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ABSTRACT

Along with the increasing popularity of social web sitesnssrely
more on the trustworthiness information for many onlinévitts
among users. However, such social network data often siffiam
severe data sparsity and are not able to provide users wotlgén
information. Therefore, trust prediction has emerged aisrguor-
tant topic in social network research. Traditional apphescex-
plore the topology of trust graph. Previous research inatogy
and our life experience suggest that people who are in the sam
social circle often exhibit similar behavior and tastes.clgan-
cillary information, is often accessible and thereforeldquoten-
tially help the trust prediction. In this paper, we addrdss link
prediction problem by aggregating heterogeneous soctalanks
and propose a novel joint manifold factorization (JMF) nogth
Our new joint learning model explores the user group levellai-
ity between correlated graphs and simultaneously leams$nihi-
vidual graph structure, therefore the shared structurdgatierns
from multiple social networks can be utilized to enhancepres
diction tasks. As a result, we not only improve the trust mtoh
in the target graph, but also facilitate other informatietrieval
tasks in the auxiliary graphs. To optimize the objectivection,
we break down the proposed objective function into seveei-m
ageable subproblems, then further establish the thealetiover-
gence with the aid of auxiliary function. Extensive expeits
were conducted on real world data sets and all empiricallteesu
demonstrated the effectiveness of our method.

Categories and Subject Descriptors

H.3.3 Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms,Experimentation

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM'12, October 29—November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Keywords

Trust Prediction, Social Network, Transfer Learning, Negative
Matrix Factorization

1. INTRODUCTION

The ever-increasing popularity of social web sites suchaag+
book and LinkedIn has generated complicated social nesnamki
corresponding data sets with enormous sizes. Among theugri
forms of online activities, adding (accepting) other userfriends
is a primary one. With the increasing risk of exposing pevato-
file to malicious users, the question of whom to trust has ivecan
important challenge to individual users. Many online sbcam-
munities allow users to tag other users to facilitate thstivarthi-
ness evaluation. Trust tags in a social network can be repies
as a trust graplty = (V, E), whereV represents the collection
of nodes (users) and an edge between nicaled j; denotes a trust
vote from useri to userj. Due to the lack of diligence and privacy
concern on users’ part, there are often a large number ofngiss
values in the trust graph, making the trust link predictiodiféi-
cult task. In the literature, there are a few trust predicii@apers
using trust propagation [8, 11]. The assumption for thesthme
ods is that users tend to trust each other given a trustabienco
friend. However, since only a very small portion of entriedriust
graph are explicitly tagged, the prospect of these appemsbems
gloomy.

It has been discovered in [15], people who are in the samalsoci
circle often share similar behavior and tastes. In [5], Gedinet
al. give the following two main reasons. One is that people-ge
erally adopt behavior exhibited by those they interact wiluch
process is called social influence. The other more disteasan
is people incline to form relationships with others who dready
similar to them. Prior research works on inferring indivatluser’s
interests and attributes from his or her social neighboré3116].
These papers show the possibility of improving the usetsbates
prediction from the trust graph. In this paper, we will expldthe
trust graph structure with the users’ behavior profile iadfeuse
the ancillary information to help the trust prediction. Weppose
a joint manifold factorization (JMF) model to predict thegt and
distrust in social network by aggregating heterogeneocssoet-
works from both target trust domain and auxiliary inforroatdo-
main. When we say two graphs are heterogenous, it impligs the
are from different domains and have no apparent structuméles-
ity and their entries generally have different scale. Oyraach is



to alleviate the sparsity problem in trust graph by takingaadage
of the supplementary knowledge about user behavior anddisc
ing the implicit group-level similarity, which are jointiyetermined
by the user-user trust graph and user behavior auxiliaptgrahis
helps us find the optimal like-minded user groups across thoth
mains. Moreover, we construct the individual affinity grapgb
explore the individual geometric structures of the featnemifold
to improve the prediction of the missing elements.

The remainder of this paper is organized as follows. In $acti
2, we describe the notations used in this paper and formthate
objective function. We will derive our optimization methaad
provide the algorithm in Section 3. In Section 4, we will give
outline of the convergence proof in our new algorithm. We igmp
ically validate the effectiveness of our method for trustdiction
in Section 5 and conclude the paper in Section 6.

2. JOINT MANIFOLD FACTORIZATION

In this section, we will introduce our JMF objective functithat
aggregates the heterogeneous social networks. Priostondifirst
reiterate our motivation and then give an example to dematest
this.

As mentioned in the introduction, trusted users in a soa@# n
work often display similar behavior and taste. Meanwhils;ial
network users become friends due to the similar backgrooddra
terest. Therefore, the trust graph and behavior graph drehare
some structure similarity in spite of the apparent diffeesrf the
coincidence of the similar ratings contributes to the tuages. As
a result, the trust prediction accuracy can be improved thith
aid of behavior graph information and vice versa. In summary
we transfer the knowledge from different domains to circemntv
the sparsity constraint and help predict the entries in Iwdlri-
ces, this answers the most important questions of trarediening:
what to transfer and how to transfer. Fig. 1 is a demonstraifo
our motivation.

2.1 Notations

We use boldface uppercase letters, suctiXa® denote matri-
ces,X;., X ;, X(i,7) (or X;; when needed) to denote tfth row,
jth column and the entry located @t j) of X, respectively. In
our setting, for simplicity, we only discuss two matric&s and
G case, then it is natural to extend the objective function t-m
tiple matrices case. For the ease of discussion, we furdsemae
Gi € R™™ Gy € R™ ™2 are the trust graph and rating graph
(a special category of behavior graph) respectively, wheiethe
number of identical users in both domains; is the number of
users who receive trust votes, is the number of different items.
Q1 C Gy andQe C Gg are entries known in corresponding
graphs.

2.2 Objective Function Formulation

Inspired by the preceding discussions, we target at thé o
trix factorization to find out the shared group structurentssn two
graphs.

min
U,V1,Va,c

2 2
G, — UV1TH + HcG2 — UVQTH @

F F
HereU € R™*!, V; € R™*! V, € R™2*! wherel is the num-
ber of group parameter determined by uger: 0 is a scalar adjust-
ing the scale inconsistency between graphs since the typbgare
from different domains. Her#® is jointly determined by the trust
graph and rating graph, therefore it provides the shareapgstruc-
ture for both graphs. Since rows represent users in botthgraye
could group users based &hand then conduct the trust and rating

prediction withV1,V 5 respectively. It can be observed tiatcar-
ries the knowledge of both trust graph and rating graph, sache-
work becomes especially useful since both graphs usualky dhata
sparsity issues for real data sets.

While the above model takes into account of the common row
group structure in terms of both matrices, it fails to comsithe
individual column information for both matrices. To ovenee this
drawback, we include the Laplacian regularity term [9] ie &bove
formula. To be specific,

. 2 2
ynin G = OV} + Gz - UVE;
AT (VIL1 V1) + ATr(ViLa V)
st. ViVIi =L VoVIi =1 U>0,V,>0,V,>0
&)
HereX > 0 is a scalar parameter to be tundd, andL. are the
Laplacian graph based on the columng®f and G- respectively,
Tris the trace operation which yields the sum of diagonal efgéme
of the matrix. The detailed construction fb and L2 would be
given in the next section. We impose the orthogonal comgain
V1 andV; to ensure the uniqueness of the solution. Supfidse
V1 and V3 are the solutions to Eq. (2), then for any given non-
zero constant; > 1, c;U* and'Vi/c: would give same value
in the first term and lower value for the third term, this isetmo
matterU* and V7 are local or global optimum solutions, the same
argument applies t&>. In other words, the optimal solution to
Eq. (2) is not unique without the constraint.

3. OPTIMIZATION

In the following, we will give solution to Eq. (2). As we see,
minimizing Eq. (2) is with respect t&J, V1, V2 ande¢, and we
can not give a closed-form solution. We will present an atier
ing scheme to optimize the objective, this procedure repeatil
convergence.

3.1 Initialization

In this paper, for any missing entG(s, j), we use mean of the
available entries in the corresponding row and column, fosex-
item rating matrix, such initialization combines the ashle in-
formation for both the individual user rating habit and othsers’
ratings on a particular item. For a user-user trust mattighsni-
tialization consider both usérand user;’s social circle influence.

After the missing values initial imputation, we construe tapla-
cian graphs for both social networks. We define the edge weigh
matrix W as follows:

Wi — { 1:X; € Nk(XJ) or Xj_ S Nk(XZ)
ij =

0 : otherwise
where N, (X;.) denotes the set df nearest neighbors &;.. Itis
easy to sedV is symmetric. Let graph Laplacidh = D — W,
whereD is a diagonal matrix whose entries are column sums of
W, Dii = Z Wij.

J

After that, we construcV ; andV; based ork-means on columns
for G1 andG. respectively. Foi-th row of V1, if this row belongs
to j-th cluster, therV1 (i, 7) = 1, all other elements iith row are
0. V3 is initialized in the same manner.

Now we come to the optimization of our objective function, we
iteratively solveU, V1, V2 andc in an alternating manner. In
other words, we will optimize the objective with respect teeo
variable while fixing the other variables. Such processatpentil
convergence.
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Figure 1. A demonstration for our motivation and learning process. The shared group structure matrix isjointly determined by the
rating graph and trust graph. The rating matrix contains 2 groups of users reviews about movies, where a smile face represents
a satisfactory review and an angry face represents an unsatisfactory message. The trust matrix contains users trust evaluation
towards other users, where 1 representstrust and O represent distrust. The question mark represents missing value in both graphs.
The 1sin cluster information matrix indicate usersarein the corresponding group while Os represent usersare not in that group.

3.2 Computation of U
Optimizing Eq. (2) with respect tJ is equivalent to optimizing

Ji = ||G1 — UVT|]% + ||eG2 — UVE|%,

3

st. VIVi=I ViVo=LV;>0,V,>0 )
Setting% = 0 leads to the following updating formula

U= GVt GV @

3.3 Computation of v,
Optimizing Eq. (2) with respect t¥; is equivalent to optimizing

J2 = ||G1 — UVT||% + AT (VIL1 V1)

5
st. VIVi=LV;>0 ®)

For the constrainV? V; = I, we can not get a closed-form so-
lution of V1. Therefore we will present an iterative multiplica-
tive updating algorithm. We introduce the Lagrangian nplik

a € R™! the corresponding Lagrangian function is

2
L(Vy) = HG1 - UVlTHF+)\Tr(V1TL1V1)—Tr(a(V1TV1—I))

(6)
Setting ag(\xl) = 0 and use the orthogonal constraif V; = I,
we obtain

~GTUu+ )LV, - Via=0
_ _vTaT T (7)
= o0 = V1G1U+)\V1L1V1

Using the Karush-Kuhn-Tucker condition [8]- V1 = 0, where-
is the element-wise product operator and thereafter, we get

(-VIGIU+AVILiV))- V=0 (8)

Introducel; =L —L;, Vi =V -V, andU=U"-U"
WheI'EU;; .: (lUL]| -|- U:L'j)/2 an_dU,L.; = (|ULJ| — Uij)/2 [7] and
L.,V defined in a similar fashion, we obtain

(GITU AL Vi+Via -G UT-AL; V,-Via®).V, =0

9)
Eq. (9) leads to the following updating formula
[GTU+ —+ /\L;V1 + V1a+] > 0
Vi(i,5) =Vi(i, g - 1
1(859) = Vi, g) [GTU- +AL{ Vi + Voo |, o

3.4 Computation of v,
Optimizing Eq. (2) with respect t¥; is equivalent to optimizing
Js = ||cGa — UVE||L + ATr(VELy V2) 11)

st. VIV, =1,Vy,>0

The optimization with the above equation is almost idemhtica
the previous subsection, so we only give formula withou&ilet

[CG;UJF —+ )\L;VQ + V2,3+]

9 (12
[cGIU- + ALj Vo + V287 ] (12)

ij

Va(i,j) = V2(i7j)\j

3.5 Computation of ¢
Optimizing Eq. (2) with respect tois equivalent to optimizing

Ji=eG: - UV2TH2F (13)

The above task is equivalent to
min Tr(cGa — UV} ) (cG2 —UV3 )"
This can be written as

min A — 2Bc+ D,

whereA = Tr(G2G1), B = Tr(UV3IGY), D = Tr(UVIV,UT).
It is a quadratic function im, the solution is then

_ Tr(UV3G3)
a TT(GQG%) '

4. CONVERGENCE ANALYSIS

In this section, we prove the convergence of our algorithimc&
the objective function is naturally lower bounded, we jused to
prove the objective function is monotonically decreasihg@ach
iteration. The decreases in objective function for updptihandc
are obvious, so we focus on the proof for f¥ie andV,. We use
classic auxiliary function approach used in [12].

(14)

DEFINITION 1. [12] Z(h, k') is an auxiliary function forF (k)
if the conditions

Z(h, 1) > F(h), Z(h, h) = F(h)

are satisfied.



LEMMA 1. [12] If Z is an auxiliary function forF, then F is
non-increasing under the update

R = argmin Z(h, h)
h
LEMMA 2. [7] For any nonnegative matriceA € R™*", B ¢

R¥** § € R*** 8" ¢ R"** and A, B are symmetric, then the
following inequality holds

n k ’ 2
AS'B);,S;
E E ( S/) P > ZT(STASB)

i=1p=1 ip

THEOREM 3. Let

J(V1) = Tr(OVIL, vV, — 2GTUVT + aVTVv,) (15)
Then the following function
Z(thl)
-)% Lt v NS (L) Vi Vil +log Gpeghes
_2ZG1TU+V1 o (1+log 740) +2ZGTU’%\:’”
+ Z]aJer i — > OfVl,z‘j Lie(1+ IJOg Vl”i://’“k)

ij ijk 1,ik

is an auxiliary function forJ(V1). Furthermore, it is a convex
function inV; and its global minimum is

[GTU+ —+ /\L;V1 —+ V1a+] i

Vi(i j
1(6:4) [GTU- F AL Vi + Voo |

= Vi(i, ) (16)

Proof We have to omit the proof due to page limit. Interested

reader may contact the first author for details]

THEOREM 4. UpdatingV; using Eqg. (10) will monotonically
decrease the value of the objective in Eq. (2).

Proof By Lemma 1 and Theorem 3, we can get tié&v?)
Z(VY, V) > Z(Vi,VY) > J(Vi) > ...s0J(V1) is mono-
tonically decreasing. [

The monotonical decrease of the objective in Eq. (2) via tipga
V2 using Eq. (12) can be proved in a similar way. Therefore it is
obvious our algorithm will converge.

5. EXPERIMENTS

In this paper, we want to compare the prediction performance
with other methods on both trust graph and rating graph froeah
data set.

5.1 Description of Data Set

This data set was collected by Paolo Massa [14] in a 5-week
crawl from Epinions.com. It consists of two parts, one is ttae
ings part, the other is the trust votes part. The Epinions skeitcon-
sists of 49,290 users, 139,738 items, 664,824 reviews fsBrsuio
items, 487,181 trust statement between users. Users exjs
web of trust, i.e, reviewers whose reviews and ratings thexeh
consistently found to be valuable and offensive [14]. Tfeeeit is
reasonable to assume most individual users tend to casvotes
towards other users if the users have similar rating pattemards
those items. As a result, the rating matrix and trust matoma
have similar row structure given common users, in other gdite
assumption of our method holds on this data set.

5.2 Competitive Methods and Procedure

The competitive methods include average filling (AE-nearest
neighbors (KNN), SimRank [10], SVD [2] and matrix completio
via trace norm (MC) [4]. AF uses the average of their avadablv
and column entries to impute the missing entries. KNN impthie
missing values based on nodes similarity using Jaccardficient
while SimRank imputes based on path ensembles. SVD finds a
low-rank matrix that approximates the target matrix and M€ks
a low-rank matrix with trace norm regularity, where tracemaf
a matrix is the convex relaxation of its rank. Note that welsthe
trust graph and rating graph using the common users as raws fo
MC method, that serves the benchmark method for transfen-lea
ing.

For KNN, we searctk in the list{1,2,...,9}, to impute the
missing value using the node with the highest Jaccard gitgila
score. For SimRank method, we set the parameters using the de
fault value suggested by the author. For SVD, we choose tite ra
from the list(£, 2Z..., R), whereR = min(n, m), the minimum
of the number of rows and columns. For MC, regularity coedfici
¢ is tuned from the lis{1072,107*, 1, 10}.

We design the experiments as follows: we select top 2,00 use
with the highest degrees (cast and receive most votes)whese-
lect items with more than 68 ratings from the above selecsedsu
The resulting trust grapkx; of size2,000 x 2,000 has 149,146
trust votes (represented by 1), which consists of 3.73 %l qfoes-
sible votes, those distrust or unknown votes are represdayte.
The rating graplG- of size2, 000 x 96 has 10,225 ratings (from 1
to 5), which consists of 5.33 % of all possible ratings, thogss-
ing ratings are represented by 0. Among those availablegstthe
number of ratings 1,2 and 3 are roughly equal, 4 is twice ag/raan
1 and 5 is about 4 times as many as 1, such skew distributiohtmig
be due to users’ reluctance to give low ratings for unsatiefg
items.

5.3 Evaluation Metric

The evaluation of rating graph is relatively easy, it is amv
tional to use Mean Average Error (MAE) and Root Mean Square
Error (RMSE).

MAE = Y |ri; — 7]/ |T5]
ri; €TE (17)
RMSE = > (rij —7i5)° /| Ts|
ri; €TE

wherer;; and;; are the true and predicted ratings respectively,
|T'e| is the number of test ratings.

The evaluation of trust graph is more complicated. Sinceébthe
nary trust votes have a very skewed distribution, precisioah re-
call are more suitable than receiver operating charatite(ROC)

[6]. However, since most methods described in this paperado n
restrict the output to the discrete binary domain, in ordarse the
metric measure precision and recall, we have to convertdhgre
uous predictions to the binary values using threshold salulor

real data set, it is difficult (if not impossible) to chooseagupropri-

ate threshold, therefore it is inappropriate to comparenalihods
solely based on the optimal recall and precision values. rsualt,

we evaluate the performance of all methods based on ArearUnde
Curve (AUC) for recall-precision curves and the optimal Riues
from all methods, where F1 is defined in Eq. (18).

recall = T7P recision = L
“TtP+FN P TP+ FP’
Pl - 2 X recall x 107“@01810717 (18)

recall + precision



Table 1. Evaluation on Trust and Rating Graphs
(a) Recall-Precision Evaluations

Link Methods  AUC F1
Trust AF 0.207 0.223
KNN 0.183 0.218
SimRank 0.185 0.218
SVD 0.123 0.160
MC 0.075 0.122
JMF 0.215 0.221
Distrust AF 0.914 0.977
KNN 0.916 0.977
SimRank 0.916 0.977
SVD 0.583 0.971
MC 0.972 0.981
JMF 0992 0.991

(b) Rating Graph Evaluation Results

Prediction Measure  Methods  Result
MAE AF 0.864
KNN 0.839
SimRank 0.832
SVD 0.924
MC 0.828
JMF 0.772
RMSE AF 1.062
KNN 1.045
SimRank 1.034
SVD 1.263
MC 1.024
JMF 0.963

where TP, FN and FP are numbers of true positives, false imegat
and false positives, respectively.

We randomly hide half of the available entries, conduct ttee p
dictions via all methods and evaluate via 2-fold cross diah.
Such procedure is repeated 10 times and we report the average
sults in Table 1. JMF has better performance than other rdstho
except F1 score for trust links, where AF shows some slighdad
tage. Note that it is impractical and time consuming to timesh-
old value for real application, therefore our method stithws bet-
ter performance in trust link prediction than AF method édes
ing the significant AUC advantage. We can conclude our method
has the best performance in trust prediction in all the ndsthee
listed in terms of trust links and distrust links. Table lodists all
methods’ optimal value in terms of MAE and RMSE for the rating
graph, again JMF has the best MAE and RMSE results. We can
therefore conclude that transfer learning does providebtidge
for the trust graph and rating graph to share the valuabterimd-
tion with each other. This helps alleviate the common datassty
issue in social network data. On the other hand, as we havensho
naive transfer learning MC method does not work very weleher
MC method fails to extract the common row structure with ncat
stacked.

6. CONCLUSION

In this paper, we developed the joint manifold factoriza{@vF)
method to perform trust prediction with the ancillary ratimatrix.
We transfer the common group structure knowledge between tw
related matrices and simultaneously explore the individuatrix
geometric structure. With publicly available data sets, method
shows its advantage over classical trust prediction metfardoth
the trust matrix and rating matrix.
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