Join Algorithms on GPUs: A Revisit After Seven Years

Ran Rui, Hao Li, and Yi-Cheng Tu
Department of Computer Science and Engineering
University of South Florida
4202 E. Fowler Ave., ENB 118
Tampa, Florida, USA
{ranrui,haolil} @mail.usf.edu, ytu@cse.usf.edu

Abstract—Implementing database operations on parallel
platforms has gain a lot of momentum in the past decade.
A number of studies have shown the potential of using GPUs
to speed up database operations. In this paper, we present
empirical evaluations of a state-of-the-art work published in
SIGMOD’08 on GPU-based join processing. In particular, this
work presents four major join algorithms and a number of
join-related primitives on GPUs. Since 2008, the compute
capabilities of GPUs have increased following a pace faster
than that of the multi-core CPUs. We run a comprehensive set
of experiments to study how join operations can benefit from
such rapid expansion of GPU capabilities. Our experiments on
today’s mainstream GPU and CPU hardware show that the
GPU join program achieves up to 20X speedup in end-to-end
running time over a highly-optimized CPU version. This is
significantly better than the 7X performance gap reported in
the original paper. We also present improved GPU programs
that take advantage of new GPU hardware/software features
such as read-only data cache, large L2 cache, and shuffle in-
structions. By applying such optimizations, extra performance
improvement of 30-52% is observed in various components of
the GPU program. Finally, we evaluate the same program from
a few other perspectives including energy efficiency, floating-
point performance, and program development considerations
to further reveal the advantages and limitations of using GPUs
for database operations. In summary, we find that today’s
GPUs are significantly faster in floating point operations,
can process more on-board data, and achieve higher energy
efficiency than modern CPUs.

Keywords-DBMS; GPU; GPGPU; CUDA; join operation;

I. INTRODUCTION

Many-core architectures such as Graphics Processing
Units (GPU) have become a popular choice of high-
performance computing (HPC) platform. A modern GPU
chip consists of thousands of cores that deliver tremendous
computing power. It is also equipped with high speed
memory modules to satisfy the data communication needs
of the cores. Such characteristics of GPUs, along with the
general-purpose programming frameworks such as Compute
Unified Device Architecture (CUDA) [1] and Open Com-
puting Language (OpenCL) [6], have drawn much attention
from the HPC communities.

The database community is also among those who bene-
fited from general-purpose GPU (GPGPU) computing tech-
nology. In recent years, a number of studies have provided

evidence of GPU’s capability to speed up database oper-
ations [27, 16, 17, 25, 20, 11, 18, 26, 24]. In relational
DBMSs, the most time-consuming operation is join. In
2008, He et al. published their work in the design and
implementation of four major join algorithms on GPUs [17]:
block-based non-indexed nested loop join (NINLJ), indexed
nested loop join (INLJ), sort merge join (SMJ), and radix
hash join (HJ). They thoroughly compared the performance
of these algorithms on a mainstream GPU device with that
of a highly-optimized CPU version and demonstrated that
GPU achieved up to a 7X speedup over CPU, which is
a significant improvement by any standards. In this paper,
we report the results of a comprehensive set of experiments
running the program developed by He et al.. However, our
study serves more significant purposes than simply verifying
the findings of [17]. Instead, we aim at drawing an up-to-date
and panoramic image of GPGPU as a means for processing
join operators.

With the promising performance shown in existing work,
it is worth exploring the actual benefit of using GPUs for
processing database operators as of today. This is especially
important in that the GPU industry has since released new
devices that carry many times of computing capabilities
as those found in 2008. For example, Table I shows the
specifications of several Nvidia GPUs, including the 8800
GTX that is used as the testbed in [17]), and the GTX Titan
plus GTX 980 that we use in our study.! We can easily see
that the memory bandwidth of the GTX Titan is 3.3 times
as that of the 8800 GTX, and the raw computing power is
13 times as high. It would be interesting to see how such
increase of computing capabilities is reflected in performing
database operations. Therefore, an important objective of our
work is to empirically evaluate the performance of the afore-
mentioned GPU join algorithms in today’s GPU devices. To
that end, we run the code used in [17] in modern GPUs and
CPUs and compare their performance. In particular, the code
includes both GPU and CPU versions of four join algorithms
mentioned above: NINLJ, INLJ, SMJ, and HJ, as well as a
set of data primitives such as map, sort, and prefix-scan. Our

nformation is mainly extracted from the Intel and Nvidia corporate
websites, with other information obtained from www.techpowerup.com

Table T

SPECIFICATIONS OF HARDWARE MENTIONED IN THIS PAPER

CPU GPU
Device R p
Xeon 5; 2640 Core i7 3930K CO%&%S“C‘ GTX Titan GTX 980 8800 GTX
Dae released Q3 2013 Q4 2011 Q1 2007 Q1 2013 Q3 2014 Q4 2006
Core Speed 2.00GHz 3.20GHz 2.40GHz 0.84GHz 1.13GHz 0.58GHz
Core Count 8 6 4 14 x 192 16 x 128 8 x 32
. L1: 512K B L1: 384K B L1: 256K B L1: 64K B x 14 L1: 96K B x 16
Cache Size L2: 2MB L2: 1.5MB 12: SMB L2: 1536KB L2: 2MB L1: 16KB x 8
_ DDR2 GDDR5 6GB GDDRS5 4GB 256 | GDDR3 768MB
RAM DDR3 Triple Channel Dual Channel 384 bit bit 384 bit
BMem‘?ry 38.4GB/s 12.8GB/s 288GB/s 224GB/s 86.4GB/s
andwidth
Max GFLOPS 128 153.6 38.4 4494 4612 345.6
Max TDP 95W 130W 105W 250W 230W 155W
Launch Price 889 USD 594 USD 530 USD 999 USD 549 USD 599 USD

experiments show that, by calculating the end-to-end running
time, the GPUs achieve up to 20X speedup over the CPUs in
the four join algorithms. It is clear that the performance gap
between GPU and CPU in join processing is widened since
2008. The second objective is to evaluate the full potential
of GPGPU in processing joins by considering the many
new techniques implemented in GPUs in recent few years.
Specifically, we redesign some of the aforementioned GPU
programs by taking advantage of new hardware and software
features such as read-only data cache, large L2 cache, and
shuffle instructions. By applying such optimizations, extra
performance improvement of 30-52% is observed in various
kernels. Finally, we evaluate the join programs from a few
other perspectives such as energy efficiency, floating-point
performance, and data size considerations. Those are done
in response to relevant discussions presented in [17] and
further reveal the advantages and limitations of GPGPU
from a database perspective. In short, we find that today’s
GPUs are significantly faster on floating point operations,
can process more on-board data, and achieves higher energy
efficiency than modern CPUs. The availability of new tools
has made program development and optimization on GPUs
much easier than before.

The remainder of this paper is organized as follows: We
briefly review related work in Section II; The experimental
setup is described in Section III; We report performance of
the original join code used in [17] in both CPUs and GPUs in
Section IV; We present design and evaluation of optimized
join algorithms based on new GPGPU features in Section
V; We continue to evaluate the GPU join algorithms from
other perspectives in Section VI, summarize our findings in
Section VII, and conclude this paper by Section VIII.

II. RELATED WORK

GPGPU has become very popular high-performance com-
puting technique in the last few years. The SIMD archi-
tecture of GPU provides tremendous amount of computing

power under very high energy efficiency — more than 9% of
the Top500 supercomputers in the world has deployed GPUs
in their architecture [8]. Before the emergence of GPGPU
programming languages such as CUDA and OpenCL, there
were already a number of studies that used GPUs to ac-
celerate database operations via graphic APIs. Sun et al.
[23] utilized the rendering and searching functions of GPU
to speed up spatial database selections and joins. Their
hardware-assisted method reached a speed-up of 4.8-5.9X in
joins comparing to CPUs. In a later work, Bandi ef al. [12]
extended that proposal to a practical scenario by integrating
GPU-assisted spatial operations into a commercial DBMS.
Govindaraju et al. [14] proposed a set of commonly used
operations including selections, aggregations and semi-linear
queries implemented on GPUs. The same group imple-
mented a high performance bitonic sorting algorithm on
GPUs that served as an essential part of many other database
operations [13]. However, the studies mentioned above were
all based on very old GPU architectures, which were not
optimized for general-purpose computing. They also had
to rely on graphic APIs such as OpenGL and DirectX,
which limited the programmability and functionality of their
implementations.

Since the major GPU manufacturers evolved their prod-
ucts to adopting the Unified Shading Architecture around
2007 [9], there has been unprecedented effort devoted to the
GPGPU paradigm, especially after the release of advanced
GPU computing models such as CUDA [1] and OpenCL [6].
The same trend has also affected the database community.
He et al. [15] proposed very efficient gather and scatter oper-
ations on CUDA-enabled GPUs. These algorithms made full
use of the high memory bandwidth of GPUs by addressing
computation for coalesced memory access, thus eliminating
the costly overhead of random memory access. They also
developed plausible solutions for data read and write primi-
tives of database operations on GPUs. Based on that, He et

al. [17] developed a comprehensive package of GPU-based
database algorithms including a series of primitives and four
join algorithms developed on top of those primitives. With
the computing power of a first generation CUDA-supported
GPU, the primitives reached speedup of 2.4-27.3X while the
four join algorithms achieved 1.9-7.0X speedup compared to
a quad-core Intel CPU. In an extended version [16] of [17],
the same team studied performance modeling and combining
CPUs and GPUs for relational data processing. Since the
core issue we are interested in is GPU performance, we
will only refer to [17] for comparison and dicsussions in
this paper. In [20], Kaldewey efr al. used Unified Virtual
Addressing (UVA) to alleviate the difficulty of explicitly
copying data to GPUs by enabling the GPU accessing host
memory directly. Bakkum et al. [11] integrated a GPU-
accelerated SQL command processor into the open-source
SQLite system. Specifically, the command processor boosted
the performance of SQL SELECT queries in the database
system, where 20-70X speedups were achieved. Due to the
limitation of SQLite, this result was achieved by comparing
with single-thread CPU implementation. However, our work
is based-on a multi-core, multi-thread enabled code which
make full use of the maximum performance of recent hard-
ware platforms. Apart from pure GPU-based studies, there
were also studies on further improving the overall system
performance via distributing computation to both CPU and
GPU [16, 19].

III. EXPERIMENTAL SETUP

Our testbed is a high-end workstation featuring 48GB of
DDR3 memory and one 512GB SSD disk. The motherboard
is an AsRock X79 Extreme 11 hosting seven PCI-E 3.0
slots with full 16X speed and can support up to four
double-width GPU cards. Note that each PCI-E slot provides
approximately 15.8GB/s of bandwidth [7] for efficient data
transfer between the host and the GPU.

We obtain the entire code package introduced in [17] from
its first author, Dr. Bingsheng He. This package includes
both CPU and GPU versions of four join algorithms and
five join-related data primitives. We test the code with a
variety of CPUs and GPUs. However, in this paper we
only report the results of two GPUs - the Nvidia Geforce
GTX 980 and the Nvidia GTX Titan, in comparison to
two CPUs: Intel Core 17-3930K and Intel Xeon E5-2640v2.
The specifications of the chosen hardware are shown in
Table 1. Based on their prices, the Core i7 and GTX 980
are mid-range hardware found in typical desktop computers
while the Xeon E5 and GTX Titan represent those found in
powerful workstations. Note that the CPU and GPU within
each group are at the same price range — this allows a fair
comparison in terms of cost efficiency. We also tested other
GPU products such as the Nvidia Tesla K20 and K40 [4].
However, these devices are way more expensive than (yet
with only comparable performance as) the Titan therefore we

skip the discussions on such results in this paper. Interested
readers can refer to a longer version of this paper [22] for
such details.

Our workstation runs Windows 7 (SP1) with Visual Studio
2010 as the program development environment. For GPU
computing, we use CUDA 6.0 to compile the GTX Titan
code and CUDA 6.5 for the GTX980. The code was com-
piled and tested with the best configuration and parameters
discussed in the previous work [17]. As in [17], each tuple
in the database table contains an id and a key value. Unless
specified otherwise, the key values are integers ranging from
0 to 23°. Such values are generated randomly, and an ID is
specified to each key value in order. As in the original code,
we fixed the number of output tuples in our experiments
by setting the tuple matching rate between two tables to
0.1% . The number of output tuples is changed only in one
experiment for the purpose of testing the effects of such
changes on the overall performance. In all experiments, both
the inner and outer tables are of the same size.

Performance measurement is done by the built-in timing
functions in the original code for both CPUs and GPUs. To
measure the power consumption of hardware, we connect a
WattsUp Pro power meter [10] to our machine. A software
reads the power consumption and power readings are sent to
the computer from the power meter via a USB connection.
Energy consumption is obtained by integrating all the run-
time power readings under the assumption that power does
not change within the sampling window.

IV. MAIN RESULTS

In this section, we report the performance of the original
code provided by He et al. for both CPUs and GPUs. We
focus on performance comparison between GPUs and CPUs
found in today’s market. As mentioned earlier, this gives an
overview of the advantages of GPUs for processing joins
over CPUs, and whether such advantages increase/decrease
over time.

A. GPU Architecture

Before starting our discussions on GPU-based joins, we
need a close look at the typical GPU architecture. Take
the GTX Titan’s Kepler architecture as an example (Figure
1): it consists of a few Streaming Multiprocessors (SMX),
each of which is regarded as a fully functional comput-
ing unit. Within an SMX, there are many (e.g., 192 in
Kepler) computing cores, certain amount of cache, and a
considerably large register file. The register pool consists
of tens of thousands of 32-bit registers providing sufficient
private storage for threads. Each SMX has its own L1 cache
for fast data access and synchronization among threads. A
unique feature of Nvidia GPUs is: part of the L1 cache can
be configured to be a programmable section called shared
memory (SM). Similar to traditional CPU architectures,
GPUs have a multi-level memory system: in addition to

SMX |
[SMX |
[smx |
[svle f—
‘ Register File 65536 x 32bit ‘
g g g g
Global
s = 2
&E T R
B [[‘ L1 Cache/Shared Memory 64KB ‘
L ‘ Read-Only Data Cache 48KB ‘

Figure 1. Memory hierarchy in Kepler architecture
16 A: Hardware resource B: Algorithm performance
14 ' ' ' ' ' CPU e
192 GPU &
o 10
g 8
T 6
4
2
0

Gr, Me Lrg Ny Ny N A,
% Ong o, &y Size Ny Ao, Ly 2, My 2, \/pe/z

Figure 2. Relative capacity of hardware resources and join perfor-
mance between new and old CPUs/GPUs

the L1 cache inside the SMX, there are also L2 cache
and the global memory (GM) shared by all SMXs. The
global memory, being the main data storage unit for GPUs,
often comes with a size of a few GBs and high bandwidth
following the GDDRS5 standard.

Apart from increasing computing resources, GPUs have
better power/energy efficiency as well. Although the scale
of the GPU chips has increased due to the larger number of
cores, their power consumption (indicated by TDP - thermal
design power) remains at the same level, which implies
better energy efficiency than CPUs when performance is
considered.

B. Performance Comparison

Table 2 shows the performance of the four join algorithms
on the two CPUs and two GPUs mentioned above. Each data
point is the average of four runs with identical setups.? The
data size is presented in number of tuples (each tuple is 8
bytes long) and both tables in a join are of the same size.

Our first observation is from the CPU side: the 6-core i7-
3930K has better performance than the 8-core Xeon E5 in
all experiments, although the latter is a newer CPU with a
higher price tag. We believe the high clock speed of the i7-
3930K compensates for the smaller number of cores. This

’In all cases, the variance of the four runs is very small,
indicating stable performance of both CPU and GPU code.

also reflects a general trend of modern CPU design: the focus
moved from computing performance to other factors such
as energy efficiency. We have similar observations from the
GPUs: the less expensive GTX 980 outperforms the high-
end Titan in all but the SMJ experiments. This is not really
a surprise to us: the main selling point for the Maxwell
architecture is higher efficiency and its specifications are
better than those of the Titan in almost all aspects (Table
I). Therefore, the two speedup values shown in each row
of Table II actually represent the high and low bounds of
all possible GPU-to-CPU speedups from our data. Other
comparisons such as ‘Titan vs. ES’ and ‘GTX980 vs. i7°
will fall between those two values.?

In most cases, the recorded speedup beats the correspond-
ing value reported in [17] (shown in the Baseline column
of Table II). The largest difference between the recorded
speedup and baseline comes from the SMJ algorithm: even
the smallest speedup value is a few times higher than the
2.4X reported in [17]. The NINLJ algorithm also shows
a great boost of speedup over the baseline: on the higher
end it reaches 20X, and even for the lower end (Titan vs.
i7), everything is still higher than the 7X baseline. For
INLJ, we observe speedups at about the same level as the
6.1X baseline. The HJ achieves an speedup in the range
of 5.67X to 14.28X when the table size is 16M — this is
much higher than the 1.9X baseline. However, there is a
huge performance degradation when table size is 32M and
then it goes up slowly with larger table sizes. A thorough
investigation of the source code reveals the reasons for such
performance drop: in the radix partitioning stage (see Section
4.1 of [17] for details), a fixed partition size is assumed.
A table size bigger than 16M triggers another round of
partitioning within each existing partition, resulting in a
dramatic increase of total number of partitions. A prefix
scan has to be done in every partition, and such scans are
pure overhead for the GPU code. As the table size keeps
increasing, the effects of such overhead diminish, as seen
by the better GPU performance under table sizes 64M and
128M. Unfortunately, we are not able to run tests on even
larger tables due to limited GPU memory. In fact, we have to
stop at 64M for the GTX980. We will elaborate more on this
in Section VI-C. Nevertheless, the above results clearly show
that, other than in INLJ, the performance gap between
GPU and CPU is widened in the past seven years. In
other words, GPUs are more suitable for processing joins
than it was in 2008.

Code scalability: So far we have focused our discussions
on comparing GPU with CPU. Another perspective to study
the performance data is how the code scales with the
growth of raw computing power of GPUs/CPUs over time.
Desirably, the performance of software would naturally scale

3Not exactly true for SMJ, but close enough as the performance
of GTX980 is almost the same as Titan.

Table II
PERFORMANCE OF FOUR JOIN ALGORITHMS ON DIFFERENT GPUs AND CPUS

Algorithm Data Running time (second) GPU to CPU Speedup
Size E5-2640 i7-3930K GTX Titan GTX980 GTX980/E5 Titan/i7 Baseline
IM 123.74 109.36 14.74 6.03 20.51 7.42 7.0
NINL] 2M 492.99 434.17 58.66 24.25 20.33 7.40 -
4M 1967.14 1719.55 235.48 97.18 20.24 7.30 -
SM 7823.65 6846.33 957.01 388.90 20.12 7.15 -
16M 0.58 0.45 0.11 0.11 5.47 4.09 6.1
INLJ 32M 1.28 0.99 0.24 0.20 6.53 4.13 -
64M 2.97 2.25 0.55 0.46 6.43 4.09 -
128M 5.93 5.03 1.24 1.07 5.55 4.06 -
16M 9.41 6.86 0.45 0.48 19.73 15.24 2.4
SMJ 32M 18.32 12.48 0.97 1.04 17.70 12.87 -
64M 36.02 24.82 2.09 2.24 16.11 11.88 -
16M 2.87 2.04 0.36 0.20 14.28 5.67 1.9
HI 32M 5.77 4.08 3.55 3.33 1.73 1.15 -
64M 11.66 8.27 4.15 3.70 3.15 1.99 -
128M 24.68 17.15 5.37 - - 3.19 -
up with the increase of hardware capabilities in a parallel ¥ OupuiCopying (=3 Join Processing (== Input Copying
environment. To that end, we plot the relative performance 190)
(under table size 1M for NINLJ and 16M for other algo- a0 |)
rithms) between different generations of GPUs and CPUs in
Figure 2B, along with the relative specifications between the £ wf -
same set of hardware shown in Figure 2A. Again, the plotted g
GPU data represents relative performance of GTX980 to S e -
8800 GTX, and CPU data is that of E5 to Q6600. The raw
performance data of the old GPU and CPU is taken directly 2T i
from [17]. In general, we can see that GPU code scales well 0
over time - the smallest performance growth is around 4X %, %, %% /%’@y % , &d’o//V %, %,
(for SMJ). The CPU code, on the other hand, does not scale %, % % T
as well, especially in SMJ and HJ. For the INLJ algorithm, Figure 3. Time spent on data transmission and join processing

the CPU code scales better than the GPU code. Such results,
from a different angle, explain why we achieve large GPU-
to-CPU speedups in SMJ and HJ but only moderate speedups
in INLJ, as reported in Table II.

Relating the information in Figure 2B to the hardware
information in Figure 2A, we also have interesting findings.
All GPU algorithms scale better than the global memory
bandwidth, showing the latter is not a bottleneck. Their
scalability is only bound by the scale-up of compute unit
capacity and L1 cache size in the GPUs — both are much
larger than their CPU counterparts. On the CPU side, the
scalability of SMJ and HJ performance is worse than that
of all hardware resources. However, NINLJ and INLJ scale
very well, indicating such algorithms are well designed.*

Time Breakdown: The time spent on join algorithms
includes three parts: copying input from host memory, on-
board join processing, and copying output back to host

4At this point, we are not sure why they even did better than the
growth of all CPU specifications. We speculate that the compilers
play a role in this — code could be much less optimized in older
versions of Visual Studio based on our experience.

memory. Figure 3 shows the time breakdown of the tested
join algorithms under two GPUs. Clearly, join processing is
still the dominant component, same as shown in Figure 12 of
[17]. However, the percentage of time spent on input/output
data transmission between GPU and CPU is much larger in
our experiments, especially in INLJ, SMJ, and HJ. In GTX
980, the numbers are 29.25%, 5.83% and 15.23%. In Titan,
they are 29.06%, 6.64% and 8.17%. Both are much higher
than the 13%, 4%, and 6% reported in [17]. This is caused
by increased GPU performance over the years: the absolute
time spent in join processing is greatly reduced (by a factor
of at least 4 in Figure 2B). On the other hand, copying data
between host and GPU is bottlenecked by the PCI-E bus,
whose performance only increased by a factor of 3.

V. OPTIMIZATION ON NEW GPU ARCHITECTURE

In this section, we demonstrate how features in latest GPU
architectures can improve join performance. We focus on
mechanisms that can be implemented without a disruptive

change of the code structure. A systematic re-design of GPU
join algorithms is beyond the scope of this paper.

In the Kepler architecture, the shared memory and L2
cache both come with a larger size than the 8800 GTX.
Apart from that, some new features further enhance the
cache system. One thing we have not mentioned in Figure
1 is a 48KB L1-grade read-only data cache. It is aimed at
providing extra buffering for data that will not be modified
during the kernel runtime. Although the read-only cache is
not fully programmable, programmers can give hints to the
compiler to cache a certain piece of data in it. The Maxwell
architecture [2] has no read-only cache, but the size of its
L2 cache increases to 2MB.

In earlier GPU architectures, the registers are distributed
to the threads running on the same multiprocessor as private
storage for each thread. The contents in registers belonging
to one thread could not be seen by other threads — the
only way for threads to share data is via the global or
shared memory. In CUDA, the basic unit of threads that are
scheduled together to run on the hardware is called a warp
— recent versions of CUDA have a fixed warp size of 32
threads. The Kepler architecture allows direct register-level
data sharing among all threads in a warp by using shuffle
instructions. A thread can disseminate its data to all others
in the same warp at core speed, thus further reducing latency
brought by accessing shared memory.

Shared Memory Read-Only Data Cache

L2 Cache
Global Memory
| P
R S

Figure 4. Data movement in the modified NINLJ algorithm. S’ and S”
are two blocks of table S

A. Cache/Register Optimization

We develop a method that increases data locality in the
NINLIJ program to take advantage of the L2 and read-only
data cache. We present our ideas here with the help of Figure
4. Note that in the original NINLJ algorithm, the outer table
S is divided into blocks that can fit into the shared memory.
In one iteration of the outer loop, one such block S’ is loaded
into the SM and the entire inner table R is directly read from
global memory. Each item in S’ is accessed many times
but the fact they reside in SM leads to high performance.
Our strategy here is to use the read-only or L2 cache as
an extension to SM by allowing another block S” to be

Thread number 1 2 3 4 5 6 7 8

‘3‘8 2‘6‘3‘9 1‘4‘

First iteration

value(n+1)=value(n+1)+value(n)

Second iteration

value(n+2)=value(n+2)+value(n)

3‘11‘13 19‘19‘20‘19 17

Third iteration

19‘21‘31‘32 36

3‘11‘13

value(n+4)=value(n+4)+value(n)

Figure 5. Data access pattern using shuffle instructions

loaded. By this, fewer rounds of reading the inner table
R are needed. The challenge here is that, unlike SM, the
other cache systems are not programmable. Our solution is
to implement the inner loop as a nested double loop, in
which loading table R is the outer layer and reading blocks
S’ and S” is the innermost layer. By this, we create locality
such that S” will sit in the cache while seeing everything
from R. There are two places for storing the extra block S”:
the L2 cache and the read-only data cache. In CUDA, the
later is done by putting special qualifiers before a defined
pointer referencing S”.

Moreover, we reimplement the prefix-scan primitive with
shuffle instructions. Note this primitive involves generating
a prefix sum of numbers stored in an array (Figure 5),
and is implemented in the original code by using shared
memory. Each thread keeps an element from the array in its
own register. In the i-th iteration of the kernel loop, each
thread adds its element to the one that is ¢ positions away
to the right in the array. Using the CUDA shuffle_up
instruction, such operations can be done by accessing two
registers holding the two involved elements, bypassing any
cache. Note that there are two limitations of the shuffle
instruction: (1) registers are only open to threads in a warp;
(2) it requires coordinated register access such as that in our
case, random access within the warp is not allowed. After
five iterations, the partial sums of each warp are collected
and integrated in shared memory, which is the same as in
original code.

B. Performance Evaluation

Table III reports the performance of L2 cache and read-
only cache optimization on the GTX Titan. The two schemes
achieved an average speedup of 1.3X and 1.29X, respec-
tively. Factoring this into the GPU-to-CPU performance
comparison (Table II), the average Titan-to-i7 speedup
of NINL]J now becomes 9.5X. The speedup decreases
as data size becomes larger. We believe this is caused by
increased cache contention — as more data is read from
global memory in each iteration of the outer loop, the cached
data would soon be replaced by other data. We can also

see that the effects of both optimizations on performance
are very similar. One might expect the utilization of both
read-only and L2 cache (by putting one extra block of
S into each of the two cache locations) would render
even better performance. However, when we combine both
techniques, the measured running time is even longer than
the original code! Furthermore, the cache optimization does
not yield any performance boost in GTX980. By studying
the performance profiles, we found that all such results are
caused by the dramatically increased number of registers
assigned to each thread. As a result, the occupancy (i.e.,
number of concurrent threads running on an SMX) becomes
lower, eating up the performance gain from the cache.

Table IV shows the result of prefix-scan optimization by
using shuffle instructions. The optimized version of prefix-
scan reached a speedup of up to 1.52X over the original
implementation. We notice that at 4M data size, the speedup
drops to only 1.21X. This is due to underutilized computing
resources since input data is too small to make full use of
the computing cores and it cannot hide the kernel launch
and memory access overhead. We must point out that such
boost of prefix-scan performance has a small impact on join
performance - the time spent on prefix-scan is less than 1%
of the total running time for most joins. However, looking
forward, we believe register sharing among threads provides
a novel and promising approach for code optimization in ap-
plications with coordinated data access pattern. Another fact
that adds to such enthusiasm is: the size of the entire register
pool in Kepler GPUs are relatively large. For example, there
are 65,536 32-bit registers in each of the 15 multiprocessors
of Titan. As a result, the register pool even dwarfs the L1
cache in size.

Table IIT

NINLJ PERFORMANCE ON GTX TITAN UNDER READ-ONLY
AND L2 CACHE OPTIMIZATIONS

Data Running time (sec) Speedup

Size Original L2 read-only L2 read-only

IM 14.64 11.40 11.62 1.28 1.26

2M 61.62 45.24 46.26 1.36 1.33

4M 252.09 201.71 197.25 1.25 1.28
Table IV

RUNNING TIME (MS) OF THE PREFIX SCAN KERNEL OPTIMIZED
BY SHUFFLE INSTRUCTION

Data size ~ Original =~ With optimization ~ Speedup
4M 2.58 2.14 1.21
8M 4.06 2.67 1.52
16M 7.00 4.60 1.52

VI. OTHER CONSIDERATIONS

In this section, we study several other related issues, in
hope to provide a panoramic image of GPU’s advantages and

limitations on processing joins. Specifically, we evaluate en-
ergy/power efficiency, floating point computing performance
and database size.Most of the issues are mentioned in [17]
but without much quantitative results.

A. Energy / Power Consumption

We continuously measure the actual power consumption
during the course of running the joins. Fluctuations of power
are observed in all join experiments — this is due to the
different hardware activities at different times of the join
process. For the same exact experiments mentioned in Table
II, the average power consumption are shown in Table V.
Note that active power is defined as the difference between
recorded system power while processing the workload and
that when the system is idle. Qualitatively, we can see that
GPUs consume more power than CPUs. The Xeon E5-2640,
being a member of the new generation of Intel’s server-
class CPU, has a much lower power profile than the older
17-3930K. On the GPU side, the GTX980 consumes less
power than the GTX Titan, as energy efficiency is the main
selling point of the Maxwell architecture. NINLJ consumes
much more power than the other algorithms. This is due
to the higher utilization of computing cores reached by this
algorithm. For all algorithms, input table size does not have
significant impact on power.

Table V
AVERAGE ACTIVE POWER CONSUMPTION (WATT)

Algorithm Ta.ble Xeon Cpre QTX GTX
Size ES i7 Titan 980

M 28.04 97.61 178.16 120.63

M 28.34 96.01 179.97 152.51

NINLJ 4aM 26.07 96.67 172.17 161.25
M 26.75 10037 164.83 165.49

16M 12.51 57.63 72.70 62.43

INLJ 32M 11.04 59.57 78.39 60.95
64M 11.29 58.86 80.12 61.75

128M 13.37 55.10 76.84 52.11

16M 10.38 39.75 92.44 70.54

SMJ 32M 10.49 46.69 95.02 72.38
64M 11.28 51.01 94.65 71.23

16M 10.02 46.96 84.82 66.54

HI 32M 9.97 48.94 94.37 67.05
64M 11.50 50.60 90.99 64.14

128M 10.16 51.75 86.51 -

As to the total active energy consumption, it is obvious
that in most cases the i7-3930K consumes the most energy
(Figure 6). The GPUs are clear winners in NINLJ and SMJ
algorithms, especially in SMJ where the GTX980 achieves
energy efficiency one order of magnitude higher than the i7.
The relatively low energy efficiency of GPUs in HJ (under
large data size) is caused by their long running time rather
than power consumption. Comparing with i7, the GPUs
still consume less energy in most cases of HJ. The Xeon
ES5 shows very good energy efficiency across the board,
thanks to its low-power design. More data about energy
consumption can be found in our technical report [22].

4 350 1600 1800
10 . . .
A: NINLJ 300 B: INLJ 1400 C: SMJ 1600
1400
< 10° 250 1200
Q 1200
2 1000
2 e o 200 800 1000
5 ' 150 800
o 600 600
w4 01 100
400 v 400
o 50 200 200
10 3
0 0 0
12 4 8 16 32 64 128 16 32 64 16 32 64 128
Data Size (M) Data Size (M) Data Size (M) Data Size (M)

Figure 6. Energy consumption of different CPUs/GPUs in processing four join algorithms

B. Floating Point Performance

In recent few years, much progress has been made in
floating point computing in GPUs. G80, the first CUDA-
supported GPU, does not support floating point numbers
although it has many more cores than any CPUs of its time.
The following Fermi architecture supports full IEEE754-
2008 single-precision (SP) and double precision (DP) float-
ing point standards. It also features the new fused multiply-
add (FMA) instructions that are much faster than the tra-
ditional multiply-add (MAD) operations. The Kepler archi-
tecture goes even further by integrating dedicated DP units
into each multiprocessor [3]. This increases the peak DP
performance to over 1 TFlops, roughly 1/3 of its peak SP
performance. However, due to consideration of graphics per-
formance and power consumption, this feature is weakened
in all GeForce-series gaming cards (including the GTX980)
other than the GTX Titan. For example, the Titan’s DP units
can operate at maximum core speed while in other Kepler
cards they only run at 1/8 of the core speed.

Again, we choose the NINLJ algorithm to demonstrate
the floating point performance of GPUs. Figure 7 shows the
speedup of GPUs over CPUs by plotting the SP performance
of the Xeon E5-2640v2 as the baseline (actual running time
is also marked on each bar). For SP performance, the GTX
Titan achieves a surprising 24X and 23X speedup over the
Xeon E5 and Core i7, respectively. This result doubles its
speedup over the CPUs with integer key values (Table II).
For DP performance, Titan reaches about 7X speedup over
both of the CPUs, which is roughly the same as integer-
based results reported in Table II. The main reason for
such different speedup is that both CPUs performed much
better in DP than in SP computing. Their SP performance
is only 1/4 of their integer performance while their DP
performance is around 1/2. Meanwhile, the performance of
GTX Titan only degrades by half for both SP and DP.
This reflects the different strategies adopted in CPU and
GPU hardware design — much more resources are dedicated
to DP computing in CPUs. The GTX980 is less powerful
in floating point computation, yet it still achieves a 8-9X
speedup in SP and a 2-3X speedup in DP over the CPUs.

30

SP kxxxx

§ 25 LDP A: Data Size 1M 19.6
2 §
o 15 .
2 40 54.8_53.1 J
E
[0 5 4.9 §§ 4
o 487.0 ot 4542 o3
0 e ANV === NN
30
g kg; EXXXX B: Data Size 4M 322 1
©
E 2 430.9
s 15 § .
2 10 868.6...846.1 |
© 7506
[3] 29799 27199.6 -
7758. 71205
© BTN
E5 i7 Titan 980

Device Type

Figure 7. Relative performance of NINLJ with SP/DP keys in

different CPUs/GPUs under two table sizes

C. Limitation of memory size

The GPU join algorithms we tested assume all input
/output data and intermediate results can be stored in the
global memory therefore the size of the latter determines
how large the input tables can be. To explore the space use of
GPU joins, we repeatedly run the code with a varying table
size (in a binary search manner) until we find the largest
table each algorithm can run with. The largest table we can
run each join in the GTX Titan (with 6GB of global memory)
is as follows: with a larger state (i.e., both sorted tables)
to keep, the SMJ will stop at 96 million records in both
tables (i.e., 1.5GB total data size). Following that are HJ and
INLJ — the largest table they can run have 200M and 250M
records, respectively. This makes sense as the HJ and INLJ
only keep intermediate state with a size equivalent to one of
the input tables. We did not obtain data for NINLJ as each
run of it needs excessively large amount of time. We believe
the allowed table size will be larger than that of INLJ (we
tried 256M records without a problem) as there is almost no
intermediate data other than the output table. With only 4GB
of global memory, smaller tables are allowed in the GTX980.
However, the order of reachable table size does not change

for the algorithms: SMJ, HJ, and INLJ have maximum table
sizes of 64M, 121M, and 185M, respectively.

VII. DISCUSSIONS

In this section, we summarize our findings and comment
on the advantages and limitations of GPU-based join pro-
cessing. In particular, our discussions will directly respond
to the issues raised by He er al. in Section 6 of [17].

Main findings and recommendations: The hardware
resources on GPUs have expanded rapidly over the past few
years. This provides increasingly stronger support of data-
parallel join processing and builds the foundation of much
higher performance than those reported in 2008. We also no-
tice that the capacity growth of GPUs is unbalanced between
its compute cores and global memory bandwidth (i.e., 13X
vs. 3X as shown in Figure 2A). Such a strategy in GPU
design, although suitable for high-performance computing
(HPC) applications, leaves a question mark on whether join
processing can really make good use of GPGPU. Generally,
the performance bottleneck of database operations such as
join and selection is memory access given that the latency
of memory system is hundreds of CPU clock cycles [21]
and the demand on arithmetic operations is small by the
nature of such operations. GPUs share the same problem
although its GDDRS5 global memory system has higher
bandwidth and lower latency than the DDR3 host memory.
Therefore, the GPU-to-CPU speedup is not expected to
exceed 8X, which is roughly the difference between the
memory bandwidth of today’s mainstream GPUs and CPUs
(Table I). To our surprise, the performance of NINLJ, SMJ,
and HJ (considering only 16M input) is way better than that
on the GTX980. The key to such success is clearly the large
cache size, which effectively moved the bottleneck away
from global memory. In an extreme case of NINLJ, global
memory utilization dropped to less than 1% and arithmetic
unit utilization reaches up to 84%! We are pleased to see
that increasing memory bandwidth and size (by three orders
of magnitude) is the main design goal of Pascal - Nvidia’s
next generation GPU architecture [5].

As to program development, it is still true that GPU
code has to be written from scratch due to the different
programming models between CPUs and GPUs. As more
and more programmers are trained in GPGPU programming,
this does not seem to be as big a concern as before. We
believe the rapid change of architectural design is a major
inconvenience in CUDA programming. New features emerge
in each new generation of GPU architecture. Our results
show that an algorithm designed for older GPUs may not
fully utilize resources in newer ones. It is important to (at
least partially) re-design the algorithm considering the new
architectural features. There are also problems in compiler
support of new features. For example, the same shuffle
instruction code that work perfectly in Titan (Section V)
cannot be compiled when the GTX980 is chosen as the target

device. However, we must emphasize that new GPU features
can bring great performance benefits.

Response to concerns shown in [17]: Algorithm design
and optimization in GPGPU is still a complex task. In
particular, the random data access pattern of the SMJ, INLJ,
and HIJ algorithms poses a threat to GPU join performance.
The SIMD architecture makes a GPU vulnerable to high
latency caused by code divergence. We however want to
point out that in CUDA, the direct impact of divergence
is within a single warp. With higher level of parallelism
made possible by the abundant resources in modern GPUs,
memory stall can be effectively hidden. Recall that the SMJ
and HJ algorithms both perform well on the new GPUs.
Atomic operations are now supported in CUDA, it can
effectively handle read/write conflicts. That said, the pre-
scan routines to determine write offset in the join algorithms
cannot be replaced by atomic operations, as dynamic mem-
ory allocation is not allowed in current version of CUDA.

High power efficiency has been a major goal of GPU
design, as is in CPUs. We have witnessed a sharp drop
of power consumption in the recent two generations of
Nvidia GPUs. We admit modern CPUs (e.g., the E5-2640
we used) have become extremely power efficient, and there
is still room for improvement for GPUs. However, by
putting performance into the equation, we see that GPUs
are obvious winners in energy efficiency (Section VI-A).
Our experiments (e.g., comparing 17-3930K with E5-2640)
imply that high power efficiency comes with the cost of a
large performance cut in CPU design.

Finally, the situation of limited data type support has
changed a lot. Floating-point numbers are not only sup-
ported by the CUDA language, the new GPU hardware
also dedicates much of its silicon to speed up floating-point
computation. This is a natural result of the GPU industry’s
vision to make GPGPU the core technology in HPC systems.
Our work shows that performance of joins with SP and DP
keys is many times higher than the CPUs (Section VI-B).

VIII. CONCLUSIONS AND FUTURE WORK

GPGPU is a capable parallel computing platform that also
shows its potential in processing database operations. To take
advantage of its architectural design for massively parallel
computing, join algorithms were developed in previous work
and enjoyed up to 7X speedup over CPUs. We revisit the
performance of such algorithms on the latest GPU devices to
provide an updated evaluation of the suitability of GPGPU
in join processing. Our results indicate a significantly ex-
panded performance gap between GPU and CPU, with
a GPU-to-CPU speedup up to 20X. By exploiting new
hardware/software features such as extra data cache and
shared registers, we further boost the performance of chosen
algorithms by 30-50%. Upon investigating the floating point
performance, energy consumption, and program develop-
ment issues, we believe GPGPU has also become a mature

platform for database operations than before.

Work in this topic can be extended along two directions.
First, we could continue the evaluation of the join algorithms
on emerging GPU hardware and software. For example, the
coming Pascal architecture promises memory bandwidth and
size that are a few times higher than those in Kepler. It
would be interesting to have close observations on the race
between such GPUs and other multi/many-core processors
in processing database operators. Second, design of join
algorithms optimized towards new architectural features, as
suggested by our work, deserves more attention. Features
such as fast links between host and GPU can be a game-
changer but also calls for re-hauling of the algorithm design.
In today’s big data applications, joins can be performed on
tables that are too big to fit in the global memory of one
GPU device. Therefore, there are urgent needs to consider
distributed versions of GPU joins.

Acknowledgements: The project described was supported
by an award (CAREER, IIS-1253980) from US National
Science Foundation (NSF). A part of this work was support
by NSF grant IIS-1117699.

REFERENCES

[1] CUDA parallel computing platform. http://www.nvidia.com/
object/cuda_home_new.html.

[2] Maxwell: The Most Advanced CUDA GPU Ever

Made. http://devblogs.nvidia.com/parallelforall/
maxwell-most-advanced-cuda- gpu-ever-made.

[3] Nvidia Kepler GK110 Architecture Whitepa-
per. http://www.nvidia.com/content/PDF/kepler/

NVIDIA-kepler-GK110- Architecture- Whitepaper.pdf.

[4] NVIDIA Tesla.
tesla-workstations.html.

http://www.nvidia.com/object/

[5] Nvidia updates GPU Roadmap; Announces Pascal.
blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal.

http://

[6] OpenCL. https://www.khronos.org/opencl.

[7] Peripheral Component Interconnect Express.
wikipedia.org/wiki/PCI_Express.

[8] TOP 500 List. http://www.top500.org/lists/2014/06.

[9] Unified Shader Model. http://en.wikipedia.org/wiki/Unified_
shader_model.

[10] Watts Up Power Meters.
secure/products.php?pn=0.

P. Bakkum and K. Skadron. Accelerating SQL Database
Operations on a GPU with CUDA. In Procs. 3rd Workshop on
General-Purpose Computation on Graphics Processing Units,
GPGPU ’10, pages 94-103, 2010.

N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi. Hardware
acceleration in commercial databases: A case study of spatial
operations. In Procs. 13th Intl. Conf. on Very Large Data
Bases, VLDB 04, pages 1021-1032, 2004.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUT-

http://en.

https://www.wattsupmeters.com/

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

eraSort: High Performance Graphics Co-processor Soning for
Large Database Management. In Procs. of ACM Intl. Conf.

on Management of Data (SIGMOD), pages 325-336, 2006.

N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations us-
ing graphics processors. In Procs. of ACM Intl. Conf. on
Management of Data (SIGMOD), pages 215-226, 2004.

B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient
gather and scatter operations on graphics processors. In
Proceedings of the 2007 ACM/IEEE Conference on Super-
computing, SC °07, pages 46:1-46:12, 2007.

B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational query coprocessing on graphics
processors. ACM Trans. Database Syst., 34(4):21:1-21:39,
Dec. 2009.

B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander. Relational joins on graphics processors. In Procs.
of ACM Intl. Conf. on Management of Data (SIGMOD), pages
511-524, 2008.

B. He and J. X. Yu. High-throughput transaction executions
on graphics processors. Procs. VLDB Endowment, 4(5):314—
325, Feb. 2011.

J. He, M. Lu, and B. He. Revisiting Co-processing for Hash
Joins on the Coupled CPU-GPU Architecture. Proc. VLDB
Endowment, 6(10):889-900, Aug. 2013.

T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU Join
Processing Revisited. In Procs. 8th International Workshop
on Data Management on New Hardware, DaMoN °12, pages
55-62, 2012.

S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
database architecture for the new bottleneck: Memory access.
The VLDB Journal, 9(3):231-246, Dec. 2000.

R. Rui, H. Li, and Y.-C. Tu. Performance Analysis of
Join Algorithms on GPUs. Technical Report CSE/14-016,
Department of Computer Science and Engineering, University
of South Florida, 2014.

C. Sun, D. Agrawal, and A. El Abbadi. Hardware acceleration
for spatial selections and joins. In Procs. of ACM Intl. Conf.
on Management of Data (SIGMOD), pages 455-466, 2003.

Y.-C. Tu, A. Kumar, D. Yu, R. Rui, and R. Wheeler. Data
Management Systems on GPUs: Promises and Challenges.
In Procs. 25th International Conference on Scientific and
Statistical Database Management, SSDBM, pages 33:1-33:4,
2013.

H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland,
and S. Yalamanchili. Red Fox: An Execution Environment for
Relational Query Processing on GPUs. In Procs. IEEE/ACM
International Symposium on Code Generation and Optimiza-
tion, CGO ’14, pages 44:44-44:54, 2014.

Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of
Processing Data Warehousing Queries on GPU Devices. Proc.
VLDB Endowment, 6(10):817-828, Aug. 2013.

Y. Zhang and F. Mueller. GStream: A General-Purpose Data
Streaming Framework on GPU Clusters. In Procs. 2011 In-
ternational Conference on Parallel Processing (ICPP), pages
245-254, Sept 2011.

