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Abstract—The 2-body correlation function (2-BCF) is a group
of statistical measurements that found applications in many
scientific domains. One type of 2-BCF named the Spatial Distance
Histogram (SDH) is of vital importance in describing the physical
features of natural systems. While a naı̈ve way of computing SDH
requires quadratic time, efficient algorithms based on resolving
nodes in spatial trees have been developed. A key decision in the
design of such algorithms is to choose a proper underlying data
structure: our previous work utilizes quad-tree (oct-tree for 3-
dimensional data) and in this paper we propose a kd-tree-based
solution. Although it is easy to see that both implementations have
the same time complexity O(N

2d−1
d ), where d is the number

of dimensions of the dataset, a thorough comparison of their
actual running time under different scenarios is conducted. In
particular, we present an analytical model to rigorously quantify
the running time of dual-tree algorithms. Our analysis suggests
that the kd-tree-based implementation outperforms the quad-
/oct-tree solution under all scenarios with different data sizes and
query parameters. In particular, such performance advantage is
shown as a speedup up to 1.23X over the quad-tree algorithm
for 2D data. Results of extensive experiments run on synthetic
and real datasets confirm our findings.

I. INTRODUCTION

Recently, computational science fields have witnessed the
momentum of data-intensive applications that severely chal-
lenge the design of database management system (DBMSs).
Much efforts have been made in building systems and tools
to meet the data management needs of such applications [1]–
[3]. Generally, data-intensive scientific applications necessitate
considerable storage space and I/O bandwidth, due to the large
volume of data [4]–[6]. For instance, molecular simulations
(MS) evaluate the movement patterns and interaction forces
among molecular structures, each of which consists of millions
of atoms. Other than the large volume of data, there is also
the challenge of processing scientific queries that are often
analytical in nature and bear high computational complexity
[7], [8]. One remarkable example is the computation of 2-
body correlation functions (2-BCFs), which are statistical
measurements that involve every pair of data points in the
entire dataset. One type of 2-BCF called the Spatial Distance

Histogram (SDH) is of vital importance in many computa-
tional sciences and thus the focus of this paper.

A. Problem Statement

The SDH problem can be formally stated as follows.
Given the coordinates of N points in a (2D or 3D) Cartesian

coordinates system, draw a histogram that depicts the distri-
bution of the point-to-point distances among the N points.

Generally, an SDH comes with a parameter l, which is the
total number of buckets. Because the dataset is generated from
a simulation system with a fixed dimension, the maximum
distance (Lmax) between any two points in the system is a
constant. In this study, we deal with the standard SDH, whose
buckets are of the same width. The width of buckets p =
Lmax/l, also named histogram resolution, is usually used as
the parameter of the query. Specifically, with a given histogram
resolution p, SDH asks for the number of point-to-point
distances that fall into ranges [0, p), [p, 2p), [2p, 3p), ..., [(l −
1)p, lp), respectively. Obviously, for the same dataset, more
computation is needed for an SDH with smaller p value.

B. Motivation and Related Work

The SDH is a fundamental tool in understanding the phys-
ical features of systems consisting of many particles. For that
reason, SDH is routinely computed in analyzing data generated
from a very important type of computer simulation - particle
simulations. Such simulations treat individual components
(e.g., atoms, stars, etc.) of large systems (e.g., molecules,
galaxies, etc.) as classical entities that interact with each other
following Newton’s Law. These techniques are applicable in
modeling of complex chemical and biological system that are
beyond the scope of theoretical models, under such scenarios
the simulation is called molecular simulations (MS). MS has
been widely utilized in material sciences [9], astrophysics
[10], biomedical sciences, and biophysics [11]. In a molecular
system, the SDH is the discrete form of a continuous statistical
distribution named radial distribution function (RDF), which
describes how the atom density varies as a function of distance
from a referenced point. RDF is an essential component in
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computing a series of critical quantities describing a system,
such as internal pressure and energy [10], [12], [13].

Computation of SDH also finds its application in other do-
mains. In computer vision and pattern recognition, the concept
of Color Correlogram, which is a table indexed by color pairs,
where a k-entry for < i, j > specifies the probability of a
pixel of color j at a distance k from a pixel of color i in the
image, has been proposed. It is regarded as a robust feature for
effective scene identification under changes in viewing angle,
background scene, partial occlusion, and camera zoom [14],
[15]. A single image generated from modern camera might
contain millions of pixels. Therefore, it takes considerable time
to compute the color correlogram of these images.

In the data mining field, a feature vector represents an
object. The multi-dimensional feature vector could be reduced
to low-dimensional feature vector by using linear reduction
techniques, such as Principal Components Analysis (PCA),
Karhunen-Love Transform (KLT), the Discrete Fourier (DFT),
Cosine Transform (DCT), etc. Then SDH of low-dimensional
feature vector in Cartesian Coordinate System could therefore
statistically conduct similarity search or classification of the
specific objects [16], [17].

The significance of this work is not limited to SDH or
the 2-BCF themselves: similar techniques presented in this
paper can provide insights in computing the more general n-
body correlation function (n-BCF) where n > 2 [18]. The n-
BCFs are of interest in many forms: n-point function, n-tuple
problem, nearest-neighbor classification, nonparametric outlier
detection/denoising, and kernel density/classify/regression [19]
are examples of statistical measurements related to n-BCF, and
their applications range in various scientific fields [20]–[22].

C. Objective
In a dataset with N particles, SDH requires O

(
N2

)
com-

putation time to carry out all point-to-point distance com-
putations. Our previous work [23] proposed more efficient
algorithms: instead of computing every point-to-point distance,
the main idea is to analyze the distances between two groups
of points, as described in Section II-A. These groups are
represented by nodes in a space-partitioning tree structure,
called density map (DMs), as discussed in Section II-B. The
reduction of running time is achieved by the fact that the brute-
force distance computations are substituted by recursively
calling the Resolution Function that takes two tree nodes
as inputs (for which the algorithms are named dual-tree
algorithms). The main objective of this paper is to provide
analytical and empirical evaluations of different data structures
for implementing the DM. So far our work only used a quad-
tree (oct-tree for 3D data) for such purposes [23]. In this paper,
we propose and evaluate an implementation based on a region
kd-tree whose details will be introduced in Section II-B. In
addition, the similar kd-tree implementation (data-driven) was
used in [19] and [24]. Although algorithms based on both
trees have the same time complexity O

(
N

2d−1
2d

)
where d is

number of dimensions of dataset [25], a comparison of their
actual execution time under different scenarios is thoroughly

studied. Thanks to the finer granularity of kd-tree in space
parititioning, it is expected that the pruning ability of kd-
tree gives more benefits on dual-tree algorithm. Our main
technique is to transform the analysis of the number of particle
counts into a problem of quantifying the area of interesting
geometric regions. Our analysis leads to rigorous results
for differentiating the running time of these two dual-tree
algorithms (quad-tree-based and kd-tree-based) under different
cases. Our analysis suggests that the use of kd-tree brings
significant performance advantage to the dual-tree algorithm
under all data sizes and query parameters. In particular, the
kd-tree yields a speedup up to 1.23X over the quad-tree in
processing 2D data. Results of extensive experiments confirm
such findings. We also evaluate that kd-tree yields a speedup
up to 1.39X over the oct-tree in processing 3D data, since the
paper limitation, we don’t report them in this paper, but they
can be found in [26].

D. Paper Organization
This paper is organized as followed: In Section II we sketch

the dual-tree algorithm; We discuss our modeling approach
and present the main analytical results in Section III; Based
on the main results, we compare the performance of the two
dual-tree algorithms in Section IV; We report experimental
results in Section V, and conclude this paper in Section VI.

II. PRELIMINARIES

In this section, we elaborate on the dual-tree algorithm for
computing SDH, in order to pave the way for future discus-
sions related to the performance evaluation of the algorithm.
In Table I, we list the notations that are used throughout this
paper. Note that symbols defined and referenced in a local
context are not listed here.

TABLE I: Symbols and notations

Symbol Definition
p width of histogram buckets
l total number of histogram buckets
h the histogram array with indexed elements hi(0 < i ≤ l)
N total number of particles in data
i an index symbol for any series

DMi the i-th level of density map
d number of dimensions of data
δ diagonal length of the cells

A. Overview of the Dual-tree Algorithm
The main idea of the dual-tree algorithm is to work on

the distances between two clusters of points instead of those
between two individual points to save time. In this paper, we
use 2D data to elaborate on technical details and show our
theoretical and empirical work. All such work are formally
extended to 3D data, for which the details are shown in a
technical report [26]. The dual-tree algorithm starts by building
the tree structures, and cache the total number of data points
in each node. An entire level of the tree with such counts is
called a density map (DM, see Fig. 1 for examples). The main
body of the algorithm is a primitive named ResolveTwoTrees
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Fig. 1: A partial DM implemented by quad-tree and kd-tree. Each
cell is marked by the total number of data points in it

(referred to as resolution function hereafter) which takes a pair
of tree nodes as input. Given a pair of nodes on the DM, if
the both minimum and maximum distances between these two
nodes fall completely into a histogram bucket, we say that this
pair is resolvable. An important observation here is: for a pair
of resolvable nodes, we only need to add the total number
of distances between them to the corresponding bucket in the
SDH. This is also the main reason why such algorithm is more
efficient than the brute force approach. If the pair of nodes
is unresolvable, the resolution function recursively visits next
level of the tree to resolve all pairs of child nodes (cells, since
they are the same, we may alternatively use them hereafter),
so on and so forth. If a pair of nodes is still unresolvable at the
leaf level, we have to compute all the point-to-point distances
between the data points across that pair of nodes.

The pseudocode that summarizes the technical details of the
algorithm can be found in Algorithm 1. The core process of
the algorithm is the procedure ResolveTwoTrees, which tries
to resolve two cells m1 and m2 on the same DM. In order to
check whether m1 and m2 are resolvable, we firstly compute
the minimum and maximum distances between any points from
m1 and m2. Note this process only requires constant running
time. When both minimum and maximum distances between
the two cells fall into a same histogram bucket i, the value
(i.e., distance counts) in bucket i will increment by n1n2,
where n1 and n2 are the number of points in the spatial region
represented by m1 and m2, respectively. If m1 and m2 are
not resolvable on density map DMi, we move to next level of
Density Map DMi+1, and recursively call the same function
to check each of four children in m1 to each of four children
in m2. However, if two nodes are still not resolvable on the
last level DM of the tree, we have to calculate the distances
between all pairs of points from the two cells. In addition, if
we have n1 = 0 or n2 = 0 (i.e., empty nodes), the procedure
ResolveTwoTrees directly exits.

Algorithm 1: The dual-tree algorithm for SDH
Data: all data points, DM, and bucket width p;
Result: an array of distance counts h

1 initialize all elements in h to 0;
2 DM0 ← first DM with cell diagonal length δ ≤ p;
3 for every cell in DM0 do
4 n ← number of particles in the cell;
5 h1 = h1 +

1
2n(n− 1);

6 end
7 for every pair of cells mi and mj in DM0 do
8 ResolveTwoTrees (mi,mj);
9 end

10 return h

11 ResolveTwoTrees (m1,m2)
12 n1 ← number of of points in m1

13 n2 ← number of of points in m2

14 if n1 = 0 or n2 = 0 then
15 return
16 end
17 if m1 and m2 are resolvable into a bucket i then
18 hi ← hi + n1n2;
19 return
20 end
21 if m1 and m2 are on the last density map then
22 for each particle A in m1 do
23 for each particle B in m2 do
24 f ← distance between A and B;
25 i ← the bucket f falls into;
26 hi ← hi + 1;
27 end
28 end
29 else
30 for each child node m′

1 of m1 do
31 for each child node m′

2 of m2 do
32 ResolveTwoTrees (m′

1,m
′
2)

33 end
34 end
35 end

B. Implementations Based on Different Trees

To implement Algorithm 1, one decision to make is what
type of data structure we use to build the DM. Our previous
work [23] uses a quad-tree: when the space is partitioned to
lower-level nodes, the tree simultaneously bisects both x- and
y-dimensions at each partition, generating four children for
each internal node. In this paper, we propose the use of kd-
tree, which alternatively bisects its x- or y-dimension at each
partition, leading to a tree degree of two (Fig. 1). In both trees,
the region containing all points in the dataset represents the
root node. Given the same dataset, the kd-tree introduces an
extra level of nodes in between any two neighboring levels of
the quad-tree, as shown in Fig. 2. The immediate question is
whether the kd-tree-based algorithm has better performance,



2679

Quad−Tree

..

.

..

.

..

.

..

1
2

4
3

2i−1
2i−2

2i+2
2i+1

2i

2(i+n)−1

2(i+n)+1
2(i+n)

1

2

i−1

i+1

i+n

i

kd−Tree

.

Fig. 2: Different levels on quad-tree and kd-tree. Dash line represents
the intermediate level that only exists in kd-tree, and a solid line
corresponds to a level that exists in both trees

and this paper presents an answer to this question via a
rigorous analytical approach. A special note here is that both
trees define a node by a prefixed region instead of being driven
by data distribution. The main reason for this is: the resolving
of two trees is a process that is only related to the dimensions
of the two trees, the data in the trees are irrelevant.

Before we start performance analysis, it is essential to
present two critical features of the dual-tree algorithm regard-
ing the size of the tree structures. First, the height of the
tree is determined by the data size N . Specifically, we keep
partitioning the tree until the average number of data points
in each node is smaller than a threshold b. Thus, the height of
the tree can be expressed as

H =

⌊
logk

N

b

⌋
+ 1 (1)

where k is the degree of the tree (i.e., 4 for quad-tree and 2 for
kd-tree). The value b is set based on the following reasoning:
the cost of computing all the point-to-point distances is b2,
and the cost of resolving two cells is a fixed value C; if we
are to further partition the nodes into a new level, there will
be k2 resolution calls, therefore it makes sense to create this
new level only if we have b2 > k2C, or b > k

√
C. Otherwise,

we should not further partition the nodes and make the current
level the leaf level. The important observation here is: given
the same N , as C does not change, the kd-tree can build an
extra level on the bottom as compared to the quad-tree.

Another important feature of the algorithm is the level of the
tree where the algorithm starts calling the resolution function.
Specifically, the algorithm starts at a tree level (i.e., a DM)
where the size of the cells/nodes satisfies

a ≤ p√
d

i.e. δ ≤ p (2)

where a is the side length (δ is the diagonal length) of the
cells, p is the histogram bucket width, and d is the number
of dimensions in the data. This is because, if the above is
not true, none of the node pairs will resolve. In other words,
the bucket width p determines the starting DM. Consequently,

the algorithm may start at the identical or different levels on
the quad-tree and kd-tree, depending on the value of p. The
extra levels that only exist in the kd-tree give chances for the
algorithm to start earlier, as shown in Fig. 2.

As we shall see later (Section IV), the above two features
define four scenarios to consider in comparing the performance
of the kd-tree-based algorithm to that of the quad-tree-based
one. In these four cases, the relative performance of the
algorithms are different.
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III. MAIN ANALYTICAL RESULTS

We first present our analysis on how fast the resolution
function resolves the points when it recursively visits the tree
in a depth-first manner. This turns out to be a key step in
modeling the relative performance of the two algorithms.

A. The Geometric Modeling Approach
To identify the number of points are resolved, we transform

the problem into a geometric modeling problem. In particular,
we develop a geometric model to quantify how the area of the
region that can be resolved increases as more DMs (i.e., tree
levels) are visited. Consequently, any points that fall into such
regions are resolved.1

Given any cell A on the DM where the algorithm starts
(Fig. 3), we first define a theoretical region that contains all
particles that can possibly resolve into the i-th bucket with any
particle in A. We name this region as bucket i region for cell
A, and denote it as Ai. Note that A can be either a square or a
rectangle in the kd-tree implementation. In all illustrations of
this paper, we only draw rectangular cells but our analysis will
cover both cases. Going back to Fig. 3, cell A is marked with
its four corner points O1, O2, O3, and O4, A1 is therefore
bounded by 4 arcs and 4 line segments connected by points
C1 through C8. The arcs are of the same radius p. Here we

1Note that such transformation is based on an implicit assumption that data
is uniformly distributed in the simulation space, because we adopted space-
oriented (bisecting each dimension) method. We will remove this assumption
in our analysis as shown in Section IV-A.
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consider the special case of Equation (2): the diagonal length
of cell A is set to be δ = p√

2
. However, as we shall see later,

the case of δ < p√
2

will not change our analytical results.
The cells that are actually resolvable into bucket i with

any subcells in A also from a region. We named such region
as coverable region and denote it as A′

i. Since a coverable
region contains rectangles or squares, its boundary (solid blue
line in Fig. 5) shows a zigzag pattern. An essential part of
our analysis is to study the area of coverable regions over
all buckets and how the density map resolution affects it. We
define the ratio of

∑
i A

′
i to

∑
i Ai as the covering factor,

which is a critical quantity to measure how much area are
“covered” by the resolvable cells. Note that the boundary of
A′

i approaches that of Ai (solid black line in Fig. 5) when the
dual-tree algorithm visits more levels of the tree. As a result,
the covering factor increases. Of special interest to our analysis
is the non-covering factor which indicates the percentage of
area that is not resolvable, i.e.,

non-covering factor = 1− covering factor (3)

Our previous work [25] has studied the resolution ratio of
dual-tree algorithm running on top of the quad-tree. A very
important feature of the non-covering factor in the quad-tree
can be summarized in the following theorem.

Theorem 1. Let DMi be the first density map where the quad-
tree algorithm starts running, and we define the non-covering
factor αm as a function of the levels of density maps visited
m. In other words, αm is the percentage of cell pairs that are
not resolved upon visiting DMi+m. We have

lim
p→0

αm+1

αm
=

1

2

Basically, Theorem 1 says that half of the node pairs are
resolved when one more level of the tree is visited. From
this theorem we can easily derive a recurrence function that
leads to the time complexity of the quad-tree-based algorithm
dropping to O

(
N

2d−1
2d

)
, where d is number of dimensions of

dataset [25]. This theorem, by focusing on the non-covering
factors on two consecutive levels, essentially shows how fast
the data points could be resolved while the dual-tree algorithm
visits the quad-tree structure.

For the same dataset, the kd-tree has extra levels that are not
seen in the quad-tree, the data points could be resolved earlier
in the kd-tree by the resolution function. Intuitively, if more
data points are resolved by the resolution function call, fewer
of them are left for distance computation. That is the benefit of
calling the resolution function earlier (among the intermediate
tree nodes). On the other hand, the time we spend on calling
the resolution function on such levels is a pure cost. Just by
looking, it is not clear how much net performance gain such
“early resolution” in the kd-tree can generate. Therefore, it is
essential to study the same quantity αm+1/αm in the kd-tree.

B. Non-Covering Factor Ratios in kd-tree
Rather than square cells in the quad-tree, the kd-tree intro-

duces rectangular cells on the intermediate levels, the algo-

C

O

Bucket 3 boundaries

Bucket 2 boundaries

A

Fig. 4: Inner boundaries of the coverable region with m = 1

rithm therefore alternatively visits the square and rectangular
cells, resulting in more complicated scenarios in studying the
resolution ratios on the kd-tree. Our main results on kd-tree
can be seen in the following theorem.

Theorem 2. Let DMi be the first density map where the dual-
tree algorithm starts running on a kd-tree, and αm be the
non-covering factor upon visiting the density map that lies m
levels below DMi, we have

lim
p→0

αm+1

αm
=

3

4
(4)

when i+m is even, and

lim
p→0

αm+1

αm
=

2

3
(5)

when i+m is odd.

Proof. Due to page limits, we will only sketch the idea to
prove Theorem 2 in the following text. The complete proof
can be found in a longer version of this paper [26].

Bucket Region: As shown in Fig. 3, the bucket 1 region for
cell A is connected by C1 through C8; C1C2, C3C4, C5C6,
and C7C8 are all line segments; C2C3, C4C5, C6C7, and
C8C1 are all 90-degree arcs with radius p and centered at O2,
O3, O4, and O1, respectively. The bucket 2 region of A is
similar to bucket 1 region but the radii of the four arcs are 2p
– this region is connected by D1 all the way around to D8.
However, if the points are too close to A, they will only be
resolved into bucket 1, because their distances to any points
in A will always be shorter than p. These points formed a
region, which is connected by four arcs Q1Q2, Q2Q3, Q3Q4,
and Q4Q1 with radius p and centered at opposite corners
of A. The bucket 2 region should not take count of such
inner region. This football-shaped inner region Q1Q2Q3Q4

is shown as in Figure 4. The shape of bucket i (i > 2)
regions is the same as bucket 2 region except the radii of
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the arcs become ip. Recall that the algorithm starts from a
DM where p ≥ diagonal. For convenience of presentation,
we set p = diagonal, i.e., p =

√
5δ
2 . As we will see later,

p > diagonal will not affect our analysis. We then come up
with g(i) (can be found in Section 3 of [26]) to measure the
area of bucket i region.

Coverable Regions: Similar to bucket region, the coverable
region consists of an outer region and an inner region.

The First Bucket: First, let us focus on bucket 1. In Fig.
5, we illustrate the coverable regions of four different density
maps with m value ranging from 2 to 5. The solid blue line
with zigzagged pattern indicates the coverable region of cell
A, denotes as A′. This region contains all the cells that can be
resolved into bucket 1 with any subcell in A. A key technique
here is to use a smooth boundary (shown as dashed green line)
to approximate the area of A′. As m increases, the boundaries
of A′ approach that of A. The covering factor of bucket 1 with
cell A is calculated as the ratio of the area of A′ to that of A.

The Second Bucket and Beyond: First, we have to com-
pute the area of the region A′

i by only considering the outer
boundaries. This is the same as we did for the first bucket
except the radii of arcs are ip. Second, we have to consider
the inner boundaries of the coverable region. Fig. 4 shows an
example with m = 1 for buckets 2 and 3. Clearly, any cell
that crossed by a segment of the theoretical inner boundary,
as shown as thick solid line, will not be able to resolve into
bucket i, because they are only resolvable to bucket (i − 1).

In addition, there are more cells that are not resolvable to
either bucket i or (i−1). Again, we define a smooth boundary
(dashed line in Fig. 4) to approximately separate the resolvable
and non-resolvable regions. Such boundaries are drawn as
follow: for each quadrant of cell A, we draw an arc (dashed
line) with radius (i − 1)p and centered at the corner of the
subcell of A. Consequently, any cell that crossed by this arc
cannot resolve into bucket i, because they are too close to A.
Such boundary also approximates the real inner boundaries
(with a zigzagged pattern). Fig. 6 illustrates more cases with
m values from 2 to 5. For the cases of m ≥ 2, we can use
the same method as case of m = 1 to generate the real inner
boundaries and approximated inner boundaries. Again, as m
increases, point C approaches point O, and the approximated
inner boundaries approach the theoretical inner boundaries.

We denote the area of the coverable region A′ for bucket
i under different m values as f(i,m) (The fully expanded
formula for f(i,m) can be found in Section 3 of [26]). We
then use the non-covering factor α(m) (Eq. (6)) to study the
percentage of unresolvable pairs of cell at each level.

α(m) = 1− c(m) =

∑l
i=1[g(i)− f(i,m)]

∑l
i=1 g(i)

(6)

To prove Theorem 2, we start by

α(m+ 1)

α(m)
=

∑l
i=1 g(i)−

∑l
i=1 f(i,m+ 1)

∑l
i=1 g(i)−

∑l
i=1 f(i,m)

(7)
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By doing algebraic transformation [26], we can prove that
when m is even, α(m+ 1)/α(m) converges to 2/3. Now let
us look at α(m+2)/α(m+1). The m-th and (m+2)-th levels
in the kd-tree correspond to two consecutive levels in the quad-
tree. By Theorem 1, we have α(m + 2)/α(m) converges to
1/2. Since we have already shown α(m+1)/α(m) converges
to 2/3, we can easily get

lim
p→0

α(m+ 2)

α(m+ 1)
=

3

4
(8)

The above concludes the proof of Theorem 2.

Case 4

End

Start

Starts at 2i−1Starts at 2i

Ends at 2(i+n)
Case 1 Case 3

Ends at 2(i+n)+1

Case 2

Fig. 7: Four cases in performance comparison listed from the per-
spective of the kd-tree-based algorithm. Note that level 2i corresponds
to level i in the quad-tree according to Fig. 2, and a blue line
represents a level that only exists in the kd-tree

IV. PERFORMANCE COMPARISON OF TWO TREES

Theorem 1 states that half of the node pairs are resolved
when one more level of the quad-tree is visited. Theorem 2
states that a quarter of the node pairs will be resolved when
the algorithm works on an even level (which has square cells
and is also in the corresponding quad-tree), and a third will be
resolved on the extra levels (with rectangular cell) that only
show up in the kd-tree. From these two theorems we can easily
derive a recurrence function that leads to the time complexity
of the algorithm [25]. Although the time complexity of the
algorithm is the same under both trees, it is not clear how the
actual running time is affected by using a kd-tree. Intuitively,
the appearance of the extra levels provides opportunities to
resolve nodes earlier such that fewer node pairs are to be
resolved in the following levels. On the other hand, there is
extra cost to resolve pairs of nodes in such extra levels. Only
when such cost is overshadowed by the saved time can we see
a performance advantage from the kd-tree. With Theorem 2,
we are able to quantitatively compare the actual running time
of both algorithms under different cases (Fig. 7). Note that, in
Algorithm 1, the time is only spent in two types of operation:
Type I – resolution function calls; and Type II – computation
of distances between data points in the unresolved leaf nodes.
For rest of this section, we derived cost equations to compare
the performance of two operations while the Algorithm 1 is
traveling on quad-tree and kd-tree.

A. Case 1
In this case, the algorithm ends at identical levels on both

trees, they have the same number of unresolvable pairs of
nodes at leaf level and thus the number of point-to-point
distances to be computed. Therefore, we only need to compare
the number of resolutions called by the algorithm.

In the quad-tree, if a pair of nodes is unresolvable at the
current level, it will generate 16 pairs of nodes at the child
level. In other words, for all the node pairs at the starting level,
the algorithm leaves 16α0I pairs unresolved, where α0 is the
non-covering factor, and I is the total number of node pairs
at the starting level, respectively. At the next level, it leaves
162α0α1I pairs unresolved. Thus, the total number of calls to
the resolution function on quad-tree is

R = I(1 + 16α0 + 162α0α1 + · · ·+ 16nα0α1 · · ·αn−1) (9)

Based on Theorem 1, we have

R = I

[
1+ 16α0 +162α0

(1
2

)
+ · · ·+16nα0

(1
2

)n−1
]

(10)

In the kd-tree, if a pair of nodes cannot be resolved at
current level, it will generate 4 pairs of nodes at its child
level. Similarly, we have total number of calls to the resolution
function in the kd-tree as

R′ = I(1 + 4β0 + 42β0β1 + · · ·+ 4nβ0β1 · · ·β2n−1) (11)

where βi is the non-covering factor, and I is the total number
of node pairs at the starting level. With Theorem 2, we have

R′ =I

[
1 + 4β0 + 42β0

(3
4

)
+ 43β0

(1
2

)

+ · · ·+ 42n−1β0

(1
2

)n−1
+ 42nβ0

(1
2

)n−1(3
4

)] (12)

Consider any level i of the quad-tree visited by the algo-
rithm. Let us denote ∆i as the ratio of number of calls to
the resolution function of the two algorithms at that level (for
kd-tree, this includes the calls at level 2i − 1 and 2i). From
Eq. (10) and Eq. (12), we have

∆i =
16iα0(

1
2 )

i−1

42i−1β0(
1
2 )

i−1 + 42iβ0(
1
2 )

i−1( 34 )
=

α0

β0
(13)

Since the algorithms start at identical levels of the tree in this
case, we have α0 = β0, which further gives ∆i = 1. This
means the two algorithms make the same number of calls to
the resolution function.

Another factor that impacts the total calls to the resolution
function is the existence of empty nodes, which are automati-
cally ignored by the algorithm. Such empty nodes may appear
earlier in the kd-tree due to the existence of the rectangular
nodes, and such scenarios yield a net discount to the number
of function calls made by the kd-tree. On such a level 2i− 1
in the kd-tree, let us define B as number of nodes at that level,
ϵ as net discount to the number of function calls, and K the
number of empty nodes, we have

ϵ =

[(
B

2

)
−

(
B −K

2

)]
42i−1β0

(
1

2

)i−1

(14)
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If we model the spatial distribution of data points as a random
process, the expected value of K can expressed as

E[K] = B · Pr{X} (15)

where X represents the event that a cell is empty. If the data is
uniformly distributed in space, we have Pr{X} = (1− 1

B )N

for a dataset consisting of N points. Typically, only when we
move to the lower levels of the tree (such that B → N ) do
we see a non-negligible Pr{X}. However, under skewed data
distribution (e.g., Zipf), Pr{X} becomes critically large even
at higher levels of the tree, leading to a bigger discount ϵ.

B. Case 2

In this case, the dual-tree algorithm starts at identical levels
on the quad-tree and kd-tree, but ends at different levels. In
Case 1, we have already shown that the kd-tree beats the quad-
tree on the number of Type I operations, so we just need to
compare the difference of Type II operations.

In this case, the leaf nodes of the quad-tree are further
divided into two child nodes (representing rectangular regions
in space) in the kd-tree. As a result, more nodes can be
resolved by the algorithm on the kd-tree, giving rise to fewer
point-to-point distance computations. Suppose there are J
unresolved distances left at leaf level (i + n) of the quad-
tree (which is identical to level 2(i + n) of kd-tree). Upon
calling resolution function on the next level 2(i + n) + 1 of
the kd-tree, there are 3

4J unresolved distances left. Then, we
have a kd-/quad-tree speedup at this level as

Speedup =
JC1

3
4JC1 + PC2

(16)

where P is number of resolution function calls made at level
2(i + n) + 1 of kd-tree, C1 and C2 are the costs of distance
computation and resolution function call, respectively. Since
each resolution function call invokes 16 distance computation
(Section II-B), we have 16C1 = C2. Consequently, the
denominator of Eq. (16) becomes

3

4
JC1 + 16PC1 (17)

Let x be the average number of the points at the level 2(i +
n)+1 of kd-tree. Since the minimum average number of points
at leaf level is set to 4, the average number of points at one
level up will be no less than 8, thus we have 8 > x ≥ 4.
Here each resolution function resolves x2 distances, and we
called resolution function P times. On the other hand, we have
the J/4 of distances resolved by the resolution function at
the bottom level of kd-tree. Therefore, we have the following
relationship between J and P .

J

4
= x2P ⇒ J

4x2
= P (18)

By plugging Eq. (17) and Eq. (18) into Eq. (16), we have

Speedup =
1

3
4 + 4

x2

(19)

Since x ∈ [4, 8), we get Speedup ∈ [1, 1.2308). Therefore,
the kd-tree algorithm again has better performance, with a
speedup up to 1.23X over the quad-tree algorithm.

C. Case 3

The algorithm starts at an odd level of kd-tree, which does
not exist in the quad-tree, and ends at the same level for both
trees. The latter is the same to Case 1, therefore the efficiency
depends on how many times the algorithm calls the resolution
function. Although the algorithm starts earlier in the kd-tree
(level 2i − 1), the number of nodes that are unresolvable at
the next level (i.e., level 2i) is exactly the same as the starting
level i of the algorithm on the quad-tree. In other words, Eq.
(10) remains the same and the only change to Eq. (12) is that
the first term I becomes I/4 + Iβ where I/4 is the number
of node pairs at level 2i − 1, β is the non-covering factor at
level 2i−1, and Iβ is the number of function calls at level 2i.
Here β has an upper bound of 3/4 (Theorem 2). Therefore,
as compared to Case 1, the kd-tree beats the quad-tree by an
even bigger margin. However, the extra margin is negligible
because it only reflects the changes to the first item in Eq.
(12), which is the one with the lowest order in the series. In
other words, Case 3 is almost the same scenario as Case 1.

D. Case 4

This case combines the differences between the quad-tree
and kd-tree as discussed in Cases 2 and 3: the kd-tree starts
running at a higher (odd) level, and it ends at the extra leaf
level that is not in the quad-tree. Since we have shown that
both scenarios lead to performance advantages of the kd-tree,
we conclude the kd-tree is the winner again. Furthermore,
the performance gap between kd-tree and quad-tree can be
modeled by Eq. (14) and Eq. (16).

V. EXPERIMENTAL EVALUATION

We have implemented both algorithms with the C++ pro-
gramming language and our experiments were run on a Mac
OS X (El Capitan) server with an Intel i7-6700K Quad-Core
4.0GHz processor and 16GB of 1867MHz DDR3 memory. We
used one real dataset, which was generated from a molecular
dynamics study to simulate a bilayer membrane lipid system,
and two synthetic datasets that represent different spatial
distributions of data (i.e., Uniform and Zipf with order 1.0)
in our experiments. All synthetic data was generated within
a box with lateral length 25,000. All experiments were run
under a series of histogram resolutions (i.e., 4-10 buckets) and
different system size (i.e., 100,000 to 1,600,000 points).

We first evaluate our analysis related to Case 1 of 2D data.
Fig. 8a shows the recorded ∆i values under different numbers
of tree levels visited by the algorithm (i.e., m in Theorem
2). For the uniformly distributed data, ∆i is close to 1 for
most the levels. For smaller i, we observe smaller ∆i values.
This is due to the modeling errors caused by the coarse grid,
as discussed at the end of Section III. Note that such errors
disappear at m = 3 in Fig. 8a. For the Zipf data, we see ∆i

values greater than 1 for larger i - this is due to the fact that
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Fig. 9: Running time of the dual-tree algorithm in 2D systems under different data sizes and data distribution patterns

empty nodes are found earlier in kd-tree. Such results confirm
our analysis shown in Section IV-A.

Related to Case 2, Fig. 8b shows the ratio of total number
of distance computations made by the two trees. Recall this is
the case where the kd-tree has an extra level on the bottom.
The curves converge to 4/3 in the uniformly distributed data,
meaning the kd-tree saves 1/4 of the distance computations.
For the skewed data (e.g., Zipf), we observe more fluctuations
in the results, and the speedup is even higher than those in
uniform data for most of the cases. This result confirms the
analysis shown in Eq. (18).

Fig. 9 plots the actual running time of the two algorithms
under different data sizes and data distributions. The ranges
of speedup of kd-tree over quad-tree we observed in such ex-
periments are presented in Table II. Recall that the number of
buckets in the histogram (or the value of p) determines which
tree level the algorithm starts, and the data size determines
which level the algorithm stops. Therefore, we set those two
numbers in different ways to create the four cases discussed
in Section IV. In Case 1 (Fig. 9a) and Case 3 (Fig. 9b), the
performance of the two trees is almost identical, confirming
our findings in Sections IV-A and IV-C. In Case 2 (Fig. 9c) and
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TABLE II: Ranges of speedup (kd-tree over quad-tree) ob-
served in all cases of 2D experiments shown in Fig. 9

Scenario Data Type

Uniform Zipf Real

Case 1 0.993 – 1.002 0.974 – 0.996 0.996 – 1.006
Case 2 1.052 – 1.204 1.159 – 1.230 1.084 – 1.219
Case 3 0.994 – 1.005 0.984 – 1.004 0.993 – 1.004
Case 4 1.042 – 1.212 1.154 – 1.228 1.095 – 1.229

Case 4 (Fig. 9d), however, the performance gap between the
two trees becomes much larger. This indicates that the reduced
distance computations caused by the extra level on the bottom
of the kd-tree plays a significant role in boosting performance,
and the expected speedup of [1X, 1.2308X] mentioned in
Section IV-B is an accurate estimation. As a result, the kd-
tree is still the obvious winner in performance

We also recorded the total running time of Algorithm 1
under the oct-tree-based and kd-tree-based implementations
for 3D data, due to space limit, we put them in Appendix C
of [26] . In summary, the kd-tree outperforms oct-tree in all
experimental runs we conducted, and the speedup in all cases
are within the range suggested by our analysis.

VI. CONCLUSIONS

SDH is a type of 2-body statistics that found applications in
many computing domains. Being the main building block of
high-level analytics, SDH is of great importance in statistical
learning and scientific discovery. In the past years, research
on efficient processing of SDH has settled on a series of
dual-tree algorithms that work on resolving distances between
pairs of nodes of a spatial tree. Main implementations of
the dual-tree algorithm are based on quad/oct-tree, which
partitions data space along all dimensions, and the kd-tree,
which does so along a single dimension. In this paper, we
present quantitative analysis on the performance of dual-
tree algorithms based on these two types of tree structures.
Our analysis established on a geometric modeling framework
suggests the kd-tree-based algorithm outperforms the quad-
/oct-tree-based algorithm under all scenarios with different
data sizes and histogram resolution. We also provide bounds
for the speedup of kd-tree over quad-/oct-tree, and extensive
experiments with both synthetic and real data inputs confirm
our findings. We believe our results and methodology can also
provide insights on analyzing similar algorithms for processing
more general n-body statistics.
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