMR quadtree,
in which the actual objects are stored outside the quadtree
(i.e., each object is stored only once regardless of the num-
ber of q-objects), the fastest R-tree bulk-loading algorithm
was typically only 5–30% faster than our PMR quadtree bulk-
loading algorithm. Moreover, R-tree bulk-loading algorithms
that expend more CPU time to achieve better space partition-
ing (e.g., [9,15] with R∗-tree insertion rules) can be much
slower than our algorithm.

9 Concluding remarks

There are three typical situations in which an index must be
updated: 1) a new index must be built from scratch on a set of
objects (bulk-loading); 2) a batch of objects must be inserted
into an existing index (bulk-insertion); and 3) one object (or
only a few) must be inserted into an existing index (dynamic
insertions). In this paper we have presented techniques for
speeding up index construction for the PMR quadtree spatial
index in all three situations.

In an informal analysis of the PMR quadtree bulk-loading
algorithm, we presented persuasive evidence that both its I/O
and CPU costs are asymptotically the same as that of exter-
nal sorting for reasonably “well-behaved” data distributions.
Indeed, our experiments verified that the execution time per
object grows very slowly with the size of the data sets. More-
over, the speedup of the bulk-loading algorithm over the dy-
namic algorithm (which updates the disk-resident quadtree
directly for each insertion) is substantial, up to a factor of 12
for the data sets we used. When the dynamic algorithm was
enhanced to better take advantage of buffering, the speedup
was still significant, typically a factor of 2–4, depending on
the data distribution and other factors (see Sect.8.9).

An important utility of bulk-loading methods is that they
enablequickly building indexesonun-indexeddata inprepara-
tion of performing complex operations such as joins. In order
to test the utility of our bulk-loading technique for this pur-
pose, we performed a small experiment with the spatial join
example mentioned in Sect.1: given a collection of line seg-
ments representing roads and another representing rivers, find



136 G.R. Hjaltason, H. Samet: Speeding up construction of PMR quadtree-based spatial indexes

all locations where a road and a river intersect17. When an
index existed for one data set but not the other, we observed
speedups ranging from 60% to 75% by bulk-loading an index
prior to running the query ranged rather than perform it with
just one index. When neither data set had an index, building
indexes for both sets and using them to answer the query was
more than an order of magnitude faster than evaluating the
query using a naive nested loop algorithm. Of course, in the
latter situation, it may be faster to use a fast spatial join al-
gorithm specially meant for non-indexed data sets (e.g., [10])
rather than bulk-loading both data sets. Nevertheless, the bulk-
loadingapproachhas theadvantage that it alsospeedsup future
queries involving the bulk-loaded data set, assuming that the
produced index is retained.

Future work includes investigating whether our buffering
strategies for bulk-loading may be used to speed up dynamic
insertions and queries. In addition, wewish to investigate situ-
ations in which a query engine can exploit fast PMR quadtree
indexconstruction in order to speedspatial operationson inter-
mediate query results (possibly from non-spatial subqueries),
or for un-indexed spatial relations. This is particularly impor-
tant for complex operations such as spatial joins.
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