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Change Point Estimation of Bar Code Signals
Leming Qu∗, and Yi-Cheng Tu

Abstract

Existing methods for bar code signal reconstruction is based on either the local approach or the

regularization approach with total variation penalty. We formulate the problem explicitly in terms of

change points of the 0-1 step function. The bar code is then reconstructed by solving the nonlinear

least squares problem subject to linear inequality constraints, with starting values provided by the local

extremas of the derivative of the convolved signal from discrete noisy data. Simulation results show a

considerable improvement of the quality of the bar code signal using the proposed hybrid approach over

the local approach.

EDICS Category:IMD-ANAL, SAS-SYST

I. INTRODUCTION

The ubiquitous alternating black and white strips – the bar code – are now widely used in every day

life and industrial process. The problem of recovering a bar code signal f(t) from the noisy signal y(t)

detected by a bar code scanner [2] [7] is to construct a one-dimensional 0 − 1 step function f(t) given

the samples yi = y(ti), i = 1, . . . , M, of the continuous-time observation

y(t) = α · G ? f(t) + ε(t), t ∈ T = [0, 1]

where α > 0 is the unknown amplitude, the ε(t) is the additive unobservable noise process and

G ? f(t) =

∫
T

G(t − x)f(x)dx,

and G(t) is a Gaussian kernel of the convolution:

G(t) =
1

σ0

√
2π

exp(− t2

2σ2
0

),

where σ0 > 0 is the unknown standard deviation which increases as the scanner moves away from the

bar code. Figure 1 illustrates the results of the convolution with additive noise for a UPC bar code [9]

encoding 0123456789.
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This problem differs slightly from standard restoration problems of image processing in that the

convolution kernel contains unknown quantities. Thus it is somewhat closer to the blind deconvolution

problems.

II. PREVIOUS WORK AND OUR APPROACH

Previous work on the bar code reconstruction problem [9] is based on (a) local approach: finding local

minima and maxima in the derivative of

s(t) = α · G ? f(t),

(b) global approach: regularization methods for ill-posed inverse problems such as total variation based

restoration [2].

The approach (a) try to relate the local minima and maxima in s′(t) to the edges of bars which are the

change points in f(t). Locating these local extremas is sensitive to noise ε(t). Furthermore, these local

extrema are difficult to relate to the true change points of f(t) due to ‘convolution distortion’ [7]. Such

techniques use only local information and would have difficulty to detect thin bars closely adjacent to

each other. For example, in Figure 1, the s(t) is near flat around location 550 even though three adjacent

thin bars stand there.

To overcome these shortcomings, approach (b) in [2] try to recover f(t) by regularization using the

total variation penalty, a technique commonly used in image restoration literature. It models systematically

the interaction of neighboring bars in f(t) under convolution with G(t), as well as the estimation of α

and σ0 from global information contained in the y(t). It is proved in [2] that under certain regularity

conditions, the infimum of the total-variation energy is attained. Numerical results show that bar codes

from highly degraded signals can be recovered.

The regularization approach in inverse problems must deal with the choice of the regularization

parameter, a difficult problem itself. In [2], there are two regularization parameters which need to be

chosen. In the numerical results of [2], the regularization parameters are preselected and kept fixed.

We feel all the existing works did not fully utilize the information about f(t): a 0-1 step function. To

recover f(t) is to recover the change points of f(t) for t ∈ T . The number of change points in f(t) is

twice the number of bars in the bar code. Recovering the f(t), t ∈ T is usually an ill-posed problem,

while recovering the change points is a well-posed problem if the number of observations exceed the

number of unknown parameters. We did not find the formulation of the bar code deconvolution in terms

of the change points explicitly in the existing literature. Therefor we propose a nonlinear least squares

July 12, 2005 DRAFT



3

solution to the change points of f(t), σ0 and α with the constraints of the ordered change points. The

local approach is used to provide the starting values for the global minimization problem. Our method

is a hybrid of local and global approach in spirit.

III. CHANGE POINT ESTIMATION

Assuming the total number of bars of f(t) is the known integer K. For example, K = 22 for the UPC

bar code in our test problem. Denoting ξ2j−1 and ξ2j as the beginning and ending location of the jth

bar for j = 1, . . . , K of the bar code function f(t).

Then f(t) can be defined explicitly as:

f(t) = I(ξ2j−1 < t ≤ ξ2j), t ∈ T, j = 1, . . . , K.

where I() is the usual indicator function and

0 < ξ1 < ξ2 < . . . < ξ2K−1 < ξ2K < 1

are the ordered change points.

The goal of bar code reconstruction is to recover the change points ξ = (ξ1, ξ2, . . . , ξ2K−1, ξ2K)T from

the observed data y = (y1, . . . , yM )T at t = (t1, . . . , tM )T , without any knowledge of α and σ0.

With the special structure of f(t), the convolution G ? f(t) can be explicitly expressed as a function

of ξ and σ0. Thus we have

s(t) = α

∫
T

G(t − x)f(x)dx = α
K∑

j=1

∫ ξ2j

ξ2j−1

G(t − x)dx.

Let

ri = si − yi = α
K∑

j=1

∫ ξ2j

ξ2j−1

G(ti − x)dx − yi

be the ith residual, r = (r1, . . . , rM )T the residual vector and

h(ξ, α, σ0) =
1

2

M∑
i=1

r2
i =

1

2
rT r

the residual sums of squares. We seek the least squares solution of ξ, σ0 and α. That is to find ξ̂, σ̂0 and

α̂ which minimizes the merit function h(ξ, σ0, α) subject to the required conditions.

More explicitly, the constrained nonlinear least squares problem is

minξ,σ0,αh(ξ, σ0, α) (1)
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such that

0 < ξ1 < ξ2 < . . . < ξ2K−1 < ξ2K < 1, σ0 > 0, α > 0.

These constraints are simply linear inequality constraints A[ξT , σ0, α]T < u with a sparse matrix A

whose elements are

A[1, 1] = −1,

A[i, i − 1] = 1, A[i, i] = 1 for i = 2, . . . , 2K,

A[2K + 1, 2K] = 1,

A(2K + 2, 2K + 1) = −1,

A(2K + 3, 2K + 2) = −1;

and u = (0, . . . , 0, 1, 0, 0)T is a (2K + 3) column vector.

The recast of the bar code reconstruction into a constrained nonlinear least squares problem enables us

to utilize the existing techniques for solving nonlinear least square problem subject to linear inequality

constraints in the statistical and numerical analysis literature.

The Fletcher-Xu hybrid Gauss-Newton and BFGS method [4] for nonlinear least squares problem are

super linearly convergent. This method along with other five methods for constrained nonlinear least

squares problems is implemented in the clsSolve solver of the TOMLAB 4.7 optimization environment

[8].

The Gauss-Newton method needs the gradient of the merit function h(ξ, σ0, α), which is the product

of the Jacobian matrix of r and r. The Jacobian matrix of r is easily obtained by :

∂ri

∂ξ2j−1
= −α · G(ti − ξ2j−1),

∂ri

∂ξ2j

= α · G(ti − ξ2j),

∂ri

∂σ0
=

α

σ0

K∑
j=1

∫ ξ2j

ξ2j−1

[−1 +
(ti − x)2

σ2
0

]G(ti − x)dx,

∂ri

∂α
=

K∑
j=1

∫ ξ2j

ξ2j−1

G(ti − x)dx.

The success of the (2K + 2) dimensional global minimization problem (1) heavily depends on good

starting values. Our numerical experiments indicated that simple starting values such as equally spaced

grids on T for ξ did not give satisfactory solutions. Next we discuss the initial parameter estimation

based on the local approach.
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IV. INITIAL ESTIMATION

The local extremas of the derivative of s(t) are close to ξ, the edges of the bars. Then the initial

estimation of ξ in terms of the local extremas of the derivative signal is the following problem: given

the noisy discrete observations of s(t):

yi = s(ti) + εi, i = 1, . . . , M,

finding the local extremas of s′(t).

There are approaches of estimating s′(t) based on different smoothing or denosing methods. Many

of these try first to find ŝ(t), the estimate of s(t); then using ŝ′(t) to estimate s′(t). See, for example,

spline regression based method in [10], wavelet denosing based method in [1]. For equally spaced {ti}
and when M is a power of 2, there exists a fast algorithm with complexity O(M) to carry out discrete

wavelet transform (DWT). In our simulation, we use wavelet thresholding method to estimate s(ti) first,

then estimate s′(ti) based on ŝ(ti) using a first derivative filter.

After obtaining the initial estimate ξinitial of ξ by the K pairs of local maxima and minima of ŝ′(ti),

the initial σ0, σ0initial, is estimated by techniques suggested in [5], [6] and [2]. Proposition 1 of [5]

suggests approximating σ0 by the distance from the last local maxima of ŝ(ti) to the last local minima

of ŝ′(ti). Proposition 2 of [6] suggests approximating σ0 by |ŝ′(t∗)/ŝ(3)(t∗)| where t∗ is a point such

that |ŝ′(t∗)| ≥ |ŝ′(ti)| for i = 1, . . . , M . The smaller vale of σ̂0 based on the two propositions is used

first. If it is outside the reasonable range [0.001, 0.02], then the value 0.0079 is used as suggested in [2]

for the true σ0 ranging from 0.012 to 0.014 which is about the range that the bar code is not blurred too

much and is still being able to be recovered.

The initial value of α, αinitial, is simply the ordinary least squares estimate given the ξinitial and

σ0initial .

V. SIMULATION RESULTS

In the experiment, a ‘clean’ bar code f(t) was blurred by convolving it with G(t) of known σ0,

amplified by the amplitude α = 1, sampled at ti = i/M , for i = 1, . . . , M , followed by the addition

of white Gaussian noise εi ∼ N(0, σ2). The amount of the added noise makes the signal-to-noise ratio

SNR = 20log10(std(s)/σ) at the specified level.

Estimation of s(ti) is carried out by the soft Wavelet thresholding technique implemented in the

Wavelet Toolbox in MATLAB. The thresholds are chosen by a heuristic variant of the Stein’s Unbiased

Risk Estimate with multiplicative threshold rescaling using a single estimation of level noise based on the
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finest level wavelet coefficients. The wavelet filter used is db6: the Daubechies wavelet with 6 vanishing

moments.

The first derivative filter for estimating s′(ti) from ŝ(ti) is

d1 = [−0.015964,−0.121482,−0.193357,

0.00, 0.193357, 0.121482, 0.015964];

as recently suggested in [3].

Table I shows the Monte-Carlo approximations to MSE = E(||ξ̂ − ξ||22/(2K)) of our method based

on 100 independent simulations as the σ0 is varied at 0.012, 0.013 and 0.0133, the sample size M is

varied dyadically from M = 256 through 1024, and SNR is varied from high to moderate levels.

TABLE I

MONTE CARLO APPROXIMATIONS TO MSE = E(||ξ̂ − ξ||22/(2K))

Means for the following levels of SNR

σ0 M SNR = 38 SNR = 28 SNR = 21

0.0120 256 4.064e-09 8.141e-05 2.423e-04

0.0120 512 1.909e-09 1.036e-06 3.010e-04

0.0120 1024 9.762e-10 9.923e-09 2.558e-04

0.0130 256 1.359e-04 2.291e-04 6.485e-04

0.0130 512 6.773e-05 1.405e-04 8.371e-04

0.0130 1024 5.585e-05 2.189e-04 6.406e-04

0.0133 256 8.152e-05 2.234e-04 9.334e-04

0.0133 512 1.825e-04 2.882e-04 9.294e-04

0.0133 1024 1.130e-04 4.029e-04 7.158e-04

Table II shows the Monte-Carlo approximations to MSE = E(||ξinitial−ξ||22/(2K)). The results show

a considerable reduction of MSE for ξ̂ over ξinitial in some cases. The most significant improvement

occured for the case σ0 = 0.012 with high SNR.

Figures 1 and 2 present results from two of these experiments. Figure 1 is an example of completely

successful reconstruction while the Figure 2 an example that the estimation fails when the noise level or

the blur factor σ0 gets too high.

Table III and IV display the Monte-Carlo approximations to MSE = E(||σ̂0 − σ0||22) and

E(||σ0initial − σ0||22) respectively.

Table V shows the Monte-Carlo approximations to MSE = E(||α̂ − α||22).
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TABLE II

MONTE CARLO APPROXIMATIONS TO MSE = E(||ξ
initial

− ξ||22/(2K))

Means for the following levels of SNR

σ0 M SNR = 38 SNR = 28 SNR = 21

0.0120 256 2.064e-05 1.042e-04 2.947e-04

0.0120 512 1.280e-05 1.729e-05 3.565e-04

0.0120 1024 1.134e-05 1.302e-05 3.183e-04

0.0130 256 2.303e-04 3.242e-04 7.221e-04

0.0130 512 9.190e-05 1.833e-04 8.862e-04

0.0130 1024 1.010e-04 2.803e-04 7.402e-04

0.0133 256 2.122e-04 3.358e-04 1.029e-03

0.0133 512 2.140e-04 3.707e-04 8.854e-04

0.0133 1024 1.899e-04 4.959e-04 8.078e-04
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Fig. 1. Top to bottom: the bar code, the reconstructed bar code, the corresponding clean convolved signal, the noisy convolved

signal. The true parameter used to generate the corrupted signal: M = 512, σ0 = 0.0118, α = 1, SNR = 16. The estimated

parameter: σ̂0 = 0.0115, α̂ = 0.9962. The square error ||ξ̂ − ξ||22/44 = 8.3e − 7. CPU time: 67 seconds.

Table VI shows the Monte-Carlo approximations to MSE = E(||αinitial − α||22).
Note that σ̂0 gives much better solution than the initial estimate σ0initial in terms of the reduction of

MSE. The same is true for α̂.

The Computational time for finding the solution is relative fast. For example, for the most time

consuming scenario σ0 = 0.133, M = 1024, SNR = 21, the average CPU time is 80 seconds. This is
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Fig. 2. Top to bottom: the bar code, the failed reconstructed bar code, the corresponding clean convolved signal, the noisy

convolved signal. The true parameter used to generate the corrupted signal: M = 512, σ0 = 0.0129, α = 1, SNR = 16. The

estimated parameter: σ̂0 = 0.0142, α̂ = 1.067. The square error ||ξ̂ − ξ||22/44 = 8.42e − 4. CPU time: 44 seconds.

TABLE III

MONTE CARLO APPROXIMATIONS TO MSE = E(||σ̂0 − σ0||
2

2)

Means for the following levels of SNR

σ0 M SNR = 38 SNR = 28 SNR = 21

0.0120 256 1.161e-10 5.877e-08 1.697e-07

0.0120 512 5.333e-11 2.370e-09 1.600e-07

0.0120 1024 3.848e-11 3.171e-10 1.328e-07

0.0130 256 1.469e-07 1.897e-07 2.642e-07

0.0130 512 6.000e-08 7.565e-08 6.131e-07

0.0130 1024 7.824e-08 6.078e-08 3.015e-07

0.0133 256 8.639e-08 1.443e-07 3.862e-07

0.0133 512 1.909e-07 1.378e-07 5.560e-07

0.0133 1024 1.453e-07 1.378e-07 4.213e-07

in contrast the reported 6 minutes using the regularization approach in [9].

VI. CONCLUSION

A nonlinear least squares estimation for change points of bar code signals is proposed. The local

information contained in the derivative of the convolved signal is used to provide starting values for the
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TABLE IV

MONTE CARLO APPROXIMATIONS TO MSE = E(||σ0initial − σ0||
2

2)

Means for the following levels of SNR

σ0 M SNR = 38 SNR = 28 SNR = 21

0.0120 256 1.064e-05 1.037e-05 1.528e-05

0.0120 512 2.481e-05 2.725e-05 3.486e-05

0.0120 1024 6.468e-05 6.560e-05 6.726e-05

0.0130 256 2.338e-05 2.063e-05 2.369e-05

0.0130 512 3.441e-05 3.587e-05 4.610e-05

0.0130 1024 8.140e-05 8.233e-05 8.489e-05

0.0133 256 2.808e-05 2.498e-05 2.757e-05

0.0133 512 3.717e-05 3.858e-05 4.635e-05

0.0133 1024 8.689e-05 8.797e-05 9.017e-05

TABLE V

MONTE CARLO APPROXIMATIONS TO MSE = E(||α̂ − α||22)

Means for the following levels of SNR

σ0 M SNR = 38 SNR = 28 SNR = 21

0.0120 256 4.138e-07 2.619e-04 7.075e-04

0.0120 512 2.330e-07 3.196e-06 9.139e-04

0.0120 1024 1.515e-07 1.154e-06 5.547e-04

0.0130 256 5.612e-04 7.304e-04 1.279e-03

0.0130 512 3.996e-04 4.341e-04 2.301e-03

0.0130 1024 5.613e-04 6.051e-04 1.617e-03

0.0133 256 3.699e-04 6.960e-04 1.844e-03

0.0133 512 9.908e-04 4.753e-04 2.429e-03

0.0133 1024 1.033e-03 1.221e-03 1.916e-03

global optimization solution. This hybrid approach uses all available information for parameter estimation

to the full extent. Monte Carlo simulation results confirmed the good performance of the hybrid approach

over the local approach.

If extra information such as the knowledge of the width of the thinnest or thickest black and white

strips is available, they can be easily incorporated into the linear inequality constraints.

Currently, the value K of number of bars is assumed to be known in advance. A future research effort

is to estimate the bar code without this assumption. Then model selection methods are needed for this
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TABLE VI

MONTE CARLO APPROXIMATIONS TO MSE = E(||αinitial − α||22)

Means for the following levels of SNR

σ0 M SNR = 38 SNR = 28 SNR = 21

0.0120 256 2.490e-02 2.464e-02 3.465e-02

0.0120 512 3.692e-02 4.138e-02 5.836e-02

0.0120 1024 8.754e-02 9.055e-02 9.720e-02

0.0130 256 3.904e-02 3.618e-02 4.055e-02

0.0130 512 5.158e-02 5.450e-02 6.901e-02

0.0130 1024 1.053e-01 1.075e-01 1.113e-01

0.0133 256 4.483e-02 4.049e-02 4.246e-02

0.0133 512 5.550e-02 5.592e-02 6.722e-02

0.0133 1024 1.104e-01 1.116e-01 1.133e-01

situation.
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