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Abstract. Spatial indexes, such as those based on theesults as needed. In order for this to be worthwhile, the index
guadtree, are important in spatial databases for efficient execwreation process must not be too time-consuming, as otherwise
tion of queries involving spatial constraints, especially whenthe operation could be executed more efficiently without an
the queries involve spatial joins. In this paper we present andex. In other words, the index may not be particularly useful
number of techniques for speeding up the construction off the execution time of the operation without an index is less
guadtree-based spatial indexes, specifically the PMR quadtrethan the total time to execute it when the time to build the index
which can index arbitrary spatial data. We assume a quadtreis included. Of course, if the database is static, then we can
implementation using the “linear quadtree”, a disk-residentafford to spend more time on building the index as the index
representation that stores objects contained in the leaf nodeseation time can be amortized over all the queries made on
of the quadtree in a linear index (e.g., a B-tree) ordered basethe indexed data. The same issues arise in spatial databases,
on a space-filling curve. We present two complementary techwhere attribute values may be of a spatial type, in which case
niques: an improved insertion algorithm and a bulk-loadingthe index is a spatial index (e.g., a quadtree).

method. The bulk-loading method can be extended to handle In the research reported here, we address the problem of
bulk-insertions into an existing PMR quadtree. We make someonstructing and updating spatial indexes in situations where
analytical observations about the I/O cost and CPU cost of outhe database is dynamic. In this case, the time to construct or
PMR gquadtree bulk-loading algorithm, and conduct an extenupdate an index is critical, since database updates and queries
sive empirical study of the techniques presented in the papeare interleaved. Furthermore, slow updates of indexes can seri-
Our techniques are found to yield significant speedup comeusly degrade query response, which is especially detrimental
pared to traditional quadtree building methods, even when thé modern interactive database applications. There are three
size of a main memory buffer is very small compared to theways in which indexes can be constructed or updated for an

size of the resulting quadtrees. attribute of arelation (i.e., a set of objects). First, if the attribute
has not been indexed yet (e.g., it represents an intermediate
Keywords: Spatial indexing — Bulk-loading — I/O query result), an index must be built from scratch on the at-

tribute for the entire relation (known bslk-loading. Second,
if the attribute already has an index, and a large batch of data
is to be added to the relation, the index can be updated with all
the new data values at once (knowrbagk-insertior). Third,
1 Introduction if the attribute already has anindex, and a small amount of data
is to be added (e.g., just one object), it may be most efficient
Traditional database systems employ indexes on alphanumerio simply insert the new objects, one by one, into the exist-
data, usually based on the B-tree, to facilitate efficient querying index. In our work, we present methods for speeding up
handling. Typically, the database system allows the users teonstruction and updating of quadtree-based spatial indexes
designate which attributes (data fields) need to be indexedor all three situations. In particular, we focus on the PMR
However, advanced query optimizers also have the ability taquadtree spatial index [46].
create indexes on un-indexed relations or intermediate query The issues that arise when the database is dynamic have
- ) ) ) . often been neglected in the design of spatial databases. The
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dent for complex query operations such as the spatial join. A& ments, including alternative strategies for freeing memory in
an example of a spatial join, suppose that given a road relathe quadtree buffer and a technique for achieving high stor-
tion and a river relation, we want to find all locations where age utilization. In addition, we show how our bulk-loading
a road and river meet (i.e., locations of bridges and tunnels)method can be extended to handle bulk-insertions into an ex-
This can be achieved by computing a join of the two relations,isting quadtree index.
where the join predicate is true for road and river pairs that  The rest of this paper is organized as follows. Section 2
have at least one point in common. Since computing the spaeviews related work. Section 3 describes the PMR quadtree,
tial join operation is expensive without spatial indexes, it mayand the disk-based quadtree representation used in SAND.
be worthwhile to build a spatial index if one is not present for Section 4 introduces an improved PMR quadtree insertion al-
one of the relations. Furthermore, the output of the join maygorithm. Section 5 presents our PMR quadtree bulk-loading
serve as input to subsequent spatial operations (i.e., a cascadapproach. Section 6 discusses how the PMR quadtree bulk-
spatial join as would be common in a spatial spreadsheet [34]Jpading algorithm can be extended to handle bulk-insertions.
S0 it may also be advantageous to build an index on the joirBection 7 presents some analytical observations. Section 8
result. In this way, the time to build spatial indexes can playdiscusses the results of our experiments, while concluding re-
an important role in the overall query response time. marks are made in Section 9.

The PMR quadtree is of particular interest in this context
because an earlier study [32] showed that the PMR quadtree
performs quite well for spatial joins compared to other spatial2 Related work
data structures such as the R-tree [29] (including variants such
as the R-tree [12]) and the R-tree [57]. This was especially Methods for bulk-loading dynamic access structures have long
true when the execution time of the spatial join included thebeen sought. The goal of such methods is to reduce the load-
time needed to build spatial indexesmproving the perfor-  ing time, the query cost of the resulting structure, or both. The
mance of building a quadtree spatial index is of interest toB-tree, together with its variants, is the most commonly used
us for a number of additional reasons. First of all, the PMRdynamic indexing structure for one-dimensional data. Rosen-
quadtree is used as the spatial index for the spatial attributelserg and Snyder [50], and Klein, Parzygnat, and Tharp [40]
in a prototype spatial database system built by our researcimtroduced methods for building space-optimal B-trees, i.e.,
group called SAND (Spatial and Non-Spatial Data) [6,7,22],ones having the smallest number of nodes, or equivalently,
which employs a data model inspired by the relational algethe highest possible average storage utilization. Their meth-
bra. SAND uses indexing to facilitate speedy access to tuplesds yield both a lower load time, and lower average query
based on both spatial and non-spatial attribute values. Seeost due to the improved storage utilization. Both methods
ond, quadtree indexes have started to appear in commerciggly on pre-sorting the data prior to building the tree; a similar
database systems such as the Spatial Data Option (SDO) froepproach can be used to bulk-load #ees (e.g., see [53)).
the Oracle Corporation [48]. Therefore speeding their conHuang and Viswanathan [33] took a more direct approach to
struction has an appeal beyond our SAND prototype. reducing query cost, while possibly increasing loading time.

In this paper, we introduce a number of techniques forHowever, no experiments were reported. They introduce a
speeding up the construction of quadtree-based spatial irdynamic programming algorithm, inspired by existing algo-
dexes. Many of these techniques can be readily adapted tithms for binary search trees, that builds a tree that yields the
other spatial indexes that are based on regular partitionindowest expected query cost, given the access frequencies of
such as the buddy-tree [56] and the BANG file [24]. We presenkey values. Another example of bulk-loading algorithms for
two complementary techniques for the PMR quadtree, an imnon-spatial structures is the one by Ciaccia and Patella [19]
proved insertion algorithm and a bulk-loading method for afor the M-tree, a dynamic distance-based indexing structure.
disk-based PMR quadtree index. The improved PMR quadtree Although targeting a different usage scenario, tHetBee
insertion algorithm can be applied to any quadtree represersulk-update methods of O'Neil et al. [47] and Jagadish et
tation, and exploits the structure of the quadtree to quicklyal. [36] have some similarities with our methods. These meth-
locate the smallest quadtree node containing the inserted olads assume a heavy stream of insertions intermixed with com-
ject, thereby greatly reducing the number of intersection testsparatively rare queries. Both make use of an internal memory
The approach that we take in the PMR quadtree bulk-loadinguffer, portions of which are periodically moved to disk, which
algorithm is based on the idea of trying to fill up memory with is also true of our bulk-loading method (see Sect.5). In addi-
as much of the quadtree as possible before writing some of it§on, these methods use merging to support bulk-insertions in
nodes on disk (termed “flushing”). A key technique for mak- a somewhat analogous manner as our bulk-insertion method
ing effective use of the internal memory quadtree buffer is to(see Sect. 6). Furthermore, the external merge sort variant that
sort the objects by their spatial occupancy prior to insertingwe introduce in Sect.5.4.2 is closely related to the “stepped
them into the quadtree. This allows the flushing algorithm tomerge” algorithm of Jagadish et al. [36] (although developed
flush only nodes that will never be inserted into again. Ourindependently). However, our sorting algorithm is able to
treatment of PMR quadtree bulk-loading has several other elachieve near-optimality due to its more restricted usage as-
sumptions, beside the minor difference that the algorithm of

! Note that fast construction techniques for the R-tree, such as thdagadish et al. [36] builds a'Btree for each “sorted run” to

packed R-tree [52] and Hilbert-packed R-tree [37], were not takenSUpport intervening queries, while our algorithm need not do
into account in this study as they tend to result in a worse spacé&0.
partitioning from the point of view of overlap than the standard R- In recent years, many bulk-loading algorithms for spatial
tree construction algorithms. indexing structures have been introduced. Most of the attention
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has been focused on the R-tree and related structures. Among The bulk-loading strategies for the R-tree that aim at im-
the exceptions are two algorithms for the grid file. Li, Rotem proved space partitioning have in common that they operate
and Srivastava [43] introduced a dynamic programming algo-on the whole data set in a top-down fashion, recursively sub-
rithm that operates in a parallel domain, and primarily aimsdividing the set in some manner at each step. They differ
at obtaining a good grid partitioning. A much faster solution in the particular subdivision technique that is employed, as
was introduced by Leutenegger and Nicol [42], which resultswell as in other technical details, but most are specifically in-
in grid file partitions that are in some ways better. tended for high-dimensional point data. Since building R-trees
Most bulk-loading strategies that have been developed fowith good dynamic insertion methods (e.g., [12]) is expensive,
the R-tree have the property that they result in trees that mathese methods generally achieve a shorter build time (but typi-
be dramatically different from R-trees built with dynamic in- cally much longer than the packing methods discussed above),
sertion rules [12,29]. Some of these methods use a heuristias well as improved space partitioning. One example of such
for aggregating objects into the leaf nodes [37,41,52], whilemethods is the VAMSplit R-tree of White and Jain [59], which
others explicitly aim at producing good partitioning of the uses a variant of a k-d tree splitting strategy to obtain the space
objects and thus a small level of overlap [4,14,25,59]. Rouspartitioning. Gar@, Lopez, and Leutenegger [25] present a
sopoulos and Leifker [52] introduced a method (termed thesimilar technique, but they introduce the notion of using a
packed R-tree) that uses a heuristic for aggregating rectarnuser-defined cost function to select split positions. The S-tree
gles into nodes. First, the leaf nodes in the R-tree are built byf Aggarwal et al. [4] is actually a variant of R-trees that is
inserting the objects into them in a particular order. The non-not strictly balanced; the amount of imbalance is bounded,
leaf nodes are built recursively in the same manner, level byhowever. The technique presented by Berchtolohm,; and
level. The order used in the packed R-tree method [52] is suckriegel [14] also has some commonality with the VAMSplit
that the first object to be inserted into each leaf node is thék-tree. However, their splitting method benefits from insights
remaining object whose centroid has the lowesbordinate  into effects that occur in high-dimensional spaces, and is able
value, whereas the rest of the objects in the node are sl to exploit flexibility in storage utilization to achieve improved
nearest neighbors, whefis the node capacifyKamel and  space partitioning. A further benefit of their technique is that it
Faloutsos [37] devised a variant of the packed R-tree, termedan get by with only a modest amount of main memory, while
a Hilbert-packed R-tree, wherein the order is based purely oteing able to handle large data files.
the Hilbert code of the objects’ centroids. LeuteneggepéZ, Two methods have been proposed for bulk-loading R-trees
and Edgington [41] proposed a somewhat related techniquehat actually make use of dynamic insertion rules [9,15]. These
which uses an ordering based on a rectilinear tiling of the datanethods are in general applicable to balanced tree structures
space. The advantage of packing methods is that they resulthich resemble B-trees, including a large class of multidi-
in a dramatically shorter build time than when using dynamicmensional index structures. Both techniques are based on the
insertion methods. Unfortunately, the heuristics they use taotion of the buffer-tree [8], wherein each internal node of the
obtain their space partitioning usually produce worse resultdree structure contains a buffer of records. The buffers enable
(i.e., interms of the amount of overlap) than the dynamic oneseffective use of available main memory, and result in large
This drawback is often alleviated by the fact that they resultsavings in I/O cost over the regular dynamic insertion method
in nearly 100% storage utilization (i.e., most R-tree nodes(but generally in at least as much CPU cost). In the method
are filled to capacity). DeWitt et al. [21] suggest that a betterproposed by van den Bercken, Seeger, and Widmayer [15],
space partitioning can be obtained with the Hilbert-packed Rthe R-tree is built recursively bottom-up. In each stage, an
tree by sacrificing 100% storage utilization. In particular, theyintermediate tree structure is built where the lowest level cor-
propose that nodes be initially filled to 75% in the usual way.responds to the next level of the final R-tree. The nonleaf nodes
If any of the items subsequently scheduled to be inserted intin the intermediate tree structures have a high fan-out (deter-
a node cause the node region to be enlarged by too much (e.gnined by available internal memory) as well as a buffer that
by more than 20%), then no more items are inserted into theeceives insertions. Arge et al. [9] achieve a similar effect by
node. In addition, a fixed number of recently packed leaf nodesising a regular R-tree structure (i.e., where the nonleaf nodes
are combined and resplit using thé-Ree splitting algorithm  have the same fan-out as the leaf nodes) and attaching buffers
to further improve the space partitioning. Gavrila [28] pro- to nodes only at certain levels of the tree. The advantages of
posed another method for improving the space partitioning otheir method over the method in [15] are that it is more effi-
R-tree packing, through the use of an optimization techniquecient as it does not build intermediate structures, and it results
Initially, an arbitrary packing of the leaf nodes is performed, in a better space partition. Note that the algorithm in [15] does
e.g., based on one of the packing algorithms above. Next, theot result in an R-tree structure identical to that resulting from
algorithm attempts to minimize a cost function over the pack-the corresponding dynamic insertion method, whereas the al-
ing, by moving items from one leaf node to a nearby one.  gorithm in [9] does (assuming reinsertions [12] are not used).
In addition, the method of [9] supports bulk-insertions (as op-
posed to just initial bulk-loading as in [15]) and bulk-queries,

2 The exact order proposed by Roussopoulos and Leifker [52] fo#and In fact, 'nterm')fed insertions and queries.
the packed R-tree appears to be subject to a number of interpreta- With the exception of [9], all the methods we have men-
tions. Most authors citing the packed R-tree describe it as using afioned for bulk-loading R-trees are static, and do not al-
order based solely on the-coordinate values of the objects’ cen- 10W bulk-insertions into an existing R-tree structure. A few
troids which produces node regions that are highly elongated in th@ther methods for bulk-insertion into existing R-trees have
direction of they-axis, whereas this is not exactly what was originally been proposed [18,39,51]. The cubetree [51] is an R-tree-like
proposed. structure for on-line analytical processing (OLAP) applica-
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tions that employs a specialized packing algorithm. The bulk-often yields query performance similar to that of thetRee
insertion algorithm proposed by Roussopolous, Kotidis, andat least in low dimensions).
Roussopolous [51] works roughly as follows. First, the data  Recently, Wang, Yang, and Muntz [58] introduced the PK-
set to be inserted is sorted in the packing order. The sorted ligtee, a multidimensional indexing structure based on regular
is merged with the sorted list of objects in the existing data setpartitioning. In [60], they proposed a bulk-loading technique
which is obtained directly from the leaf nodes of the existing for the PK-tree, which is based on sorting the data in a specific
cubetree. A new cubetree is then packed using the sorted listrder, determined by the partitioning method. Their method
resulting from the merging. This approach is also applicable taesembles our bulk-loading techniques in that a space-filling
the Hilbert-packed R-tree [37] and possibly other R-tree pack<urve is used to order the data prior to building the tree.
ing algorithms. Kamel, Khalil, and Kouramajian [39] propose  The main topic of this paper is a bulk-loading technique for
a bulk-insertion method in which new leaf nodes are first builtPMR quadtrees. This subject has been previously addressed by
following the Hilbert-packed R-tree [37] technique. The new Hjaltason, Samet, and Sussman [31]. The bulk-loading tech-
leaf nodes are then inserted one by one into the existing Raique presented in this paper is an improvement on the al-
tree using a dynamic R-tree insertion algorithm. In the methodyorithm in [31]. In particular, our flushing algorithm (which
presented by Chen, Choubey, and Rundensteiner [18], a newrites to disk some of the quadtree nodes from a buffer) is
R-tree is built from scratch for the new data (using any con-guided by the most recently inserted object, whereas the one
struction algorithm). The root node of the new tree is thenin [31] relied on a user-defined parameter. Unfortunately, it
inserted into the appropriate place in the existing R-tree usingvas unclear how to choose the optimal parameter value or how
a specialized algorithm that performs some local reorganizarobust the algorithm was for any given value. Moreover, the
tion of the existing tree based on a set of proposed heuristicdeuristic employed by the flushing algorithm in [31] did not
Unfortunately, the algorithms of [18,39] are likely to result always succeed in its goal, and sometimes flushed nodes that
in increased node overlap, at least if the area occupied by thimtersected objects that had yet to be inserted into the quadtree.
new data already contains data in the existing tree. Thus, tha further benefit of our improved approach is that it permits
resulting R-tree indexes are likely to have a worse query pera much higher storage utilization in the disk-based quadtree,
formance than an index built from scratch from the combinedwhich reduces the 1/O cost for constructing the quadtree as
data set. well as for performing queries.
None of the bulk-loading techniques discussed above are
applicable to quadtrees. This is primarily because quadtrees
use a very different space partitioning method from grid files3 Quadtrees and their implementation
and R-trees, and because they are unbalanced and their fan-
out is fixed. Additional complications arise from the use of In this section, we first briefly discuss the general concept of
most disk-resident representations of quadtrees (e.g., the lineguadtrees. Next we define the PMR quadtree, followed by a
quadtree), as well as from the property that each non-point obdescription of the implementation of quadtrees in SAND.
jectmay be represented in more than one leaf node (sometimes
termed “clipping”; see Sect. 3). Nevertheless, some analogies
can be drawn between our bulk-loading methods and som8.1 Quadtrees
of the above methods. For example, like many of the above
algorithms, we rely on sorting the objects in our algorithm andBy the termquadtreg54,55] we mean a spatial data structure
we use merging to implement bulk-insertions as done in thébased on a disjoint regular partitioning of space; that is, a
cubetree [51] (although our merging process is very different) partitioning where each partition operation divides a region
In addition to the numerous bulk-loading and bulk- into mutually disjoint sub-regions of equal size and shape,
insertion algorithms proposed for the R-tree, several differentand all partition operations result in the same number of sub-
proposals exist for improving dynamic insertions [5,11,12, regions. Each quadtree block (also referred tocellacovers
26,38]. Most have been concerned with improving the qual-a portion of space that forms a hypercubedidimensions,
ity of the resulting partitioning, at the cost of increased con-usually with a side length that is a power of 2. Quadtree blocks
struction time, including the well known*Rree method of may be further divided int@¢ sub-blocks of equal size; i.e.,
Beckmann et al. [12], and the polynomial time optimal nodethe sub-blocks of a block are obtained by halving the block
splitting methods of Becker et al. [11] and Gerclépez, along each coordinate axis. Figure 1 shows a simple quadtree
and Leutenegger [26]. In addition, [12] and [26] also intro- partitioning of two-dimensional space.
duced heuristics for improving storage utilization. Ang and  One way of conceptualizing a quadtree is to think of it
Tan [5] developed a linear time node splitting algorithm thatas an extende@’-ary tree, i.e., a tree in which every nonleaf
they claim produces node splits that are better than the originode hag? children (e.g., see Fig. 1b). Thus, below we use the
nal node splitting algorithms [29] and competitive with that of terms quadtree node and quadtree block interchangeably. In
the R'-tree. The Hilbert R-tree of Kamel and Faloutsos [38] this view, the quadtree is essentiallyree, where the branch
employs the same heuristic as the Hilbert-packed R-tree [37]structure is based on space coverage. For a given quadtree
maintaining the data rectangles in strict linear order based oblock, we use the termartition levelto indicate the level of
the Hilbert codes of their centroids. This is done by organiz-the block in this tree view. Another way to view the quadtree is
ing them with a B"-tree on the Hilbert codes, augmented with to focus on the space partitioning, in which case the quadtree
the minimum bounding rectangle of the entries in each nodecan be thought of as being an adaptive grid (e.g., see Fig. 1a).
Thus, updates in the Hilbert R-tree are inexpensive, while itUsually, there is a prescribed maximum partition level (i.e., a
limiton the height of the tree), or equivalently, a minimum size
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partitioning can be effectively structured using the PK-tree

technique [58], for example. In the remainder of this paper,

we will usually assume a two-dimensional quadtree to sim-

plify the discussion. Our methods are general, however, and
work for arbitrary dimensions.

3.2 PMR quadtrees

3 4 5 6

The PMR quadtred46] is a quadtree-based dynamic spatial
a b data structure for storing objects of arbitrary spatial type. A
Fig. 1. a The block partitioning and tree structure of a simple Sample PMR quadtree for a collection of line segments is
quadtree, where leaf blocks are labeled with numbers and nonlesghown in Fig. 2, where we show both the space partitioning
blocks with letters and the resulting tree structure. Since the PMR quadtree gives
rise to a disjoint partitioning of space, and objects are stored
only in leaf blocks, this implies that non-point objects may be
for a quadtree block. For two-dimensional quadtrees, such astored in more than one leaf block. Thus, the PMR quadtree
the one shown in Fig. 1, we often use the compass directions tavould be classified as applyirdipping, as we can view an
refer to particulaquadrants(i.e., one of the four sub-regions object as beinglippedto the region of each intersecting leaf
resulting from a partitioning). Thus, for example, the block block. The part of an object that intersects a leaf block that
labeled “1” in the figure is a South-West (abbreviated “SW") contains it is often referred to agjeobject for line segments,
guadrant of the root block. we usually talk ofy-edgesFor example, segmeatin Fig. 2a
Many different varieties of quadtrees have been definedis split into three g-edges as it intersects three leaf nodes, so
differing in the rules governing node splitting, the type of that there are three referencesatin leaf nodes of the tree
data being indexed, and other details. An example is the PRtructure shown in Fig. 2a.
guadtree [54], which indexes point data. Points are stored in A key aspect of the PMR quadtree is its splitting rule, i.e.,
the leaf blocks, and the splitting rule specifies that a leaf blockhe condition under which a quadtree block is split. The PMR
must be split if it contains more than one point. In other words,quadtree employs a user-determirspditting threshold: for
each leafblock contains either one pointor none. Alternativelythis purpose. If the insertion of an objectauses the num-
we can set a fixed bucket capacityand split a leaf block if  ber of objects in a leaf blockto exceed andb is not at the
it contains more tham points (this is termed a bucket PR maximum partitioning level, thebis split and the objects in
quadtree in [54]). b (includingo) are inserted into the newly created sub-blocks
Quadtrees can be implemented in many different waysthat they intersect. These sub-blocks are not split further at
One method, inspired by viewing them as trees, is to imple-this time, even if they contain more thanbjects. Thus, a leaf
ment each block as a record, where nonleaf blocks @bre block at depthD can contain up te + D objects, where the
pointers to child block records, and leaf blocks store a list ofroot is at depth O (there is no limit on the number of objects in
objects. However, this pointer-based approach is ill-suited foteaf nodes at the maximum depth). The rationale for not im-
implementing disk-based structures. A general methodologynediately splitting newly formed leaf blocks is that this avoids
for solving this problem is to represent only the leaf blocks excessive splitting. This aspect of the PMR quadtree gives rise
in the quadtree. The location and size of each leaf block ar¢o a probabilistic behavior in the sense that the order in which
encoded in some manner, and the result is used as a key inthe objects are inserted affects the shape of the resulting tree.
an auxiliary disk-based data structure, such as a B-tree. Thi&s an example, in Fig. 2, if line segmemtvere inserted after
approach is termedlmear quadtreq27]. line segment instead of after line segmeftthen the parti-
Quadtrees were originally designed for the purpose of in-tioning of the SE quadrant of the SW quadrant of the root,
dexing two- and three-dimensional space. Although the defiwherec, d, andi meet, would not have taken place. Neverthe-
nition of a quadtree is valid for a space of arbitrary dimensionless, it is rarely of importance which of the possible quadtree
d, quadtrees are only practical for a relatively low number ofshapes arise from inserting a given set of objects. We exploit
dimensions. This is due to the fact that the fan-out of internalthis observation later on, by re-ordering the objects to allow a
nodes is exponential id, and thus becomes unwieldy fdr  more efficient quadtree construction process (see Sect.5.1).
larger than 5 or 6. Another factor is that the number of cells
tends to grow sharply with the dimension even when data size
is kept constarit and typically is excessive for more than 4-8 3.3 Quadtree implementation in SAND
dimensions, depending on the leaf node capacity (or splitting
threshold) and data distribution. For a higher number of di-The implementation of quadtrees used in the SAND spatial
mensions, we can apply the k-d tree [13] strategy of splittingdatabase is based on a general linear quadtree implementa-
the dimensions cyclically (i.e., at each internal node, the spaction called theMorton Block Index(@abbreviatedBI). Our
is split into two equal-size halves), for a constant fan-out ancbulk-loading methods are applicable to any linear quadtree
improved average leaf node occupancy. The resulting spadenplementation, and should be easily adaptable to any other
disk-based representation of quadtrees. Nevertheless, for con-
3 This is due to the fact that average leaf node occupancy tends téreteness, it is helpful to review some of the details of our
fall as the number of dimensions increases. system.
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the split along all axes. For two dimensions, assuming that
the z axis is ordered before thgaxis, this results in the en-
/\ coding given above (i.e., S and W represent 0, while N and

E represent 1, so SW=00b=0, SE=01b=1, NW=10b=2, and

a \b NE=11b=3, where “b” indicates binary).
h\/ For efficiency of implementation, the split sequences of
g > /e/f Morton codes are typically represented as integers of a fixed

precision. In particular, ifv is the user-determined maximum
partition level,w bits for each dimension are required, so the
d i f total number of bits for the split sequencegd igv; in our im-
plementationw can be any value between 1 and 32. Of course,
DY for a block at partition level, the number of bits required to
J represent its split sequencesglisl, in which case the split se-
quence number is padded by setting the traiingu — 1) bits
in the split sequence number to zero. For example, # 4,
a block 4 in Fig. 1 has the split sequence “2,1”, so it is repre-
(Q sented with the integer 10010000b, where the last four binary
digits are padding. Unfortunately, in this scheme, there is no
SW NE way to tell the partition level of a block from the split sequence
SE NW number alone, since thebit padding sequence of zeros is a
(3 ® @) @) legal split encoding (i.e., indicating the first child block). For
example, the split sequence number 00000000b applies to both
block 1 and the root block in Fig. 1. Thus, in our implementa-
tion, Morton codes of quadtree blocks are represented as pairs
HN®! OO @) ] (s,1), wheres is the fixed-width split sequence number dnd
' a is the partition level; internally, we actually stare— [ which
b represents the side length of the block.
Typically, the region of space covered by a quadtree (i.e.,
O O O] by the root block) is a hypercube, or a square in two dimen-
sions —that is, the side lengths along all dimensions are equal.
e However, the side lengths do not necessarily have to be equal,
i S0, in general, the quadtree data space has a hyper-rectangular
b shape. Clearly, all quadtree blocks will have the same side
) ) . - length proportions as the root block. Furthermore, the space
E;% %\%Zfe Tr']\g Fﬁr?eu?gtrriifﬁg'LnaevzebgerZﬁ?:\Ssvevr'fZ daifg:ttlr?gbthtr_esrolg coverage of any quadtree blogkan be efficiently determined
L 'eseq ; phabetical oraes an the space coverage of the root block and the Morton code
a Spatial r_ende_rlng of the line segments and the resulting quadtreOf b. In particular, thenatural coordinate systewf a quadtree
space partitioningh a tree access structure far with maximum partition level ofv is such that the lower left
corner of the root block is at the origin and its side length is
3.3.1 Morton codes 2% (i.e., the side length of quadtree blocks of minimum size
is 1). In this coordinate system, the split sequence number of
The MBI represents quadtree blocks ushgrton codesan  the Morton codds, ) of b is the result of applying bit inter-
encoding of the sequence of splits that result in the block]eaving to the coordinate value of the bottom left corneb,of
or, equivalently, of the path in the tree representation of thewhose side length &“~!. Thus, the hypercube-shaped region
guadtree that leads to the block. In particulatidimensional ~ covered byb in the natural coordinate system is obtained by
space, the child blocks resulting from a partitioning can be rep~de-interleaving” the split sequence numbeto obtain the
resented with the numbefs1,...,2¢~1. Thus, the Morton lower left corner, and using the partition levab obtain the
code of a block consists of a sequencé bft numbers, where  side length. Any other space coverage of the root block simply
the length of the sequence represents the partition level of theneans that an appropriate scaling and translation is applied on
block. For example, for the two-dimensional quadtree showrthis hypercube to obtain the actual space coverage of
in Fig. 1, the leaf block labeled “4” can be encoded with the  Figure 3a illustrates the Morton code order imposed on
sequence “2,1”, assuming that quadrants resulting from a splithe quadtree blocks for the quadtree in Fig. 2. The contents of
are numbered in the order SW, SE, NW, and NE, respectivelythe MBI for this PMR quadtree are partially shown in Fig. 3b,
To define the particular “split encoding” (i.e., numbering of where the order in the list corresponds to Morton code order.
child blocks resulting from a split) used for Morton codes, For further illustration of actual Morton codes, assume again
think of the two halves resulting from the split along each axisthatw = 4 (i.e., the side length of the data space in the natu-
as representing 0 and 1, respectively, with the half with lowerral coordinate system &* = 16). The split sequence of the
coordinate values receiving the lower number. In other wordsplock labeled 18 in Fig. 3a is “3,0,2", which is represented
the split along each axis is represented with a bit. Given somavith the integer 11001000b = 200 (last two binary digits are
fixed ordering of the axes, the encoding, then, is the binaryadding), so the Morton code for the block 290, 3). To ob-
number obtained by the concatenation of the bits representintin the space coverage of this block in the natural coordinate
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— 13| a may reduce query cost [2]. However, for the most part, oper-
1 2| 3|8 9 13| h ations on the quadtree are independent of the actual encoding

scheme being used, and in particular, this is true of our bulk-
a b loading method. Thus, in most of this paper, any mention of
) _ o ~ Morton codes (or Z-order) can be replaced by Hilbert or Gray
Fig. 3. aThe PMR quadtree for the line segments in Fig. 2, with cqdes (or the ordering induced by them). When warranted, we

the quadtree blocks numbered in Morton code oll&ome of the  mention issues arising from the use of Hilbert or Gray codes.
corresponding items stored in the linear quadtree

3.3.2 B-tree

system, we de-interleave the split sequence number to yield )
the lower-left corner of1000b, 1010b) — (8, 10), and getthe | e MBI uses aB-tree to organize the quadtree corftenit
side length from the partition level, yieldi =3 = 21 = 2. Morton codes serving as key;. When_ comparing two Morton
If block 18 had to be split, the split sequence numbers of thefodes, we emplo_y_lexwograpmcorderlng onthe splitsequence
child blocks would be 11001000b. 11001001b. 11001010pnNumberand partition level. When only quadtree leaf nodes are
and 11001011b. In other words, omljits of the original split ~ 'ePresented in the MBI, which is the case for most quadtree
sequence number are modified. Similarly, the split sequenc¥ariants, comparing only the split sequence number is suffi-
number of the parent block of block 18 is 11000000b. cient, as the MBI will contain at most one block size fpr any
Below, when we talk of the Morton code of a poptwe  91V€N Sequence number. For a quadiree leaf node ith-
mean the result of applying bit interleaving to the coordinatel®CtS: the corresponding Morton code is represehtéthes
values ofp, after mapping into the natural coordinate system!n the B-tree, once for each object. In the B-tree, we main-
of the quadtree. Alternatively, the Morton code jois the tain a buffer of recently used B-tree node_s, and employ an
split sequence number for the quadtree block of side length }RY (least recently used) replacement policy to make room
that containg (assuming that such a quadtree block exists)./oT @ New B-tree node. In addition, we employ a node locking
Hence, Morton codes represent a mapping fdedimensional mechanism in order to ensure that the nodes on the path from
points to one-dimensional scalars. When theimensional the root to the current node are not replaced; this is useful in
points are ordered on the basis of their corresponding Mordueries that scan through successive items in the B-tree, since
ton codes, the order is calledviorton order [45], an exam- e nodes on the path may be needed later in the scan.
ple of aspace-filling curveThis order is also known as a
Z-order [49] since it traces a ‘Z’ pattern in two dimensions. _ :
Many other space-ordering methods exist, such as the Peang:3-3 Object representation
Hilbert, Cantor-diagonal, and spiral orders, and each of thes . . o .
can be used to define an encoding. The most commonly use%h‘.e amount of data associated with each object in the MBI is
encoding methods for quadtree blocks are Morton, H“bert’hmlted only by the B-tree node size. This flexibility permits

and Gray codes (Hilbert codes are based on Peano-Hilbert offifférent schemes for storing spatial objects in quadtree in-
der and Gray codes [23] are related to Morton codes: see [1dexes implemented with the MBI. One scheme is to store the

35] for a more detailed descriptions of these and other erlg_éntire spatial description of the object, while another scheme

coding methods, and for studies of their relative “goodness”)1S 0 store a reference ID for the object, which is actually
ored in an auxiliary object table. A hybrid scheme can also

Figure 4 presents an example of the ordering resulting fro t | herei h th ol L
these three encoding methods. The advantage of Morton cod®§ €mployed, wherein we store both the spatial description
of the object and an object ID. The disadvantage of the first

over Hilbert codes and Gray codes is that it is computation- ; . :
ally less expensive to convert between a Morton code angcheme is that it potentially leads to much wasted storage for

its corresponding coordinate values (and vice versa) than fopOn-Point objects, as they may be represented more than once

the other two encoding schemes, especially compared to tHg € Pl\t/)IIR lquz?(dtre_e. The drawbach; of the sechond scheme i?
Hilbert code. In addition, various operations on Morton codestnat a table lookup Is necessary to determine the geometry o

for quadtree blocks, e.g., computing the Morton code for sub- 4 The MBI can also be based on & Bree. This has some advan-
blocks, can be implemented through simple bit-manipulationtages, notably when scanning in key order. However, the difference is
operations. Nevertheless, Hilbert and Gray codes have the adot very significant, and is offset to some degree by a slightly greater
vantage that they preserve locality somewhat better, whiclstorage requirement for the'Btree.
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an object once itis encountered in a quadtree block. Neverthe
less, we must use that scheme (or the hybrid one) if we wish
to associate some non-spatial data with each object (e.g., far. ... L
objects representing cities, we may want to store their names &
and populations). ‘

As previously mentioned, SAND employs a data model ‘
inspired by the relational algebra. The basic storage unit is b c

an attribute, which may be non-spatial (e.g., integers or chargig. 5. aComputation of the minimum bounding block for an object,

acter strings) or spatial (e.g., points, line segments, polygonsjenoted by heavy lines. Broken lines indicate potential quadtree block
etc.). Attributes are collected into relations, and relational dataoundaries. The minimum bounding block darcoincide with a

is stored as tuples in tables, each of which is identified by aonleaf node oc be enclosed by a leaf node
tuple ID. In SAND relations, the values of spatial attributes
(i.e., their geometry) are stored directly in the tuples belong-
ing to the relation. When the PMR quadtree is used to indexodes intersecting the object. The key insight is that based only
a spatial attribute in SAND, the tuple ID of the tuple storing on the geometry of an object, we can compute the (hypothet-
each spatial object must be stored in the quadtree (i.e., wigal) quadtree block that minimally encloses the object. This
use the second scheme described above). For simple fixeds illustrated in Fig. 5a, where we indicate potential quadtree
size spatial objects (such as points, line segments, rectanglgsartition boundaries with broken lines. Hence, the insertion
etc.), SAND also permits storing the geometric representationraversal can be initiated at the partition level of the minimum
in the index (i.e., resulting in a hybrid scheme). This allows enclosing quadtree block (e.g., see Fig. 5b). Frequently, how-
performing geometric computations during query evaluationever, the object is completely enclosed by an existing quadtree
without accessing the tuples. Alternatively, a separate objedeaf node, in which case the minimum enclosing quadtree
table associated with the index can be built for only the val-block is inside, or coincides with, the existing leaf node (e.g.,
ues of the spatial attribute. Object IDs in that table are thersee Fig. 5c).
represented in the index, while the tuple ID is stored in the A PMR quadtree insertion algorithm based on the idea of
object table. This is advantageous when the size of the spati@hinimum enclosing quadtree block is shown in Fig. 6. Pro-
attribute values (in bytes) is small compared to the size of aedureInserTOBIECT Uses the function€oMpPUTEENCLOS-
whole tuple. A further benefit is that this object table can beingBLock and FINDENCLOSINGNODE to locate the smallest
clustered by spatial proximity, such that nearby objects areode in the quadtree index that contaaigect and invokes
likely to be located on the same disk page. Spatial clusteringnsert on that node. (At worstyodeis the root node of the
is important to reduce the number of I/O operations performedjuadtree, in casebjectstraddles the partition boundaries for
for queries, as stressed by Brinkhoff and Kriegel [16]. the root node.) The task of locating the smallest node contain-
ing the object is divided into two functions since it naturally
decomposes into two subtasks. The fiG@mpuTEENCLOS-
3.3.4 Empty leaf nodes INGBLOCK, is based only on the geometry of the object and
computes its minimum enclosing quadtree block, while the
Another design choice is whether or not to represent emptygecond FINDENCLOSINGNODE, accesses the quadtree index
quadtree leaf blocks in the MBI. Our implementation sup-to locate an actual quadtree node. Brert procedure splits
ports both of these choices. Representing empty quadtree le#tie given leaf node, thereby turning it into a nonleaf node, and
blocks simplifies insertion procedures as well as some othereinserts the objects into the appropriate child nodes; observe
operations on the quadtree and makes it possible to check tfthat the child nodes are not split even if the splitting threshold
MBI for consistency, since the entire data space must be repis exceeded. The firsdreachloop in procedur§pLiT makes
resented in the index. However, for large dimensions, this camse of the minimum enclosing block, as computeddmp-
be very wasteful, since a large number of leaf blocks will tendpuTEENCLOSINGBLOCK, for objects that are fully enclosed in
to be empty. one of the child nodes (as determineddyL. DCONTAINING).
The secondoreachloop then reinserts objects that remain on
objList, namely any object that intersects more than one of the
4 PMR quadtree insertion algorithm child nodes and/or that is not fully enclosedrmdeitself.
The algorithm shown in Fig. 6 can be used for either
Like insertion algorithms for most hierarchical data structures,a pointer-based implementation or a linear quadtree imple-
the PMR quadtree insertion algorithm is defined with a top-mentation of a PMR quadtree (e.g., the Morton Block In-
down traversal of the quadtree. In other words, starting at th&lex), given an appropriate definitions of blocks and nodes
root node, we visit child nodes thatintersectthe objecttoinsertand of the various utility routines. Thus, in the MBI im-
and add the object to any leaf nodes that are encountered. ThydementationnodeandenclosingBloclkare both represented
the CPU cost for inserting an object is roughly proportional towith a Morton code. Furthermore, the functioBiaiLpCon-
the depth of the leaf nodes intersecting it, due to the intersectaining, CoMPUTEENCLOSINGBLOCK, INTERSECTS, andS1zE
tests that are performed during the traversal. merely operate on object geometries and Morton codes, while
Fortunately, the cost of insertions can be considerably rethe other routines (i.eAbpToLEAF, FINDENCLOSINGNODE,
duced by making use of the regularity of quadtree partitioning IsSLEaF, MAKENONLEAF, OBJECTCOUNT, and OBJECTLIST)
effectively allowing us to short-circuit the traversal and yield- obtain their results by accessing the MBI B-tree. In particular,
ing a cost that is roughly proportional to the number of leaf ADDTOLEAF inserts into the B-treeyIaAkeNoNLEAF deletes
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procedure INserTOBJECT(ObjEC) —
enclosingBlock— CoMPUTEENCLOSINGBLOCK(Objec)
node<«— FINDENcLosINGNoODE(enclosingBlock
InserT(NOde objec)

procedure INserT(NOd€ Objec) —
if (IsLEAF(node) then
AppToLEAF(node objec)
if (OBsECTCOUNT(NOdE > threshold then
SeriT(nodg
else
foreach (childNodeof nodg do
if (INTERSECTS(Object childNodg) then
InserT(childNode objec)

procedure SpLit(nodg —
objList +— OssecTLIST(NOdE
MAKENONLEAF(NOdE
/* make use of minimum enclosing block if possible */
foreach (objectin objList) do
enclosingBlock— CoMPUTEENCLOSINGBLOCK(Objec)
if (Size(enclosingBlock< Sizefiodg) then
childNode« CarLbConTAINING(nOdg enclosingBlock
AppToLEAF(childNode objec)
DeLETE(ODbjList, objec)
/* apply intersect check for remaining objectsahjList*/
foreach (childNodeof nodg do
foreach (objectin objList) do
if (INTERSECTS(Object childNodg) then
AppToLEeAF(childNode objec)

Fig. 6. PMR quadtree insertion algorithm

not treated in the experimental section (Sect. 8), we observed
a speedup of approximately 70-110% in terms of CPU cost
over the naive insertion algorithm when bulk-loading 2D line
segment data (Sect.8.2), and around 40-80% for loading the
same data using dynamic insertions.

5 Bulk-loading PMR quadtrees

PMR quadtrees represented with the linear quadtree method,
such as our MBI implementation described in Sect. 3.3, per-
form well for dynamic insertions (especially with the insertion
algorithm described in Sect.4) and a wide range of queries.
Nevertheless, we found that bulk-loading large data sets into
MBI based PMR quadtrees with dynamic insertions takes a
considerable amount of time relative to the size of the data
set. As is true for most indexing structure, the primary rea-
son for sub-optimal performance of dynamic insertions in this
setting is the fact that successive insertions typically involve
different disk blocks in the external representation, a B-tree in
the case of the MBI, assuming arbitrary ordering of the data
set. Thus, unless the entire structure fits into the B-tree buffer,
each insertion is likely to require reading a B-tree block that
has already been written to disk, so each B-tree block will
eventually be written multiple times to disk. In addition to
this excessive 1/0, we identified several areas that exhibited
considerable overhead in CPU time, the chief of which is the
high cost of splitting quadtree nodes. In particular, when a
quadtree node is split, references to objects must be deleted
from the B-tree, and then reinserted with the Morton codes of

from the B-tree FINDENcLOSINGNODE andIsLEAF perform  the newly created quadtree nodes. Thus, in addition to local
a lookup, whileOBsectCount and OBJEcTLIST perform a  reorganizations within B-tree blocks, such sequences of dele-
lookup followed by a linear scan. Observe that in the case ofions and insertions to the B-tree can cause repeated merging
a linear quadtree implementation, the nonleaf nodes are natnd splitting of the same B-tree blocks.
physically present in the MBI. However, the insertion algo-  Our bulk-loading method addresses inefficiencies of dy-
rithm is based on a top-down traversal of the tree and thusiamic insertions in terms of both 1/0 and CPU cost. The basic
simulates their existence by constructing their correspondingdea is to reduce the number of accesses to the B-tree as much
Morton code. as possible by storing parts of the PMR quadtree in main mem-
In a naive PMR quadtree insertion algorithm veERrT- ory. The end result is that there are only insertions into the B-
OJeCT procedure would simply invOkiNserT on the root  tree (i.e., no deletions), and those insertions occur in a strictly
node, and the firgoreachloop inSeLiT would not be used. By  sorted order, which allows building the B-tree with minimal
using the minimum enclosing blocks, the algorithm in Fig. 6 number of I/Os and with no CPU cost overhead for reorga-
achieves significant CPU cost savings, due to areduction in theizations. As shown below, the above properties can only be
number of intersection tests. Nevertheless, these savings aeghieved by pre-sorting the data objects in a certain manner.
tempered by the cost of invokitgpmMPUTEENCLOSINGBLOCK, Of course, the cost of pre-sorting must therefore be taken into
whose CPU cost is similar to that bfTERsECTs. This is espe-  account in the overall cost of our bulk-loading method. This
cially true for procedur&prit, sinceCoMPUTEENCLOSING- is done in both the analysis presented in Sect.7 and in the
Brock must be recomputed for each object, and the intersecexperiments conducted in Sect. 8.
tion tests must be invoked anyway if the enclosing block is  The remainder of this section is organized as follows: In
larger than or equal to the leaf node being split. To reduce unSect. 5.1 we presentan overview of our bulk-loading approach.
necessary invocations @oMpPUTEENCLOSINGBLOCK we can  Next, in Sect. 5.2, we present the details of our flushing algo-
retain the value computed by thieMPUTEENCLOSINGBLOCK rithm, which frees up space if none is left in the main memory
invocation inINSERTOBJECT, SO it need not be computed again buffer. In Sect. 5.3 we describe an alternative method for free-
in SpeL1T. Of course, this is usually not practical as it increasesing memory which is used if the flushing algorithm fails to
the storage requirement for the objects. Nevertheless, thistecldlo so. Our bulk-loading approach requires sorted input, so we
nigue is useful in our bulk-loading algorithm, since only a discuss two efficient external sort algorithms in Sect.5.4. Fi-
limited number of nodes is kept in memory, while the nodesnally, in Sect.5.5 we show how the MBI B-tree can be built
that have been written to disk are never split again. Althoughefficiently and with a high storage utilization.
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5.1 Overview y A

In our bulk-loading approach, we build a pointer-based
guadtree in main memory, thereby bypassing the MBI B-tree.
Of course, this can only be done as long as the entire quadtree
fits in main memory. Once available memory is used up, parts
of the pointer-based quadtree are flushed onto disk (i.e., in- 23 24
serted into the MBI). When all the objects have been inserted 25
into the pointer-based quadtree, the entire tree is inserted into 21|22
the MBI and the quadtree building process is complete; we use 18 19 p
the termguadtree buffeto refer to the memory block used for D=
the memory-resident portion of the quadtree. In order to main- 9.110
tain compatibility with the MBI-based PMR structure, we use 6 161217
Morton codes to determine the space coverage of the memory-
resident quadtree blocks. Note that it is not necessary to store 314 14115
the Morton codes in the nodes of the pointer-based structure, 5 11
as they can be computed during traversals of the tree. Howeve 1-1-2 12413 >
a careful analysis of execution profiles revealed that a su bstar{—o’o) X
tial percentage of the CPU time was spent on bit-manipulation
operations on Morton cod@sThus, we chose to store the Mor- Fig. 7.A portion of a hypothetical quadtree, where the leaf nodes are
ton codes in the nodes, even though this increased their Stora?%pe'e‘j in Z_-order._ The shaded rectangle is the bounding rectangle of
requirements. he next object to insert
How do we choose which quadtree blocks to flush when
available memory has been exhausted? Without some knowl- . . . . -
The flushing process is described in greater detail in

edge of the objects that are yet to be inserted into the quadtreg ", "\ ;1 jer certain conditions, this flushing method fails

it is impossible to determine which quadtree blocks will bet ; ithouah this situati hould |
needed later on, i.e., which quadtree blocks are not inter'C r€€ any memory, aithougn this situation shouid rarely oc-

sected by any subsequently inserted object. However, caré4r- In Sect.5.3 we explam _vvhy, and present an alternative
fully choosing the order in which the objects are inserted intoStrategy that can be applied in such cases.

the tree provides exactly such knowledge. This is illustrated

in Fig. 7, which depicts a quadtree being built. In the figure,
the shaded rectangle represents the bounding rectangle of tRe?
next objectto insert. If the objects are ordered in Z-order based . .
on the lower-left corner of their minimum bounding rectangle Informally, the flushing algorithm can be stated as follows:
(i.e., the corner closest to the origin), we are assured that nong
ofthe quadtree blocks inthe striped region will ever be inserted
into again, so they can be flushed to disk. The reason why this2
works is that the lower-left corner of a rectangle has the low- =
est Morton code of all points in the rectangle. Thus, using this
order, we know that all points contained in the current object,
as well as in all subsequently inserted objects, have a higher
Morton code, and we can flush quadtree blocks that cover
points with lower Morton codes. As demonstrated in Fig. 7,
this strategy can be thought of as a variation of plane sweep,

where the customary sweep line is replaced by a piecewise Figure 8 presents a more precise portrayal of the algo-
linear curve (e.g., the thick boundary in the figure). rithm in terms of a top-down traversal of the pointer-based
When using Hilbert or Gray codes, we also would useqyadtree. The flushing algorithm is embodied in the function
the lowest code value for points in the minimum bounding Fr ysuNobes in Fig. 8 and is invoked byNsErTOBIECT When
rectangle of an object as a sort code. However, in this case th¢e pointer-based quadtree is taking too much space in mem-
lowest code value occurring in a rectangle is typically not inory. For each nonleaf nodEy.usuNobEs recursively invokes
the lower-left corner, but can occur anywhere on its boundaryjtse|f exactly once, for the child node whose region intersects
Thus, the lowest code value is somewhat more expensive tf hile it invokesFLusaSuBTREETOMBI to flush the sub-
compute when using Hilbert or Gray codes than when usingrees rooted at all unflushed child nodes that occur earlier in
Morton codes. One way to do so is to recursively partition théporton code order. ThugiLusHNoDES traverses the pointer-
space, at each step picking the partition having the lowest codgased tree down to the leaf node whose region intersefts
value that intersects the rectangle. example, in Fig. 7, the function traverses the tree down to the
node labeled 20, while it flushes the entire subtrees contain-
® For most other encoding methods for quadtree blocks, such aég nodes 1 through 10 and nodes 11 through 17, as well as
Hilbert and Gray codes, this overhead can be expected to be eveilie leaf nodes labeled 18 and 19. ThessuSUBTREETOMBI
greater. function removes the given subtree from the quadtree buffer,

Flushing algorithm

. Letp be the lower-left corner of the bounding rectangle of

the object to insert next (see Fig. 7).

Visit the unflushed leaf blocks in the pointer-based

quadtree in increasing order of the Morton code of their

lower-left corner (e.g., for Fig. 7, in increasing order of

the labels):

(a) if the quadtree block interseqige.g., the leaf block
labeled 20 in Fig. 7), then terminate the process;

(b) otherwise, insert the leaf block into the MBI.
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and marks it flushed. That way, we will know in subsequentflushed. In this case, the objects that remain in the pointer-
invocations whether a given quadtree node is merely emptyhased quadtree intersectleaf nodes labeled 20 or higher, but the
or has already been flushed. When all objects have been idewer-left corners of their minimum bounding rectangles fall
serted into the quadtreB,usHSUBTREEToOMBI is invoked on  into leaf nodes labeled 20 or lower (due to the insertion order).

the root node, resulting in the final tree on disk.

procedure INserTOBIECT(Objec) —
if (available memory falls below a threshottign
p < lower left corner of the bounding rectangleaifject
FLusHNoDEs(root, p)
/* remainder of procedure same as in Fig. 6 */

procedure FLusuNobEs(node p) —
if (not IsSLEar(nodg) then
foreach (unflushedchildNodeof node do

/* child nodes are visited in Morton code order */

if (ContaIns(childNode p)) then
/* childNodeis on the path from root to leaf containipg/
FrusaNobgs(childNode p)
return /* exit function */

else
/* childNodehas a smaller Morton code thart/
FrLusuSuBTREETOMBI(childNode false)

procedure FLusuSUBTREEToMBI(node freeNodg —
if (nodehas already been flushettien
return
if (IsLEaF(nodé) then
foreach (objectin nodg do
MBIInserT(NOdE Objec)
else
foreach (childNodeof nodg do
FrusaSuBTREETOMBI(childNode true)
if (freeNodéthen
FrEENODE(n0d§
else

marknodeas having been flushed and turn into empty leaf node

Fig. 8. Pseudo-code for flushing process

Thus, if r is a bounding rectangle of one of these objects,
then either intersects the boundary of the striped region or
the lower-left corner of- falls into the leaf node labeled 20
(i.e., the unflushed leaf node with the lowest Morton code).
This condition rarely applies to a large number of objects, at
least not for low-dimensional data and reasonable quadtree
buffer sizes as discussed in Sect. 7. Nevertheless, we must be
prepared for this possibility.

Ifthe flushing algorithm is unable to free any memory, then
we cannot flush any leaf nodes without potentially choosing
nodes that will be inserted into later. One possibility in this
eventisto flush some of these leaf nodes anyway, chosen using
some heuristic, and invoke the dynamic insertion procedure on
any subsequently inserted objects that happen to intersect the
flushed nodes. The drawback of such an approach is that we
may choose to flush nodes that will receive many insertions
later on. In addition, this means that we lose the guarantee that
B-tree insertions are performed in strict key order, thereby re-
ducing the effectiveness of the B-tree packing technique intro-
ducedin Sect.5.5(i.e., adapted to tolerate slightly out-of-order
insertions). Furthermore, our bulk-insertion algorithm would
not be applicable (although a usually more expensive variant
could be used; see Sect. 6.3). The strategy we propose instead,
termedeinsert freeingis to free memory by removing objects
from the quadtree (allowing empty leaf nodes to be merged)
and scheduling them for reinsertion into the quadtree at a later
time. This strategy avoids the drawbacks mentioned above,
but increases somewhat the cost of some other aspects of the
bulk-loading process as described below.

In reinsert freeing, we must make sure that objects to be
reinserted get inserted back into the quadtree at appropriate
times. We do this by sending the objects back to the sorting
phase, with a new sort key (in Sect.5.4 we discuss how to
extend a sorting algorithm to handle reinsertions). This is il-
lustrated in Fig. 9 where the shaded rectangle is the bounding

The functionConTains used in procedur€LUSHNODES

can be efficiently implemented using the Morton codeof rectangle of an object that is to be reinserted (broken lines in-
which can be computed before flushing is initiated (i.e., indpate t.he bounding rectangle of the last inserted object). The
procedureiNserT). In particular, letm,, be the Morton code object intersects nodes labeled 18 and 21 through 24. Since

of p, and letmy, andmy,; be the smallest and largest Morton node 21 is the existing node with the lowest Morton code that
codes, respectively, for a quadtree blodl, is the Morton intersects the object, the appropriate time for inserting the ob-
code of its lower-left corner, whileny,; is the Morton code  J€Ct back into the quadtree is when all nodes earlier than node

of the “pixel” in the upper-right corner). For example, for the 21 in_Morton order have already been inserted in'go. Thus the
block of size 4 by 4 with lower-left cornei0, 0), my,; is the  location used to form the new sort key of the object should

Morton code for the point3, 3). Testing for intersection af intersect nod_e 21.One ch0|c¢ is to compute the Iower-_left in-
andp is equivalent to checking the condition,, < m, <  tersection point of the bounding rectangle and the region for
my;. This test can be efficiently implemented with bit-wise N°de 21, shown with a dot and pointed at by the arrow. Alter-

operations. Specifically, if the size bis 2% x 2@, then all natively, to avoid this computation, we could simply use the

but the low-ordeRw,, bits ofm,, andm, must match (thew, lower-left corner of node 21 as the new sort key. Observe that
low-order bits ofmy, are all 0 and those ofu; are all 1). in either case, the new sort key is larger than the original sort
key for the object. As the example illustrates, we must make
sure to reinsert each object only once, even though it may oc-
cur in several leaf nodes, and the sort key is determined from
the leaf node intersecting the object having the smallest Mor-
The problem with the flushing algorithm presented in Sect. 5.2on code. Notice that when the object in the figure is eventually
is that it may fail to flush any leaf nodes, and thus not freeinserted again into the quadtree, itis not inserted into node 18,
up any memory space. In the example in Fig. 7 this wouldsince that node has already been flushed.

occur if all the nodes in the striped region have already been

5.3 Reinsert freeing
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y A . sorting phase, since we do not reinsert objects occurring in the
' ' leaf node intersecting the sort key of the object that was in-
serted last (e.g., objects occurring in leaf node 20 in Fig. 9 are
not reinserted). Thus, this property and the correctness of the
sorting phase guarantee that objects are delivered by the sort-
ing phase in a strictly non-decreasing order of sort keys and
23 24 that an object is never reinserted twice with the same sort key.
i Another way to view this is that some progress always occurs
g 25 between two successive reinsertions for the same object.
18 21{22 ; The total number of insertions (original and reinsertions)
//ﬂy 19120 : for an objecto is bounded from above by the number of
e guadtree nodes (leaf and nonleaf) in the final quadtree that are
9110 intersected by. A tighter bound can be obtained by assuming
6 748 16 17 that we apply a somewhat more expensive method of con-
structing sort keys during reinsertions than the one described
34.4 14}15 above. In particular, létbe the block used to compute the sort
140 S 11 12113 key for object for some reinsertion af. To compute the new
(0,0) i sort keys for o, we compute the minimum bounding rectangle
! X of the portion ob that is insideh, and use the lower-left corner
i . ) ) of this rectangle in computing This construction guarantees
Fig. 9.An example of an object that is to be reinserted (shaded rectyp, i \wheris eventually (re)inserted into the memory-resident

angle). The striped region represents quadtree nodes that have be&[]adtree with the sort key the then-current leaf nodg that

flu§hed, whileth_e broken lines indicate the bounding rectangle Ofth(?ntersects; is either a leaf node in the final quadtree hpis
object that was inserted last . X . .

a nonleaf node in the final quadtree having at least two child

nodes that interseet Thus, the number of insertions foris

at most twice the number of leaf nodes intersecting

A second issue concerning reinsert freeing is how to
choose which objects to remove from the quadtree. Whatever
strategy is used, it is important that we not reinsert the object$.4 Sorting the input
occurring in the leaf nodgintersecting the lower-left corner
of the most recently inserted object; e.g., the leaf node labele@®ur bulk-loading approach requires the input to be in a spe-
20 in Fig. 9. A simple, but effective, strategy is to remove all cific order for it to be effective when the entire quadtree cannot
objects except those occurring in leaf nddend merge all  fit in the amount of memory allotted to the bulk-loading pro-
child nodes of non-leaf nodes not on the path from the root tacess. The input data will usually not be in the desired order,
b. Thus, the only nodes retained in the pointer-based quadtreso it must be sorted prior to bulk-loading. Since we cannot
are the nodes on the path from the roobt@and their chil-  assume that the data fits in memory, we must make use of an
dren. This is the strategy that we use in our experiments (seexternal memory sorting method. Whatever method is used,
Sect. 8.6). Another possible strategy is to visit the leaf nodesnstead of writing the final sorted result to disk, it is preferable
in decreasing Morton order (i.e., the ones with the highesthat the sorting phase and quadtree building phase operate in
Morton codes first), and remove the objects encountered untandem, with the result of the former pipelined to the latter.
til some fraction (say, 50%) of the quadtree buffer has beeThis avoids the 1/O cost of writing the final sorted result, and
freed. One complication in this strategy is that once we havepermits dealing with reinsertions (see Sect.5.3).
made enough buffer space available, we must then remove the Sorting alarge set of objects can be expensive. However, as
objects chosen for reinsertion from the leaf nodes that remainve will see in our experiments, sorting a set of objects prior to
in the buffer. Although perhaps somewhat counter-intuitive,insertion is often a much less expensive process than the cost
we found that the second strategy (which frees only a portiorof building the spatial index. More importantly, the savings in
of the buffer) usually led to a higher number of reinsertionsexecution time brought about by sorting far outweigh its cost.
than the first (which frees nearly the entire buffer), unless a\ote that some form of sorting is commonly employed when
large fraction of the buffer was freed. At best, the reductionbulk-loading spatial access structures (e.g., [4,37,40,41,52,
in the number of reinsertions of the second strategy was onlp9, 60]).
marginal, and even in those cases, the first strategy was usu- We implemented two external sorting algorithms suitable
ally slightly faster since the number of invocations of flushing for our application. The first algorithm is a variation of the
or reinsertion freeing is reduced (i.e., cost savings of feweistandard distribution sort[3], where we employ an application-
reinsertions of the second strategy were overwhelmed by thepecific partitioning scheme. Thisis the algorithm that we used
cost increase of more traversals when performing flushing om most of our experiments, where we found it to have very
reinsertion freeing). good performance. Unfortunately, our partitioning scheme is
An important point is that an object can only be reinsertednot always guaranteed to distribute sufficiently evenly to yield

alimited number of times, thus ensuring that we do not reinserbptimal cost (although it works well for typical data sets). In
the same object indefinitely. This is guaranteed by the propaddition, the algorithm is difficult to adapt to support reinser-
erty that reinsertions always produce sort keys that are greateions (Sect.5.3) in an efficient manner. The second algorithm
than the sort key of the object that was last delivered by thehat we implemented is external merge sort [3]. This algorithm
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of NV objects, each with some sort key, which are placed into
the sort set Subsequently, the sort process must respond to
getNext andreinsert  requests, until no object remains
in the sort set. OgetNext requests, the sort process deliv-
ers the object with the smallest sort key in the sort set (and
removes it from the set), while oreinsert requests, an
object that has been previously delivered is inserted again into
the sort set with a different sort key. We use the tedoject
<—N/M initial runs—> instanceto denote an object with a particular sort key; hence,
each reinsertion results in a new object instance, and the to-
a b tal number of object instances ;. Clearly, if the sort key
in a reinsertion is no smaller than the sort key of the object

Fig. 10a,b.Depiction of external merge sortingregular, and with . L .
reinsertions. Ira, squares represent runs created from the inputwhilethat was last delivered (which is the case for our bulk-loading

circles represent merged runshlrthe white squares represent active algorithm), the sort keys of the objects delivered by the sort

runs, the white circles represent future merged runs, and the shaddff 0cess are monotonlcally non-decreasing. Furth_ermore, as-
square represents a partial run being created in memory suming thalre'nse'ft requests only.occ_ur for objects not
currently present in the sort set (which is also the case for

our bulk-loading algorithm), the number of object instances
has the advantage of being provably optimal, having an l/Opresent in the sort set never exceéds .
cost of O(¥ 108/ X, whereN is the number of data ob- The basic idea behind our modified merge sort algorithm
jects,M the number of objects that fit into an internal memory is to use a portion of the sort buffer (i.e., the internal mem-
buffer used for sorting, ané is the number of objects in a ©ry buffer of sizeM used by the algorithm) to store newly
block transfer (typically the size of a disk page). Furthermore reinserted objects, which are maintained in a heap structure
in the presence of reinsertions, it is at worst only slightly sub-termed theeinsert heapallowing fast retrieval of the object
Opt|ma| Below, we br|eﬂy describe the external merge SortWith the smallest sort key The remainder of the sort buffer is
algorithm and how it can be modified to handle reinsertions. used to buffer the merging of a setadtiveruns, since each
run being merged requires buffer spacéadbjects. In partic-
ular, the sort proceeds as in the original merge sort algorithm
5.4.1 Merge sort until reaching the final iteration, where’ < M /B runs are
being merged. Thes®’ runs become the initial set of active

The external merge sort algorithm [3] first sorts the data in"Uns which are used by the algorithm to resporgkttNext
memory, generating short sortachson disk. These are then '€JUESTS, in the same way that runs are merged in the original
merged to generate longer runs, until we have a single sorte@!90rithm. Furthermore, as objects get inserted into the rein-
run. More precisely, the initial runs are of length, and there sertheap due to reinsertions, the reinsert heap also participates
are approximatelyV/M of them. In each merge pass, groups in this merging. This process can goon until the sort buffer is
of R runs are merged together, reducing the number of runs b{H!ll Upon areinsert  request, i.e., when the reinsert heap
afactor ofR. During a mergeB objects from each runmustbe containsM — a - 5 objects, where is the number of active
keptin memor9, soR = M/B. A depiction of the process is runs. At thls point, there are two options: 1) write the reinsert
shown in Fig. 10a. The squares represent runs created from ti{¢@p {0 disk as a sorted run; or 2) merge the active runs into a
input while circles represent merged runs. The run representeti9!€ sorted run. With the first option, we obtair- 1 active
by the circle at the “root” contains the entire sorted data set. 'UnS @nd an empty reinsert heap, while with the second we
As we mentioned above, this algorithm is I/O optimal. obtaln a single active run, with room in the sort buffer fprthe_
Each iteration decreases the number of runs by a factor diginsertheap to grow. We adopt the convention that option 1is
M/ B, so we need aboubg,,, ;(N/M) iterations until we taken only if the reinsert heap contains at IQMS/Q objects,
have a single run. The initial formation of runs as well as SO option 2 is taken only if the number of active runs is at least

1
each iteration require abo¥/ B 1/Os, so we have a total of 3M/B.

N AN The algorithm that we sketched above can be expected to
O(5 (1 +logr 5 (N/M))) = O(55 logay5(N/ B)) Os. perform well as long as the number of reinserted objects in
the sort set is not too large, which is usually the case in our
bulk-loading algorithm. Unfortunately, in extreme cases, the
number of I/Os can be much larger than@e}s log 5 3)
. o . _that we are aiming for. In particular, in the proof of the opti-
lgsioﬂgrgg ;](;r: talgc;g(t)réri?ie%ar; Iggritmh?ndlifslegnlt; sr;{agﬁlli er;)n mality of merge sort, we make use of the fact that each object
optimal. In particular, if N, is the number of objects plus gets written into approximatelyg,, 5 (N/M) increasingly
' 1S . large sorted runs. However, in the algorithm above, a large
$humber of reinsertions may cause many object instances to

a comparable I/O performance as sortiNg objects from : : .
scratch. The general scenario for the modified sorting algope written into substantially more thasg,,  (Ns/M) runs,

rithm is as follows: Initially, the sort process receives a Setleading to greatly sub-optimal behavior. To see why, consider
' Y P the scenario that the original’ runs have been merged into

® Buffer space foRB objects is needed for each run when using one, and subsequent overflows of the sort buffer have caused
asynchronous 1/0 and double buffering. the creation of so many new active runs that the sort buffer is

. M/B
iterations

5.4.2 Handling reinsertions
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full while the reinsert heap contains less thify2 objects.  level (assuming increasing keys in left-to-right order). This
Thus, upon the nexeinsert  request, we would merge all low storage utilization increases build time, since more nodes
the active runs into one, which will include objects from the must be written to disk, and decreases query efficiency, as
originalm’ runs (i.e., that have not been reinserted). Dependmore nodes must be accessed on average for each query.
ing on the number of reinsertions, the above scenario may The seemingly negative behavior of inserting in strict key
occur arbitrarily often, thereby causing object instances to berder can easily be turned into an advantage, by using B-
written arbitrarily often into new runs. tree/B" -trees bulk-loading algorithms that exploit the sorted

The cause of the above dilemma is that the algorithm reinsertion order (e.g.,[50,53]). In essence, such algorithms sim-
sults in runs consisting of object instances of different “ages” ply fill the leaf nodes of the tree in order, which also leads to
where the age of an object instance is defined as the numberdered insertion into the non-leaf nodes. In this way, we can
of times that the object instance has been written into a newprecisely determine the storage utilization of all but the right-
run. To resolve the dilemma, our modified sorting algorithm most nodes on each level, setting it to be anywhere between
maintains a hierarchy of active runs, as depicted in Fig. 10b50% to nearly 100%. Thus, we can achieve substantially better
where the level of an active run depends on the age of thetorage utilization than that typically resulting from building
object instances in the run. Thus, the partial run being formed-trees, which is about 69% for random insertions [61].
in the reinsert heap is at the lowest level (the shaded square As mentioned above, our flushing algorithm is guaranteed
in Fig. 10b), indicating an age of zero, the runs created byto lead to B-tree insertions that are strictly in key order. In
writing out the reinsert heap at the level above, and so onother circumstances, insertions into the B-tree are mostly in
Furthermore, then’ original runs are approximately at level key order but sometimes slightly out of order. For example,
|logy, 5 (N/M)]. When a merge is necessary (i.e., by thethe alternative to reinsert freeing mentioned in Sect.5.3 (i.e.,
conditions outlined above), the algorithm merges runs at thélushing nodes that may be needed later using a heuristic) can
level in the hierarchy containing the greatest number of runscause out of order insertions. As another example, in Sect. 6.3,
Notice that the active runs are continuously being read fromwe discuss a variant of our bulk-insertion approach that in-
in response tgetNext requests. This means that object in- volves updating an existing B-tree. There, the insertions are
stances do not necessarily travel up the entire hierarchy, anstrictly in key order, but usually do not fall beyond the range
that runs at lower levels may become depleted and therebgf keys already in the tree (which is the case when inserting
removed from the hierarchy. into a previously empty B-tree).

An advantage of our method is that the allocation ofthe sort ~ For our experiments, we implemented a B-tree packing
buffer is dynamically adapted to the number of reinsertionsalgorithm that is similar to that of [50] (their algorithm was
and the number of active runs at each level. When mergingpresented in terms of compacting a 2-3 tree, a precursor of
the number of runs being merged may be as largd A8, but ~ B-trees, but it can easily be adapted to building a B-tree from
never smallerthagy—B,whereh is the height of the hierarchy, sorted data; in contrast, the algorithm of [40] is not appli-
initially aboutlog,,,5(IN/M). In order for our method to be cable in this context, as it requires knowing the number of
optimal, the number of runs being merged each time mustecords to insert). However, our algorithm has the advantage
be sufficiently high. In particulaipg(%) = log(M/B) — that it always maintains a fully connected tree structure, which
log(2h) must beO(log(M/B)), or in other wordslogh =  enabled us to adapt it to gracefully handle situations where B-
loglog,, s (N/M) must be a constant. Unfortunately, this tree insertions occur somewhat out of orfd@f course, it is
is not quite the case, but for all practical purposes it is. Fomot possible to ensure 100% storage utilization in the face of
example, even if\/ is only 10 times larger tha®, h is less  out-of-order insertions. In our experiments, we found that a
than 16 as long a& is less thanl0'6 times larger than\/ reasonable compromise was achieved by aiming for 85% stor-
(for comparison, note that a terabyte is arouftf bytes), so  age utilization in the algorithm in such cases (which affects

log, h is less than 4. Thudpg % < 5, andlogm% JES < how nodes are split). A similar approach can be taken when

210,/ 5 % In other words, the number of I/Os is at most using BF-trees, leading to an algorithm related to thie-Bee

doubled given the assumptions, which are virtually guarantee§ulk-loading algorithm described in [53].
to hold.

6 Bulk-insertions for PMR quadtrees
5.5 B-tree packing

Our bulk-loading algorithm can be adapted to the problem of
ulk-inserting into an existing quadtree index. In other words,
; . ) he goal is to build a PMR quadtree for a data set that is a
'g.to th?le?" andéhus thetlﬁ—tree,twll(stncﬁ I:ﬂlortgnt codetkc]).rdﬁr. combination of data that is already indexed by a disk-resident
Ince viorton codes are the sort k€y of thé B-lree, this Napy o quadtree (termeekisting datd and data that has not yet
the unfortunate effect that most of the nodes in the B-treq, .., indexed (termenew data. This may be useful, for ex-

become' only about half full. .T'he reason for th!s is that theample, if we are indexing data received from an earth-sensing
conventional B-tree node splitting algorithm splits a node so

that the two resulting nodes are about half full. However, since 7 when insertions occur in order, only the rightmost B-tree node on
insertions occur in strict key order, the node receiving entriesach level is affected by insertions, so no tree traversals are necessary.
with smaller key values will never be inserted into again, andwhen our algorithm detects that an insertion occurs that does not fall
thus will remain only half full. Therefore, in general all nodes into the current node, it traverses to the proper leaf node and makes it
will be half full, except possibly the right-most nodes on eachthe current node in case the succeeding insertions fall into that node.

As a byproduct of sorting the input and using the flushing
algorithm describedin Sect. 5.2, the leaf blocks will be inserte
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satellite, and data for a new region has arrived. Frequently, th
new data is for a region of space that is unoccupied by the
existing data, as in this example, but this is not necessarily th
case. The method we describe below is equally well suited tg
the case of inserting into previously unoccupied regions ang
to the case of new data that is spatially interleaved with the
existing data.

0O 0%

a b c

Fig. 11a—cA simple PMR quadtre&,, consisting of points and the
6.1 Overview three cases that arise when merging with an existing quatifreéh

our bulk-insertion algorithma A leaf node inT, coincides with a
Recall that our flushing algorithm writes out the quadtree leafnonleaf node or a nonempty leaf nodelin, b a leaf node irr,
nodes in Morton code order. This is also the order in whichis contained in an empty leaf node Tn,, andc a leaf node in7,
leaf nodes are stored in the B-tree of the MBI. The idea ofis contained in a larger non-leaf nodei. Squares with a heavy
our bulk-insertion algorithm is to build a quadtree in memory border correspond to leaf nodesb, but the objects iff;, are not
for the new data with our bulk-loading algorithm. However, Shown
the flushing process is modified in such a way that it essen-

tially merges the stream of quadtree leaf nodes for the_ NEWs accessed iIMERGESUBTREES by the functionSCURLEAFN-
data with the ordered stream of quadtree leaf nodes in th

BpE andCurLEAFOBJECT, Which return the current node re-

PMR quadtree for the existing data. The merging process ';Jion and object, respectively, for the current leaf node item,

somewhat more complicated than this brief description may, 4 by the procedurNExTLEAFNODE, which advances the
imply. In particular, in order to merge two leaf nodes they must

termsold quadtreewhen referring to the disk-resident PMR
guadtree for the existing dataew quadtreavhen referring
to the memory-resident PMR quadtree for the new data, an
combined quadtree/hen referring to the disk-resident PMR
guadtree resulting from the merge process (which indexes bot
the existing data and the new data). Similarly, we aisideaf

the presentation, we assume in Fig. 12 that empty leaf nodes
re not represented in the disk-based quadtree. In addition,
e do not explicitly test for the condition that the entire con-
ent of the existing quadtree has already been read, assuming
stead that the current leaf node region is set to some spe-
. cial value when that happens so that it does not intersect an
nodeandnew leaf nodefor leaf nodes in the old and new of the leaf nodes in thelﬂzemory—resident guadtree. The thre()a/

quadtrees, respectively. cases arising in merging enumerated above are represented
Figure 11 illustrates the three cases that arise in the merg- 9 ging b

ing process, where the new data is denoted by dots (the olg,

data is not shown). The square with heavy borders denotes Remor : ; ;

. ; . y-resident quadtree (which may cause node splits). The
leaf block from the old quadtree, while the squares with thingg o' case triggers the secaiodoop, where leaf node items
borders denote leaf blocks in the new quadtree. The first casg copied directly from the old quadtree and into the com-
arises when an old leaf nodg coincides with a nodé, in bined quadtree. The third case triggers an invocati®vofr,

the new Iquzfadtr((eje, yvhefr; |stﬁ;h§rta nontempty Igatf node which splits the new leaf and distributes its content among the
or a nonleaf node, implying thai, intersects new data (see child nodes as appropriate. ProcedMerRGESUBTREES Will

Fig. 11a, where, is a nonempty leaf node). Thus, the ob- be invoked later on the child nodes. Sind&ERGESUBTREES

jects contained i, must be inserted into the subtree rooted is invoked on nodes in the new quadtree in top-down fashion
atby, subject to the splitting threshold. The second case arse& rLearNoDE(oldTred is never larger thanode and the leaf ’
when an old leaf nod&, is contained in (or coincides with) an

) ) node splitting (for case 3) ensures that, eventually, either case
empty leaf nodé,, in the new quadtree (see Fig. 11b). When ; :
this occurs, the contents &f can be written directly into the 1 or case 2 will apply to every leaf node in the old quadtree.

combined quadtree, without the intermediate step of being in-

serted into the new quadtree. The third case arises when 33 Discussion

old leaf nodeb, is contained in a larger nonempty leaf node

b in the new quadtree (see Fig. 11c). In this cagas split, The cost of bulk-inserting a data set into an existing quadtree

andb, is recursively checked against the new child nodes of; ) : .
b,, (in Fig. 11c, case 1 would apply to the new SW child of is at least as large as the cost of bulk-loading the combined

data set minus the cost of bulk-loading the original data set,

bn). since our bulk-insertion algorithmis based on our bulk-loading
algorithm. In other words, letting;,(S) denote the cost of
6.2 Algorithm bulk-loading a quadtree index with a dataSgandc; (S1, S2)

denote the cost of bulk-inserting the dataSginto an existing
Our merge algorithm is shown in Fig. 12. The algorithm mod- index for data ses, the relation
ifies proceduresFLusHNopes and FLUSHSUBTREETOMBI
: 4 S ) > —
from Fig. 8, while the actual merging is coordinated by pro- cr(S1,52) Z er(S1 +8) = e (1)
cedureMERGESUBTREES. The parameteoldTreein the pro-  holds. Furthermore, define the “excess” cost of bulk-inserting
cedures is a reference to the old quadtree. The old quadtre®, as the cost;(S1,S2) — (cr(S1 + S2) — ¢ (S1)). Clearly,
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procedure FLusHNopes(node p, oldTreg§ —
if (not IsLEAF(node) then
MERGESUBTREES(N0deg oldTred
/* remainder of procedure is same as in Fig. 8 */

seconddo loop (where entries in the old quadtree are copied
into the combined quadtree), we would look up the next B-tree
entry that does not intersembde Unfortunately, in the worst
case, we would still need to read and modify every B-tree
node. Furthermore, the B-tree packing technique discussed in
Sect.5.5is less effective when adapted to handle updates of an
existing B-tree. Thus, the excess I/O cost is often higher than
with our method due to worse storage utilization, and, in addi-

procedure FLusuSuBTREEToMBI(node freeNodeoldTreg —
MERGESUBTREES(Nodeg oldTreg
/* remainder of procedure is same as in Fig. 8 */

procedure MERGESUBTREES(node oldTred — tion, the excess CPU cost is typically significantly higher due
if (ConTAINs(node CURLEAFNODE(0ldTred)) then to the cost of updating the existing B-tree nodes. A further ad-
if (S1ze(nodd = Si1ze(CURLEAFNODE(0ldTred) vantage of the merge-based algorithm over the update-based
and not (IsLear(nodd and IsEmpry(nod8)) then oneis that the old quadtree index can be used to answerincom-
I* node regions are equal (see Fig. 11a) */ ing queries while the bulk-insertion is in progress, without the
do need for complex concurrency control mechanisms. Never-
InsErT(NOde CURLEAFOBIECT(0IATred) theless, as we shall see in Sect. 8.7, where we report expected
NExTLEAFNODE(0ldTre results for both variants, the update-based variantis sometimes
while (EQuaLCovERAGE(nNodg CURLEAFNODE(0ldTreg)) more efficient than our merge-based one when the new data
elseif(IsLear(nodg) then covers previously unoccupied regions in the existing quadtree.
if (IsEmpTY(nOd§ then A drawback of our quadtree merging approach is that it
/* current inoldTreeis same size or smaller (see Fig. 11b) */ results in a quadtree structure that corresponds to firstinserting
do all the new data and then the existing data (due tdterT

MBIINsERT(CURLEAFNODE(0ldTreq) invocations in the firstio loop). Since the structure of a PMR

NEXTLEAFNODE(0ldTreg quadtree depends on the insertion order, the resulting structure
|Wh'|e (ConTams(node CurLEAFNoDE(0ldTreg)) may be different than when first inserting the existing data
e/s*ecurrem inoldTreeis smaller (see Fig. 11¢) */ and then the new data. However, this should not be much of
SpLIT(n0dd ' a concern, as the difference is usually slight: only a small

percentage of the quadtree blocks will be split more in one
tree than in the other. Another potential problem is that the
size of the memory-resident quadtree (in terms of occupied
memory) may increase during the merging, before any parts
of it can be freed. To see this, &} be the non-empty leaf
based on the above observations, the excess cost is nonzermde in the new memory-resident quadtree with the smallest
and the lower its value, the better the bulk-insertion algorithm. Morton code (among unflushed leaf nodes). Without merging,
We believe that our bulk-insertion algorithm is very ef- b, would be the first leaf node to be flushed. In additionjlet
ficient in terms of the excess cost. From the standpoint obe the next leaf node in the old quadtree, and assume that the
CPU cost, the excess is primarily due to B-tree operations otiegion ofb,, intersects that df,,. Beforeb,, can be flushed and
the intermediate B-tree (i.e., writing it during bulk-loading its content freed from memory, the memory-resident quadtree
and reading during bulk-insertion), as well as memory alloca-can grow in two ways: 1) if the region @, is larger than
tion and handling of nodes in the new quadtree that are alsthat ofb,, thenb,, is split; and 2) ifb, is non-empty, then its
present in the old tree. However, intersection tests, which areontents are inserted into the memory-resident quadtree. Since
a major component of the CPU cost, should not significantlythe numbers of objects i, andb, are limited, the amount of
contribute to the excess CPU cost. Furthermore, besides th@emory consumed by these actions should not be very large.
cost of accessing the intermediate quadtree, the bulk of th&urthermore, most or all the extra memory consumed is freed
CPU cost ofMERGESUBTREES is involved in work that must  soon afterwards. Thus, it should be sufficient to allow for only
also be performed when bulk-loading the combined data sei& small amount of extra memory to handle such cases and thus
while other operations performed by it take little time ifimple- prevent a memory overflow situation.
mented efficiently (typically less than 5% of the total CPU cost
of MERGESUBTREES in our tests). From the standpoint of I/O
cost, the excess cost comes from writing out the intermediat
guadtree (during bulk-loading) and reading it back in (during
bulk-insertion). This can be expected to be partially offset by
slightly lower 1/0O cost of sorting the two smaller data sets aslIn this section we make some observations about the execution
opposed to the combined set. cost of our bulk-loading algorithm. The discussion is for the
Our bulk-insertion algorithm essentially merges a newmost part informal, and is meant to give insight into general
guadtree being built in memory with an existing disk- trends, rather than being a rigorous treatment. We make the
resident quadtree, and writes out a new combined disk-residesimplifying assumption that the objects occupy a fixed amount
quadtree. Itis easy to transform this “merge-based” algorithnof storage (such as is the case for elementary geometric objects
into an “update-based” algorithm that instead updates the oldike line segments and rectangles, but unlike for complex ones
disk-resident quadtree: 1) after inserting objects from the oldike polygons). We also assume a disk-based representation
guadtree into the new memory-resident quadtree, the corresf the quadtree that has similar characteristics as the Morton
sponding B-tree entries would be deleted; 2) instead of theBlock Index (MBI), described in Sect. 3.3.

Fig. 12.Pseudo-code for quadtree merging

g Analytic observations
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Our experiments, as reported in Sect. 8, suggest that I/@f only as much as a single node at each level is sufficient (see
cost and CPU cost both contribute significantly to the totalSect.5.5). Thus, most of the total buffer space can be allotted
execution cost (although the 1/0O cost contribution is usuallyto sorting.
higher). Therefore, we discuss each separately below. First, The primary reason for the fact that analyzing our algo-
however, we introduce the symbols used in evaluating theithm is difficult is that its behavior depends on the distribu-
costs, and discuss important issues that affect the cost. tion of the geometric positions and sizes of the spatial objects.

In particular, this applies to the relationship betweérand
the quantitiesV,, N,, and N,. Full analysis of the expected
7.1 Preliminaries behavior requires complex modeling of the geometric distri-
] ) bution, which is outside the scope of this paper. Furthermore,
The I/0 and CPU cost of our algorithm can be attributed tothe geometric distribution for specific applications may differ
three activities: 1) sorting; 2) construction of quadtree parti-consjderably from that assumed by the analysis. Thus, instead,

tioning; and 3) B-tree loading. Of these, the second activityye make in Sects. 7.1.1 and 7.1.2 some informal observations
does not directly involve I/O operations. As we shall see, theapout the relationships.

cost of each activity depends on a) its input size, b) the number
of internal memory buffers available to the overall process, and
c) the unit of block transfer for I/O operations. The following 7.1.1 Relationship betwee¥, N,, and,
table defines symbols that denote quantities of relevance in

these cost factors: , . .
First, considetV, the number of objects, and,, the number

The number of: of g-objects. Note that for pointsy, = N. For non-point
data objects objects, the value oV, depends on many factors, including:

N

N, | object instances (counting reinsertions) for sorting 1) the splitting threshold; 2) the relative sizes of object.s; 3)

N, | g-objects how closely clustered the objects are; 4) the complexity of
q

Ny

M

) the boundaries of objects; and 5) the degree of overlap. As an
B-tree entries extreme example, if all the objects were squares (hypercubes
objects that fit into internal memory buffers for d > 2) that covered the entire data space, then the space
M, | objects that fit into sorting buffer would be maximally partitioned into the smallest allowable
M, | objects that fit into quadtree buffer ce!ls. In othe_r Words,_we would get? leaf nodes, v_vhere
M. | obiects that fit into B-tree buffer w is the maximum height (_)f_the quadtree, assumings at

b J leastw +t, wheret is the splitting threshold value. Thus, each

B | objects that fit into a disk page object is broken up inta*“¢ g-objects, andV, = 2“?N. As

(or the desired unit of block transfers) another example, if the data objects are square-shaped (cube-
B, | objects in a disk page for sorting or hypercube-shaped faf > 2), all of the same size, the
B, | entriesin a B-tree node largest number of g-objects for a square is 6201391 in

general (assuming > 2%); the average number will depend
on ¢. In this example, the ratio betwee¥ and N, is still
‘exponential ind. However, non-point data is rarely used in
spaces with dimensionality above 3.

As to the relationship betweeN, and NV, the difference

Clearly, N is the input size for the overall bulk-loading
process, but the input size of sorting and the partitioning ac
tivities is N, while it is NV, for the B-tree loading. Below,
we examine the relationship betwe&nand the differentv,

values (i.e.,N;, Ny, and Ny). As we shall see, given some panyeen the two is the number of empty quadtree leaf nodes,
reasonable assumptions on the distribution of the location an} .« choose to represent them in the B-tree. Unfortunately,

sizes of the objects, the differei, values are asymptotically  ere can be a large number of empty leaf nodes in the tree.
the same ad/. Furthermore, the dlffererM* aT‘dB* values  Aq an extreme example, suppose that all the objects lie in a
can also be shown to be asymptotically equivalentf@nd g qje cell of the minimum size. This would cause node splits
B, again, given some assumptions (but more modest ones thaf 5 jevels of the tree until we have all the objects in a single

N theeatf node at the lowest level. Thus, given a two-dimensional

” ; uadtree with a maximum depth af, we would have3w
entry in the B-tree occupies somewhat more space (at least f

h leaf nod hich ) q h mpty leaf nodes for the single non-empty leaf node. We can
the nonleaf nodes, which store pointers to nodes at the next, ;o this example to a treelohon-empty leaf nodes having

lower level). However, the difference in entry sizes is only by ;¢ a0 :

[ SIEE y a8(w — |log, k|)k empty leaf nodés or in general
a_small constgnt, SO botB;,_anst can be simplified taB for ad-dimensional quadtre2? — 1)(w — |log,. k| )k empty
without affecting asymptotic results. By the same token, thegaf nodes. In quadtrees that give rise to such a high number of
differences in entry sizes can be ignored for fiie values. empty leaf nodes, most internal nodes hae- 1 empty leaf

Ynodes as child nodes while only one child is either a non-empt
divided among the different activities (i.e., the sorting activity y i

. X - 2 - leaf node or an internal node. Thus, such quadtrees are rather
is performed concurrent with the quadtree building activity, 8., ntrived and unlikely to actually occur. A more reasonable
we suggest in Sect.5.4), we can simplify asymptotic bounds,qq,mption is that for the majority of quadtree nonleaf nodes,
by using)M/ for M, M,, andM,, the buffer sizes of each indi-

vidual activity. Nevertheless, in our experiments (see Sect. 8), 8 This is realized by having trees with one non-empty leaf node,

we found that a relatively modest buffer space was sufficientll of heightw — |log, k|, and a complete quadtree of heighig, |

for the quadtree buffer, while for the B-tree loading, buffering down to the roots of thesetrees.

B-tree as for sortingB, is slightly smaller tharB,, since each
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atleast two child nodes are non-empty. Given this assumptiorgata objects are points and is unlikely to occur if the “space”
an upper bound of abo@t+! empty leaf nodes for each non- between adjacent data objects is generally larger than their
empty leaf node can be established. Since the number of empsize. In general, however, we must make some assumptions
leaves tends to grow sharply with it is inadvisable to store about the distribution of the locations and sizes of non-point
empty quadtree nodes in the B-tree for quadtrees of dimensioabjects to be able to estimate the number of objects that in-
more than 3 or 4. tersect the flushing boundary. We will make the simplifying

It is interesting to consider the values &f, and N, rel- assumption that the data objects are all of the same size, and are
ative to NV for actual data sets. In Sect. 8 we use six data setequally spaced in a non-overlapping manner so that they cover
consisting of non-overlapping two-dimensional line segmentthe entire data space. In other words, for a two-dimensional
data, three of which are real-world data and three of which ar®bject, the bounding rectangle is approximately a square with
synthetic. With a splitting threshold of 8, the valueléf was  areal’, and thus side lengt ., whereL is the side length
at most about V' for the real-world data sets, while it was ¢ the square-shaped data space. The length of the flushing
about2.63.V for the synthetic data sets. The number of empty,ndary is at mosiz, since starting from its top-left comner,
leaf nodes was rather small, ranging from 2.2% to 4.7%of 4 boundary is monotonically non-decreasing in thaxis
for the re_al-worI(_JI (_Jlata sets and 3.2% to 3.8% for the syntheti%nd non-increasing in theaxis (refer to Fig. 7 for an exam-
ones. With a splitting threshold of 32, the valuendfranged 56\ Gijven the assumptions above, the number of objects in-

from 1.3N to 1.6 N, while the number of empty leaf nodes - , _
was negligible. In the experiments, we also used a real-worl&?rseded by the flushing boundary is at '“f%fgzv =2VN,

data set comprising two-dimensional polygons representin§ince the boundary is piecewise linear. For that many objects,
census tracts in the US. The spatial extent of these polygoniie quadtree buffer would be full if/ < 2v/N. Put another
had a wide range, the polygon objects touched each otherway, given a buffer size a8/, the buffer can be expected to
boundaries, and their boundaries were often very complex (upever fill if N' < M2 /4. For example, with a buffer capacity
to 3700 points per po|ygon, with an average of about 40) ThUSQf 10,000 objects, we can expect the buffer never to fill for a
this data set represents an extreme in the complexity of nordata file of up to 50 million objects. If each object occupies
overlapping two-dimensional data. With a splitting threshold 50 bytes, these numbers correspond to a buffer size of about
of 8, both N, and N, were aboutt N, while with a spliting ~ 500kB and a data file size of about 2.3 GB. _
threshold of 32 they were less thaiy (more precisely, about In general, for dimensions, the object’s bounding hyper-
1.9N). Thus, the values obtained faf, and N, were still rel-  rectangles (which are nearly hyper-cubes in shape) have a
atively close to the value oF, at least for the larger spliting Volume of aboutL? /N, so each of theidl — 1 dimensional
threshold. Finally, we experimented with highly overlapping faces has al — 1 dimensional volume of approximately
synthetic line segment data. Not surprisingly, the number of(Ld/N)% = Ld‘l/Nd%l. The flushing boundary has a
g-objects for each object is very high for such data. Even withd — 1 dimensional volume of at mogtZ.¢~!, so the number
arelatively large splitting threshold of 32, the value\gfwas  of objects intersected by it can be expected to be less than
aboutl 10N This strongly suggests that quadtrees are notvery dL?~" _ _ g5t Unfortunately, if N is smaller than
suitable for data of this nature, but the same can be said about’~!/N @
most other spatial index structures (such as the R-tree).  d?, this value is larger thatV. However, for the relatively
low-dimensional spaces for which quadtrees are practi¢al,
is typically much larger thar? so dAN“T is smaller than
7.1.2 Relationship betweel and N N. Furthermore, it is not common to be working with non-
. o . point objects in spaces of higher dimensionality than 3. For
In Sect.5.3, we point out that an object intersectinaf  three-dimensional space, we can expect a buffer of size
nodes can be subject to no more ti@ninsertions into the  never fill if N < (11/3)3/2. For example, a buffer capacity of
memory-resident quadtree (original and reinsertions), assumr0,000 objects can be expected to be enough to handle data
ing that an appropriate method of computing sort keys forfijles of up to approximately 190,000 objects (about 9 MB for
reinsertions is app_hed. Thus, the tot.al nL_meer of insertiongppjects of 50 bytes each). Although this may not seem as dra-
for IV data objects i§) (V). As we outlined in Sect.5.4.2, the  matic as in the two-dimensional case, the difference between
I/O cost of sortingV objects and reinserting (N, ) objectsis N and 7 is still more than an order of magnitude.
O(sN,y/Blogy %), wheres is less than 2 for all practical The experiments reported in Sect. 8 corroborate the above
values ofN, M, andB. As we argue in Sect. 7.1.N, is typi- argument, as we observed no reinsertions except when we
cally proportional taV, in which caseV, is also proportional  explicitly aimed at producing them (Sect.8.6). In the latter
to NV based on the above argument. Even in situations wherexperiments, we used a real-world data set of 260K line seg-
N, is much higher thatV, reinsertions can still be expectedto ments (employing a very small quadtree buffer) and a syn-
be relatively rare, since reinsertions only occur if the flushingthetic one of 10,000 highly overlapping line segments (each
algorithm fails to free any memory. The informal analysis be-of which intersected about 110 quadtree nodes on the aver-
low, although simplistic, suggests that the latter situation doesge). For the real-world data set, we found thigtwas only
not arise frequently. about 8% greater thalv. However, for the synthetic data set,
Recall that the flushing algorithm is unable to free any N, was more than 8 times greater thadh Nevertheless, a
memory if all the objects stored in the pointer-based quadtree
intersect the boundary (referred to fasshing boundarye- ° |t is possible to show that the maximum length is even less than
low) between flushed and unflushed nodes; e.g., the boundaugis (31./2) and the average length is still less)( but the boun®L
of the striped region in Fig. 7. This condition never arises if thesuffices for our purposes.
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multiple of 8 is actually modest in this case being thgtwas  presence of reinsertions (Sect.5.4.2), sorting remains nearly
110 times greater thalV, implying that the sorting cost was optimal, or close t@ (N, log Ny).
overwhelmed by the cost of quadtree construction and B-tree  Assuming for the moment that the original insertion algo-
loading. rithm is used instead of our improved one, the total cost of
building the pointer-based quadtree is roughly proportional to
the number of intersection tests. Recall that the intersection
7.2 1/0O cost tests are needed to determine whether an object should be in-
serted into a certain node. df, is a g-object of objech that
With the groundwork laid down in Sects. 7.1 and 5.4, it is aintersects a leaf node, the number of intersection tests on
straight-forward exercise to establish the 1/O cost of our bulk-iS at leas? - D,,, whereD,, is the depth of.. Thus, in the
loading method. In particular, recall that only the sorting andWworst case, the total number of intersection tests needed on
B-tree loading activities perform 1/O operations. We accountiS 2 - Dmax times the number of g-objects for To analyze
for each one separately. First, as we outlined in Sect.5.4.2his further, we resort to a gross simplification: assume that
the 1/0 cost of sortingV, objects in the face of reinsertions the objects are non-overlapping equal-sized squares in two di-
is 0(5% 1081/ /5 %), wheres is less than 2 for all practi- Mmensions, and that they are uniformly distributed over the data
cal values ofN, M, and B. Second, with the use of B-tree Space. In this simple scenario, the number of g-objects for an
packing, as presented in Sect.5.5, the 1/O cost of the B-tre@bjectisO(1), while the number of empty leaf nodes tends to
loading isO(%), since each B-tré& node in the MBIl is  bevery Iow. Thus, the expect_ed number_ofleafnod.es (and thus
written out only once (with a constant storage utilization) andall nodes) is roughly proportional . Since the objects are
never read. The overall 1/0O cost of our bu|k-|oading a|go- Uniformly diStribUted, the leaf nodes will tend to be at a sim-
rithm is therefor@(% + Sll\gs 108/ %). This simplifies ilar depth in the tree, so the average height is app_roximately
to O(% log N the lower bound on the 1/O cost of in- proportional tdog N. Therefore, the total number of intersec-
dexing e [o : ionilon tests isO(N log N)*, or roughlyO(N, log N,) without
g (e.g., see [9]), under the fairly reasonable assumption X L a) o .
outlined in Sect. 7.1 and the assumption thiat a constant. assuming constant ”“”.‘bef o_f q-objec_ts. Note that in our im-
One way to verify the above cost formula is to perform proved PMR quadtree insertion algorithm, the total number

experiments with data sets of various different sizes, and the f intersection tests is typically much smaller, and can poten-
attempt to fit the cost formula to the actual experiment results.Ially bg %S. S{nall as.)(thh). Ne_\/(?[rthﬁlessa soméat wor(l; IS Stt'” th
Given the results for the synthetic line segment data present pended intraversing the pointer-based quadtree down o the

in Sect. 8.2, we found that the 1/O cost (or, more precisely, th eaf level for each object. . .
portion of the execution time that was( due to |;)OS) shgwed. When traversing the pointer-based quadtree during flush-

an excellent fit to the formula log N + b + ¢, where the ing, most of the nodes visited are deleted from the tree, and
coefficients appeared to have more significance thaheing thus are never encountered during subsequent flushing opera-

nearly ten times greater. For the real-world line segment datgons' The visited nodes that are retained (or at I'east a sim'ilar
in the same section, the fit was also good, with the coeffidient numbe_r_ of nodes) are also visited by the insertion operation
overwhelming in significance. In other words, the actual I/O that |{1lgafted.th$]flush|:1g,f3(]) the Coft of wsmr;g th?rrﬁ IS atﬁ

cost appeared to be nearly lineaf\p with a smaller term that counted for in € cost of the Insertion operation. Thus, the

: : : total additional cost of tree traversal during flushing is propor-
was proportional taV log N. While the number of data points . 4 99
used in the curve fitting was admittedly too small (i.e., threetlonal to the number of quadtree nodex (V) in the simplified

in both cases) to draw a firm conclusion, it does nevertheles cenario aboi\alg).t[_)u;wgfﬁlusrflnrég, sgme \li'vork IS alstct)]_expenf_ed
provide some indication. or every g-object in the flushed nodes. However, this work is

accounted for in the cost of building the B-tree.

In the B-tree packing algorithm introduced in Sect. 5.5, the
CPU cost is proportional to the number of inserted iteMms,
This is due to the fact that each inserted item goes directly to

vzing th f lqorith hofth its final destination, without being subsequently moved, for a
In analyzing the CPU costof our algorithm, we treateach of the, o nqtant cost for each insertion into a B-tree leaf node. The

three activities separately (i.e., sorting, quadtree partitioninge gt of inserting an item that is destined for a B-tree nonleaf
and B-tree loading, as mentioned in Sect.7.1). First, observi, e is proportional to the node level relative to the leaves
that the CPU cost of sorting objects with the externalmerge o o (10g N,/ B) for insertions into the B-tree root node).
sorting algorithm givenin Sect. 5.4.1 isroughly proportional to(?owever, since the number of items on each level decreases

7.3 CPU cost

the num_ber of comparison operations. The average num.b(.a_r eometrically inB, the average cost per insertion remains con-
comparison operations per object when constructing the initiaf, Hence, the total CPU cost of B-tree packing sV, ).

runs 'S.O(log M). Each merge step gives rise @(log %) To summarize, we saw that the asymptotic CPU cost was
comparisons for each object on average since at hosB roughly O(N, log N,) for sorting the objects)(N, log N,)

runs are merged each time. Thus, lrecgll;\r;g that the numbeg, constructing the quadtree in memory (given our simplify-
of merge steps i®(log,;, s 77) = 0(%), the overall  jng assumptions), an@(IV;,) for building the B-tree. Thus,
number of comparisons per object on average (kg M + we see that in an ideal situation (i.e., if the data distribution

log(N/M) log 4) = O(log M +log ¥) = O(log N), and

log(M/B) 7% B oM . 1 of for arbitrary dimensions, 24 f Id be i

the total cost iO(N log N'), which is optimal. Even in the Of course, for arbitrary dimensions, i factor would be in-
volved. However, recall that the quadtree is only used for relatively

10 The same would hold for the Btree. modest values aof.
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is not too skewed and the assumptions outlined in Sect. 7.inaximum depth of the quadtree was set to 16 in most of the
hold), we can expect the total CPU cost of our bulk-loadingexperiments, and the splitting threshold in the PMR quadtree
algorithm to be roughiO (N log N), or equal to the lower to 8. Larger splitting thresholds make our bulk-loading ap-
bound on the CPU cost of indexing. proach even more attractive. However, as 8 is a commonly
We also verified the above derivation by correlating with used splitting threshold, this is the value we used. B-tree node
experimental results, in the same manner as we showed igsize was set to 4kB, while node capacity varied between 50
Sect.7.2. For the CPU cost, however, we found that the coand 400 entries, depending on the experiment. The data files
efficientb when fitting toaN log N + bN + ¢ was an even used in the experiments are available online [30].
stronger influence than we found for the 1/0 cost, exceeding The sizes of the data sets we used in our experiments were
a by a wide margin. This suggests that the CPU cost for thigperhaps modest compared to some modern applications. How-
kind of data is essentially proportional 26. ever, we compensated for this by using a modest amount of
buffering, limiting the space occupied by the pointer-based
quadtree to 128 kB. The flushing algorithm was always able
8 Empirical results to free substantial amounts of memory (typically over 90%
but never less than 55%), except in experiments explicitly de-

Below, we detail the results of a number of experiments whichSigned to make it fail. In all other experiments, this level of
show the performance of the PMR quaditree bulk-loading techbuffering proved more than adequate and alarger buffer did not
nique presented in this paper. The remainder of this section i§nprove performance. The sort buffer was limited to 512kB. A
organized as follows: In Sect.8.1, we present various detail§0rt buffer size of 256 kB increased running time only slightly
about the experimental setup. In Sect.8.2 we go into consid(typically less than 3% of the total time). For the B-tree, we
erable detail on bulk-loading two-dimensional line segmentéxplored the effect of varying the buffer size, buffering from
data, as well as describe the specifics of the PMR quadtred>6 B-tree nodes (occupying 1MB) up to the entire B-tree.
loading methods used in these and subsequent experimenfz0r the bulk-loading methods, however, only one B-tree node
In Sect.8.3 we repeat the same experiments in SAND, ou@t each Ievel_ needed to be buffered, as dgscrlbed in Sect.5.5.
prototype spatial database system, in order to examine the ef- I reporting the results of the experiments, we use ex-
fects of using the object table approach. In Sects. 8.4 and 8.§cution time. This takes into account the cost of reading the
we show how well our method does with other types of data data, sorting it, establishing the quadtree structure, and writing
multidimensional points and two-dimensional polygons, againPut the resulting B-tree. The reason for using execution time,
using SAND. In Sect.8.6, we study the performance of thefather than such measures as number of comparisons or /O
algorithm when no node can be flushed and reinsert freein§Perations, is that no other measure adequately captures the
must be used. In Sect.8.7 we examine how well our bulk-Overall costof the loading operations. For each experiment, we
insertion algorithm for PMR quadtrees performs. In Sect. 8.8 averaged the results of a number of runs (usually 10), repeat-
we establish how our bulk-loading algorithm compares to twoi"d until achieving consistent results. As a result, the size of

bulk-loading techniques for R-trees. Finally, in Sect.8.9 wethe 99% confidence interval for each experiment was usually

1%. In particular, the confidence intervals are always smaller
than the differences between any two loading methods being

8.1 Experimental setup compared.

We implemented the techniques that we presented in Sects. 5

in C++ within an existing linear quadtree testbed (describeds.2 2D line segment data
in Sect.3.3). Our quadtree implementation has been highly

tuned for efficiency, but this primarily benefits dynamic PMR ) . . . .
guadtree insertions (i.e., when inserting directly into the MBI). In the first set of experiments, we used twq-dlmensmnal Ime_
Thus, the speedup due to bulk-loading would be even grea,[esregment data, both real-world and synthetic. In these experi-

than we show had we used a less tuned implementation Thidents, we stored the actual coordinate values of the line seg-

is partly the reason why we obtained lower speedup than rements in the quadtree. The real-world data consists of three

ported in [31]. The source code was compiled with the GNUdata sets from the TIGER/Line File [17]. The first two con-

C++ compiler with full optimization (—O3) and the experi- tain all line segment data — roads, rail lines, rivers, etc. — for

ments were conducted on a Sun Ultra 1 Model 170E machine//ashington, DC and Prince George’s County, MD, abbrevi-

rated at 6.17 SPECint95 and 11.80 SPECfp95 with 64 MB of*€d b\‘j\'/o""h"’.‘s “DC” Sr(‘:d “PG”. The thi{)%cor.‘tai”dsugadg in ¢§
memory. In order to better control the run-time parameters,wéantlre ashington, metro area, abbreviate 0ads . 1he

used a raw disk partition. This ensures that execution times res_ynthetic data sets were constructed by generating random in-

flect the true cost of 1/0, which would otherwise be partially finit:’-_g Iinefstir? a magpertthat if indi&en_?ﬁnt oiltranslatiolr) an((jj
obscured by the file caching mechanism of the operating sy scaling of the coordinate system [44]. These lines are clippe

tem'?. The use of raw disk partitions is another reason welo the map area to obtain line segments, and then subdivided

obtained lower speedup than in [31], since the reduction irFurther at intersection points with other line segments so that
CPU cost is much greater than the réduction in 1/0O cost. Th tthe end, line segments meet only atend points. Using these
data sets enables us to get a feel for how the quadtree load-

12 1n other words, in our experiments, /O operations block the CPUINg methods scale up with map size on data sets with similar
until their completion. characteristics.
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Table 1. Details on line segment maps

Number of  Avg. g-edges B-tree size (nodes)
Data set line segments  per segment  File size (kB) Min Max
DC 19,185 2.08 384 301 532
PG 59,551 1.86 1176 843 1529
Roads 200,482 1.76 3928 2691 4859
Rand64K 64,000 2.61 1264 1259 2152
Rand128K 128,000 2.62 2512 2525 4322
Rand260K 260,000 2.63 5088 5146 8674

Table 2. Summary of PMR quadtree loading methods used in experiments

Method  B-tree buffering Quadtree bulk-loading Sorting
BB-L yes (unlimited) no no
BB-M yes (1024 nodes) no no
BB-S yes (256 nodes) no yes
QB-75 limited yes £ 75% B-tree storage utilization) yes
QB-100 limited yes£ 100% B-tree storage utilization) yes

Table 1 provides details on the six line segment maps: theot make use of this in our experiments, since it has the undesir-
number of line segments, the average number of g-edges pable property of causing underfull nodes. For the bulk-loading
line segment, the file size of the input files (in kB), and the method, the B-tree packing algorithm (see Sect.5.5) was set to
minimum and maximum number of nodes in the MBI B-treesyield approximately 75% (“QB-75") and 100% (“QB-100")
representing the resulting PMR quadtrees. Recall that a g-edgetorage utilization. In this experiment, as well as most of the
is a piece of a line segment that intersects a leaf block. Th@thers, we used the distribution sort algorithm mentioned in
average number of g-edges per line segment is in some senSect. 5.4.

a measure of the complexity of the data set, and a sparse data Table 3 shows the execution time for loading PMR
set will tend to have a lower average. The number of itemsyuadtrees for the six data sets using the five loading methods.
in the resulting B-tree is equal to the number of g-edges plug-igure 13 presents this data in a bar chart, where the execution
the number of white nodes. Notice the large discrepancy irtimes are adjusted for map size; i.e., they reflect the average
the B-tree sizes, reflecting the different storage utilizationscost per 10,000 inserted line segments. Two conclusions are
achieved by the different tree loading methods. In the smallesimmediately obvious from this set of experiments. First, the
trees, the storage utilization is nearly 100%. In the trees builtarge difference between “QB-75" and “BB-L", which both
with the dynamic PMR quadtree insertion method, the storagevrite each B-tree block only once (“QB-75" due to B-tree
utilization ranged from 65% to 69%, and thus these trees wer@acking and “BB-L" due to unlimited B-tree node buffering)
about 45% larger than the smallest trees. and have a similar B-tree storage utilization, shows clearly that

Table 2 summarizes configurations used for loading thequadtree bulk-loading achieves large savings in CPU cost. Sec-
PMR quadtree in the experiments. Three of them use dyend, the dramatic increase in execution time between “BB-S”
namic quadtree insertion (i.e., updating the MBI directly) with and “BB-M", in spite of the latter using four times as large
varying levels of buffering in the MBI B-tree (denoted “BB- a B-tree buffer, demonstrates plainly that unsorted insertions
L", “BB-M", and “BB-S”), while two use our quadtree bulk- render buffering ineffective, especially as the size of the re-
loading method (denoted “QB-75" and “QB-100"). In one of sulting B-tree grows with respect to the buffer size. The reason
the B-tree buffering configurations, “BB-S”, we sorted the ob- why the execution time of “BB-M" is lower for the real-world
jects in Z-order based on their centroids prior to insertion intodata sets than the synthetic ones is that the real-world data sets
the quadtree. This has the effect of localizing insertions intohave some degree of spatial clustering, while the synthetic data
the B-tree within the B-tree nodes storing the largest existingsets do not. The cost of sorting in “BB-S” is clearly more than
Morton codes, thus making it unlikely that a node is discardedbffset by the saving in B-tree /O, even though the storage
from the buffer before it is needed again for insertions. Thus utilization in the B-tree becomes somewhat worse. Within the
the sorting ensures that the best use is made of limited buffesame loading method, the average cost tends to increase with
space. The drawback is that the storage utilization tends to bimcreased map size. This is most likely caused by increased
poor, typically about 20% worse than with unsorted insertions average depth of quadtree leaf nodes, which leads to a higher
Since deletions occur in the B-tree and insertions do not arriveverage quadtree traversal cost and more intersection tests on
strictly in key order, the regular B-tree packing algorithm could the average for each object. The rate of increase is smaller
not be used. When we adapted the B-tree packing approach for quadtree bulk-loading (“QB-75" and “QB-100"), reflect-
handle slightly out-of-order insertions (see Sect.5.5), and seing the fact that quadtree traversals are more expensive in the
it to yield storage utilization similar to that of unsorted inser- MBI than in the pointer-based quadtree used in quadtree bulk-
tions, the speedup was at best only slight. Nevertheless, we doading. Curiously, the average cost for Roads is smaller for all
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Fig. 13. Execution time per 10,000 line segments for building
guadtrees for the six data sets
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Fig. 15.Proportion of execution time spent on 1/O operations for the

five loading methods than that of R64K, even though the sizdive loading methods for line segment data
of the R64K data set is smaller, and so is the average depth of
leaf nodes in the resulting quadtree (8.53 for R64K vs 9.24 for
Roads). The reason for this appears to be primarily the largeincreases with larger data sizes as B-tree buffering becomes
average number of g-edges per inserted line segment for tHess effective on unsorted data.
R64K data set (see Table 1).

A better representation of the experiment results for com-
paring the five different loading methods is shown in Fig. 14.8.3 Line segment data in SAND
The figure shows the speedup of “QB-100", quadtree bulk-
loading with nearly 100% B-tree storage utilization, comparedin the first set of experiments, we stored the actual geometry
to the other four methods. Compared to “BB-L" and “BB-S”, of the objects in the PMR quadtree. As mentioned in Sect. 3.3,
the speedup of “QB-100" is by a factor of between three andour quadtree implementation also allows storing the geometry
four, and the speedup increases with the size of the data sejutside the quadtree. The second set of experiments was run
Compared to “BB-M”, the speedup is by a factor of at leastwithin SAND, our spatial database prototype, using the same
four, and up to over 12 when “BB-M" performs the most B-tree data. This time, we stored only tuple IDs for the spatial ob-
I/0. Overall, “QB-75" was about 20% slower than “QB-100", jects in the quadtree, rather than the geometry itself. Storing
which was to be expected since the MBI B-tree produced bythe geometry in the quadtree with SAND yields results similar
“QB-75" is about 33% larger. to that of our previous experiments, the difference being that

The proportion of the execution time spent on 1/O oper- SAND also must store the tuple ID, thereby making for slightly
ations is shown in Fig. 15. We obtained these numbers byarger B-tree entries and lower fan-out. An additional differ-
recording the 1/O operations performed while building a PMR ence is that in the experiments above, we used 4-byte integers
guadtree, including reading the data, and then measuring thier the coordinate values of the line segments, while SAND
execution time needed to perform the I/O operations themuses 8-byte floating point numbers for coordinate values. For
selves. For the loading methods that use sorting, we includéhis set of experiments, we used the configurations “BB-L”",
the I/O operations executed by the sort process. For B-treEBB-S”, and “QB-100", described in Table 2. In keeping with
buffering, except for “BB-M”, the relative I/O costis small, or the modest buffering in the latter two, we only buffered 128
only about 20-30%, compared to between 65% and 75% foof the most recently used disk pages for the relation tuples,
quadtree bulk-loading. This shows that the savings in execuwhere each disk page is 4kB in size, while for “BB-L" we
tion time yielded by quadtree bulk-loading are, for the mostused a buffer size of 512 disk pages. The PMR quadtree in-
part, caused by reduced CPU cost (the time for performing I/Gdexes were built on an existing relation, which consisted of
is only 1.3-2.9s per 10,000 insertions for all but “BB-M"). only a line segment attribute, and where the tuples in the rela-
For “BB-M", the proportion of time spent on 1/O gradually tion were initially inserted in unsorted order. Since the objects
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Fig. 16. Speedup of “QB-100" compared to the other methods for Fig. 17. Execution time for building PMR quadtrees for point data

line segment data, using object table approach sets of varying dimensionality (using “BB-L’, “BB-S”, and “QB-
100", described in Table 2) and a quadtree bulk-loading algorithm
specialized for point data (denoted “PB-100")

were not spatially clustered in the relation table, objects that

are next to each other in the Morton order are typically not 45 X BBL
stored in close proximity (i.e., on the same disk page) in the o BB-S
relation table. This had the potential to (and did) cause exces- 4?1
sive relation disk I/O during the quadtree construction process, ;- | \
when we inserted in Morton order (i.e., in “BB-S” and “QB-

3.0

25 \

100"). A similar effect arises for objects in a leaf hode being
split, regardless of insertion order. Thus, in “BB-S” and “QB-
100” we built a new object table for the index, into which the &
objects were placed in the same order that they were inserted 20|
into the quadtree; this effectively clusters together on disk s
pages objects that are spatially near each other. When measur-~
ing the execution time for the quadtree construction, we took 1.0 P e e A A Q‘;’gﬁ;ggg
into account the time to construct the new object table.
Figure 16 shows the speedup of “QB-100" compared toFig. 18.Speedup of “QB-100" compared to “BB-L" and “BB-S” for
“BB-L” and “BB-S” for building a PMR quadtree index in point data sets of varying dimensionality
SAND for the line segment data, using the object table ap-
proach described above. This time, the speedup for “QB-100" , _ . o .,
compared to “BB-S” is somewhat smaller than we saw earliercompare using the loading methods “BB-L", “BB-S”, and

being a little less than 3 instead of 3 to 4 before, but the sameQB-100" in Table 2, in addition to a quadtree bulk-loading

general trend is apparent. The smaller speedup is due to tHfgOrithm specialized for point data (denoted below by “PB-
fact that the execution cost of activities common to the two is100")- Figure 17 shows the execution time ?f bwldln? the
higher now than before, since the coordinate values in thesguadtree, while Fig. 18 shows the speedup of "“QB-100" com-
experiments were larger (8 bytes vs 4 bytes before), leading tgared to “BB-L" and “BB-S”. The speedup is considerable for

ahigher I/O cost for reading and writing line segment data. Orfn€ lowest dimensions (factors of about 4 and 2.5 for "BB-L”
the other hand, “BB-L” is now considerably slower in com- @nd “BB-S”, respectively), but becomes less as the number of
parison to “QB-100” for the “R128K” and “R260K” data sets, dimensions grows. However, this is notbecause quadtree bulk-
which is caused by a much larger amount of relation 1/O, in!oadmg is inherently Worse_for the larger dlmenspns. Rather,
spite of “BB-L” having four times as large a buffer. This clearly It IS because the cost that is common to all loading methods
demonstrates the value of using a spatially clustered object t4disk I/O, intersection computations, etc.) keeps growing with
ble, as is the case in “QB-100" and “BB-S”. Interestingly, the the number of dimensions. Observe that with our techniques,

clustering was obtained as a by-product of sorting the object@ulk-loading point data into a PMR quadtree takes nearly the
in Z-order, providing a further example of the importance of same time as with a quadtree bulk-loading method specialized

eedup of QB-10

8.4 Multidimensional point data 8.5 Complex spatial types (polygons)

Next, we examine the effect of the dimensionality of the spacdn the next set of experiments we built PMR quadtrees for a
on the performance of our bulk-loading methods, using synpolygon data set consisting of approximately 60,000 polygons.
thetic point data sets of 100,000 points each, in dimension3he polygons represent census tracts in the United States and
ranging from 2 to 8. The sets of points form 10 normally- contain an average of about 40 boundary points each (which
distributed clusters with the cluster centers uniformly dis-meant that each data page contained only about six polygons
tributed in the space [20]. We used SAND for these experi-on the average), but as much as 3700 for the most complex
ments, storing the point geometry directly in the index. Weones, occupying over 40 MB of disk space. We performed this
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experiment in SAND with the same loading methods as be- 200 MBBL
fore. This time, we used a splitting threshold of 32, leading to Eggjw

an average of about two g-objects for each object. In contrast, 1e0
the complex boundaries of the polygons led to an excessively
large number of g-objects for a splitting threshold of 8, about? ;,
four for each object on the average (however, the speedug
achieved by our bulk-loading algorithm over the dynamic in- &
sertion method was better with the lower threshold value). Asg
polygons have different numbers of edges, we had to use thg
object table approach, where we only store object references
in the quadtree.

In the first experiment with the polygon data, the polygon O polys (unclust) " Polys (clust) Rectangles

relation was not spatially cIu;tered. I_n this context, spatialFig 19. Execution time for building PMR quadirees for polygon
%Létssteirl;lgg_]ocgggft:ss i;hgoﬂgsgef!g%_%k?,tglr?de%gfg(r)t,!nlg:]otrﬁ iZb(_jata set (labels of bars denote loading methods from Table 2). “Polys
] ’ > DY L o unclust.)” denotes building the quadtree on an unclustered polygon
da.ta’ more l/Os were required for building a spatially clustgre elation, “Polys (clust.)” denotes building it on an spatially clus-
object table for BB'.S and Q_B-lOO than when accessing tgreq polygon relation, while “Rectangles” denotes building it on the
the unclustered relation table directly. To see why this is so, W&ounding rectangles of the polygons

observe that when building a new clustered object table for a

large data set, the sorting process involves reading in the data,

writing all the data.to temporary files at Ieast_once, reading itjg bounding rectangle. The geometry of the bounding rectan-
back in, and then finally writing out a new object table. Thus,geS was stored directly in the quadtree. Of course, the PMR

utio

80

40 1

at least four 1/Os are performed for each data page, half ofaqirees for the bounding rectangles are somewhat different
whlch are write operat|.ons. In contrast,.when th(_e unclusteregrom those for the polygons themselves, since some leaf nodes
relation is accessed directly, the data items being sorted arg,,y intersect a bounding rectangle but not the corresponding
the tuple IDs, so the sorting cost is relatively small. Neverthe- olygon. In both cases, “QB-100" and “BB-S” take much less
less, in our _experiment, this caused each data page to be regq]e to build the PMR quadtree, and the speedup of “QB-100"
over three times on the average for “BB-S” and "QB-150"  ompared to “BB-S” is by a factor of 2. However, the speedup
The difference pe_tween the polygon datq and the line segmeny; “QB-100" over “BB-L" is not quite as high when building
data, where building a new clustered object table was advanye quadtree on the clustered polygon relation (by a factor of

tageous, is that in the polygon relation there is a low averagq 7) aswhen building it on the bounding rectangles (by a factor
number of objects in each data page. Thus, the average /O cogf 2.5).

per object is high for the polygon data when building a new
object table, whereas the penalty for accessing the unclustered
object table directly is not excessive as there are relatively few . .
distinct objects stored in each page. As a comparison, whef-6 Reinsert freeing
using “BB-L" to build the PMR quadtree, which does not sort
the data and for which we used a large relation buffer of 2048n Sect. 5.3 we described a strategy we termed reinsert freeing
data pages (occupying 8 MB), the overhead in data page aghat is used if the flushing algorithm fails to free any mem-
cesses was only about 17% (i.e., on the average, each pagey. Although reinsertion freeing may seem somewhat com-
was accessed about 1.17 times). plicated, we actually found it to be fairly simple to imple-
The first column (“Polys (unclust.)”) in Fig. 19 shows the ment. Furthermore, as shown in the next set of experiments,
execution times for the experiment described above. The largeeinsertion freeing adds a relatively small overhead to the bulk-
amount of relation 1/O resulted in “QB-100" being nearly loading process.
twice as slow as “BB-L". Nevertheless, “QB-100" was slightly In these experiments, we used two synthetic line segment
faster than “BB-S” (by 10%). In order to explore the additional data sets, and stored their geometry in the PMR quadtree. The
costincurred by “QB-100" and “BB-S" for repeatedly reading first data set, R260K, was described earlier. In order to cause
many of the data pages (due to the sorted insertions), we meé#he flushing algorithm to fail when building a PMR quadtree
sured the cost of building a PMR quadtree when the polygorfor R260K, we set the quadtree buffer size in the bulk-loading
relation was already spatially clustered (“Polys (clust.)”) asmethod to only 8kB. The second data set, R10K, consists
well as building it on the bounding rectangles of the polygonsof 10,000 line segments whose centroids are uniformly dis-
(“Rectangles” in Fig. 19). In the former case, we did not needtributed over the data space, and whose length and orientation
to sort the data again for “QB-100" and “BB-S”, thus only in- are also uniformly distributed. Thus, this data set exhibits a
curring 29% overhead in data page accesses, while in the lattégsirge degree of overlap and therefore a large number of g-
case, each polygon was accessed only once, i.e., to computgliges, causing the MBI B-tree to occupy a large amount of
disk space. For instance, the B-tree resulting from building a
13 Each data page is read once when preparing to sort the polygon§luadtree for R10K with “QB-100" occupied over 8,000 nodes
since their bounding rectangles must be obtained. The remaining tw@" about 32MB. For R10K, we used a splitting threshold of
I/Os per page (out of the three we observed on the average for eadh?, as a lower splitting threshold led to an even higher number
data page) occur when each polygon is initially inserted into theof g-edges (the speedup achieved by quadtree bulk-loading
quadtree or when a node is split. was better at lower splitting thresholds, however). For both
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Fig. 20.Speedup of “QB-100" compared to the other methods whenFig. 21. Execution time for bulk-loading (indicated by the bars la-

re-insertions are needed (labels of bars denote loading methods frotreled “BL”) and bulk-insertions (indicated by the bars labeled “Bl”)

Table 2) for two pairs of data sets. The portions of the bars above the bro-
ken lines indicate the excess I/O cost, i.e., the /O overhead of the
combined bulk-loading/bulk-insertion operations compared to bulk-

] . loading the combined data set. “R” and “W” denote the “Roads” and
data sets, we used the merge sort algorithm to sort the object&yater data sets, respectively

since it is better suited for handling reinsertions.
The number of reinsertions for R260K was about 21,000,

while it was over 72,000 for R10K (i.e., each object was rein-timel4: another solution would be to store the existing quadtree
serted over seven times on the average). In spite of such gnd the combined quadtree on different disks.
large number of reinsertions, Fig. 20 shows that quadtree bulk-  Figyre 21 shows the execution time required to bulk-load
loading yields significant speedup over B-tree buffering. Inang pulk-insert the pairs of data sets in either order, as well as
fact, B-tree buffering was so ineffective for R10K, that we in- {5 pylk-load the combined data set. In the figure, the notation
creased the buffer size of “BB-S” to about 3,000 B-tree nodesX’ Y means that firsi is bulk-loaded, and thel is bulk-
B-tree. For a data set of 20,000 line segments constructed iy | y means that the union of the two sets is bulk-loaded.
the same way as R10K, the speedup for “QB-100" compared-ne execution times of the bulk-load (“BL”) and bulk-insertion
to “BB-L" was by a factor of more than 8, so it is clear that («g|") operations are indicated separately on the bars in the
guadtree bulk-loading with reinsertions scales up well Wlthfigure_ In addition, the topmost portion of each bar, above
datasize, even if the data ha; extreme amount o.f overlap. Witfhe proken line, indicates the excess /O cost (see Sect.6),
“QB-100", it took about 4.5 times as long to build the PMR j ¢ ' the cost of writing (during the bulk-load) and reading
quaditree for the 20,000 line segment data set as for R10K, bylyring the bulk-insertion) the intermediate PMR quaditree.
the larger data set also occupied nearly four times as mucjearly, the excess 1/O cost represents nearly all the excess
disk space. For the more typical data set, R260K, the speedughst of the bulk-insertion algorithm in terms of execution time.
achieved by “QB-100" is only slightly lower than what we |nterestingly, the remainder of the excess cost was very similar
saw in Fig. 14, where reinsertions were not needed. in all cases, amounting to 7-11% of the execution time of bulk-
loading the combined data sets. Since the pairs of data sets had
different relative space coverage and size, this demonstrates
that the performance of our bulk-insertion algorithm is largely
8.7 Bulk-insertions independent of the space coverage of the bulk-inserted data in
relation to the existing data, as well as the relative sizes of
the existing and new data sets (with the exception that the
) ] ] excess /O cost is proportional to size of the existing data set
The next set of experiments investigates the performance gf, relation to the combined data set).
PMR quadtree bulk-insertions (see Sect. 6). We used two pairs  |n Sect.6.3 we discussed an alternative, update-based,
of line segment data sets. In the first, comprising the “DC”yariant of our bulk-insertion algorithm that updates the ex-
and “PG” line segment data sets, the new objects cover apting quadtree, as opposed to the merge-based approach that
unoccupled area in the existing quadtreg. In t_he second,_ thguilds a new quadtree on disk. Figure 22 shows the perfor-
new objects are interleaved with the objects in the existingmance ofthe update-based bulk-insertion variant relative to the
quadtree. In this pair, the line segments denote roads (“Roadsnerge-based bulk-insertion algorithm, as well as that of using
with 200,482 line segments) and hydrography (*Water” with gynamic insertions into the existing quadtree using “BB-S”. In
37,495 line segments) in the Washington, DC, metro areaan attempt to make a fair comparison we made the alternative
For the bulk-insertions, we found that interleaved read anqrnethods as efficient as possib|e_ In particu|ar, for the update_

write operations (to the existing quadtree and the combineghased bulk-insertion variant, we used the adapted B-tree pack-
guadtree, respectively) caused a great deal of I/O overhead due

to disk head seeks. To overcome this effect, we used a small B4 Such multi-block 1/0s are commonly used in bulk-loading and
tree buffer of 32 nodes (occupying 128 kB) for the combinedbulk-insertion methods to amortize the cost of disk seeks over mul-
guadtree, which allowed writing to disk multiple nodes at atiple blocks; e.g., [47].
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Fig. 22. Execution time of two alternative bulk-insertion methods Fig. 23. Relative performance of two R-tree bulk-loading algorithm
relative to the merge-based PMR quadtree bulk-insertion algorithmcompared to “QB-100" (“P200” denotes the Hilbert-packed R-tree
“Update” denotes the update-based variant of our algorithm, whilealgorithm with a fan-out of 200, while “B50” denotes the buffer-tree
“BB-S” denotes dynamic insertions (see Table 2) approach with a fan-out of 50)

ing approach (see Sect.5.5), with a split fraction of 90%, and

the existing quadtree had a storage utilization of 90%. For

“BB-S”, the existing quadtree had a storage utilization of 75%

(larger values caused more B-tree node splits). Note that in ) .

Fig. 22, we only take into account the bulk-insertion of the /O cost is much less. Note that virtual memory page faults
new data set and not the bulk-loading of the existing one. ThéVere not a major issue, since the size of the R-trees (at most
two alternative approaches for bulk-insertion, that both update?7 MB) was significantly less than the size of physical memory
the existing quadtree, are clearly much more sensitive to thé64MB). In order to obtain good space partitioning, we used
relative space coverage of the new data set with respect to tH8e R'-tree [12] insertion rules, except that no reinsertions
existing one than our merge-based algorithm. In particularvere performed as they are not supported by the buffer-tree
when the new data set occupies an area that is not covergdPproaches. Since 4kB is the physical disk page size in our
by the existing data set (as for “PG,DC”), the update-basedystem, we used R-tree nodes of that size, yvh|ch allow a fan-
methods work much better than when the new data set is inteRut of up to 200. However, a fan-out of 50 is recommended
leaved with the existing data (as for “R,W"). In the latter case,in [12], and this is what we used in the buffer-tree approach. A
a higher fraction of the nodes in the MBI B-tree are affectedfan-outof 200 led to a much worse performance, by more than
tion, the update-based methods are also less effective wheqfher hand, we use a fan-out of 200, as lower levels of fan-out
the new data set is larger than the existing data set. Neverthégad to a higher 1/O cost. The two methods are at two ends
less, if we know that bulk-insertions involve data sets that are?f @ spectrum with respect to execution time. For the Hilbert-
mostly into unoccupied regions of a relatively large existing Packed R-tree, nearly all the time is spent doing I/O, whereas

quadtree, then the update-based variant of our bulk-insertiofP! the buffer-tree approach, nearly all the execution time is
algorithm may be preferable. CPU time. It is important to note that the quality of the space

partitioning obtained by the Hilbert-packed R-tree approach
is generally not as high as that obtained by tHetiee inser-
: tion method. This is in marked contrast to our quadtree PMR
.8 R- Ik-1 X ) ;
8.8 R-tree bulk-loading quadtree bulk-loading algorithm, which produces roughly the

. . m rtitionin namic insertions (the variation
It is interesting to compare the performance of our bulk- >2M'e space partiioning as dynamic insertions (the variatio

loading algorithm to that of existing bulk-loading algorithms Is due to different insertion order).

for another commonly used spatial data structure, the R: Figure 23 shows the execution time performance of the
y SP ; ' .two methods for bulk-loading R-trees for the data sets listed in
tree. We chose two bulk-loading algorithms for the R-tree:

1) Hilbert-packed R-tree [37] with the space partitioning im- Table 1 relative to the execution time of “QB-100". The buffer-

) Ok ; tree technique with Rtree partitioning (“B50") took ten to
provements of [21; and 2) a very simplified version of the fourteen times as much time as building the PMR quadtree.

buffer-tree approach of [9, 15]. For ease of implementation Wﬁ-|owever, building the Hilbert-packed R-tree (“P200” in the

usgd.an unlimit<_ad bufter s!ze for the buffer-tree approach,_thusfigure) took less time, or about 50%—-80% as much as building
building the entire R-tree in memory. The nodes were written :

; : PMR quadtree. This was partly due to the small CPU cost
to disk once the tree was fuI.Iy constructed. The CPU time Ofgf the Hilbert-packed R-tree method, but primarily due to the
our approach is at most equivalent to that of [9,15], while thefact that in the PMR quadtree each object may be represented

15 We only used the first of their improvements, wherein each noddn more than one leaf node and thus stored more than once
is not quite filled to capacity if the addition of an object causes thein the MBI's B-tree. Thus we see that the price of a disjoint
bounding rectangle of the node to enlarge too much. The use of respace partitioning, which is a distinguishing feature of the
splitting would involve more CPU cost, while the I/O cost would stay PMR quadtree, is relatively low when using our bulk-loading
the same or increase. algorithm.
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8.9 Summary of the extra cost of first bulk-loading the existing data and then
bulk-inserting the new data lies in I/O operations, while the

Our experiments have confirmed that our PMR quadtree bulkoverhead due to larger CPU cost was minor. Furthermore, our
loading algorithm achieves considerable speedup compared fy!lk-insertion algorithm is more robust and generally more
dynamic insertions (i.e., when updating the MBI directly). The €fficient than an update-based variant of the algorithm that
speedup depended on several factors. One is the effectivenédgdates the existing quadtree instead of merging the exist-
of buffering the B-tree used in dynamic insertions. When theind quadtree with the quadtree for the new data. Neverthe-
nodes in the B-tree were effectively buffered, ourbulk-loading'ess’ the update-based variant is more efficient in certain cir-
algorithm usually achieved a speedup of a factor of 3 to 4. Thiumstances, namely when the amount of new data is rela-
speedup was achieved, for the most part, by a dramatic redudively small and covers an unoccupied region in the existing
tion in CPU time. In fact, in some experiments, only aboutduadtree. _ _
25-35% of the execution time of our bulk-loading algorithm ~ Our bulk-loading algorithm for PMR quadtrees compared
was attributed to CPU cost. However, when B-tree buffering isfavorably to bulk-loading algorithms for R-trees. In particu-
ineffective so that B-tree nodes are frequently brought into th@": the price paid for the disjoint partitioning provided by the
buffer and written out more than once in dynamic insertions, PMR quadtree is relatively low. An R-tree algorithm having
our bulk-loading approach can achieve substantially higheVery low CPU cost (the Hilbert-packed R-tree) was at most
speedups (up to a factor of 12 in our experiments). In sity-about twice as fast as our algorithm. Most of the difference
ations requiring the use of reinsert freeing, our bulk-loadingCan be explained by higher I/O cost for PMR quadtree bulk-
algorithm was at worst only slightly slower than in situations /0ading due to the presence of multiple g-objects per object.
where the flushing algorithm was sufficient. When_ we used the obje_ct table approach in th_e PMR quadtree,
Another factor affecting the speedup of the bulk-loading " which the actu_al objects are stored outside the quadtree
algorithm is the relative importance of cost factors common(l-€:» €ach object is stored only once regardless of the num-
to any PMR quadtree construction method, such as the co&ter Of g-objects), the fastest R-tree bulk-loading algorithm
of reading the input data and of intersection tests. As thes&/as typically only 5-30% faster than our PMR quadtree bulk-
common cost factors become a larger portion of the total costo@ding algorithm. Moreover, R-tree bulk-loading algorithms
the potential for speedup diminishes. Indeed, we found thahat €xpend more CPU time to achieve better space partition-
for point data, the speedup achieved by our PMR quadtre#d (€.g., [9,15] with R-tree insertion rules) can be much
bulk-loading approach diminishes as the number of dimenSlower than our algorithm.
sions increases. Nevertheless, our approach was nearly as fast
as a quadtree bulk-loading method specialized for point data,
indicating that the overhead (in terms of execution time) dueg concluding remarks
to the use of the pointer-based quadtree and the associated
flushing process in the PMR quadtree bulk-loading algorithm . o . ) )
is minor. There are three typical situations in which an index must be
Our experiments with complex polygon data showed thatupdated: l)a new_index must be built frpm scratch on a set of
a lack of spatial clusterif§ in a spatial relation has an espe- objects (bulk-loading); 2) a batch of objects must be inserted
cially detrimental effect on the amount of I/O when the spatialinto an existing index (bulk-insertion); and 3) one object (or
objects occupy a large amount of storage space (which mear@ly @ few) must be inserted into an existing index (dynamic
that few objects fit on each data page). Without spatial clusterinsertions). In this paper we have presented techniques for
ing on the polygon relation, the PMR quadtree bulk-loadingSPeeding up index construction for the PMR quadtree spatial
algorithm took about twice as long to build the quadtree adndex in all three situations. _
doing dynamic insertions. The difference in performance was N aninformal analysis of the PMR quadtree bulk-loading
due to the fact that we allotted a much larger buffer space t@lgorithm, we presented persuasive evidence that both its 1/0
the latter, besides the fact that it is less affected by the laciand CPU costs are asymptotically the same as that of exter-
of spatial clustering since the objects are not sorted prior td1al sorting for reasonably “well-behaved” data distributions.
inserting them into the quadtree. Nevertheless, when the polyndeed, our experiments verified that the execution time per
gon relation was spatially clustered as well as when buildingPbiect grows very slowly with the size of the data sets. More-
the quadtree based on the bounding rectangles of the polygon@ver, the speedup of the bulk-loading algorithm over the dy-
the speedup of our bulk-loading algorithm was about a facto@mic algorithm (which updates the disk-resident quadtree
of 2 when a comparable amount of buffer space was used. Ifirectly for each insertion) is substantial, up to a factor of 12
situations where the relation to index is not spatially clusteredor the data sets we used. When the dynamic algorithm was
(and performing clustering is not desired), using boundingenhanced to better take advantage of buffering, the speedup
rectangles may yield overall savings in execution time (forwas still significant, typically a factor of 2—4, depending on
building the quadtree and executing queries), even though #he data distribution and other factors (see Sect.8.9).
means that the quadtree provides somewhat worse spatial fil- An important utility of bulk-loading methods is that they
tering and thus potentially higher query cost. enable quickly building indexes on un-indexed data in prepara-
We verified that our bulk-insertion algorithm is very effi- tion of performing complex operations such as joins. In order

cient. Compared to bulk-loading the combined data set, mogi© test the utility of our bulk-loading technique for this pur-
pose, we performed a small experiment with the spatial join

18 Recall that in this context, spatial clustering denotes the clusterexample mentioned in Sect. 1: given a collection of line seg-
ing obtained by sorting the objects in Z-order. ments representing roads and another representing rivers, find
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all locations where a road and a river inter$éctWhen an

index existed for one data set but not the other, we observed
speedups ranging from 60% to 75% by bulk-loading an index10.
prior to running the query ranged rather than perform it with
just one index. When neither data set had an index, building
indexes for both sets and using them to answer the query was
more than an order of magnitude faster than evaluating thell.
guery using a naive nested loop algorithm. Of course, in the
latter situation, it may be faster to use a fast spatial join al-
gorithm specially meant for non-indexed data sets (e.g., [10])
rather than bulk-loading both data sets. Nevertheless, the bulk-
loading approach hasthe advantage that it also speeds up future
queries involving the bulk-loaded data set, assuming that th
produced index is retained.

Future work includes investigating whether our buffering
strategies for bulk-loading may be used to speed up dynamic13
insertions and queries. In addition, we wish to investigate situ-~"
ations in which a query engine can exploit fast PMR quadtree
index construction in order to speed spatial operations oninter-
mediate query results (possibly from non-spatial subqueries),
or for un-indexed spatial relations. This is particularly impor-
tant for complex operations such as spatial joins.

15.
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