
Trust Prediction via Aggregating Heterogeneous Social
Networks

Jin Huang
University of Texas at Arlington

Arlington, TX 76013
jin.huang@mavs.uta.edu

Feiping Nie
University of Texas at Arlington

Arlington, TX 76013
feipingnie@gmail.com

Heng Huang
University of Texas at Arlington

Arlington, TX 76013
heng@uta.edu

Yi-Cheng Tu
University of South Florida

Tampa, FL 33620
ytu@cse.usf.edu

ABSTRACT
Along with the increasing popularity of social web sites, users rely
more on the trustworthiness information for many online activities
among users. However, such social network data often suffers from
severe data sparsity and are not able to provide users with enough
information. Therefore, trust prediction has emerged as animpor-
tant topic in social network research. Traditional approaches ex-
plore the topology of trust graph. Previous research in sociology
and our life experience suggest that people who are in the same
social circle often exhibit similar behavior and tastes. Such an-
cillary information, is often accessible and therefore could poten-
tially help the trust prediction. In this paper, we address the link
prediction problem by aggregating heterogeneous social networks
and propose a novel joint manifold factorization (JMF) method.
Our new joint learning model explores the user group level similar-
ity between correlated graphs and simultaneously learns the indi-
vidual graph structure, therefore the shared structures and patterns
from multiple social networks can be utilized to enhance thepre-
diction tasks. As a result, we not only improve the trust prediction
in the target graph, but also facilitate other information retrieval
tasks in the auxiliary graphs. To optimize the objective function,
we break down the proposed objective function into several man-
ageable subproblems, then further establish the theoretical conver-
gence with the aid of auxiliary function. Extensive experiments
were conducted on real world data sets and all empirical results
demonstrated the effectiveness of our method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
The ever-increasing popularity of social web sites such as Face-

book and LinkedIn has generated complicated social networks and
corresponding data sets with enormous sizes. Among the various
forms of online activities, adding (accepting) other usersas friends
is a primary one. With the increasing risk of exposing private pro-
file to malicious users, the question of whom to trust has become an
important challenge to individual users. Many online social com-
munities allow users to tag other users to facilitate the trustworthi-
ness evaluation. Trust tags in a social network can be represented
as a trust graphG = 〈V,E〉, whereV represents the collection
of nodes (users) and an edge between nodei andj denotes a trust
vote from useri to userj. Due to the lack of diligence and privacy
concern on users’ part, there are often a large number of missing
values in the trust graph, making the trust link prediction adiffi-
cult task. In the literature, there are a few trust prediction papers
using trust propagation [8, 11]. The assumption for these meth-
ods is that users tend to trust each other given a trustable common
friend. However, since only a very small portion of entries in trust
graph are explicitly tagged, the prospect of these approaches seems
gloomy.

It has been discovered in [15], people who are in the same social
circle often share similar behavior and tastes. In [5], Crandall et
al. give the following two main reasons. One is that people gen-
erally adopt behavior exhibited by those they interact with. Such
process is called social influence. The other more distinct reason
is people incline to form relationships with others who are already
similar to them. Prior research works on inferring individual user’s
interests and attributes from his or her social neighbors [1, 13, 16].
These papers show the possibility of improving the users’ attributes
prediction from the trust graph. In this paper, we will explore the
trust graph structure with the users’ behavior profile instead, use
the ancillary information to help the trust prediction. We propose
a joint manifold factorization (JMF) model to predict the trust and
distrust in social network by aggregating heterogeneous social net-
works from both target trust domain and auxiliary information do-
main. When we say two graphs are heterogenous, it implies they
are from different domains and have no apparent structural similar-
ity and their entries generally have different scale. Our approach is



to alleviate the sparsity problem in trust graph by taking advantage
of the supplementary knowledge about user behavior and discover-
ing the implicit group-level similarity, which are jointlydetermined
by the user-user trust graph and user behavior auxiliary graph. This
helps us find the optimal like-minded user groups across bothdo-
mains. Moreover, we construct the individual affinity graphs to
explore the individual geometric structures of the featuremanifold
to improve the prediction of the missing elements.

The remainder of this paper is organized as follows. In Section
2, we describe the notations used in this paper and formulatethe
objective function. We will derive our optimization methodand
provide the algorithm in Section 3. In Section 4, we will givethe
outline of the convergence proof in our new algorithm. We empir-
ically validate the effectiveness of our method for trust prediction
in Section 5 and conclude the paper in Section 6.

2. JOINT MANIFOLD FACTORIZATION
In this section, we will introduce our JMF objective function that

aggregates the heterogeneous social networks. Prior to this, we first
reiterate our motivation and then give an example to demonstrate
this.

As mentioned in the introduction, trusted users in a social net-
work often display similar behavior and taste. Meanwhile, social
network users become friends due to the similar background and in-
terest. Therefore, the trust graph and behavior graph should share
some structure similarity in spite of the apparent difference, if the
coincidence of the similar ratings contributes to the trustvotes. As
a result, the trust prediction accuracy can be improved withthe
aid of behavior graph information and vice versa. In summary,
we transfer the knowledge from different domains to circumvent
the sparsity constraint and help predict the entries in bothmatri-
ces, this answers the most important questions of transfer learning:
what to transfer and how to transfer. Fig. 1 is a demonstration of
our motivation.

2.1 Notations
We use boldface uppercase letters, such asX to denote matri-

ces,Xi., X.j , X(i, j) (orXij when needed) to denote theith row,
jth column and the entry located at(i, j) of X, respectively. In
our setting, for simplicity, we only discuss two matricesG1 and
G2 case, then it is natural to extend the objective function to mul-
tiple matrices case. For the ease of discussion, we further assume
G1 ∈ R

n×m1 , G2 ∈ R
n×m2 are the trust graph and rating graph

(a special category of behavior graph) respectively, wheren is the
number of identical users in both domains,m1 is the number of
users who receive trust votes,m2 is the number of different items.
Ω1 ⊂ G1 and Ω2 ⊂ G2 are entries known in corresponding
graphs.

2.2 Objective Function Formulation
Inspired by the preceding discussions, we target at the joint ma-

trix factorization to find out the shared group structure between two
graphs.
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HereU ∈ R
n×l, V1 ∈ R

m1×l, V2 ∈ R
m2×l wherel is the num-

ber of group parameter determined by user.c > 0 is a scalar adjust-
ing the scale inconsistency between graphs since the two graphs are
from different domains. HereU is jointly determined by the trust
graph and rating graph, therefore it provides the shared group struc-
ture for both graphs. Since rows represent users in both graphs, we
could group users based onU and then conduct the trust and rating

prediction withV1,V2 respectively. It can be observed thatU car-
ries the knowledge of both trust graph and rating graph, suchframe-
work becomes especially useful since both graphs usually have data
sparsity issues for real data sets.

While the above model takes into account of the common row
group structure in terms of both matrices, it fails to consider the
individual column information for both matrices. To overcome this
drawback, we include the Laplacian regularity term [9] in the above
formula. To be specific,
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Hereλ > 0 is a scalar parameter to be tuned,L1 andL2 are the
Laplacian graph based on the columns ofG1 andG2 respectively,
Tr is the trace operation which yields the sum of diagonal elements
of the matrix. The detailed construction forL1 andL2 would be
given in the next section. We impose the orthogonal constraints on
V1 andV2 to ensure the uniqueness of the solution. SupposeU

∗,
V

∗

1 andV∗

2 are the solutions to Eq. (2), then for any given non-
zero constantc1 > 1, c1U∗ andV∗

1/c1 would give same value
in the first term and lower value for the third term, this is true no
matterU∗ andV∗

1 are local or global optimum solutions, the same
argument applies toV2. In other words, the optimal solution to
Eq. (2) is not unique without the constraint.

3. OPTIMIZATION
In the following, we will give solution to Eq. (2). As we see,

minimizing Eq. (2) is with respect toU, V1, V2 andc, and we
can not give a closed-form solution. We will present an alternat-
ing scheme to optimize the objective, this procedure repeats until
convergence.

3.1 Initialization
In this paper, for any missing entryG(i, j), we use mean of the

available entries in the corresponding row and column, for auser-
item rating matrix, such initialization combines the available in-
formation for both the individual user rating habit and other users’
ratings on a particular item. For a user-user trust matrix, such ini-
tialization consider both useri and userj’s social circle influence.

After the missing values initial imputation, we construct the Lapla-
cian graphs for both social networks. We define the edge weight
matrixW as follows:

wij =

{

1 : Xi. ∈ Nk(X.j) or Xj. ∈ Nk(X.i)
0 : otherwise

whereNk(Xi.) denotes the set ofk nearest neighbors ofXi.. It is
easy to seeW is symmetric. Let graph LaplacianL = D − W,
whereD is a diagonal matrix whose entries are column sums of
W, Dii =

∑

j

wij .

After that, we constructV1 andV2 based onk-means on columns
for G1 andG2 respectively. Fori-th row ofV1, if this row belongs
to j-th cluster, thenV1(i, j) = 1, all other elements ini-th row are
0. V2 is initialized in the same manner.

Now we come to the optimization of our objective function, we
iteratively solveU, V1, V2 and c in an alternating manner. In
other words, we will optimize the objective with respect to one
variable while fixing the other variables. Such process repeats until
convergence.



Figure 1: A demonstration for our motivation and learning process. The shared group structure matrix is jointly determined by the
rating graph and trust graph. The rating matrix contains 2 groups of users’ reviews about movies, where a smile face represents
a satisfactory review and an angry face represents an unsatisfactory message. The trust matrix contains users’ trust evaluation
towards other users, where 1 represents trust and 0 represent distrust. The question mark represents missing value in both graphs.
The 1s in cluster information matrix indicate users are in the corresponding group while 0s represent users are not in that group.

3.2 Computation of U

Optimizing Eq. (2) with respect toU is equivalent to optimizing
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Setting∂J1

∂U
= 0 leads to the following updating formula
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3.3 Computation of V1

Optimizing Eq. (2) with respect toV1 is equivalent to optimizing
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For the constraintVT
1 V1 = I, we can not get a closed-form so-

lution of V1. Therefore we will present an iterative multiplica-
tive updating algorithm. We introduce the Lagrangian multiplier
α ∈ R

l×l, the corresponding Lagrangian function is
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Setting∂L(V1)

∂V1
= 0 and use the orthogonal constrainVT

1 V1 = I,
we obtain

−G
T
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Using the Karush-Kuhn-Tucker condition [3]α ·V1 = 0, where·
is the element-wise product operator and thereafter, we get
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whereU+
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L1,V1 defined in a similar fashion, we obtain
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Eq. (9) leads to the following updating formula

V1(i, j) = V1(i, j)
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3.4 Computation of V2

Optimizing Eq. (2) with respect toV2 is equivalent to optimizing
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The optimization with the above equation is almost identical to
the previous subsection, so we only give formula without details.

V2(i, j) = V2(i, j)
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3.5 Computation of c

Optimizing Eq. (2) with respect toc is equivalent to optimizing
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The above task is equivalent to
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4. CONVERGENCE ANALYSIS
In this section, we prove the convergence of our algorithm. Since

the objective function is naturally lower bounded, we just need to
prove the objective function is monotonically decreasing at each
iteration. The decreases in objective function for updatingU andc
are obvious, so we focus on the proof for theV1 andV2. We use
classic auxiliary function approach used in [12].

DEFINITION 1. [12] Z(h, h′) is an auxiliary function forF (h)
if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h)

are satisfied.



LEMMA 1. [12] If Z is an auxiliary function forF , thenF is
non-increasing under the update

h(t+1) = argmin
h

Z(h, h(t))

LEMMA 2. [7] For any nonnegative matricesA ∈ R
n×n,B ∈

R
k×k, S ∈ R

n×k, S′ ∈ R
n×k, andA, B are symmetric, then the

following inequality holds
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THEOREM 3. Let
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is an auxiliary function forJ(V1). Furthermore, it is a convex
function inV1 and its global minimum is

V1(i, j) = V1(i, j)
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Proof We have to omit the proof due to page limit. Interested
reader may contact the first author for details.

THEOREM 4. UpdatingV1 using Eq. (10) will monotonically
decrease the value of the objective in Eq. (2).

Proof By Lemma 1 and Theorem 3, we can get thatJ(V0
1) =

Z(V0
1,V

0
1) ≥ Z(V1

1,V
0
1) ≥ J(V1

1) ≥ . . .so J(V1) is mono-
tonically decreasing.

The monotonical decrease of the objective in Eq. (2) via updating
V2 using Eq. (12) can be proved in a similar way. Therefore it is
obvious our algorithm will converge.

5. EXPERIMENTS
In this paper, we want to compare the prediction performance

with other methods on both trust graph and rating graph from areal
data set.

5.1 Description of Data Set
This data set was collected by Paolo Massa [14] in a 5-week

crawl from Epinions.com. It consists of two parts, one is therat-
ings part, the other is the trust votes part. The Epinions data set con-
sists of 49,290 users, 139,738 items, 664,824 reviews from users to
items, 487,181 trust statement between users. Users express their
web of trust, i.e, reviewers whose reviews and ratings they have
consistently found to be valuable and offensive [14]. Therefore it is
reasonable to assume most individual users tend to cast trust votes
towards other users if the users have similar rating patterns towards
those items. As a result, the rating matrix and trust matrix could
have similar row structure given common users, in other words, the
assumption of our method holds on this data set.

5.2 Competitive Methods and Procedure
The competitive methods include average filling (AF),k-nearest

neighbors (KNN), SimRank [10], SVD [2] and matrix completion
via trace norm (MC) [4]. AF uses the average of their available row
and column entries to impute the missing entries. KNN imputes the
missing values based on nodes similarity using Jaccard’s coefficient
while SimRank imputes based on path ensembles. SVD finds a
low-rank matrix that approximates the target matrix and MC seeks
a low-rank matrix with trace norm regularity, where trace norm of
a matrix is the convex relaxation of its rank. Note that we stack the
trust graph and rating graph using the common users as rows for
MC method, that serves the benchmark method for transfer learn-
ing.

For KNN, we searchk in the list {1, 2, . . . , 9}, to impute the
missing value using the node with the highest Jaccard similarity
score. For SimRank method, we set the parameters using the de-
fault value suggested by the author. For SVD, we choose the rank
from the list( R

10
, 2R

10
..., R), whereR = min(n,m), the minimum

of the number of rows and columns. For MC, regularity coefficient
ς is tuned from the list{10−2, 10−1, 1, 10}.

We design the experiments as follows: we select top 2,000 users
with the highest degrees (cast and receive most votes), thenwe se-
lect items with more than 68 ratings from the above selected users.
The resulting trust graphG1 of size2, 000 × 2, 000 has 149,146
trust votes (represented by 1), which consists of 3.73 % of all pos-
sible votes, those distrust or unknown votes are represented by 0.
The rating graphG2 of size2, 000×96 has 10,225 ratings (from 1
to 5), which consists of 5.33 % of all possible ratings, thosemiss-
ing ratings are represented by 0. Among those available ratings, the
number of ratings 1,2 and 3 are roughly equal, 4 is twice as many as
1 and 5 is about 4 times as many as 1, such skew distribution might
be due to users’ reluctance to give low ratings for unsatisfactory
items.

5.3 Evaluation Metric
The evaluation of rating graph is relatively easy, it is conven-

tional to use Mean Average Error (MAE) and Root Mean Square
Error (RMSE).

MAE =
∑

rij∈TE

|rij − r̂ij |/ |TE|

RMSE =
√

∑

rij∈TE

(rij − r̂ij)
2 / |TE|

(17)

whererij and r̂ij are the true and predicted ratings respectively,
|TE | is the number of test ratings.

The evaluation of trust graph is more complicated. Since thebi-
nary trust votes have a very skewed distribution, precisionand re-
call are more suitable than receiver operating characteristic (ROC)
[6]. However, since most methods described in this paper do not
restrict the output to the discrete binary domain, in order to use the
metric measure precision and recall, we have to convert the contin-
uous predictions to the binary values using threshold values. For
real data set, it is difficult (if not impossible) to choose anappropri-
ate threshold, therefore it is inappropriate to compare allmethods
solely based on the optimal recall and precision values. As aresult,
we evaluate the performance of all methods based on Area Under
Curve (AUC) for recall-precision curves and the optimal F1 values
from all methods, where F1 is defined in Eq. (18).

recall =
TP

TP + FN
, precision =

TP

TP + FP
,

F1 =
2× recall × precision

recall + precision
, (18)



Table 1: Evaluation on Trust and Rating Graphs
(a) Recall-Precision Evaluations

Link Methods AUC F1

Trust AF 0.207 0.223
KNN 0.183 0.218
SimRank 0.185 0.218
SVD 0.123 0.160
MC 0.075 0.122
JMF 0.215 0.221

Distrust AF 0.914 0.977
KNN 0.916 0.977
SimRank 0.916 0.977
SVD 0.583 0.971
MC 0.972 0.981
JMF 0.992 0.991

(b) Rating Graph Evaluation Results

Prediction Measure Methods Result

MAE AF 0.864

KNN 0.839

SimRank 0.832

SVD 0.924

MC 0.828

JMF 0.772

RMSE AF 1.062

KNN 1.045

SimRank 1.034

SVD 1.263

MC 1.024

JMF 0.963

where TP, FN and FP are numbers of true positives, false negatives
and false positives, respectively.

We randomly hide half of the available entries, conduct the pre-
dictions via all methods and evaluate via 2-fold cross validation.
Such procedure is repeated 10 times and we report the averagere-
sults in Table 1. JMF has better performance than other methods
except F1 score for trust links, where AF shows some slight advan-
tage. Note that it is impractical and time consuming to tune thresh-
old value for real application, therefore our method still shows bet-
ter performance in trust link prediction than AF method consider-
ing the significant AUC advantage. We can conclude our method
has the best performance in trust prediction in all the methods we
listed in terms of trust links and distrust links. Table 1 also lists all
methods’ optimal value in terms of MAE and RMSE for the rating
graph, again JMF has the best MAE and RMSE results. We can
therefore conclude that transfer learning does provide thebridge
for the trust graph and rating graph to share the valuable informa-
tion with each other. This helps alleviate the common data sparsity
issue in social network data. On the other hand, as we have shown,
naive transfer learning MC method does not work very well here,
MC method fails to extract the common row structure with matrices
stacked.

6. CONCLUSION
In this paper, we developed the joint manifold factorization (JMF)

method to perform trust prediction with the ancillary rating matrix.
We transfer the common group structure knowledge between two
related matrices and simultaneously explore the individual matrix
geometric structure. With publicly available data sets, our method
shows its advantage over classical trust prediction methods for both
the trust matrix and rating matrix.
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