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Abstract—The 2-body correlation function (2-BCF) is a group of statistical measurements that found applications in many scientific
domains. One type of 2-BCF named the Spatial Distance Histogram (SDH) is of vital importance in describing the physical features of
natural systems. While a naive way of computing SDH requires quadratical time, efficient algorithms based on resolving nodes in
spatial trees have been developed. A key decision in the design of such algorithms is to choose a proper underlying data structure: our
previous work utilizes quad-tree (oct-tree for 3-dimensional data) and in this paper we study a kd-tree-based solution. Although it is

easy to see that both implementations have the same time complexity O(N

) where d is the number of dimensions of the

dataset, a thorough comparison of their actual running time under different scenarios is conducted. In particular, we present an
analytical model to rigorously quantify the running time of dual-tree algorithms. Our analysis suggests that the kd-tree-based
implementation outperforms the quad-/oct-tree solution under a wide range of data sizes and query parameters. Specifically, such
performance advantage is shown as a speedup up to 1.23X over the quad-tree algorithm for 2D data, and 1.39X over the oct-tree for
3D data, respectively. Results of extensive experiments run on synthetic and real datasets confirm our findings.

Index Terms—scientific databases, query processing, spatial distance histogram, performance, quad-tree, oct-tree, kd-tree

1 INTRODUCTION

ECENTLY, computational science fields have witnessed
Rthe momentum of data-intensive applications that
severely challenge the design of database management sys-
tem (DBMSs). Much efforts have been made in building
systems and tools to meet the data management needs
of such applications [1], [2], [3]. Generally, data-intensive
scientific applications necessitate considerable storage space
and I/O bandwidth, due to the large volume of data [4], [5],
[6]. For instance, molecular simulations (MS) evaluate the
movement patterns and interaction forces among molecular
structures, each of which consists of millions of atoms. Other
than the large volume of data, there is also the challenge
of processing scientific queries that are often analytical in
nature and bear high computational complexity [7], [8]. One
remarkable example is the computation of 2-body correlation
functions (2-BCFs), which are statistical measurements that
involve every pair of data points in the entire dataset. One
type of 2-BCF called the Spatial Distance Histogram (SDH)
is of vital importance in many computational sciences and
thus the focus of this paper.

1.1 Problem Statement

The SDH problem can be formally stated as follows.

Given the coordinates of N points in a (2D or 3D) Cartesian
coordinates system, draw a histogram that depicts the distribution
of the point-to-point distances among the N points.
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Generally, an SDH comes with a parameter [, which is
the total number of buckets. Because the dataset is gen-
erated from a simulation system with a fixed dimension,
the maximum distance (L;,q;) between any two points
in the system is a constant. In this study, we deal with
the standard SDH, whose buckets are of the same width.
The width of buckets p = Ly,q./!, also named histogram
resolution, is usually used as the parameter of the query.
Specifically, with a given histogram resolution p, SDH
asks for the number of point-to-point distances that fall
into ranges [0,p), [p,2p), [2p,3p), ..., [(I — 1)p,lp), respec-
tively. Obviously, for the same dataset, more computation
is needed for an SDH with smaller p value.

1.2 Objective

In a dataset with NV particles, SDH requires O(N 2) com-
putation time to carry out all point-to-point distance com-
putations. Our previous work proposed more efficient al-
gorithms [9]. Instead of computing every point-to-point
distance, the main idea of such algorithms is to analyze
the distances between two groups of points, as described
in Section 3.1. These groups are represented by nodes in a
space-partitioning tree structure, called density map (DMs),
as discussed in Section 3.2. The reduction of running time
is achieved by the fact that the brute-force distance compu-
tations are substituted by recursively calling the Resolution
Function that takes two tree nodes as inputs (for which
the algorithms are named dual-tree algorithms). The main
objective of this paper is to provide analytical and empirical
evaluations of different data structures for implementing the
DM. So far our work only used a quad-tree (oct-tree for 3D
data) for such purposes [9], and it is natural to look into
other spatial data structures for the same purpose. In this
paper, we study and evaluate an implementation based on



a region kd-tree whose details will be introduced in Section
3.2. Although algorithms based on both trees have the same
time complexity O (N MTA) where d is number of dimen-
sions of dataset [10], a comparison of their actual execution
time under different scenarios is thoroughly studied. Our
main technique is to transform the analysis of the number
of particle counts into a problem of quantifying the area of
interesting geometric regions. Our analysis leads to rigorous
results for differentiating the running time of these two
dual-tree algorithms (quad-tree-based and kd-tree-based)
under different cases. Our analysis suggests that the use
of kd-tree brings significant performance advantage to the
dual-tree algorithm under a wide range of data sizes and
query parameters. In particular, the kd-tree yields a speedup
up to 1.23X over the quad-tree in processing 2D data, and a
speedup up to 1.39X over the oct-tree in processing 3D data.
Results of extensive experiments confirm such findings.

1.3 Paper Organization

The remainder of this paper is organized as such: In Section
2, we review the works related to SDH problem and discuss
the contributions of this work; In Section 3, we sketch the
dual-tree algorithm; We introduce our modeling approach
and present the main analytical results in Section 4; Based
on the main results, we study and compare the performance
of the two dual-tree algorithms in Section 5; We present
extended analytical results about 3D data in Section 6; We
report experimental results in Section 7, and conclude this
paper in Section 8.

2 RELATED WORK AND OUR CONTRIBUTIONS
2.1 Motivating Applications of SDH

The SDH is a fundamental tool in understanding the phys-
ical features of systems consisting of many particles. For
that reason, SDH is routinely computed in analyzing data
generated from a very important type of computer simula-
tion - particle simulations. Such simulations treat individual
components (e.g., atoms, stars, etc.) of large systems (e.g.,
molecules, galaxies, etc.) as classical entities that interact
with each other following Newton’s Law. These techniques
are applicable in modeling of complex chemical and biolog-
ical system that are beyond the scope of theoretical models,
under such scenarios the simulation is called molecular
simulations (MS). MS has been widely utilized in material
sciences [11], astrophysics [12], biomedical sciences, and bio-
physics [13]. In a molecular system, the SDH is the discrete
form of a continuous statistical distribution named radial
distribution function (RDF), which describes how the atom
density varies as a function of distance from a referenced
point. RDF is an essential component in computing a series
of critical quantities describing a system, such as internal
pressure and energy [12], [14], [15].

Computation of SDH also finds its application in other
domains. In computer vision and pattern recognition, the
concept of Color Correlogram, which is a table indexed by
color pairs, where a k-entry for < 4, j > specifies the proba-
bility of a pixel of color j at a distance k from a pixel of color
7 in the image, has been proposed. It is regarded as a robust
feature for effective scene identification under changes in
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viewing angle, background scene, partial occlusion, and
camera zoom [16], [17]. A single image generated from
modern camera might contain millions of pixels. Therefore,
it takes considerable amount of time to compute the color
correlogram of these images.

In the data mining field, a feature vector represents
an object. The multi-dimensional feature vector could be
reduced to low-dimensional feature vector by using linear
reduction techniques, such as Principal Components Anal-
ysis (PCA), Karhunen-Love Transform (KLT), the Discrete
Fourier (DFT), Cosine Transform (DCT), etc. Then SDH
of low-dimensional feature vector in Cartesian Coordinate
System could therefore statistically conduct similarity search
or classification of the specific objects [18], [19].

The significance of this work is not limited to SDH
or the 2-BCF themselves: similar techniques presented in
this paper can provide insights in computing the more
general n-body correlation function (n-BCF) where n >
2 [20]. The n-BCFs are of interest in many forms: n-
point function, n-tuple problem, nearest-neighbor classifi-
cation, nonparametric outlier detection/denoising, kernel
density/classify /regression [21] are examples of statistical
measurements related to n-BCF, and their applications are
found in various scientific fields [22], [23], [24].

2.2 Algorithms for Efficient SDH Computation

In our previous work [9], we proposed the use of quad/oct-
tree to split the domain space into equally-sized cells for
SDH processing. In [25], we presented a comprehensive
analysis of quad/oct-tree-based dual-tree algorithm based
on a geometry modeling approach; based on results of our
rigorous mathematical proof, we showed the theoretical
running time of our algorithms: O (N 2‘{Tfl) where d is num-
ber of dimension of dataset. A solution for similar problems
was proposed in [21], in which a data-driven spatial tree
is used: each level of the tree is generated by partitioning
the region into two subregions with equal number of data
points along one dimension. Our region kd-tree method, on
the other hand, partitions a region by cutting at the middle
point of the one-dimensional segment represented by a
node. In other words, under an uniform spatial distribution
of data, their proposed data structure is equivalent to the
region kd-tree we study in this paper. Our main contribu-
tion, however, lies in the quantitative analysis of the per-
formance of the kd-tree-based solution in comparison with
the original quad/oct-tree approach. In [21], a conjecture is
presented with an asymptotical analysis of tree performance
but no analytical details were shown. To the best of our
knowledge, there is no rigorous analysis on performance of
dual-tree problem by using kd-tree. Our work reported here
takes advantage of the geometric modeling method we used
to analyze the quad-tree approach as shown in [25]. On top
of that, we develop new models to compare the two data
structures of interest in this paper. Our recent work on this
topic [26], [27], [28] focuses on approximate SDH processing
and parallel computing. Such work, again, only considers
the quad/oct-tree as the underlying data structure thus has
little overlap with this paper.

A shorter version of this paper can be found in [29], in
which we sketched our analytical model and presented the



main results on the comparative study between two data
structures under 2D data. In this paper, we extend the anal-
ysis to 3D data and comparison between kd-tree and oct-
tree used in our previous work. The 3D analysis, although
following the geometric modeling strategy, is significantly
more complex and challenging. We also evaluate the 3D
analytical results with extensive experiments. Furthermore,
we present more complete proof of major theorems in the 2D
analysis that was not published in [29] due to page limits.

3 PRELIMINARIES

In this section, we elaborate on the dual-tree algorithm for
computing SDH, in order to pave the way for future discus-
sions related to the performance evaluation of the algorithm.
In Table 1, we list the notations that are used throughout this
paper. Note that symbols defined and referenced in a local
context are not listed here.

TABLE 1: Symbols and notations

Symbol Definition

D width of histogram buckets
l total number of histogram buckets
h the histogram array with indexed elements h;(0 < i <)
N total number of particles in data
i an index symbol for any series

DM; the i-th level of density map
d number of dimensions of data
0 diagonal length of the cells

3.1 Overview of the Dual-tree Algorithm

The main idea of the dual-tree algorithm is to work on the
distances between two clusters of points instead of those
between two individual points to save time. From now
on, we use 2D data to elaborate on technical details till we
explicitly extend our discussions to 3D data in Section 6. The
dual-tree algorithm starts by building the tree structures,
and cache the total number of data points in each node. An
entire level of the tree with such counts is called a density
map (DM, see Fig. 1 for examples). The main body of the
algorithm is a primitive named ResolveTwoTrees (referred to
as resolution function hereafter) which takes a pair of tree
nodes as input. Given a pair of nodes on the DM, if the both
minimum and maximum distances between these two nodes
fall completely into a histogram bucket, we say that this pair
is resolvable. An important observation here is: for a pair of
resolvable nodes, we only need to add the total number of
distances between them to the corresponding bucket in the
SDH. This is also the main reason why such algorithm is
more efficient than the brute force approach. If the pair of
nodes is unresolvable, the resolution function recursively
visits next level of the tree to resolve all pairs of child nodes
(cells, since they are the same, we may alternatively use
them hereafter), so on and so forth. If a pair of nodes is
still unresolvable at the leaf level, we have to compute all
the point-to-point distances between the data points across
that pair of nodes.

The pseudocode that summarizes the technical details
of the algorithm can be found in Algorithm 1. The core
process of the algorithm is the procedure ResolveTwoTrees,
which tries to resolve two cells m; and mq on the same

Algorithm 1: The dual-tree algorithm for SDH
Data: all data points, DM, and bucket width p;
Result: an array of distance counts h
initialize all elements in A to 0;
DM, + first DM with cell diagonal length 6 < p;
for every cell in DM, do
n < number of particles in the cell;
hi=hy+ %n(n — 1),‘
end
for every pair of cells m; and m; in DM, do
‘ ResolveTwoTrees (m;, m;);
end
return h

O 0 N Ul R W N -

=
o

11 ResolveTwoTrees (m1,mz)
12 ny < number of points in m;
13 Ny < number of points in Mo
14 if n; = 0 or no = 0 then

15 ‘ return

16 end

17 if mq and mo are resolvable into a bucket i then
18 h; < h; +nins;

19 return

20 end

21 if my and mo are on the last density map then
22 for each particle A in m; do

23 for each particle B in my do

24 f « distance between A and B;
25 1 < the bucket f falls into;

26 hi < h; +1;

27 end

28 end

29 else

30 | for each child node m of m; do

31 for each child node m/, of my do

32 | ResolveTwoTrees (), mj)

33 end

34 end

35 end

DM. In order to check whether m; and ms are resolvable,
we firstly compute the minimum and maximum distances
between any points from m; and ms. Note this process only
requires constant running time. When both minimum and
maximum distances between the two cells fall into a same
histogram bucket ¢, the value (i.e., distance counts) in bucket
1 will increment by njng, where n; and ng are the number
of points in the spatial region represented by m; and ms,
respectively. If m; and mg are not resolvable on density
map DM,;, we move to next level of Density Map DM, 1,
and recursively call the same function to check each of four
children in m to each of four children in my. However, if
two nodes are still not resolvable on the last level DM of the
tree, we have to calculate the distances between all pairs of
points from the two cells. In addition, if we have n; = 0 or
ny = 0 (i.e.,, empty nodes), the procedure directly exits.
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Fig. 1: A partial DM implemented by quad-tree and kd-tree.
Each cell is marked by the total number of data points in it

3.2

To implement Algorithm 1, one decision to make is what
type of data structure we use to build the DM. Our previous
work [9] uses a quad-tree: when the space is partitioned
to lower-level nodes, the tree simultaneously bisects both z-
and y-dimensions at each partition, generating four children
for each internal node. In this paper, we consider the use of
kd-tree, which alternatively bisects its z- or y-dimension at
each partition, leading to a tree degree of two (Fig. 1). In
both trees, the region containing all points in the dataset
represents the root node. Given the same dataset, the kd-
tree introduces an extra level of nodes in between any two
neighboring levels of the quad-tree, as shown in Fig. 2. The
immediate question is whether the kd-tree-based algorithm
has better performance, and this paper presents an answer
to this question via a rigorous analytical approach. A special
note here is that both trees define a node by a prefixed
region instead of being driven by data distribution. The
main reason for this is: the resolving of two trees is a process
that is only related to the dimensions of the two trees, the
data in the trees are irrelevant.

Before we start performance analysis, it is essential to
present two critical features of the dual-tree algorithm re-
garding the size of the tree structures. First, the height of
the tree is determined by the data size N. Specifically, we
keep partitioning the tree until the average number of data
points in each node is smaller than a threshold b. Thus, the
height of the tree can be expressed as

Implementations Based on Different Trees

H= {logk ZZJ +1 1)

where k is the degree of the tree (i.e., 4 for quad-tree and
2 for kd-tree). The value b is set based on the following
reasoning: the cost of computing all the point-to-point dis-
tances is b%, and the cost of resolving two cells is a fixed
value C; if we are to further partition the nodes into a new
level, there will be k2 resolution calls, therefore it makes
sense to create this new level only if we have b? > k*C,
or b > kv/C. Otherwise, we should not further partition
the nodes and make the current level the leaf level. The
important observation here is: given the same NV, as C' does

i+1

2(i+n)-1

,2(i+n)

e il 2(i+n)+1
kd—Tree

i+n

Quad-Tree

Fig. 2: Different levels on quad-tree and kd-tree. Dash line
represents the intermediate level that only exists in kd-tree, and
a solid line corresponds to a level that exists in both trees

not change, the kd-tree can build an extra level on the
bottom as compared to the quad-tree.

Another important feature of the algorithm is the level
of the tree where the algorithm starts calling the resolution
function. Specifically, the algorithm starts at a tree level (i.e.,
a DM) where the size of the cells/nodes satisfies

a< L e 0<p ()

Vd
where a is the side length (§ is the diagonal length) of the
cells, p is the histogram bucket width, and d is the number
of dimensions in the data. This is because, if the above is not
true, none of the node pairs will resolve. In other words, the
bucket width p determines the starting DM. Consequently,
the algorithm may start at the identical or different levels
on the quad-tree and kd-tree, depending on the value of p.
The extra levels that only exist in the kd-tree give chances
for the algorithm to start earlier (at such extra levels) in the
tree (Fig. 2).

As we shall see later (Section 5), the above two features
define four scenarios to consider in comparing the perfor-
mance of the kd-tree-based algorithm to that of the quad-
tree-based one. In these four cases, the relative performance
of the algorithms are different. We will discuss the scenarios
in a 3D system in Section 6.

4 MAIN ANALYTICAL RESULTS

We first present our analysis on how fast the resolution
function resolves the points when it recursively visits the
tree in a depth-first manner. This turns out to be a key step
in modeling the relative performance of the two algorithms.

4.1 The Geometric Modeling Approach

To quantify the number of points resolved, we transform the
problem into a geometric modeling problem. In particular,
we develop a model to quantify how the area of the region
that can be resolved increases as more DMs (i.e., tree levels)
are visited. Consequently, any points that fall into such
regions are resolved.!

1. Note that such transformation is based on an implicit assumption
that data is uniformly distributed in the simulation space, because we
adopted space-oriented (bisecting each dimension) method. We will
remove this assumption in our analysis as shown in Section 5.1.



Fig. 3: Theoretical boundaries of bucket 1 and bucket 2 regions
for cell A, with the bucket width p = v/2§

Given any cell A on the DM where the algorithm starts
(Fig. 3), we first define a theoretical region that contains all
particles that can possibly resolve into the i-th bucket with
any particle in A. We name this region as bucket i region
for cell A, and denote it as A;. Note that A can be either a
square or a rectangle in the kd-tree implementation. In all
illustrations of this paper, we only draw rectangular cells
but our analysis will cover both cases. Going back to Fig. 3,
cell A is marked with its four corner points O;, Oz, O3, and
Oy, A, is therefore bounded by 4 arcs and 4 line segments
connected by points C through Cs. The arcs are of the same
radius p. Here we consider the special case of Equation (2):
the diagonal length of cell A is set to be 6 = % However,
as we shall see later, the case of § < % will not change our
analytical results.

The cells that are actually resolvable into bucket ¢ with
any subcells in A also from a region. We named such region
as coverable region and denote it as A}. Since a coverable
region contains rectangles or squares, its boundary (solid
blue line in Fig. 4) shows a zigzag pattern. An essential part
of our analysis is to study the area of coverable regions over
all buckets and how the density map resolution affects it.
We define the ratio of ), A} to >, A; as the covering factor,
which is a critical quantity to measure how much area are
“covered” by the resolvable cells. Note that the boundary of
Al approaches that of A; (solid black line in Fig. 4) when
the dual-tree algorithm visits more levels of the tree. As a
result, the covering factor increases. Of special interest to
our analysis is the non-covering factor which indicates the
percentage of area that is not resolvable, i.e.,

non-covering factor = 1 — covering factor ©)]

Our previous work [25] has studied the resolution ratio
of dual-tree algorithm running on top of the quad-tree. A
very important feature of the non-covering factor in the
quad-tree can be summarized in the following theorem.

Theorem 1. Let DM, be the first density map where the quad-
tree algorithm starts running, and we define the non-covering
factor oy, as a function of the levels of density maps visited m.
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In other words, v, is the percentage of cell pairs that are not
resolved upon visiting DM; . ,,. We have
A 41 1

lim = -
=0 Quy 2

Basically, Theorem 1 says that half of the node pairs are
resolved when one more level of the tree is visited. From
this theorem we can easily derive a recurrence function
that leads to the time complexity of the quad-tree-based
algorithm dropping to O(N %?1), where d is number of
dimensions of dataset [10]. This theorem, by focusing on the
non-covering factors on two consecutive levels, essentially
shows how fast the data points could be resolved while the
dual-tree algorithm visits the quad-tree structure.

For the same dataset, the kd-tree has extra levels that are
not seen in the quad-tree, the data points could be resolved
earlier in the kd-tree by the resolution function. Intuitively,
if more data points are resolved by the resolution function
call, fewer of them are left for distance computation. That is
the benefit of calling the resolution function earlier (among
the intermediate tree nodes). On the other hand, the time
we spend on calling the resolution function on such levels
is a pure cost. Just by looking, it is not clear how much net
performance gain such “early resolution” in the kd-tree can
generate. Therefore, it is essential to study the same quantity
i1/ in the kd-tree.

4.2 Non-Covering Factor Ratios in kd-tree

Rather than square cells in the quad-tree, the kd-tree in-
troduces rectangular cells on the intermediate levels, the
algorithm therefore alternatively visits the square and rect-
angular cells, resulting in more complicated scenarios in
studying the resolution ratios on the kd-tree. Our main
results on kd-tree can be seen in the following theorem.

Theorem 2. Let DM; be the first density map where the dual-
tree algorithm starts running on a kd-tree, and o, be the non-
covering factor upon visiting the density map that lies m levels
below DM, we have

m 3
lim Qmt1 = Z (4)

p—0
when i + m is even, and

lim Sl — 2 )

p—0 3

when 1 + m is odd.

In the remainder of this section, we present a proof of
Theorem 2. However, readers can jump to Section 5, in
which we show how Theorem 2 leads to effective analysis
of algorithm performance.

4.2.1 Bucket Region

As shown in Fig. 3, the bucket 1 region for cell A is
connected by C through Cs; C1Cy, C3C4, C5Cs, and C7Cy
are all line segments; CyC53, C4C5, CsC7, and CsC are all
90-degree arcs with radius p and centered at Oy, O3, Oy,
and Oj, respectively. Apparently, the area of this region is
7?4+ 2pé + pé + %. The bucket 2 region of A is similar
to bucket 1 region but the radii of the four arcs are 2p —



Fig. 4: Actual (solid blue line) and approximated (dashed green line) coverable region for bucket 1 under: a. m = 2, b. m = 3, c.
m = 4, and d. m = 5. Outer solid black line represent the theoretical bucket 1 region. All arrowed line segments are drawn from

the centers to the corresponding arcs with radius p
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Fig. 5: Inner boundaries of the coverable regions of buckets 2 and 3 under a. m = 2,b. m = 3, c. m = 4, and d. m = 5. All arrowed

line segments are of length 2p

this region is connected by D; all the way around to Ds.
However, if the points are too close to A, they will only be
resolved into bucket 1, because their distances to any points
in A will always be shorter than p. These points formed a
region, which is connected by four arcs Q1 Q2, Q2Q3, Q3Q4,
and (4@ with radius p and centered at opposite corners
of A. The bucket 2 region should not take count of such
inner region. This football-shaped inner region Q1Q2Q30Q4
has fourfold of the area of region Q4Q1D (Fig. 6). To get

—

area of QZZ)l D, we first calculate the area of sector Q4103
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We then deduct the area of region AQ4O03B and AQ,105C.

SArQ.05B = i p? — (%)2

)

2
SrqQ.05c = 1 p? — (%)
Note that, by doing that, we subtract the quadrilateral twice,
and only once for each of two triangles. Thus, we have to
put them back by adding the area of rectangle O3 BDC only
once, then we get the area of ()1 Q2Q)3Q)4, is given by Eq. (45)
in Appendix A.

The shape of bucket ¢ (¢ > 2) regions is the same as
bucket 2 region except the radii of the arcs become ip. Recall
that the algorithm starts from a DM where p > diagonal.
For convenience of presentation, we set p = diagonal, ie.,

@)

QI A
Q4 \D B
F C 03

Fig. 6: A part of the football-shaped region shown in Fig. 3

p = @. As we will see later, p > diagonal will not affect
our analysis. We therefore have the general formula g(¢), is
given by Eq. (46) in Appendix A, to measure the area of
bucket ¢ region.

4.2.2 Coverable Regions

Similar to bucket region, the coverable region consists of an
outer region and an inner region.

4221 The First Bucket: First, let us focus on bucket
1. In Fig. 4, we illustrate the coverable regions of four
different density maps with m value ranging from 2 to
5. The solid blue line with zigzagged pattern indicates
the coverable region of cell A, denotes as A’. This region
contains all the cells that can be resolved into bucket 1 with
any subcell in A. A key technique here is to use a smooth
boundary (shown as dashed green line) to approximate the
area of A’. As m increases, the boundaries of A’ approach



that of A. The covering factor of bucket 1 with cell A is then
calculated as the ratio of the area of A’ to that of A. The area
of A’ is given by Eq. (47) in Appendix A.

4222 The Second Bucket and Beyond: First, we
have to compute the area of the region A’ by only consid-
ering the outer boundaries. This is the same as we did in
Section 4.2.2.1 except the radii of arcs are ip. Such area for
bucket A%, S,,4(i), is given by Eq. (48) in Appendix A.

Second, we have to consider the inner boundaries of the
coverable region. Fig. 7 shows an example with m = 1 for
buckets 2 and 3. Clearly, any cell that crossed by a segment
of the theoretical inner boundary, as shown as thick solid
line, will not be able to resolve into bucket ¢, because they
are only resolvable to bucket (i — 1). In addition, there are
more cells that are not resolvable to either bucket i or (i —
1). Again, we define a smooth boundary (dashed line in
Fig. 7) to approximately separate the resolvable and non-
resolvable regions. Such boundaries are drawn as follow:
for each quadrant of cell A, we draw an arc (dashed line)
with radius (i — 1)p and centered at the corner of the subcell
of A. Consequently, any cell that crossed by this arc cannot
resolve into bucket i, because they are too close to A. Such
boundary also approximates the real inner boundaries (with
a zigzagged pattern), and the area of region defined by such
approximated boundaries is

m(ip)® + &ip — w[(i — )p]* — 6(i — 1)p ®)

ket 2 boundarics

pucket 3 boundari

Fig. 7: Inner boundaries of the coverable region with m =1

Fig. 5 illustrates more cases with m values from 2 to
5. For the cases of m > 2, we can use the same method
as case of m = 1 to generate the real inner boundaries
and approximated inner boundaries. Again, as m increases,
point C' approaches point O, and the approximated inner
boundaries approach the theoretical inner boundaries. To
compute the area of the regions formed by the approximated
inner boundaries, we first need to derive angle /DCB that
encloses the shaded area shown in Fig. 8.

ADCB::%—AJOD—LKCB ©)

When m is odd, the subcell is a square and we have DJ =
BK.When m is even, the subcell is a rectangle and we have

T
D E F 1
I

J H C

Fig. 8: The region bounded by four arcs in Fig. 7

DJ = BK/2. Consequently, we have two cases to calculate
/DCB when m increases.

s . eﬂlé - 6,,0 .
8= 5 — arcsin T2 — aresin ==, m is even (10)
S
f = 5 — arcsin fm=12 _ aresin W’ m is odd
where 6,,, is a function of m:
1 1
=5 g
With that, we can easily get the area of the Sector BDC
/DCB 2
27 2
The area of the polygon BFDC'is
Sprpc = Sapuc + Sapic — Srrue (12)

where Saprc , Sapic, and Srrppc are defined as Eq. (13),
Eq. (14), and Eq. (15), respectively.

1
VP = 0007 00 -5,

m is even

SaBHC = 1
V p2 - (9m+16)2 ' 9m+15 : §a m is odd
(13)
1
Sapic = V p2 - (077L5)2 : 0m5 5 (14)
2
(0)? -2, m is even

S = 2 15
frHe {9m1 Ot %, m is odd (15

In addition, the area of the square LEF'G is

52

SLEFG = 3 (16)

Therefore, with the above four equations, we obtain the area
of region bounded by four arcs (shaded region in Fig. 8) as

Sshade =(Ssector — Saprc — Saprac + Strac — SLEFG)

For the i-th bucket, we can get the general equation to
calculate Sspqqe, is given by Eq. (49) in Appendix A.

We denote the area of the coverable region A’ for bucket
i under different m values as f(i,m)

f(la m) = 514 = Sout(i) —4- Sshade(i - 1) - SA (17)
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TABLE 2: Values of o(m + 1)/a(m) derived from fully expanded Eq. (18) as computed by MATLAB (Version 8.4). Precision is up

to the 5th digit after decimal point

Total Number of histogram buckets

Density map levels

2 4 8 16 32 64 128 256 512 1024
m=1 0.74197 0.64118 0.61973  0.61462 0.61336  0.61305 0.61297 0.61295 0.61295  0.61295
m=2 0.67732  0.6691  0.66721 0.66679  0.66669  0.66667 0.66667 0.66667 0.66667  0.66667
m=3 0.74807  0.74909  0.74968  0.7499  0.74997  0.74999 0.75 0.75 0.75 0.75
m=4 0.67521  0.6688  0.66719 0.66679  0.6667  0.66667 0.66667 0.66667 0.66667  0.66667
m=5 0.74448 0.74809  0.74941 0.74983  0.74995  0.74999 0.75 0.75 0.75 0.75
m==6 0.67473  0.66891  0.66726  0.66682  0.66671  0.66668 0.66667  0.66667 0.66667  0.66667
m=7 0.74276  0.74762 074929  0.7498  0.74994  0.74998 0.75 0.75 0.75 0.75
m=38 0.67464 0.66903 0.66732  0.66685 0.66672  0.66668 0.66667 0.66667 0.66667  0.66667
m=9 0.74193  0.74739  0.74923 0.74978  0.74994  0.74998 0.75 0.75 0.75 0.75
m =10 0.67464  0.6691  0.66736 0.66686 0.66672  0.66668 0.66667  0.66667 0.66667  0.66667
m =11 0.74151 0.74728  0.7492  0.74977  0.74994  0.74998 0.75 0.75 0.75 0.75
m =12 0.67465 0.66915 0.66738  0.66687  0.66672  0.66668 0.66667  0.66667 0.66667  0.66667

The fully expanded formula for f(i,m) can be found in Eq.
(50) of Appendix A.

We use the non-covering factor a(m) to study the per-
centage of unresolvable pairs of cell at each level.

S lgli) — fi,m)]
Sy (i)

(18)

—c¢(m) =

To prove Theorem 2, we start by

_ X0 =S fema )
Yim1 90) = Xica flim)

Note that functions ¢(i) and f(i,m) are given by Eq. (46)

and Eq. (17) already. By plugging those into Eq. (19), we can

prove that when m is even, a(m + 1)/a(m) converges to

2/3. Such proof can be found in Appendix B.

Now let us look at a(m + 2)/a(m + 1). The m-th
and (m + 2)-th levels in the kd-tree correspond to two
consecutive levels in the quad-tree. By Theorem 1, we have
a(m + 2)/a(m) converges to 1/2. Since we have already
shown a(m + 1)/a(m) converges to 2/3, we can easily get

a(m+1)
a(m)

am+2) 3
0 a(m+1) 4 20)

The above concludes the proof of Theorem 2.

Numerical results (Table 2) generated from computing
expanded Eq. (18) show that non-covering factor ratios
quickly converge to 2/3 and 3/4, even under large p values
(corresponding to small total number of buckets). The only
exception is the case of m = 1. The reason is: when we visit
a high level of the tree, the coarse grid causes a relatively
big gap between the approximated boundaries (zigzagged
pattern) and real boundaries (Fig. 4a and Fig. 5a). When
we move to lower levels, the approximated boundary is a
better estimation of the real boundaries (Fig. 4d and Fig.
5d), and this leads to smaller modeling errors. As Table 2
shows, even when m = 2, the non-covering factor ratios
converge perfectly. Note this discussion is not focused on
the value of m, it is only a matter of the actual level of tree
m corresponds to. Such a fact does not diminish the value of
Theorem 2 because: (1) the case of p — 0 implies the visited
tree level is low even when m = 1 therefore the theorem
covers such cases; (2) even if the algorithm starts on a high

level with some modeling errors, the time spent on high
levels is negligible therefore it does not impose significant
effects on performance analysis (see Section 5).

AN WA
End Starts at 2i Starts at 2i—1
D Case 1 Case 3
Ends at 2(i+n)
é Case 2 Case 4
Ends at 2(i+n)+1

Fig. 9: Four cases in performance comparison listed from the
perspective of the kd-tree-based algorithm. Note that level 2¢
corresponds to level i in the quad-tree according to Fig. 2, and
a blue line represents a level that only exists in the kd-tree

5 PERFORMANCE COMPARISON OF TwWO TREES

Theorem 1 states that half of the node pairs are resolved
when one more level of the quad-tree is visited. Theorem 2
states that a quarter of the node pairs will be resolved when
the algorithm works on an even level (which has square
cells and is also in the corresponding quad-tree), and a third
will be resolved on the extra levels (with rectangular cell)
that only show up in the kd-tree. From these two theorems
we can easily derive a recurrence function that leads to the
time complexity of the algorithm (see Section 6.1 in [10] for
details). Although the time complexity of the algorithm is
the same under both trees, it is not clear how the actual
running time is affected by using a kd-tree. Intuitively, the
appearance of the extra levels provides opportunities to
resolve nodes earlier such that fewer node pairs are to be
resolved in the following levels. On the other hand, there is
extra cost to resolve pairs of nodes in such extra levels. Only
when such cost is overshadowed by the saved time can we
see a performance advantage from the kd-tree. Fortunately,



with Theorem 2, we are able to quantitatively compare the
actual running time of both algorithms under different cases
(Fig. 9). Note that, in Algorithm 1, the time is only spent in
two types of operation: Type I — resolution function calls;
and Type II — computation of distances between data points
in the unresolved leaf nodes.

5.1 Case 1

In this case, the algorithm ends at identical levels on both
trees, they have the same number of unresolvable pairs
of nodes at leaf level and thus the number of point-to-
point distances to be computed. Therefore, we only need to
compare the number of resolutions called by the algorithm.
In the quad-tree, if a pair of nodes is unresolvable at the
current level, it will generate 16 pairs of nodes at the child
level. In other words, for all the node pairs at the starting
level, the algorithm leaves 16l pairs unresolved, where
o is the non-covering factor, and I is the total number of
node pairs at the starting level, respectively. At the next
level, it leaves 16%agoy ] pairs unresolved. Thus, the total
number of calls to the resolution function on quad-tree is

R=I(1+16ag + 16%agas + -+ 16"agay - - ap—1) (21)

Based on Theorem 1, we have
1 1\n—1
R=1I|1+16a+ 162a0(§> T 16”a0(§) } 22)

In the kd-tree, if a pair of nodes cannot be resolved
at current level, it will generate 4 pairs of nodes at its
child level. Similarly, we have total number of calls to the
resolution function in the kd-tree as

R =1(1+ 4B+ 4%BoP1 + - +4"BoB1 -+ Pan—1) (23)

where (; is the non-covering factor, and I is the total
number of node pairs at the starting level. With Theorem
2, we have

R =I [1 480 + 428, (%) + 438, (%)

1—1 I\n—1,3
a(3) (3
+ 47" Bo 3 1
Consider any level i of the quad-tree visited by the
algorithm. Let us denote A; as the ratio of number of calls
to the resolution function of the two algorithms at that level

(for kd-tree, this includes the calls at level 2¢ — 1 and 2%).
From Eq. (22) and Eq. (24), we have

A 16ia0(%)i_1 (o7}
B D) By
Since the algorithms start at identical levels of the tree in
this case, we have oy = Sy, which further gives A; = 1. This
means the two algorithms make exactly the same number of
calls to the resolution function.

Another factor that impacts the total calls to the reso-
lution function is the existence of empty nodes, which are
automatically ignored by the algorithm. Such empty nodes
may appear earlier in the kd-tree due to the existence of the

rectangular nodes, and such scenarios yield a net discount
to the number of function calls made by the kd-tree. On

(24)
s ta () ’

(25
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such a level 2i — 1 in the kd-tree, let us define B as number
of nodes at that level, € as net discount to the number of
function calls, and K the number of empty nodes, we have

(3)- (%) em(d) e

If we model the spatial distribution of data points as a
random process, the expected value of K can expressed as

€ =

E[K] = B- Pr{X} 27)
where X represents the event that a cell is empty. If the
data is uniformly distributed in space, we have Pr{X} =
(1 — )" for a dataset consisting of N points. Typically,
only when we move to the lower levels of the tree (such
that B — N) can we see a non-negligible Pr{X }. However,
under skewed data distribution (e.g., Zipf), Pr{X } becomes
significantly high even at higher levels of the tree, leading
to a bigger discount e.

5.2 Case?2

In this case, the dual-tree algorithm starts at identical levels
on the quad-tree and kd-tree, but ends at different levels. In
Case 1, we have already shown that the kd-tree beats the
quad-tree on the number of Type I operations, so we just
need to compare the difference of Type II operations.

In this case, the leaf nodes of the quad-tree are further
divided into two child nodes (representing rectangular re-
gions in space) in the kd-tree. As a result, more nodes can
be resolved by the algorithm on the kd-tree, giving rise to
fewer point-to-point distance computations. Suppose there
are J unresolved distances left at leaf level (i + n) of the
quad-tree (which is identical to level 2(i + n) of kd-tree).
Upon calling resolution function on the next level 2(i+n)+1
of the kd-tree, there are %J unresolved distances left. Then,
we have a kd-/quad-tree speedup at this level as

JCy

— 28
%JCl—kPC’g (28)

Speedup =
where P is number of resolution function calls made at level
2(i + n) + 1 of kd-tree, C; and Cs are the costs of distance
computation and resolution function call, respectively. Since
each resolution function call invokes 16 distance computa-
tion (Section 3.2), we have 16C = C5. Consequently, the
denominator of Eq. (28) becomes

%JC& + 16 PCy (29)
Let x be the average number of the points at the level
2(i +n) 4+ 1 of kd-tree. Since the minimum average number
of points at leaf level is set to 4, the average number of
points at one level up will be no less than 8, thus we
have 8 > x > 4. Here each resolution function resolves
2?2 distances, and we called resolution function P times. On
the other hand, we have the J/4 of distances resolved by the
resolution function at the bottom level of kd-tree. Therefore,
we have the following relationship between J and P.

J

Z:362Pz>—:P

4 4dz2 (30)



By plugging Eq. (29) and Eq. (30) into Eq. (28), we have

Speedup = (31)

PN

V3
Since = € [4,8), we get Speedup € [1,1.2308). Therefore,

the kd-tree algorithm again has better performance, with a
speedup up to 1.23X over the quad-tree algorithm.

5.3 Case3

The algorithm starts at an odd level of kd-tree, which does
not exist in the quad-tree, and ends at the same level for
both trees. The latter is the same to Case 1, therefore the
efficiency depends on how many times the algorithm calls
the resolution function. Although the algorithm starts earlier
in the kd-tree (level 2i — 1), the number of nodes that are
unresolvable at the next level (i.e., level 27) is exactly the
same as the starting level ¢ of the algorithm on the quad-
tree. In other words, Eq. (22) remains the same and the only
change to Eq. (24) is that the first term I becomes /4 + I3
where I /4 is the number of node pairs at level 2i—1, § is the
non-covering factor at level 2i — 1, and 1 is the number of
function calls at level 2i. Here /3 has an upper bound of 3/4
(Theorem 2). Therefore, as compared to Case 1, the kd-tree
beats the quad-tree by an even bigger margin. However,
the extra margin is negligible because it only reflects the
changes to the first item in Eq. (24), which is the one with the
lowest order in the series. In other words, Case 3 is almost
the same scenario as Case 1.

5.4 Case4

This case combines the differences between the quad-tree
and kd-tree as discussed in Cases 2 and 3: the kd-tree
starts running at a higher (odd) level, and it ends at the
extra leaf level that is not in the quad-tree. Since we have
shown that both scenarios lead to performance advantages
of the kd-tree, we conclude the kd-tree is the winner again.
Furthermore, the performance gap between kd-tree and
quad-tree can be modeled by Eq. (26) and Eq. (28).

6 EXTENSION TO 3D DATA

In this section, we present the analysis on 3D datasets. In 3D
systems, based on the same partitioning method as in 2D,
the quad-tree (now named oct-tree) bisects its z-, y-, and
z-dimension at each partition. Consequently, each internal
node of an oct-tree has eight children (instead of four as in
quad-tree). Given the same dataset, kd-tree introduces two
extra levels of nodes in between any two neighboring levels
of the oct-tree, in contrast to only one such extra level in
2D data (Fig. 9). Following the SDH start/stop condition
adopted in Section 3.2, we have nine scenarios to consider
in performance comparison (Fig. 10).

Our previous work [25] has shown Theorem 1 is also true
for oct-tree. We could still follow the geometric modeling
approach mentioned earlier to study the performance of
the kd-tree-based algorithm for 3D data. However, the case
of 3D is too complex to yield any closed-form formulae
towards an analysis as rigorous as in 2D data. Fortunately,

10

End Starts at 3i Starts at 3i-1 | Starts at 3i—2
D Case 1 Case 4 Case 7
Ends at 3(i+n)
é Case 2 Case 5 Case 8
Ends at 3(i+n)+1
é Case 3 Case 6 Case 9
Ends at 3(i+n)+2

Fig. 10: Nine cases in running the kd-tree-based algorithm.
Note that level 3i corresponds to level ¢ in the oct-tree

3 Buckets
4 Buckets
5 Buckets —=—
1 6 Buckets

8 Buckets
10 Buckets —e—

Ratios

5/6 ™

4/5
3/4 N

0.6

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Actual level on kd-tree visited by the algorithm

19 20

Fig. 11: Ratio of the non-covering factors of two neighboring
levels visited by the kd-tree-based algorithm in processing a
uniformly distributed 10-million-atom dataset. Each line repre-
sents one run under a particular p value. In each line, the ratio
of non-covering factor converges very well to what Conjecture
1 states after the first 3 levels

via a large number of simulations, we found that the non-
covering factor of kd-tree under 3D data has the following
patterns.

Conjecture 1. Let DM, be a level of the kd-tree built for 3D
data, and all nodes in D M,,, are cubes (i.e., an identical DM exists
in the corresponding oct-tree). Denote v, as the non-covering
factor of level m, we have

lim Qmt1
p—0 Oy

>
6 p0 gy

Conjecture 1 can be viewed as a 3D version of Theorem
2. It is easy to see that the product of the three constants
in it is 1/2, which is consistent with Theorem 1 for the
oct-tree and we conclude the time complexity is again the
same for both trees under 3D. We have run simulations
under many different sets of parameters and the results
consistently support the conjecture. Results of one such
experiment are shown in Fig. 11. Based on this, we will
quantitatively compare the actual execution time of both
algorithms under the cases shown in Fig. 10.



6.1 Start/Stop at The Same Level (Case 1)

The scenario is the same as what was discussed in Section
5.1 except there are two extra levels of DM in the kd-tree
between those corresponding to any two neighboring levels
in the oct-tree. In the oct-tree, if a pair of nodes is not
resolvable at current level, it calls resolution function for 64
pairs of nodes at the children’s level. So, after the algorithm
worked on resolving all the nodes at current level, it leaves
640! pairs unresolved. Consequently, after the algorithm
worked on resolving all the nodes at level ¢ 4 1, 642apaq
pairs remain unresolved, and so on. Thus, the total number
of calls to the resolution function on oct-tree is

R = I[1 + 64ag + 64% gy + - - + 64" gy - - - 1] (32)

Again, based on the Theorem 1, we have
1 1\n—1
R— 1{1 + 640 + 642040(§> et 64"@0(5) } (33)

In the kd-tree, if a pair of nodes cannot be resolved at
current level, it will visit 4 pairs of nodes at its child level,
therefore the total number of resolution function calls is

R=1 [1+450+42/30/31+435051/32+' 4P BBy - 53n—1J

(34
With Conjecture 1, we have

i 05) - 0n(3) () 45

()66
(35)

Similarly, let us denote A; as the ratio of number of calls to
the resolution function of oct-tree to kd-tree at level ¢ of the
oct-tree visited (for kd-tree, this includes the calls at level
3t — 2, 3i — 1, and 37). From Eq. (33) and Eq. (35), and also
considering ovg = By (since both algorithms start at identical
DMs in each tree), we have

64°ao(3) ! 16 36)
ﬁo(%)i—1[43i—2+43i—1(%)+43i(%)(%)] 15
Therefore, the kd-tree-based algorithm makes fewer (15/16
to be specific) calls to the resolution function comparing to
the quad-tree algorithm.

In addition, the appearance of empty nodes also impacts
the total calls to the resolution function. In the 3D system,
since the kd-tree has two extra levels, more empty nodes
will appear in such intermediate levels.

A; =

6.2 Stop Further (Case 2 and 3)

This scenario is a counterpart of case 2 in 2D: we only need
to compare cases that kd-tree has one and two extra level(s)
resulting in differences in numbers of Type II opreations.

6.2.1 Case?2

In this case, the leaf nodes of oct-tree are further partitioned
into two child nodes in the kd-tree. As a result, more nodes
can be resolved, and less point-to-point distance compu-
tations are required for the kd-tree. Suppose there are J
unresolved distances left at leaf level (i 4+ n) of the oct-tree
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(which is identical to level 3(: 4+ n) of kd-tree). Upon calling
resolution function on the next level 3(i + n) + 1 of the kd-
tree, there are 2.J unresolved distances left. Then, we have

6
a kd-/oct-tree speedup at this level as
JCq

Speedup = ————— 37

peedup 570, 1 PGy (37)

where P is number of resolution function calls made at level
3(i + n) + 1 of kd-tree, C; and Cs are the costs of distance
computation and resolution function call, respectively. In a
3D system, each of resolution function call requires 8 x 8 =
64 distance computations. Then, we could substitute the C'
with 64C'; to the denominator in Eq. (37),

%JC& + 64PC, (38)
Similarly, let = be the average number of the points at the
level 3(i + n) + 1 of kd-tree. Since our threshold b (average
number of points at leaf level) is set to be equal or greater
than 8, and the average number of points at one level in
advance will not be less than 16, we have 16 > x > 8. The
number of distances resolved by the resolution function is
22P, and there are J /6 distances resolved by the function at
3(i + n) + 1 level of kd-tree. Therefore, we have

J 2 J
—=2"P=>— =P 9
=2 = 622 (39)
Plugging Eq. (38) and Eq. (39) into Eq. (37), we have
1
Speedup = +—; (40)
6T &2

Since = € [8,16), we get Speedup € [1,1.1429). Thus, the
performance of kd-tree beats that of oct-tree.

6.22 Case3

In this case, the leaf nodes of oct-tree are partitioned into
four child nodes in the kd-tree. Similarly, in the kd-tree,
more nodes can be resolved by the resolution function call,
fewer distance computations are required. Suppose there are
J unresolved distances left at leaf level (i+n) of the oct-tree.
After calling the resolution function at the next two levels
3(i+n)+1and 3(i +n) + 2 of the kd-tree, there are (2 - 3).J

distances left. Then, we have a kd-/oct-tree speedup as

Speedup = TG
PP = 5150, T (P + o)

(41)

where P; and P, is number of resolution function calls made
atlevel 3(i+n)+1and 3(i+n)+2 of kd-tree, C; and Cs are
the costs of distance computation and resolution function
call, respectively. Similarly, we have C = 64C}, then the
denominator of Eq. (41) becomes

%JCH 640y (P, + Py) 42)
Let 21 and x5 be the average number of the points at the
level 3(i +n)+ 1 and 3(i +n) 4 2, respectively. Similarly, by
having the pre-defined threshold b = 8, we get 32 > z, >
16 > x5 > 8. In addition, the number of distances resolved



by the function at the last two levels of kd-tree are J/6 and
1/5 x 5.J/6, respectively. This leads to

1
—J =22P atlevel 3(i +n) +1
o (43)
5 % 6‘] =x3P, atlevel 3(i +n)+2
By plugging Eq. (42) and Eq. (43) into Eq. (41), we have
1
31 67 T a7

Since x; € [16,32) and zo € [8,16), we have Speedup €
[1.1429,1.3913). Thus, the kd-tree outperforms oct-tree with
a speedup up to 1.39X.

6.3 Start Earlier (Case 4 and 7)

This scenario is similar to Case 3 in 2D analysis: the algo-
rithm starts at one or two level(s) earlier on kd-tree, and
stops at identical levels in both oct-tree and kd-tree. Thus,
the difference lies on the number of resolution function calls.

6.3.1 Case 4

In this case, the algorithm starts one level earlier in the kd-
tree (level 3¢ — 1). Similarly, Eq. (33) is unchanged, and the
only change to Eq. (35) is that the first term I becomes /4 +
13 where 1/4 is the number of node pairs at level 3 — 1, 8
is non-covering factor at level 3 — 1, and I3 is number of
function calls at level 3i. Here 3 has an upper bound of 5/6
(Conjecture 1). Again, as such numbers are very small, it
does not change the conclusion we made in Case 1.

6.3.2 Case7

In this case, the dual-tree algorithm starts two levels earlier
on the kd-tree (level 3¢ — 2). Again, Eq. (33) is unchanged,
and the change to Eq. (35) is that the first term becomes
I1/16+ I/48" + IB”, where 1/16 is number of node pairs at
level 37 — 2, I/4 is number of node pairs at level 3¢ — 1, B
is the non-covering factor at level 3i — 2, 3" is non-covering
factor atlevel 3i—1, I /48’ is number of function calls at level
3¢ — 1, and IB3” is number of function calls at level 3:. Here
f" and 5 have upper bound of 3/4 and 5/6, respectively.
This, again, does not change the results of Case 1.

6.4 Start Earlier, Stop Further (Case 5, 6, 8, and 9)

In this scenario, the dual-tree algorithm starts at one or two
level(s) earlier and stops at one or two level(s) further. We
can simply combine the aforementioned cases to carry out
the performance analysis: Case 5 can be modeled by Eq. (36)
and Eq. (37); Case 6 can be modeled by Eq. (36) and Eq. (41);
Case 8 can be modeled by Eq. (36) and Eq. (37); and Case 9
can be modeled by Eq. (36) and Eq. (41).

7 EXPERIMENTAL EVALUATION

We have implemented both algorithms with the C++ pro-
gramming language and our experiments were run on
a Mac OS X (El Capitan) server with an Intel i7-6700K
Quad-Core 4.0GHz processor and 16GB of 1867MHz DDR3
memory. We used one real dataset, which was generated
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from a molecular dynamics study to simulate a bilayer
membrane lipid system, and two synthetic datasets that
represent different spatial distributions of data (i.e., Uniform
and Zipf with order 1.0) in our experiments. All synthetic
data was generated within a box with lateral length 25,000.
All experiments were run under a series of histogram res-
olutions (i.e., 4-10 buckets) and different system sizes (i.e.,
100,000 to 1,600,000 points). Note that the total number of
buckets in the histogram (or bucket width p) determines
which tree level the algorithm starts, and the data size
determines which level the algorithm stops. Therefore, we
set those two numbers in different ways to create all the
cases discussed in Sections 5 and 6.

7.1 Results for 2D data

We first evaluate our analysis related to Case 1 of 2D
data. Fig. 12a shows the recorded A; values under different
numbers of tree levels visited by the algorithm (i.e., m in
Theorem 2). For the uniformly distributed data, A; is close
to 1 for most the levels. For smaller i, we observe smaller
A; values. This is due to the modeling errors caused by the
coarse grid, as discussed at the end of Section 4. Note that
such errors disappear at m = 3 in Fig. 12a. For the Zipf data,
we see A; values greater than 1 for larger ¢ - this is due to
the fact that empty nodes are found earlier in kd-tree. Such
results confirm our analysis shown in Section 5.1.

Related to Case 2, Fig. 12b shows the ratio of total num-
ber of distance computations (i.e., Type II operations) made
by the two trees. Recall this is the case where the kd-tree has
an extra level on the bottom. The curves converge to 4/3 in
the uniformly distributed data, meaning the kd-tree saves
1/4 of the distance computations. For the skewed data, we
see more fluctuations in the results, and the speedup is even
higher than those in uniform data for most of the cases. This
confirms the analysis shown in Eq. (30).

TABLE 3: Ranges of speedup (kd-tree over quad-tree) observed
in all cases of 2D experiments shown in Fig. 13

Scenario Data Type
Uniform Zipf Real
Casel  0.993-1.002 0.974-0.996 0.996 - 1.006
Case 2 1.052-1.204 1.159-1.230 1.084-1.219
Case3  0.994-1.005 0.984-1.004 0.993-1.004
Case 4 1.042-1.212 1.154-1.228 1.095-1.229

Fig. 13 plots the actual running time of the two algo-
rithms under different data sizes and data distributions. The
ranges of speedup of kd-tree over quad-tree we observed
in such experiments are presented in Table 3. Let us first
discuss the results of Case 2 (Fig. 13c) and Case 4 (Fig. 13d):
the kd-tree outperforms the quad-tree in all experimental
runs, and the gap is significant with the highest speedup
reaching 1.23X. This indicates that the reduced distance
computations caused by the extra level on the bottom of
the kd-tree plays a significant role in boosting performance,
and the expected speedup of [1X,1.2308X] mentioned in
Section 5.2 is an accurate estimation.

For Case 1 (Fig. 13a) and Case 3 (Fig. 13b), the perfor-
mance of the two trees is very close. We also notice that
there are cases where the kd-tree is slightly outperformed
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Fig. 13: Running time of the dual-tree algorithms in 2D systems under different data sizes and data distribution patterns

Uniform Distribution Zipf Distribution Uniform Distribution Zipf Distribution
i 1.3 . . . . 1.6 . 1.6 . .

4 Bucket ——

6 Bucket —=—
8 Bucket

1.55 10 Bucket 1 155+ 1

4 Bucket ——
6 Bucket —=—
8 Bucket

1.25 10 Bucket 11251 1

1.5—\'/_/_/

1.45 1 1.45¢

Ratio of distance computation
~
S
\
!\
Ratio of distance computation
o
o
o

600K 700K 800K 900K 1M 1.AM 600K 700K 800K 900K 1M  1.1M 12M 13M  14M  15M 1.6M 12M 13M 1.4M  15M  1.6M
Number of Atoms Number of Atoms Number of Atoms Number of Atoms

(a) Case 2: kd-tree has one extra level (b) Case 3: kd-tree has two extra levels

Fig. 14: Ratios of Type II operations performed by oct-tree vs. that by the kd-tree under different data sizes, p values, and data
distribution patterns



Uniform Distribution

Zipf Distribution

£ Baseline
S 14+ 3Bucket —— 1 1.4r
Q 4 Bucket
e 5 Bucket —e—
o 6 Bucket
2 12 8 Bucket 1 o12r
3 10 Bucket
&516/15 - ///:f;fw—— 16/15 ~:_;j»—' =
5 14 7 1 ///
c
2 /,// ///‘/
5 L7 7
-% 0.87 0.8
o . . . . . .
1 2 3 4 5 1 2 3 4 5

Visited levels in oct-tree Visited levels in oct-tree

Fig. 15: Ratios of Type I operations performed by oct-tree vs.
that by the kd-tree under different values of m, p, and data
distribution patterns for a 10-million-point 3D dataset

by the quad-tree (Table 3). This seems to be contradictory
to our findings in Sections 5.1 and 5.3. Our explanation
is: the data access pattern of the quad-tree naturally has
better spatial locality which gives rise to higher cache hit
rate. Specifically, when calling the resolution function, the
OS could load all 4 sibling nodes (in consecutive memory
addresses) at a time while there are only two children per
node in the kd-tree. We collected the number of cache misses
of two implementations by the perf tool under Linux, and
found that the kd-tree has 1.5X-2X cache misses comparing
with the quad-tree. The impact of such is seen more clearly
for the Zipf data in Case 1, in which the quad-tree won in
all cases (although with a small margin). This is because, the
Zipf distribution rendered much less distance computations
therefore more efficient resolution function call shows more
positive effects on total performance.

7.2 Results for 3D Data

We first verify the key results for Case 1 studied in Section
6.1. Fig. 15 shows the A; values recorded under different
numbers of levels i visited by the algorithm for 3D data.
For the uniform data, A; approaches 16/15 (baseline) as
expected from Eq. (36) when ¢ is beyond 3. For smaller
1 values, we have unstable A; values. This is similar to
2D system: coarse grid causes fluctuations on non-covering
factors. For the Zipf data, the A; values are greater than
16/15 for larger i, this is, much like the 2D cases, caused by
the earlier appearance of empty nodes in the kd-tree.

For Case 2, Fig. 14a shows the ratio of the number of
distance computations performed by the oct-tree vs. kd-
tree. For the uniform data, the ratios are all very close
to 6/5. This means the kd-tree saves 1/6 of the distance
computations performed by the oct-tree, confirming our
findings in Conjecture 1. Under Case 3 (Fig. 14b) such ratios
are all close to 1.5, indicating the kd-tree saves 1/3 of the
distance computations over oct-tree. This further validates
Conjecture 1, as 1.5 = 6/5 x 5/4. For both cases, the results
of the Zipf data show more fluctuations, and in most cases
the ratio is smaller than the 1.2 and 1.5 found in uniform
data. Our explanation is: skewed data is known to have
distances resolved earlier as compared to uniform data [25].
At any level of the tree, although the average number of
data points in the nodes is the same as in uniform data, we
could see more nodes with fewer points due to the skewed
spatial distribution. As a result, the advantage of adding

14

extra levels in the kd-tree is less significant. Nevertheless,
the kd-tree is still the obvious winner in performance.

We also recorded the total running time of both algo-
rithms under the nine different cases discussed in Section 6.
In summary, the kd-tree outperforms oct-tree in every ex-
perimental run we conducted, and the speedup in all cases
are within the range suggested by our analysis. A special
note here is: Fig. 16, Figs. 17c and 17f represent different
cases in which the oct-tree and kd-tree have identical leaf
nodes. The three lines representing kd-tree results (under
different input data types) are all slightly lower than their
corresponding oct-tree lines under all data sizes, although
such difference is small. For all other cases (i.e., cases 2, 3, 5,
6, 8, 9), the performance advantage of kd-tree over oct-tree
is more significant thus can be clearly seen in the figures.
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Fig. 16: Total running time of the dual-tree algorithm running
on top of oct-tree and kd-tree under different data sizes and
data distribution - Case 1

8 CONCLUSIONS

SDH is a type of 2-body statistics that found applications in
many computing domains. Being the main building block of
high-level analytics, SDH is of great importance in statistical
learning and scientific discovery. In the past years, research
on efficient processing of SDH has settled on a series of dual-
tree algorithms that work on resolving distances between
pairs of nodes of a spatial tree. Main implementations of
the dual-tree algorithm are based on quad/oct-tree, which
partitions data space along all dimensions, and the kd-tree,
which does so along a single dimension. In this paper, we
present quantitative analysis on the performance of dual-
tree algorithms based on these two types of tree structures.
Our analysis established on a geometric modeling frame-
work suggests the kd-tree-based algorithm outperforms the
quad-/oct-tree-based algorithm with different data sizes
and histogram resolution. We also provide bounds for the
speedup of kd-tree over quad-/oct-tree, and extensive ex-
periments with both synthetic and real data inputs confirm
our findings. We believe our results and methodology can
also provide insights on analyzing similar algorithms for
processing more general n-body statistics.
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APPENDIX A
EQUATIONS NOT SHOWN IN SECTION 4
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APPENDIX B
PROOF OF EQ. (19) CONVERGING TO 2/3
To prove the a(m + 1)/a(m) converges to 2/3, it is equivalent to prove the following equation
! !
D Bfm+1) —2f(i,m)] = > g(i) (51)
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The left hand side of the Eq. (51) could be expressed as
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The right hand side of the Eq. (51) could be expressed as
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™ .
ﬂeven = 5 — arcsin

™
2
n 72\/59,’”“ — g

Bodd = T _ arcsin 2
O - .
2 51

§ arcsin L + arcsin i —0
2 10(i — 1) 5(i—1)

1

15 5 5 , V5 5 _ 5
_ 2 02 i V2 . 1 0
g [5ﬁodd 5 Beven + 471' 5 (arcsm 100 —1) + arcsin 50 1))] (i )e —

i=2
Therefore, we have LHS = RH S, and Eq. (51) is proved.



