
Noname manuscript No.
(will be inserted by the editor)

Algorithms and Framework for Computing 2-body
Statistics on GPUs

Napath Pitaksirianan · Zhila Nouri ·
Yi-Cheng Tu

Received: date / Accepted: date

Abstract Various types of two-body statistics (2-BS) are regarded as essen-
tial components of low-level data analysis in scientific database systems. In
relational algebraic terms, a 2-BS is essentially a Cartesian product between
two datasets (or two instances of the same dataset) followed by a user-defined
aggregate. The quadratic complexity of these computations hinders timely pro-
cessing of data. Use of modern parallel hardware has thus become an obvious
solution to meet such challenges. This paper presents our recent work on de-
signing and optimizing parallel algorithms for 2-BS computation on Graphics
Processing Units (GPUs). Although a typical 2-BS problem can be summa-
rized into a straightforward parallel computing pattern, traditional knowledge
from (general) parallel computing often falls short in delivering the best pos-
sible performance. Therefore, we present a suite of techniques to decompose
2-BS problems and methods for effective use of computing resources on GPUs.
We also develop analytical models that guide us towards finding the best pa-
rameters of our GPU programs. As a result, we achieve the design of highly-
optimized 2-BS algorithms that significantly outperform the best known GPU
and CPU implementations. Although 2-BS problems share the same core com-
putations, each 2-BS problem however carries its own characteristics that calls
for different strategies in code optimization. For that, we develop a software
framework that automatically generates high-performance GPU code based
on a few parameters and short primer code input. We further present two case
studies to demonstrate that code generated by this framework reaches a very
high level of efficiency.

Keywords 2-Body Statistics · Parallel Computing · GPGPU · GPU · CUDA

Department of Computer Science and Engineering, University of South Florida
4202 E. Fowler Ave., ENB118, Tampa, FL 33613, USA
E-mail: {napath, zhila, tuy}@mail.usf.edu

2 Napath Pitaksirianan et al.

1 Introduction

Handling analytical workloads efficiently is a major challenge in today’s scien-
tific domains. Recent studies show increasing interest in developing database
systems for handling scientific data [1–4]. Traditional DBMSs still fall short of
algorithm and strategies to satisfy the special needs of scientific applications,
which are very different from those in traditional databases in their data types
and query patterns. In addition, design of efficient algorithms for data query
and analysis are still the main challenge in scientific areas. In addition, support
of complex mathematical functions in DBMS have become an active research
area. A good example is the integration of linear algebra with DBMS in a
recent ICDE awarded paper [5]. In this paper, we are interested in a type of
low-level analytics that is frequently used in various applications, namely, the
2-body statistics. Bearing many forms and definitions, 2-body statistics (2-BS)
as we refer to in this paper, is a type of computational pattern that evaluates
all pairs of points among an N-point data set. Therefore, in relational algebraic
terms, a 2-BS is essentially a Cartesian product between two datasets (or two
instances of the same dataset) followed by a user-defined aggregate.

In general, a 2-BS can be computed by solving a distance function between
all pairs of datum. Although the distance function only demands constant time
to compute for a pair of data points, the total running time is quadratic to the
data size. The first line of defense is obviously better algorithms with lower
complexity. For example, it is well known that sort-merge, hash, or indexed-
based algorithms are used to compute relational joins in database systems. Our
previous work [6] also used quad-tree and a batching technique to reduce the
complexity of SDH computing to O

(
N1.5

)
. On the other hand, parallel com-

puting techniques can be utilized to speed up the computation in practice, and
is the main topic of this paper. In the context of 2-BS problems, parallel com-
puting techniques are extremely useful for two reasons: (1) particular types
of 2-BS lack efficient algorithms. For example, kernel functions for Support
Vector Machine (SVM) [7] and pairwise comparison in various applications [8,
9] can only be solved in quadratic time. Another example is relational joins –
although sort-merge, hash, and index-based algorithms are preferred for pro-
cessing equi-joins, nested-loop join is the better choice for joins with complex
non-equality conditions. (2) Performance of more advanced algorithms can be
further improved via parallelization. For example, efficient join algorithms such
as hash join still require complete pairwise comparison of data (e.g., within the
same bucket of the hash table), for which parallel programs [10] have shown
great success. With that in mind, this paper focuses on novel techniques to
implement and optimize parallel algorithms for computing 2-BSs on modern
Graphics Processing Units (GPUs).

By providing massive computing power and high memory bandwidth, GPUs
have become an integrated part of many high-performance computing (HPC)
systems. Originally designed for graphics processing, the popularity of general-
purpose computing on GPUs (GPGPU) has boosted in recent years with the
development of software frameworks such as Compute unified device architec-

Algorithms and Framework for Computing 2-body Statistics on GPUs 3

ture (CUDA) [11] and Open Computing Language (OpenCL) [12]. Due to the
compute-intensive nature of 2-BS problems and the fact that the main body
of computations can be done in a parallel manner for most 2-BSs, GPUs stand
out as desirable platform for implementing 2-BS algorithms.

However, GPU algorithms for only a few 2-BS problems have been studied
(see Section 7 for details). In addition to the surprisingly little attention paid
to this topic, existing work lacks a comprehensive study of the necessary tech-
niques to achieve high performance on GPUs. This is a non-trivial task because
code optimization has to consider architectural and (system) software features
of modern GPUs that are found to be more complex than those in multi-core
CPUs. As a result, traditional wisdom from (general) parallel computing of-
ten falls short in delivering the best possible performance. In this paper, we
present a suite of techniques to decompose 2-BS problems and methods for
effective use of computing resources on GPUs. Many of such techniques such
as warp-level privatization (Section 3.3.2), warp-level load balancing (Section
3.4.1), and shuffle-enhanced tiling (Section 3.4.2) are innovations not presented
in previous work, to the best of our knowledge. Specifically, this paper makes
the following contributions.

(1) We identify two phases in computing typical 2-BS problems: a pairwise
data processing phase, and a result outputting phase. In the first phase, we
develop various tiling methods and use of different types of GPU cache to
reduce data access latency on global memory. For the output phase, we focus on
privatization and summation of output to reduce synchronization. As a result,
we achieve the design of highly-optimized 2-BS algorithms that significantly
outperform the best known GPU and CPU implementations;

(2) Configuration of run-time parameters for the GPU programs has sig-
nificant effects on performance. For that, we develop analytical models that
guide us towards the best choices of key parameters of our program, achieving
performance guarantees;

(3) We extend our basic algorithm design to the scenarios of input data
being larger than global memory and utilization of multiple GPUs towards high
scalability. This involves splitting the input into small blocks and pipelining
data transmission with in-core computation;

(4) Although the 2-BS problems we consider share the same core compu-
tations, each 2-BS problem however carries its own characteristics that calls
for different strategies in code optimization. For that, we develop a software
framework for computing a large group of problems that show similar data
access and computational features as those found in typical 2-BSs. In this
framework, we implement core computational kernels developed in our work
and output optimized GPU code based on a few parameters and a distance
function given by the user.

Paper Organization: The remainder of the paper is organized as follows:
in Section 2, we introduce the technical background of our work; in Section
3, we demonstrate a suite of techniques to speed up pairwise computation
and output writing on GPUs; we describe the 2-BS framework for automatic

4 Napath Pitaksirianan et al.

Table 1 Symbols and notations

Symbol Meaning

HS Histogram Size or Output Size

N Number of input datum

B Block size

M Number of blocks

MBMP Maximum number of blocks of an MP

MSPM Maximum SM amount of an MP

ζ Actual use of SM in a block

CL Latency of writing without conflict

CLP overhead latency of writing conflict

code generation in Section 4; we evaluate our GPU algorithms in Section 5;
we evaluate our automatic code generation framework by two case studies in
Section 6; in Section 7, we review work related to 2-BS problems, and conclude
this paper in Section 8.

2 Background

In this section, we give an introduction to the 2-BS problem and typical GPU
architecture. Then, we introduce a straightforward GPU algorithm for com-
puting 2-BS. This work focuses on NVIDIA GPUs and the CUDA framework,
which are widely used for general purpose computing. The notations used in
this paper are presented in Table 1.

2.1 2-Body Statistics (2-BS)

As we mentioned earlier in this paper, we refer to 2-BS as a computational
pattern that evaluates all pairs of points among an N-point dataset. This
computation pattern can be done either within a single dataset, or between two
datasets. For every pair of data points, a 2-BS computes a distance function
between the pair. By iterating over all of the pairs, the problem can be solved
with total complexity O(N2).

The 2-BS type of functions are found popular in many scientific domains,
with numerous concrete examples. The following are names of 2-BS that com-
pute all pairs of points within a single dataset: 2-tuple problem [13], all-point
nearest-neighbor problem [13], pairwise comparisons for time series motifs [14],
nonparametric outlier detection and denoising [13], kernel density regression
[13], two-point angular correlation function [15], 2-point correlation function
[13], and spatial distance histogram (SDH) [6], to name a few. Another fla-
vor of 2-Body statistic takes two different datasets as input, examples include
Radial distribution function (RDF) [16] and relational joins [10]. Table 2 lists
some examples of 2-BS.

Algorithms and Framework for Computing 2-body Statistics on GPUs 5

Multi-processors

Core

Core

G
lo

b
al

 M
em

o
ry

H
o

st
 D

ev
ic

e
M

em
o

ry

GPU Device

Instruction Cache

Register File

Core Core Core

Shared Memory

L1 Cache /

Read-Only Data Cache

L
2

 C
ac

h
e

Core Core Core

Fig. 1 Architecture of a recent Nvidia (e.g., Maxwell, Pascal) GPU

In practice, there are many applications of 2-BS problems. A common prac-
tice in many application domains is to use various distance measures (e.g.,
Euclidean, Jaccard, and cosine distance) to find the similarity of all pairs of
input datum. One important example is recommendation systems for online
advertising that predicts the interest of customers and suggests correct items.
Jensen et al. reports a music predictive model [17] based on pairwise compar-
isons of Gaussian process priors between music pieces. There are two types of
recommendation systems: content-based filtering (CB) and collaborative fil-
tering (CF) [8,9]. Both require 2-BS computation: CB depends on pairwise
comparisons between items and CF depends on those between users.

2.2 GPU Architecture and CUDA

In this section, we briefly introduce the architecture of modern GPUs. We
use the latest generation of Nvidia GPU product as an example (Fig 1). We
believe such information is essential in our discussions of (parallel) algorithm
design in this paper. Readers already familiar with GPU architecture can skip
this subsection.

A GPU contains many processing units (cores) for handling complex graphics-
related computation. A group of cores is organized into a multiprocessor and
a GPU can have tens of multiprocessors. A GPU contains a few GBs of global
memory built on high-speed memory technology such as GDDR5 and HBM2.
The CPU (i.e., host) can transfer data to the global memory over a PCI-E link.
Global memory can be accessed by different multiprocessors simultaneously at
a bandwidth up to 900 GB/sec [18]. Each multiprocessor also provides high-
speed programmable shared memory of size 64-96KB. The use of shared mem-
ory is under full control of the programmers. There are also the programmable
read-only data cache (also named texture memory), which was first introduced

6 Napath Pitaksirianan et al.

Table 2 A list of some 2-BS problems

Type 2-BS Problem Name Output Description

Type-I

2-point correlation function
Counting the number of pairwise

distance that is less than a constant r

Kernel density regression

A statistic value that is defined by

K
∑

i w(|x− xi|) where K is a normalizing

constant and w is a weighting function
Two-point angular

correlation function
The probability of finding an

object within a given angular distance

Type-II

Spatial distance histogram

(SDH)

A histogram that shows the

distribution of all pairwise distances

within a set of atoms.

Radial distribution function
SDH normalized by density of the system

multiply by volume of the spherical shell

Type-III

Relational joins
List of tuple pairs that satisfy a

given condition

Similarity of all pairs
List of data point pairs that are similar

according to a given distance function

Recommendation systems List of items that are related to (many) users

in the Kepler Architecture, for holding data that cannot be overwritten during
the lifespan of the program, as well as the non-programmable L1 cache (within
each multiprocessor) and L2 cache (shared by all multiprocessors).

On the software side, the CUDA programming model allows a large number
of threads to be launched to compute a function (called kernel) in parallel.
The entire collection of threads (named grid) are organized into groups (called
blocks), therefore each thread can be identified by a block ID and thread ID
within the block. In the CUDA runtime environment, all threads in a block will
be executed in the same multiprocessor. On the other hand, one multiprocessor
can execute multiple blocks. However, only a small number of threads (called a
warp) are guaranteed to run at the same time. Each warp contains 32 threads
with consecutive thread IDs. In a warp, each thread has its own registers, and
the threads are executed in a single-instruction-multiple-data (SIMD) manner.

Over the years, the architecture of Nvidia GPUs has evolved through sev-
eral generations: Fermi [19], Kepler [20], Maxwell [21], Pascal[22], and Volta
[18]. Newer architectures provide more computing resources. Moreover, new
functionalities and features in the CUDA framework have been introduced
over the different generations of GPUs. For example, starting from Kepler,
shuffle instructions can be used to exchange data in registers among threads
in the same warp. Kepler also allows launching kernels within an existing kernel
via a mechanism called dynamic parallelism. Such features provide new oppor-
tunities for improving program efficiency and also impose extra challenges to
algorithm design and implementation.

Algorithms and Framework for Computing 2-body Statistics on GPUs 7

Algorithm 1: Generic GPU-based 2-BS algorithm

Local Var: t (Thread id)
1: currentPt ← input[t]
2: for i = t+ 1 to N do
3: d← DisFunction(currentPt, input[i])
4: update output with d
5: end for

2.3 Computing 2-Body Statistics in GPUs

A straightforward GPU algorithm for computing 2-BS is shown as Algorithm
1. Note the pseudocode is written from the perspective of a single thread,
reflecting the Single-Program-Multiple-Data (SPMD) programming style of
CUDA. Each thread loads one datum to a local variable, and uses that to loop
through the input dataset to find other data points for the distance function
computation. The output will be updated with the results of each distance
function computation.1

To optimize the above 2-BS algorithm, the challenges can be roughly sum-
marized as those in dealing with the input and output data, respectively.
First, each input datum i will be read many times (by different threads into
registers) for the distance function computation. Therefore, the strategy is to
push the input data into the cache as much as we can. The many types of
cache in GPUs, however, complicates the problem. Second, every thread needs
to read and update the output data at the same time. Updating the output
data simultaneously might cause incorrect results. Recent GPUs and CUDA
framework provide atomic instructions to ensure correctness under concurrent
access to global and shared memory locations. However, an atomic instruction
also means sequential access to the protected data thus lowers performance.
As a result, clever strategies are needed to avoid update collisions as much as
possible.

Given that, there is a need to characterize the multitude of 2-BS cases
based on the computational paths. This helps us to determine the proper
combination of techniques we can use for optimizing individual 2-BS problems.
We found that the 2-BS we have studied are very similar at the point-to-point
distance function computation stage. However, members of the 2-BS family
tend to have very different patterns in the data output stage. We have identified
three groups of 2-BSs based on the output pattern, and will introduce different
techniques in dealing with these types.

Type-I: members of this group generate a very small amount of output
data from each thread. These output must be small enough to be placed in

1 We focus our discussions on 2-BSs defined over a single dataset with commutative dis-
tance function (i.e., only one function call is needed for every pair of points). Therefore,
the point with index i is only paired with all data points beyond position i. Note there
are cases where 2-BS is defined between two different datasets (e.g., relational join) or with
non-commutative distance function (e.g., SVM kernel functions). We will mention them in
coming sections as needed.

8 Napath Pitaksirianan et al.

registers for each thread. For example, 2-point correlation function [13], which
is fundamental in astrophysics and biology, outputs a number of pairs of points
that determine correlation in dataset. Other examples are all-point k-nearest
neighbors (when k is small) and Kernel density/regression[13], which output
classification results or approximation numbers from regression.

Type-II: the output in this group is too big for registers but are still small
enough to be put into GPUs’ shared memory. Examples include: (1) Spatial
distance histogram (SDH) [6], which outputs a histogram of distances between
all pairs of points; (2) Radial distribution function (RDF) [16], which outputs
a normalized form of SDH.

Type-III: in this group, the size of the output can be large so they can
only be put into global memory. In some extreme cases, the size of the output
is quadratic to the size of input. Some examples are: (1) relational join [10],
which outputs concatenated tuples from two tables - total number of output
tuples can be quadratic (especially in non-equality joins); (2) Pairwise Sta-
tistical Significance [23], which is statistical significance of pairwise alignment
between two datasets and generates large output; and (3) Kernel methods
which compute kernel functions for all pairs of data in the feature space [7].

Table 2 shows information of various 2-BS examples, and the category each
example belongs to.

3 GPU Algorithms Design

In this section, we elaborate on the GPU algorithm design. First, we discuss
input data representation of the GPU system. After that, we focus on pairwise
computation which focuses on loading data in to multiprocessor via caching.
Then, we explain techniques to handle the output from each thread, and intro-
duce additional techniques that can be used by our algorithm in special cases.
Finally, we present an algorithm for processing 2-BS problems on multiple
GPUs.

3.1 Input Data Representation

Before we discuss algorithmic design, we first present data structures for load-
ing input data. First of all, the input data is stored in the form of multiple
arrays of single-dimension values instead of using an array of structures that
each holds a multi-dimensional data point. This will ensure coalesced memory
access when loading the input data. Moreover, we vectorize each dimension
array by loading multiple floating point coordinate values in one data trans-
mission unit. In particular, we use the float2, float3, and float4 data types
supported in CUDA for such purposes. This reduces the number of memory
transactions and thus the number of load instructions in code. Furthermore,
vectorized memory access also indirectly increases instruction level parallelism
(ILP) by unrolling a loop to calculate all pairwise distances between two vec-
tors. Thus, in the remainder of this paper, a datum means a vector of multiple

Algorithms and Framework for Computing 2-body Statistics on GPUs 9

...Input Data

Intra-block

Computaion

Inter-block

Computation

Block L Block R

Global Memoy

CacheCache

Fig. 2 Tiling method requires loading data in blocks

data points. Also a distance function call between two datum actually com-
putes all pairwise distances.

As mentioned above, CUDA supports three vector floating point data types
– float2, float3, and float4, which holds 2, 3, and 4 regular floating point num-
bers, respectively. In general, a wider vector yields higher memory bandwidth
utilization, but also increases register use in the kernel, which in turn reduces
warp occupancy. Therefore, we need to find a balance point between register
usage and memory bandwidth. In this paper, the most suitable data type is
determined by experiments (Section 5.1).

3.2 Algorithms for Pairwise Computation Stage

Now we present design strategies in the pairwise distance function computation
stage. Due to the high latency of data transferring between the global memory
and cores, our goal is to reduce the number of data reads from global memory.
In particular, we use the well-known tiling method [24] to load data from the
global memory to on-chip cache. Whenever two data points are used as inputs
to the distance function, they are retrieved from cache instead of the global
memory.

Figure 2 illustrates the tiling idea. We divide input data into small blocks,
and the size of a block ensures it can be put into cache (we will discuss sce-
narios of loading to different types of cache later). Normally, the data block
size is the same as the number of threads in each CUDA block. Each thread
loads one vector of input data into the cache to ensure coalesced access to
the global memory. With blocks of data loaded to cache, the main operation
of the algorithm is now to compute distance function between two different
blocks of data (inter-block computation). Algorithm 2 shows the pseudo code
of the tiling-based algorithm. Basically, each thread block first loads an anchor
block L, and loads a series of other blocks R. Then, compute distance functions
between all pairs of datum of inter and intra blocks.

To implement the above algorithm, an important decision to make is: which
cache do we use to hold both blocks L and R? There is no straightforward an-
swer since there are multiple cache systems in the Nvidia GPUs. By ignoring
the non-programmable L2 cache, we still have the programmable shared mem-
ory and read-only data cache (RoC), both have TBps-level bandwidth and a

10 Napath Pitaksirianan et al.

Algorithm 2: Block-based 2-BS computation

Local Var: t (Thread id), b (Block id)
Global Var: B (Block size), M (total number of blocks)
1: L ← the b-th input data block loaded to cache
2: for i = b + 1 to M do
3: R ← the i-th input data block loaded to cache
4: syncthreads()
5: for j = 0 to B do
6: d ← DisFunction(L[t], R[j])
7: update output with d
8: end for
9: end for

10: for i = t + 1 to B do
11: d ← DisFunction(L[t], L[i])
12: update output with d
13: end for

response time of just a few clock cycles [25–27]. According to [25,27], pro-
grammable shared memory has the lowest latency in GPUs (i.e., about 21
clock cycles in Nvidia Maxwell), it is natural for us to use shared memory to
hold both blocks L and R, and this can be viewed as a starting point for our
discussions. Let us call this baseline technique as LRshm.

By taking a closer look at Algorithm 2, we found that each datum will
have to be placed into registers before it can be accessed by the distance
function, and each thread only accesses a particular datum throughout its
lifetime. Therefore, it is more efficient by defining a local variable for each
data member of block L. By using a local variable in CUDA, such a variable
will be stored and accessed in registers. This will reduce the consumption of
shared memory in each thread – shared memory is a bottlenecking resource
when we consider large data output (Section 3.3). Plus, latency of accessing
registers is just one clock cycle [24]. Note that the same argument does not hold
true for block R: all data in block R is meant to be accessed by all threads in
the block but a register is private to each thread. Therefore, we have to load
R into cache. Given that, we introduce another technique, named Register-
SHM, which improves LRshm by using registers to hold one datum from block
L, and allocating shared memory to hold block R. The program also needs
another change to handle the intra-block distance computation (lines 10 to
13 in Algorithm 2: such computation requires threads to access all datum in
block L. For that, we now have to load block L to shared memory before we
run the last for loop. But the technique we use is: instead of asking for a new
chunk of shared memory for L, we overwrite the space we just used for block
R. By that, the total shared memory used is still one block.

We also explore another solution that further relieves the bottleneck of
shared memory by storing the block in RoC. Although this solution may not
yield higher performance in the distance computation stage, it is meaningful
if we have to use shared memory for other demanding operations (e.g., out-
putting results, Section 3.3). This solution basically does not change the code

Algorithms and Framework for Computing 2-body Statistics on GPUs 11

structure of the second solution (with use of registers). However, we use the
RoC instead of shared memory to store blocks R (for inter-block computation)
and L (for intra-block computation). RoC has higher latency than the shared
memory [25] (i.e., about 64 clock cycles higher in Nvidia Maxwell) but it is
still an order of magnitude faster than global memory. As a side note about
implementation, RoC is not fully programmable as the shared memory, but
we can use the “const restrict ” keyword combination before a variable to
ask CUDA runtime framework to store the variable into the RoC.

3.3 Data Output Stage

In this section, we present techniques to efficiently output the results from
GPUs in 2-BS computing. Depending on the features of data output, the design
strategy on this stage can be different for various 2-BSs. The simplest type is
that each thread omits a very small amount of output (e.g., Type-I) – we simply
use automatic (local) variable(s) to store an active copy of the output data in
registers, and transmit such data back to host when kernel exits. For problems
with medium-sized output (e.g., Type-II), we use shared memory to cache the
output. We present novel data privatization techniques to handle these output.
For problems with very large output size (e.g., Type-III), we have to output
results directly to global memory. The main problem for using global memory
for output is the synchronization required by supporting different threads write
into the same memory location. To avoid incorrect results, atomic instructions
are used in GPUs to have protected accesses to (global) memory locations. In
CUDA, such protected memory location is not cached and obviously cannot be
accessed in a parallel way. Therefore, it renders very high performance penalty
to use atomic instructions when threads frequently access the same memory
address. For that, we present a direct output buffer (Section 3.3.3) mechanism
to minimize such costs. Note that our paper focuses on 64-bit output data
type.

3.3.1 Output privatization

Data privatization is frequently used in parallel algorithms to reduce synchro-
nization [15]. For our problems, we store private copies of the output data
structure to be used by a subset of the threads in the on-chip cache of GPUs.
The RoC cannot be used here since it cannot be overwritten during the lifes-
pan of the kernel. That leaves the shared memory the only choice. By this
design, the data output is done in two stages: (1) whenever the distance func-
tion generates a new distance value, it is used to update the corresponding
location of the private output data structure via an atomic write. Although
this still involves an atomic operation, the high bandwidth of shared memory
ensures minimum overhead; (2) when all distance functions are computed, the
multiple private copies of the output array are combined to generate the final
output (Figure 3). Here we assume the final output can be generated using

12 Napath Pitaksirianan et al.

Algorithm 3: SDH with Output Privatization

Local Var: t (Thread id), b (Block id)
Global Var: B (Block size), M (total number of blocks)
1: SHMOut ← Initialize shared memory to zero
2: reg ← the t-th datum of b-th input data block
3: for i = b + 1 to M do
4: R ← the i-th input data block loaded to cache
5: syncthreads()
6: for j = 0 to B do
7: d ← DisFunction(reg, R[j])
8: atomicAdd(SHMOut[d] , 1)
9: end for

10: end for
11: L ← the b-th input data block loaded to cache
12: syncthreads()
13: for i = t + 1 to B do
14: d ← DisFunction(reg, L[i])
15: atomicAdd(SHMOut[d] , 1)
16: end for
17: syncthreads()
18: Output[b][t] ← SHMOut[t]

Each bin is combined

by reduction algorithm

O
u

tp
u
t

S
iz

e

Final Result

Atomic

Writing

Stage

Reduction

Stage

Block

Fig. 3 Combining private outputs in all blocks to obtain the final result

a parallel reduction algorithm such as the one presented in CUDA thrust li-
brary. Algorithm 3 shows a new version of Algorithm 2 enhanced by the output
privatization technique.

In our initial implementation, we use one private copy of the output for each
thread block. By this, synchronization only happens within a thread block,
and the bandwidth of the shared memory can effectively hide the performance
overhead. We will discuss advanced techniques that involve more private copies
in a block in Section 3.3.2. In the output reduction phase, private outputs on
shared memory are first copied (in parallel) to global memory, which is in
global scope and can be accessed by other kernels. Then a reduction kernel
is launched to combine the results into a final version of output array. This
kernel is configured to have one thread handle one element in the output array.

Algorithms and Framework for Computing 2-body Statistics on GPUs 13

Algorithm 4: 2-BS with Advanced Output Privatization

Local Var: t (Thread id), b (Block id), l (lane id)
Global Var: Hsize (Output size), Hnum (number of private copies)
1: laneID = t & 0x1f
2: initial Output
3: for each pair of pairwise computation do
4: x ←2-BS Computation Stage
5: atomic update Output[Hsize ∗ (laneID%Hnum) + x]
6: end for
7: Output Reduction Stage

3.3.2 Advanced Output Privatization Method

So far we have presented a straightforward privatization method in which one
private copy of the output is used per thread block. Note that synchronization
still exists when different threads in the block write into the same output
address. If the output size is small enough to allow multiple private copies
for the same block of threads, the probability of collision in atomic operations
will decrease, leading to better efficiency of parallelization. To realize this idea,
there are two problems to solve: (1) how to assign threads (within a block)
to the multiple private copies; and (2) how to determine the exact number of
required copies.

As to the first problem, it is natural to assign threads with continuous
thread IDs to a copy of temporary output. For example, with two private
copies in each threads block of size B, threads with IDs in [0, B/2) share the
first copy and those with IDs in [B/2, B) access the second copy. However,
we found that this method does not further improve the performance of the
kernel. This is due to the run-time thread scheduling policy in CUDA: every
32 threads with consecutive IDs (called a warp) is the basic scheduling unit. In
other words, only threads in the same warp are guaranteed to run at the same
time thus face the penalty of collision due to atomic operations. Threads in
different warps do not suffer from this issue; thus, assigning them to different
output copies does not help. Therefore, our idea is to assign threads with the
same offset of IDs in the warp to an output copy. Going back to the previous
example, we now assign threads with even-numbered IDs in all warps to share
the first output copy and those with odd-numbered IDs to the second copy.
Algorithm 4 shows details of this enhanced method: each private output is
shared by threads whose IDs have the same 5 least significant bits (called
laneID). Upon completing a distance computation, each thread updates its
corresponding copy of the output (line 5).

The second problem (i.e., finding the best number of private outputs per
block) is non-trivial: more copies will decrease the chance of collision in atomic
writes, but may decrease the number of threads running simultaneously due to
the limited size of shared memory. The impact of the latter has been studied
in our previous work [28]. Based on that, we develop an analytical model to
quantify both effects and find the balance point that leads to maximal kernel

14 Napath Pitaksirianan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

O
cc

u
p
an

cy

Output Size

1H
2H
4H
8H

16H
32H

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

W
ai

ti
n
g
 t

im
e

(
C

L
)

Output Size

1H
2H
4H
8H

16H
32H

Fig. 4 Modeling results under different numbers of private copies and sizes of the output.
Left: thread occupancy as given by the model developed in [28]; Right: latency given by our
model

performance. We start with the following performance model for compute-
intensive kernels shown in [28].

R =

⌈
T

α×MP

⌉
(1)

where R is the number of rounds that takes to schedule all thread blocks in
the hardware, T = M × B is the total number of threads, α is the number
of threads that can be run in each round in a single multiprocessor (a.k.a.
thread occupancy), and MP is the total number of multiprocessors in a GPU.
Note that CUDA allows a large number of blocks to be launched yet there
are only a small number of (i.e., 30 in a Titan XP) multiprocessors in a GPU
device. Thus, the number of rounds is obviously determined by the occupancy,
as all other quantities in Equation (1) are constants. The occupancy, in turn,
is affected by the use of common resources for each block, which in our case
is shared memory and is determined by the number of private output copies.
Due to page limitation, we skip the model describing the relationship between
occupancy and shared memory use developed in [28]. Instead, we plot the
occupancy calculated from the model in Figure 4 (left subfigure). As we can
see, kernel occupancy drops dramatically with the increase of number of copies
and output size. Based on such results, we now develop the analytical model.

Let L be the latency of running a single round, we obviously have R×L to
be the total kernel running time. In our case, latency is dominated by the time
each thread idles due to the conflict of atomic operations. Let k denote the
number of threads sharing the same private output in a warp (thus causing a

Algorithms and Framework for Computing 2-body Statistics on GPUs 15

conflict), latency can be then defined as a function of k

L(k,CL) =

{
CL k = 1

pkCL + (1− pk)P k > 1
(2)

Specifically, if each thread in a warp has its own private output (k = 1), there
should be no conflict and we denote the latency under this (ideal) situation as
CL. If multiple threads share a private output, latency is determined by the
probability of seeing a collision-free warp (pk) and a penalty of collision P ,
which can be defined as

P = L(k − 1, CL + CLP) (3)

In other words, L becomes a recursive function defined over a higher latency
time CL+CLP and fewer conflicting threads k−1. Again, pk is the probability
that all threads in the same warp access different address locations in the
outputs. This can be modeled as a classic birthday problem [29], and we have:

pk = HS−1
HS

× HS−2
HS

× HS−3
HS

× ...× HS−(k−1)
HS

(4)

This says that the first thread can update any address, the second thread can
update any address except the first thread’s output address, and so on. By
using Taylor series expansion of ex, the expression approximates to:

pk ≈ e
−k(k−1)

2HS (5)

Figure 4 (right subfigure) shows latency derived from our model under various
values of k and HS . Note that the latency data plotted here is of unit CL

instead of absolute time in seconds. Here CL is a hardware-specific value that
can be obtained via experiments. Clearly, the latency decreases when there
are more private copies of outputs. In case of only a single output (1H), and
when the output size is small the latency time becomes very high. As a side
note, the output size obviously plays a role in both sides of Figure 4: with
the increase of output size, we have lower occupancy (due to higher shared
memory consumption) but lower latency (due to less conflict in accessing the
output).

With the above model, we can find the optimal number of private copies.
Given any output size (this is a user-specified parameter for a 2-BS problem),
we can use different values of k to solve both Equations (1) and (2) to get
the estimated total running time. Luckily, k is an integer ranging from 1 to 32
(i.e., CUDA warp size), therefore we can try all such k values to find one that
leads to the best running time.

16 Napath Pitaksirianan et al.

Thread

0

Thread

1

Thread

2

Thread

3

Page

0

Page

1

Page

2

Page

3

Page

4

Page

5
...

Global

Pointer

Request a new page

Page being used Avaliable Page

Output Buffer

Return empty page

Fig. 5 A case of direct output buffer for GPU threads, showing Thread 3 acquiring a new
page (i.e., page 4) as its output buffer

3.3.3 Direct Output buffer

Now we present a technique to handle a common problem in Type-III 2-BSs:
allocating GPU (global) memory for output whose size is unknown when the
kernel is launched. The problem is due to the fact that CUDA only allows
memory allocation for data with a static size. Such a problem has been a real
difficulty for not only 2-BS computation but many other parallel computing
patterns as well. A typical solution [10] is to run the same kernel twice – the
first time is for determining the output size only, and the memory for output
is actually allocated and updated in the second run. This obviously imposes a
big waste of time.

We take advantage of a buffer management mechanism proposed in our
previous work on GPU-based joins [30] to handle unknown output size. This
design only requires one single run of the kernel, with very little synchroniza-
tion among threads. Figure 5 demonstrates the mechanism. First, we allocate
an output buffer pool with a fixed size. Then, we divide it into small chunks
called pages. We keep a global pointer GP that holds the position of the first
available page in the buffer pool. Each thread starts with one page and fills
the page with output by keeping its own pointer to empty space in that page.
Once the page is filled, the thread acquires a new page pointed to by GP
via an atomic operation. By using this mechanism, conflicts among threads
remains minimal because GP is only updated when a page is filled. Algorithm
5 shows the 2-BS algorithm augmented with this mechanism. The algorithm
starts from initializing local buffer pointer by using atomic add operation from
global buffer pool (line 1-2). Then, the algorithm adds each update to local
buffer page (line 5). If local buffer page is filled, the algorithm requests a new
page by another atomic operation (line 7). Here we want to point out that the
GP pointer, although defined in global memory, will be most likely cached at
runtime therefore its accesses generate very little overhead.

3.4 Additional Techniques

In this section, we introduce two additional techniques that could help increase
the performance of 2-BS programs.

Algorithms and Framework for Computing 2-body Statistics on GPUs 17

Algorithm 5: 2-BS with Direct Output Buffer

Local Var: buf (current buffer page), count (page usage)
Global Var: GP (next free page), b (Page size)
1: buf ← atomicAdd(GP , b)
2: count ← 0
3: for each pair of input datum do
4: x ←Pairwise Distance
5: buf [count++] ← x
6: if count == b then
7: buf ← atomicAdd(GP , b)
8: end if
9: end for

3.4.1 Load balancing technique

Code divergence is the situation when different threads follow different execu-
tion paths in an SIMD architecture. As a result, such threads will be executed
in a sequential manner and that leads to performance penalties. In CUDA,
since the basic scheduling unit is a warp (of 32 threads), only divergence
within a warp will be an issue. By looking at Algorithm 2, we can see that
the kernel will only suffer from divergence in the intra-block distance func-
tion computation (line 10 to 13 in Algorithm 2). This is because each thread
goes through a different number of iterations (Figure 6). Here, we introduce
a load balancing method to eliminate divergence from the intra block compu-
tation. As we mentioned before, divergence occurs because the workload on
each thread is different. Our technique thus enforces each thread to compute
the same amount of work, i.e., half of the block size. Previously, for a thread
with index i in a block (thus i ∈ [0, B−1]), the total number of datum it pairs
with is [B−1− i], meaning that every thread has a different number of datum
to process, and this leads to divergence everywhere. With the load balancing
technique, we let each thread pair with B/2 datum. In particular, at iteration
j, the thread with index i pairs with datum with index (i + j)%B. Figure 6
illustrates the main idea. Note that, in the last iteration, only the lower half
of all threads in a block needs to compute the output. This does not cause a
divergence as the block size is a multiple of warp size.

3.4.2 Tiling with Shuffle instruction

As seen in Section 3.2, tiling via shared memory or RoC is the key technique
to improve performance of Type-I 2-BS programs. However, under some cir-
cumstances, both the shared memory and RoC may not be available for the
use of 2-BS kernels. For example, they could be used for other concurrent
kernels as a part of a complex application. In this section, we present another
technique that relieves the dependency on cache. Note that register content is
generally regarded as private information to individual threads. However, the
shuffle instruction introduced in recent versions of CUDA allows sharing of
register content among all threads in the same warp (not in the same block).

18 Napath Pitaksirianan et al.

Thread#

iteration

W/O Load balancing

Thread#

iteration

Load balancing

...

0

1

B-1

B-2

1

2

B-1

2

3

3

4

B-2

B-1

B-1

...

...

...

0

1

B-1

B/2

1

2

0

B/2+1

...

2

3

1

B/2+2

3

4

2

B/2+3

B/2

B/2+1

...

...

B

...

...

B/2-2
...

...

B-2 B-1 0 1 B/2-3

Fig. 6 Two different ways of work assignment to threads in intra-block pairwise computa-
tion

Algorithm 6: Block-based 2-BS with shuffle instruction

Local Var: t (Thread id), b (Block id), W (warp size)
Global Var: B (Block size), M (total number of blocks)
1: reg0 ← the t-th datum of b-th input data block
2: for i = b + 1 to M do
3: for j = t%W to B; j+=W do
4: reg1 ← the j-th datum of i-th input data block
5: for k = 0 to W do
6: regtmp ← reg1 broadcasted from the k-th thread
7: d ← DisFunction(reg0, regtmp)
8: update output with d
9: end for

10: end for
11: end for

Therefore, we augment Algorithm 2 with using shuffle instructions and show
the pseudocode in Algorithm 6. In particular, we allocate three registers to
store input data: reg0 (line 1) is used to store datum from L which is the same
as algorithm 2; reg1 (line 4) is used to store datum from R and changes after
every 32 iterations; regtmp (line 6) is a temporary variable, which updates
every iteration with shuffle instruction. We let each thread load a datum to
reg1 (line 4). Then, in each iteration, shuffle broadcast instruction is used to
load data from other thread’s register (line 6) to regtmp. After regtmp value
becomes valid, reg0 and regtmp can be used to calculate distances (line 7).
Figure 7 shows an example. Note that this method requires only two more
registers and does not require shared memory or read-only cache.

3.5 Dealing with Large Data Inputs

So far, we have presented solutions to the 2-BS problem assuming the GPU
global memory is big enough to contain all input data as well as program states.
In fact, the 10GB-level global memory in a typical GPU can hold input data
big enough to keep the GPU busy for a long time due to the quadratic nature
of 2-BS computing. However, it is still meaningful to study algorithms that

Algorithms and Framework for Computing 2-body Statistics on GPUs 19

Thread id

reg1

0 1 2 3 4 65 7

32 33 34 35 36 3837 39

regtmp

In
teratio

n

Shuffle Broadcast from tid 0

Shuffle Broadcast from tid 1

Shuffle Broadcast from tid 2

regtmp

regtmp

.

.

.

reg0 0 1 2 3 4 65 7

32 32 32 32 32 3232 32

33 33 33 33 33 3333 33

34 34 34 34 34 3434 34

Fig. 7 Tiling with shuffle instruction technique

handle large datasets with sizes greater than that of the global memory. In this
section, we present an advanced algorithm that processes 2-BS on arbitrarily
large data inputs.

In our algorithm, we first divide the input data into small blocks that can
fit into GPU global memory, and execute the best algorithm we have developed
so far for each pair of input data blocks sitting in global memory. The results
of each pair of data blocks are then aggregated towards computing of the final
result. It is well known that data transmission in/out GPU carries significant
overhead due to the limited bandwidth of the PCI-E bus.2 In our small-data
algorithms, the input data only needs to be shipped into the GPU once, this
translates into a linear overhead that is easily overshadowed by the quadratic
on-board computational time. With the large data inputs, every pair of data
blocks will have to be transmitted to the GPU. If the data has to be partitioned
into k blocks, we essentially have to ship O(k2) pairs of blocks. Therefore, a
major optimization goal here is to reduce the data shipping overhead.

Our strategy is to hide the data transmission latency behind the GPU pro-
cessing of the in situ data blocks. In CUDA, data transmission in/out of GPU
is asynchronous therefore execution of concurrent kernels allows data trans-
mission and in-core computation to be done at the same time. The mechanism
for concurrent kernel execution is called CUDA Streams: a CUDA stream is
basically a series of GPU operations (e.g., I/O, kernel execution) that have to
follow a fixed order. However, kernels belonging to different CUDA streams
can be executed concurrently: when input data is being transmitted in Stream
1, the 2-BS kernel in Stream 2 can run. Figure 8 illustrates this idea. For
each pair of input data blocks, if the kernel running time is longer than data
transmission time,3 the latter can be effectively hidden.

2 The NVlink bus found in newer GPUs provides a higher bandwidth but does not fun-
damentally change the fact that data transmission is the bottleneck.

3 It is easy to find a block size to satisfy this condition due to the quadratic computational
time.

20 Napath Pitaksirianan et al.

Default Work Flow

C1 ...C2

Fig. 8 Pipelining data transmission and kernel execution via CUDA streams. Here C1,
C3, C5, C7 represent blocks of dataset A and C2, C4, C6, C8 are those for dataset B. For
simplicity we ignored the output data transmission, which can also be pipelined in the same
manner

Apart from allowing 2-BS to be computed for large data inputs, the above
approach provides an effective way to scale up the algorithm. Since all pairs
of input data blocks can be processed independently, our method can be eas-
ily applied to a multi-GPU environment, in which each GPU can work on a
different set of input data blocks.

A special note here is: the way to combine outputs from different block-
level runs depends on the type of 2-BS. For Type-I and Type-II, we combine
the results inside each GPU via parallel reduction when any pair of data blocks
are processed. For Type-III, due to the use of direct output buffer, no action
is needed to combine output within the GPU. To handle new chunks output,
threads just require to acquire a new page from the Global Pointer. After GPU
devices complete computation of all data blocks, they transfer output back to
the host. At the end, the host combines all device-level outputs into the final
output.

4 Automated Code Optimization for 2-BS

We have so far presented a multitude of techniques to optimize 2-BS code
on GPUs. It is clear that different techniques are effective at different stages
of different 2-BS problems. For users with new 2-BS problems with arbitrary
characteristics, development of efficient code is still challenging. In this section,
we introduce a framework that encapsulates all aforementioned techniques and
automatically generates optimized GPU code for user-defined 2-BS problems.
To develop code for a new 2-BS problem, our framework only requires the fol-
lowing inputs: (1) a distance function; (2) information about the type, number
of dimensions of the input data and the number (1 or 2) of input datasets; (3)
an output data structure and its (estimated) size; and (4) specifications of the
target GPU device. Based on such information, our framework outputs almost
complete CUDA kernels that reflect the optimized strategy for computing the
given 2-BS.

Algorithms and Framework for Computing 2-body Statistics on GPUs 21

Output Size?

SHM,
Regiser

≤
α

RoC cache?

Output Size?

RoC,
AOP

<
γ

RoC,
OP

>
γ

Yes

Output Size?

Shuffle,
AOP

<
γ

Shuffle,
OP

>
γ

No

<
β

SHM,
DOB

>
β

or
Unknow

Fig. 9 Decision tree of our 2-BS framework. Acronyms: SHM (cached input on shared mem-
ory), RoC (cache input on read only data cache), Register (cached output on register), DOB
(Direct output buffer), OP (output privatization), AOP (Advance output privatization)

Our framework stores chunks of template code reflecting the individual
techniques mentioned above as well as the models we developed for kernel
optimization. In addition, we develop a rule-based engine that integrates
different chunks of code into executable CUDA kernels. For example, critical
components of the rule-based engine are about decision-making with the dif-
ferent sizes of the output data. This can be seen as a decision tree in Figure
9. If output size is tiny or equal to a threshold α (i.e., Type-I), the code will
be generated based on caching inputs into shared memory and outputs into
registers. Otherwise, if output size is larger than a threshold value β or un-
known (i.e., Type-III), the code will cache inputs in shared memory and use
direct buffer to handle output. For Type-II problems, we will check available
RoC size. If there is enough RoC to hold input data, RoC will be used as in-
put cache. Otherwise, shuffle instructions will be used for caching input data.
Then we check the output size again, if output size is greater than a threshold
γ, regular output privatization will be used. Otherwise, warp-level output pri-
vatization will be used. The thresholds are set as follows: we set α to 16 bytes
– the size of the largest primitive type (i.e., float4, int4) supported of CUDA.
This is because anything larger than that (e.g., an array) will be placed in
global memory. We set β to the size of shared memory (i.e., 64K for Pascal);
and γ is given by the modeling results shown in Table 5.

We developed the framework with Python [31], and some implementation
details can be found in Figure 10. For any 2-BS problem, the system takes
as inputs an XML file holding all relevant problem-specific parameters and
a CUDA file containing the distance function. The CUDA distance function
is written as a regular C function. Blocks of CUDA code are pre-stored in a
database and selected based on the aforementioned rules and modified and
integrated into a file containing the CUDA kernel code as the output.

22 Napath Pitaksirianan et al.

2-BS Framework

distanceFunction(X, Y, Z) {

….

}

testKernel(…) {

….

}

Code DB

main.cu

Rule-base

Engine

<?xml version="1.0" encoding="UTF-8"?>

<Framework>

<Config>

<filename>main.cu</filename>

<KernelName>testKernel</KernelName>

<dim>3</dim>

<InputType>float</InputType>

<OutputType>unsigned long long int</OutputType>

<OutputSize>2</OutputSize>

<Function>distanceFunction.cu</Function>

…

</Config>

</Framework>

XML

distanceFunction(X, Y, Z) {

….

}

DistanceFunction.cu

Fig. 10 Implementation of the 2-BS code generation framework

5 Evaluation of GPU-Based 2-BS Algorithms

In this section, we present empirical evaluation of aforementioned algorithms.
We run our experiments in a workstation running Linux (Ubuntu 14.04 LTS)
with an Intel Xeon 6-core E5-2620 v3 CPU, 128GB of DDR4 1866-MHz mem-
ory, and an Nvidia Titan XP GPU with 12GB of global memory. The running
time reported for all experiments is end-to-end latency, which includes time
to transfer input data in and output data out of the GPU.

5.1 Data Representation Schemes

We first evaluate the performance of vectorized memory accesses via differ-
ent data types (i.e., float2, float3, and float4). In particular, we implemented
CUDA kernels to compute a Type-I 2-BS: the 2-point correlation function
(2-PCF). The 2-PCF requires computation of all pairwise Euclidean distances
and the output is of very small size: one scalar describing the number of points
within a radius. We see 2-PCF as a good example here because the workload is
almost exclusively on the distance computation, which requires intensive data
loading from global memory.

We select two different caching techniques to conduct this experiment:
register with shared memory, and register with RoC. In particular, we im-
plemented and compared eight kernels with different data types and caching
techniques. There are four kernels that are based on “Register + Shared Mem-
ory” (i.e., named Float-SHM, Float2-SHM, Float3-SHM, and Float4-SHM)
and other four kernels are based on “Register + RoC” (i.e., named Float-ROC,
Float2-ROC, Float3-ROC, and Float4-ROC). We experimented on input data
sizes ranging from 512 to 3 million particle coordinates. Particle coordinates
are generated following a uniform distribution in a spatial region4.

Figure 11 shows the running time of all eight kernels. As we see, kernels
that use Shared Memory show similar results by using Float2, Float3 and

4 We also run experiments on skewed datasets. However, the performance of 2-BS algo-
rithms is not affected by data distribution thus we omit those results.

Algorithms and Framework for Computing 2-body Statistics on GPUs 23

 0.01

 0.1

 1

 10

 100

 400 800 1200 1600 2000 2400 2800

T
im

e
 (

se
c
o

n
d

)

Total number of atoms (x1000)

Float-SHM

Float2-SHM

Float3-SHM

Float4-SHM

 0.01

 0.1

 1

 10

 100

 400 800 1200 1600 2000 2400 2800
T

im
e
 (

se
c
o

n
d

)
Total number of atoms (x1000)

Float-ROC

Float2-ROC

Float3-ROC

Float4-ROC

Fig. 11 Performance of different data types of vectorized memory access for computing
2-PCF

Float4. However, when input data is greater than 1.8 Million atoms, Float2-
SHM shows the best performance, which is 5% faster than scalar load (i.e.,
Float-SHM). The float3 and float4 cases did not show significant advantage.
On the other hand, kernels that use RoC demonstrate a more clear trend
that Float2-ROC outperforms all other kernels. The Float2-ROC kernel is
11% faster than scalar load (i.e., Float-ROC). However, larger vector width
(i.e., float3 and float4) did not further improve performance, the Float3-ROC
kernel is even slower than the scalar load case. To get insights on such results,
we analyzed the runtime statistics of the kernels by using the Nvidia visual
profiler, a tool for analyzing runtime characteristics of CUDA kernels. The
profiler results show that vectorized memory access via float3 and float4 yield
lower performance because they significantly increased register use of kernel
and thus reduced warp occupancy (i.e., 75% on float3 and 50% on float4).

Based on the above results, in the rest of experiments, we vectorize all
input data into float2. The only exception is the naive algorithm, in which we
still use scalar load.

5.2 Evaluation of Pairwise Algorithms

To evaluate the performance of the aforementioned solutions in distance com-
putation, we implemented them in CUDA and experimented using synthetic
data with different sizes. We still used 2-PCF whose workload is exclusively
on the distance computation, as the sample problem. We implemented and
compared the following kernel functions that correspond to the different solu-
tions mentioned above: (1) SHM-SHM: caching both blocks L and R in shared
memory; (2) Register-SHM: caching one datum in register and block R in
shared memory; (3) Register-RoC: placing one datum in register and block R
in read-only cache; and we also compare with (4) Naive: generic GPU-Based

24 Napath Pitaksirianan et al.

 0.001

 0.01

 0.1

 1

 10

 100

 600 1200 1800 2400

T
im

e
 (

se
c
o

n
d

)

Total number of atoms (x1000)

Naive
SHM-SHM

Register-SHM
Register-ROC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 600 1200 1800 2400
S

p
ee

d
u

p
Total number of atoms (x1000)

SHM-SHM
Register-SHM
Register-ROC

Fig. 12 Performance of different GPU-based algorithms for computing 2-PCF: total run-
ning time and speedup over naive algorithm

2-BS algorithm as shown in Algorithm 1. Note that, in all of the kernels ex-
cept Naive, input variable is vectorized by float2. In addition, all kernels are
compiled by -Xptxa-dlcm=ca flag, which enables the compiler to use L1 cache.

We experimented on input data size ranging from 512 to 3 million particles.
Particle coordinates are generated following a uniform distribution in a region.
For kernel parameters, we set the total number of threads as the data size and
the value of threads per block to 512, which is derived from an optimization
model developed in our previous work [28]. The model guarantees best kernel
performance among all possible parameters by minimizing running round (i.e,
number of rounds all the specified threads of a kernel are actually scheduled).
The model also shows that running round is limited by three factors – shared
memory consumption, register use, and number of concurrent warps. As our
kernel in 2-PCF uses a small amount of resources in all three categories, we
can use a relatively large block size of kernel (i.e, 512 thread per block) and
achieve the best performance.

Figure 12 shows the total running time of each experimental run. We ob-
served that the running time grows with data size in a quadratic manner –
this is consistent with the O(N2) complexity of such algorithms. Among all
tested parallel algorithms, the Register-SHM and SHM-SHM kernel show sim-
ilar results, which is the best performance under all data sizes – it achieves
an average speedup of 3.9X (maximum speedup of 3.5X). The Register-RoC
kernel shows the least improvement over naive algorithm, with an average
speedup of 3.3X and maximum speedup of 3.7X. The above results are clearly
in conformity with our understanding of the proposed caching solutions.

To evaluate the level of optimization we achieved in our solutions, we looked
into the utilization of GPU resources while running our kernels. Normally, the
bottleneck is on the memory bandwidth in processing 2-BSs such as the 2-PCF,
due to the simple calculations in the distance function. If we can feed the cores

Algorithms and Framework for Computing 2-body Statistics on GPUs 25

Table 3 Utilization of different GPU resources in running different 2-PCF kernels under a
data size of 512k. Ari: arithmetic operation; Con: control operation; Mem: memory opera-
tions; SM: shared memory; ROC: Read-Only data cached

Kernel GPU Cores Memory Bandwidth

Ari Con Mem SHM L2 ROC

Naive 20% 5% 15% 10% 90% 40%

SHM-SHM 67% 14% 4% 20% 10% 10%

Reg-SHM 68% 14% 4% 20% 10% 10%

Reg-RoC 55% 12% 12% 10% 20% 50%

with sufficient data, the cores will show a high utilization, which indicates that
the code is highly optimized. Another way to look at this is: since the total
number of distance function calls is the same for all algorithms mentioned
so far, the less idling time the cores experience, the better performance the
algorithm has. Information related to resource utilization can be obtained
by running the program through the Nvidia visual profiler. Table 3 shows
utilization of different hardware units as recorded by the profiler. Clearly, the
three cache-based techniques significantly increases utilization of compute core
resources as compared to naive algorithm. The Register-SHM and SHM-SHM
kernels both achieve a roughly 67% utilization of arithmetic units in GPU
cores, indicating near-optimal performance. That number for Register-RoC is
only 55%, verifying the result that its performance is not as good as the other
two. Without a surprise, it reaches a high utilization (1.5 TB/s or 50%) of
RoC bandwidth.

5.3 Evaluation of Complete Algorithms

In this subsection, we present experimental results on running the algorithms
optimized for both (i.e., distance computation and output transmission) stages.
We study the impact of each output technique (i.e., output privatization, ad-
vanced output privatization, and Direct output buffer) separately.

5.3.1 Output privatization

We use the Spatial Distance Histogram (SDH) as an example for implement-
ing our output privatization algorithm. Classified as a Type-II 2-BS, SDH is
a problem similar to 2-PCF. SDH also requires computing all pairwise Eu-
clidean distances, but it outputs a histogram that shows the distribution of all
computed distances. The output size (i.e., number of buckets) of SDH is not
related to the data size N , but it normally comes at the level of a few kilo-
bytes thus can be placed in shared memory. On GPUs, due to the concurrent
updating of output the problem is bound by memory bandwidth.

In this set of experiments, we compare six kernel functions: the first three
are algorithms we studied in Section 3: Naive, Register-SHM, and Register-
RoC. The output stage of those three algorithms is handled in a straightfor-

26 Napath Pitaksirianan et al.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 400 800 1200 1600

T
im

e
 (

se
c
o

n
d

)

Total number of atoms (x1000)

CPU
Naive-Out

Register-SHM
Reg-SHM-Out
Reg-ROC-Out

 0

 10

 20

 30

 40

 50

 60

 70

 400 800 1200 1600
S

p
ee

d
u

p
Total number of atoms (x1000)

Naive-Out
Register-SHM
Reg-SHM-Out
Reg-ROC-Out

Fig. 13 Performance of different GPU-based algorithms for computing SDH: total running
time and speedup over CPU algorithm

ward way: we directly output to a shared data structure in global memory
via atomic operations. The other three algorithms, named Naive-Out, Reg-
SHM-Out, and Reg-RoC-Out, are based on the first three algorithms, but we
enhance the output stage with the privatization technique. In addition, we
compare all GPU algorithms with a CPU-based parallel algorithm to study
the overall advantage of running 2-BS on GPUs vs. multi-core CPUs. We
again generate uniformly distributed datasets with a size ranging from 512
to 2 million. We set the total number of threads as the data size and the
value of threads per block to 64, which is derived from an optimization model
developed in our previous work [28]

Design and Implementation of CPU-based Algorithm: We imple-
mented a highly-optimized parallel algorithm for computing SDH in multi-core
Intel Xeon using OpenMP in C. To improve performance, various techniques
are applied to the CPU version. First, we optimize the output stage to reduce
the effects of atomic operations. In particular, every thread is given an inde-
pendent copy of the output histogram and parallel reduction will be conducted
after all distance function calls are returned. Second, we compare the effects
of OpenMP thread affinity schedulers (e.g., scatter, compact, and balanced)
and choose the one (i.e., balanced) that is most beneficial to overall perfor-
mance. Third, parallel loops can be executed in different scheduling modes,
and selecting a scheduling mode is usually a trade-off between overhead and
load imbalance. Among the available modes (e.g., static, dynamic, and guided)
in OpenMP, we choose guided as the best one for our algorithm. Other op-
timizations such as algebraic elimination of costly instructions and enabling
aggressive compiler optimizations are also applied to the CPU code. We also
profile our multithread CPU code for computing SDH by pref tool. The profiler
shows that the algorithm is bound by computation, uses all cores of the CPU,
and makes good use of cache (cache miss rate is less than 2%). Therefore, our

Algorithms and Framework for Computing 2-body Statistics on GPUs 27

Table 4 Utilization of different GPU resources in running different SDH kernels for a
512,000-point dataset. Ari: Arithmetic Operation; Con: Control Operation; Mem: Memory
Operation; SM: shared memory; ROC: Read-only data cache

Kernel GPU Cores Memory Bandwidth

Ari Con Mem SM L2 ROC

Register-SHM 10% 10% 10% 10% 10% 10%

Naive-Out 23% 5% 7% 95% 10% 10%

Reg-SHM-Out 50% 20% 20% 98% 10% 10%

Reg-RoC-Out 60% 20% 10% 100% 10% 30%

CPU code shows great spatial locality since most accesses are satisfied through
cache. In summary, we believe our CPU code is of very high (if not optimal)
performance.

Experimental Results: Figure 13 shows the running time of the afore-
mentioned kernels. First of all, we found that the three kernels without the
output privatization technique run at almost the same speed. Therefore, we
just plot one of the three (i.e, Register-SHM) in Figure 13. It is easy to see that
the total running time of such kernels is about one order of magnitude longer
than the ones with output privatization technique. This clearly shows how
data output dominates the running time due to atomic operations (against a
global memory). On the other hand, applying output privatization can signifi-
cantly improve the speed of kernels, as shown by the short running time of the
three output-optimized kernels. The Reg-RoC-Out kernel, by using the read-
only cache for distance function computation and shared memory for output
caching, combines the power of both cache systems and therefore shows the
best performance. Specifically, Reg-RoC-Out is about 13.48 times as fast as
Register-SHM. Even the Naive-Out algorithm, without any optimization for
pairwise distance computation, shows a 12.05 speedup over Register-SHM.

Further profiling of the involved kernels support discussions made above.
Table 4 shows the bandwidth utilization in different GPU cache systems by
the tested kernels. Clearly, cache bandwidth is the limiting factor of the
three output-optimized kernels. Among them, Reg-RoC-Out achieves very high
bandwidth utilization in both shared memory (9TB/s) and read-only cache
(750GB/s), leading to the best kernel performance. The other two kernels,
Reg-SHM-Out and Naive-Out, have lower utilization in either shared memory
or RoC. All GPU kernels beat the CPU program running on a Intel Xeon,
showing GPUs being a superior platform for computing 2-BSs. The best GPU
program (i.e., Reg-RoC-Out) is about 52 times as fast as the CPU program.
Even the least optimized Reg-SHM kernel is about 3.86 times as fast as the
CPU code.

We also study the effects of output size on the performance of the output-
optimized kernels. Figure 14 shows such results of the Reg-RoC-Out kernel in
computing the SDH of a dataset with 512,000 data points. The general trend
is: when output size (i.e., total number of buckets in the output histogram)
increases, the running time also increases. Note that the running time increases

28 Napath Pitaksirianan et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1000 2000 3000 4000 5000 6000

T
im

e
 (

se
c
o

n
d

)

Number of buckets

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 2000 3000 4000 5000
O

cc
u

p
an

cy
 (

%
)

Number of buckets

Fig. 14 Performance of the Reg-RoC-Out kernel under different bin sizes: running time
and occupancy

as a step function of output size. This is because the output size affects the
performance via changing the occupancy of the kernel. Figure 14 shows that
occupancy decreases when the output size increases. Interestingly, the kernel
also shows degraded performance when the output size is too small. This
shows the other side of the story: when an output has too few elements, it will
suffer from high contention: the many threads in the block always compete for
accessing an output element via the atomic operations. In the following section,
we will show that advanced output privatization technique is the remedy for
this problem.

5.3.2 Advanced Output privatization

We present our empirical evaluation of our output privatization and verify
our running time model. We continue using SDH to evaluate our algorithm.
According to the experiments in Section 5.3.1, when output size is too small,
SDH renders more shared memory accesses for updating outputs and suffers
from long running time. Therefore, we implement our advanced output priva-
tization technique on top of Algorithm 3, and evaluate it with a 512,000-point
dataset under output size from 1 to 600 buckets.

Figure 15 shows theoretical running time (left) obtained from our models
shown in Section 3.3.2 and actual running time (right) of implemented algo-
rithm. It is easy to see that our model matches the empirical running time
very well. Recall that our modeling work aims at finding the optimal num-
ber of private output copies. Given any output size, this can be easily found
in Figure 15. Table 5 shows how well the theoretical results predict the best
choice in real-world. In particular, we see that any number of private copies is
picked under a continuous range of output size (e.g., for output size 1-10, 32
copies are found to be optimal by both modeling and experiments). When the

Algorithms and Framework for Computing 2-body Statistics on GPUs 29

 0

 10

 20

 30

 40

 50

 0 120 240 360 480 600

R
el

at
iv

e
R

u
n
n
in

g
 t

im
e

to
 C

L

Output Size

1H
2H
4H
8H

16H
32H

 0

 5

 10

 15

 20

 0 120 240 360 480 600

M
ea

su
re

d
 r

u
n
n
in

g
 t

im
e

(s
ec

)

Number of buckets

1H

2H

4H

8H

16H

32H

Fig. 15 Performance with advanced output privatization: theoretical (left) and measured
(right) running time of SDH kernel. Each line represents the case of one particular number
of private output copies

Table 5 Number of private copies H and the range of output size for which H is found to
be the optimal choice

Number of copies Theoretical Results Actual Results

32 1 - 10 1 - 10

16 11 - 30 11 - 35

8 31 - 65 36 - 92

4 66 - 150 93 - 152

2 151 - 450 153 - 300

1 > 450 > 300

output size is small (i.e., less than 65), our model is very accurate in selecting
the best number of private copies. When the output size is between 65 and
152, our model gives more wrong selections among H values of 8, 4, and 2.
However, such selections under large output size do not significantly affect the
performance of the algorithm. If we look closely into Figure 15, the running
time for 8, 4, and 2 copies are almost the same for both the theoretical predic-
tion and actual values (i.e., less than 5% difference) for a wide range of output
sizes.

5.3.3 Direct output buffer

We also conduct experiments to evaluate the direct output buffer technique.
For that, we use a Type-III 2-BS problem: the item similarity problem. It
computes all pairwise distances and saves those pairs that are found to be
similar. We define a similar function by using Euclidean distance. Naturally,

30 Napath Pitaksirianan et al.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000

T
im

e
 (

se
c
o

n
d

)

Total number of atoms (x1000)

DOB
Without DOB

CPU
 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000
S

p
ee

d
u

p
Total number of atoms (x1000)

DOB
Without DOB

Fig. 16 Output Buffer Management: total running time and speedup over CPU in com-
puting the item similarity problem

the output size of this problem is unknown at the beginning. In our experi-
ments, we use data with up to 2 million items and limit output size around
4 million pairs. We compare our technique with the multi-thread CPU pro-
gram and our kernel without using the Direct output buffer technique. The
CPU program is a variance of the one described in Section 5.3.1. On the other
hand, the baseline GPU code encapsulates all optimizations described in pre-
vious sections but it handles output by running the kernel twice (i.e., first
run only calculates output size). Figure 16 demonstrates running time of the
experiment. As we can see, our GPU code without the output buffer technique
achieves an average 23X speedup over CPU program (Maximum speedup of
28X). When the direct output buffer is implemented, the speedup averagely
increases to around 48X, this translates into a 2X speedup generated by the
output buffer mechanism.

5.4 Additional Techniques

In this subsection, we present empirical evaluation of additional techniques on
SDH problem.

Load balancing technique: In such experiments, we only record the time
for processing intra-block computations in processing the SDH. We implement
the load balancing technique on top of the tiling-based kernel Register-SHM,
which is shown to be the most efficient solution in Section 5.2. We compare
the running time of the kernel before and after applying the technique, and
Figure 17 shows such results – a 12%-13% improvement can be seen.

Tiling with Shuffle instruction: To evaluate the this technique, we
run experiments in a way similar to those mentioned in Section 5.3.1. We
compare the shuffle instruction with tiling via shared memory and tiling via
RoC. Figure 18 shows the results of the experiments. Clearly, tiling with shuffle

Algorithms and Framework for Computing 2-body Statistics on GPUs 31

 0.001

 0.01

 0.1

 600 1200 1800 2400 3000

R
u

n
n

in
g

 t
im

e
(s

ec
)

Total number of atoms (x1000)

Register-SHM
Register-SHM-LB

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 600 1200 1800 2400 3000
S

p
ee

d
u

p
Total number of atoms (x1000)

Register-SHM-LB

Fig. 17 Performance of Reg-SHM kernel with and without load balancing method: total
running time (left) and speedup (right) over Reg-SHM

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 400 800 1200 1600 2000

T
im

e
 (

se
c
o

n
d

)

Total number of atoms (x1000)

CPU
Reg-SHM-Out
Reg-ROC-Out

Shuffle
 0

 10

 20

 30

 40

 50

 60

 70

 400 800 1200 1600

S
p

ee
d

u
p

Total number of atoms (x1000)

Reg-SHM-Out
Reg-ROC-Out

Shuffle

Fig. 18 Performance of different GPU-based algorithms for computing SDH: total running
time and speedup over CPU algorithm

instruction has almost the same performance as tiling with RoC or with shared
memory. This shows that the technique based on shuffle instruction can be an
alternative method when shared memory and RoC are not available, and we
expect the algorithm to show the same level of performance.

5.5 Results of Large Input Data

In this subsection, we present end-to-end performance of our multi-GPU 2-BS
algorithm. We run our algorithm on multiple GPUs that reside in a single
server running Linux with an Intel Xeon 6-core E5-2620 v3 CPU, 128 GB of

32 Napath Pitaksirianan et al.

 10

 100

 1000

 10000

 0 4 8 12 16 20

T
im

e
(s

ec
on

d)

Total number of atoms (x 1 Million)

Single GPU
2 GPUs
4 GPUs
8 GPUs

 0

 1

 2

 3

 4

 5

 6

 7

 0 4 8 12 16 20

S
p
ee

d
u
p

Total number of atoms (x 1 Million)

2 GPUs

4 GPUs

8 GPUs

Fig. 19 Performance of different setup for computing SDH: total running time and speedup
over single GPU

DDR4 1866-MHz memory, and eight Nvidia Titan X Pascal GPUs with 12GB
of global memory in each card.

In such experiments, we still use SDH as an example to demonstrate the
performance of our algorithm. In particular, we implement the algorithm based
on the best kernel for processing onboard input data as shown in Section 5.3.1,
which is RoC-Out. We compare performance based on various numbers of GPU
devices: single card, 2 cards, 4 cards, and 8 cards. We generate uniformly
distributed datasets with a size ranging from 2 million to 20 million. The size
of data blocks was set to 1 million points. We use this number because it is
relatively large input size that requires a long time to compute SDH (even on
GPUs).

Figure 19 shows the running time. We calculate the speedup over the single
GPU setup. As we can see, the speedup is improved by almost the magnitude
of a number of GPU cards. The multiple GPU system is up to 1.97 (2 GPUs),
3.72 (4 GPUs) and 6.85 (8 GPUs) times as fast as the single GPU system.
The higher number of GPUs card tend to have more overhead, due to the
time required to merge the output. However, the larger the input data is,
the better the merging time can be hidden. As a result, the speedup of the
algorithm increases with data size. In addition, we also used Nvidia Profiler
to study the algorithm behavior. On 8 GPUs and 20 Million input data, the
profiler shows that the average HtD (Host to device) transfer time is 847.10ms
(0.04% of running time), and DtH (Device to host) transfer time is 10.881us
(less than 0.01% of running time). This shows that the overhead of transfer
time via PCIe is minimal.

Algorithms and Framework for Computing 2-body Statistics on GPUs 33

 0.1

 1

 10

 100

 1000

 600 1200 1800 2400 3000

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

)

Total number of atoms (x1000)

VMD 50
ROC-AOP
VMD 500
ROC-OP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 600 1200 1800 2400 3000
S

p
ee

d
u

p
Total number of atoms (x1000)

ROC-AOP
ROC-OP

Fig. 20 Performance of different GPU-based algorithms for computing RDF: total running
time (left) and speedup over VMD code (right)

6 Case Study of Automated 2-BS Framework

In this section, we evaluate CUDA kernels generated by automated code gen-
eration framework via two case studies. We demonstrate Radial Distribution
Function, a Type-II 2-BS, as Case Study I. Then, we present Nested-Loop join
as case study II, which is a Type-III 2-BS.

6.1 Case Study I: Radial Distribution Function (RDF)

RDF is an essential physical feature of molecular systems. The RDF algorithm
receives two sets of atom coordinates as the input and calculates distances be-
tween two atoms from different sets in a pairwise manner. The output is a
histogram of the distances between two atoms. Therefore, RDF can be classi-
fied as a Type-II 2-BS. In this study, we compare the performance of our RDF
code (generated automatically) with the best known code extracted from the
Visual molecular dynamics (VMD) software. VMD is a well-known molecu-
lar visualization program used for displaying, animating, and analyzing large
biomolecular systems. RDF is implemented on GPUs [16] and the code is
included in the current VMD release.

We create two sets of experiments to test our framework and compare with
existing VMD kernel. In the first experiment, we set the size of output his-
togram to 500 buckets (i.e., 2KB). In this case, the framework generates a
kernel (named RoC-OP) with tiling cached in RoC and regular output priva-
tization. In the second experiment, we set the output size to 50 buckets (i.e.,
200 bytes). The framework generates kernel (named RoC-AOP) with tiling
by RoC but with warp-level output privatization. In both experiments, we
use two datasets with a size ranging from 100k to 3 million particles. Parti-

34 Napath Pitaksirianan et al.

cle coordinates are generated randomly following a uniform distribution. The
RoC-OP has 45 lines of code while RoC-AOP is 51 lines long.

Figure 20 shows the running time of relevant kernels under different input
sizes. The results of original VMD code under two output sizes are labeled as
VMD50 and VMD500, respectively. As can be seen, the running time grows
quadratically with increase of data size. We compare the performance of RoC-
OP with VMD500 and RoC-AOP with VMD50. For output size of 500, the
RoC-OP kernel is faster than the VMD code by up to 18%. Under output size of
50, the RoC-AOP kernel achieves an average speedup of 1.88X and maximum
speedup of 2X. This clearly shows that our framework is more adaptive to
different scenarios of the same problem. Although the VMD code does a good
job under large output, it does not capture the opportunity to handle smaller
output more efficiently via the warp-level privatization.

6.2 Case Study II: Nested-Loop Join

We also use Nested Loop Join (NLJ) as an example to verify the effectiveness
of our 2-BS framework. As mentioned earlier, being the preferred algorithm
for processing joins with complex non-equality conditions, NLJ is important
in database systems. In particular, NLJ requires to compare all pairs of tuples
from two tables. The output size cannot be determined at the beginning of
the run: the size ranges from 0 to N2 where N is the table size.

In this experiment, each tuple contains a randomly generated integer ID
and a key value. Tables’ sizes range from 1M to 3M tuples. We limit the output
size to be roughly the same as the input table size. We feed such parameters
and the join function to our 2-BS framework to generate the CUDA kernel.
Our framework classifies NLJ as a Type-III 2-BS problem and chooses to cache
input in shared memory and use direct buffer output to handle the output of
the application. As a result, around 70 lines of kernel code are generated.
We run the generated kernel, and compare its performance to a GPU-based
NLJ program developed in previous work [32]. The latter is believed to be the
most efficient GPU-based NLJ development, beating all other NLJ programs
in performance by a large margin.

As shown in Figure 21, the kernel generated from the 2-BS framework
clearly outperforms the state-of-art program, with a speedup up to 4.4X. Look-
ing into the details, the code in [32] is designed to tile input table into on-chip
memory (i.e., shared memory and RoC) and it does not use direct output
buffer. Note that we also experiment input size beyond 3M tuples, but the
speedup stays at 4.45X. This shows that 2-BS framework can automatically
generate kernel with very high performance with very little effort from the
developer.

Algorithms and Framework for Computing 2-body Statistics on GPUs 35

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 600 1200 1800 2400 3000

T
im

e
 (

se
c
o

n
d

)

Total number of atoms (x1000)

DOB

Without DOB

 0

 1

 2

 3

 4

 5

 600 1200 1800 2400 3000
S

p
ee

d
u

p
Total number of atoms (x1000)

DOB

Fig. 21 Performance of NLJ kernel generated from 2-BS framework as compared to best
known NLJ kernel reported in [32]

7 Related Work

The past few years witnessed a strong movement of using GPGPU for solving
scientific computing problems and numerous reports on such are generated.
Surprisingly, there are only a few reports on computing 2-BSs on GPUs. As
a part of efforts to parallelize relational joins, He et al. implemented various
functionally-equivalent CPU-base join algorithms on GPUs [10]. The algorithm
was designed to take advantage of early generations of CUDA framework.
They utilized on-chip memory on GPU and handled undefined size of join
result by doing twice of computation: once to calculate the output size, and
second to do actual output. The report showed a 7X speedup over CPUs.
Similar results are presented in [33]. Rui et al. [32] utilized new feature of GPU
for nested loop join (e.g., Read-only data cache, large L2 cache, and shuffle
instructions) and reported speedup 20X over CPUs. The above work is often
benchmarked against CPU-based parallel joins. For example, He et al. [34]
proposed cache-oblivious nested-loop joins by grouping related data together
to get better spatial locality and thus higher CPU cache hit. Kim et al. [35]
implemented optimized sort-merge join and hash join on a multi-core CPU
system. They improved data parallelism by taking advantage of the SIMD
instructions. Albutiu et al. [36] designed a massively parallel sort-merge join
on Multi-Core CPU where each thread only works on its local sorted partitions
in a non-uniform memory access (NUMA) system.

Levine et al. [16] studied GPU-based processing of RDF, of which the
main task is to compute a histogram of all point-to-point distances. They
used data privatization techniques via constant memory and shared memory
to speed up the algorithm. Constant memory is high speed on-chip memory
on GPUs with a drawback. In order to load new data to constant memory,
the CUDA kernel needs to stop and be relaunched. Ponece et al. [37] used

36 Napath Pitaksirianan et al.

tiling and privatization via shared memory with two point correlation function
in cosmology application. They reported speedup of up to 100x over single-
thread CPU code. However, no details of their implementation was reported
in the paper. More recently, Stratton et al. sketched tiling and privatization
techniques in computing two-point angular correlation function [15], but again,
no technical details were reported.

Several work presented techniques related to handling data output in com-
puting other related problems on parallel computing platforms. Karnagel et al.
proposed GPU-based algorithms for computing group-by and aggregates that
are often seen in database systems [38]. Similarly, they keep copies of output
data in GPU cache. However, their implementation is based on caching the en-
tire hash table, which is large and requires grid-level synchronization. For that,
they proposed to use L2 cache that is slower as compared to other cache such
as shared memory. Ye et al. [39] studied the same problem with multicore CPU
as the implementation platform. They implemented a partition-and-Aggregate
algorithm that focuses on CPU cache utilization.

There are other related work on improving performance of individual 2-
BS computations via algorithms with complexity lower than quadratic. For
computing SDH, the state-of-art work reduces point-to-point computations to
pairwise computation among nodes in a spatial tree structure [40,41]. Such
strategies can reduce complexity from quadratic to θ(N3/2) for 2D data and
θ(N5/3) for 3D data. Their main idea is to group data in a local region into
a tree node, then pairwise comparisons of tree nodes (instead of individual
particles) are conducted. Therefore, the core procedure of pairwise comparison
remains the same, and we could still parallelize the pairwise computation by
GPUs.

Unlike the aforementioned work focusing on individual problems and tech-
niques, our work aims at a comprehensive study of the multitude of techniques
that can be used for the development and optimization of GPU-based 2-BS
algorithms. We propose a series of novel techniques for minimizing overhead
and increasing resource utilization, a few techniques are never seen in previous
work. All types of GPU on-chip memory are exploited for the best results of
caching input/output.

8 Conclusions

The 2-BS problems are popular and fundamental to many natural science
domains. In this paper, we study parallel algorithms for processing 2-BS by
exploiting the high computing power of GPUs. First, we introduce a straight-
forward parallel algorithm under the CUDA framework. Then, we divide the
problem into two stages: pairwise computation and writing output. In order
to increase the performance, we present modifications to the algorithm by in-
tegrating various novel techniques in each stage. In the pairwise computation
stage, we optimize the algorithm by blocking and tiling data into multipro-
cessors using different data paths, shared memory, read-only data cache, and

Algorithms and Framework for Computing 2-body Statistics on GPUs 37

register. We evaluate this stage by 2-PCF problem. The results show that tiling
via shared memory and register outperform other techniques for this type of
2-BS problems by up to 4 times. Considering the writing output stage, we
utilize on-chip shared memory to privatize output and use parallel reduction
method to combine each private output. Experiments show that privatizing
output can improve speed up to 13 times and lead to a 52X speedup over a
highly-optimized parallel CPU version for the same problem. We also intro-
duce direct buffer output for 2-BS with large outputs whose size is unknown
at compile time. To further improve the efficiency of the algorithm, we develop
load balancing and tilling techniques with shuffle instructions. Scalability of
the GPU Algorithms is also studied to handle very large input/output data in
2-BS computation. Moreover, we develop a general 2-BS framework that can
automatically generate CUDA code for user-defined 2-BS problems.

Acknowledgements This work is supported by an award (IIS-1253980) from the National
Science Foundation (NSF) of U.S.A.. Equipments used in the experiments are partially
supported by another grant (CNS-1513126) from the same agency.

References

1. C. Türker, F. Akal, D. Studer-Joho, and R. Schlapbach, “B-fabric: An open source life
sciences data management system,” in Scientific and Statistical Database Management,
21st International Conference, SSDBM 2009, New Orleans, LA, USA, June 2-4, 2009,
Proceedings, 2009, pp. 185–190.

2. M. Feig, M. Abdullah, S. L. Johnsson, and B. M. Pettitt, “Large scale distributed data
repository: design of a molecular dynamics trajectory database,” Future Generation
Comp. Syst., vol. 16, no. 1, pp. 101–110, 1999.

3. G. Finocchiaro, T. Wang, R. Hoffmann, A. Gonzalez, and R. C. Wade, “DSMM: a
database of simulated molecular motions,” Nucleic Acids Research, vol. 31, no. 1, pp.
456–457, 2003.

4. W. Xu, S. Ozer, and R. R. Gutell, “Covariant evolutionary event analysis for base inter-
action prediction using a relational database management system for RNA,” in Scientific
and Statistical Database Management, 21st International Conference, SSDBM 2009,
New Orleans, LA, USA, June 2-4, 2009, Proceedings, 2009, pp. 200–216.

5. S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and C. M. Jermaine, “Scalable linear
algebra on a relational database system,” in 33rd IEEE International Conference on
Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, 2017, pp.
523–534.

6. Y.-C. Tu, S. Chen, and S. Pandit, “Computing distance histograms efficiently in scien-
tific databases,” ICDE, pp. 796–807, 2009.

7. B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., Advances in Kernel Methods:
Support Vector Learning. Cambridge, MA, USA: MIT Press, 1999.

8. L. Rokach and S. Kisilevich, “Initial profile generation in recommender systems us-
ing pairwise comparison,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 42, no. 6, pp. 1854–1859, Nov 2012.

9. S. Jiang, X. Wang, and H. Zhu, “Learning pairwise comparisons of items with bigram
content features for recommending,” in Computer Science and Network Technology
(ICCSNT), 2013 3rd International Conference on, Oct 2013, pp. 446–449.

10. B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander, “Relational
joins on graphics processors,” in Procs. ACM Intl. Conf. Management of Data (SIG-
MOD), 2008, pp. 511–524.

11. NVIDIA: CUDA C Programming Guide Version 7.0.

38 Napath Pitaksirianan et al.

12. T. Group., “Opencl.” [Online]. Available: https://www.khronos.org/opencl/
13. A. G. Gray and A. W. Moore, “N-body problems in statistical learning,” Advances in

Neural Information Processing Systems (NIPS), pp. 521–527, 1993.
14. Y. Zhu, Z. Zimmerman, N. Shakibay Senobari, C.-C. M. Yeh, G. Funning, A. Mueen,

P. Brisk, and E. Keogh, “Exploiting a novel algorithm and gpus to break the ten
quadrillion pairwise comparisons barrier for time series motifs and joins,” Knowledge
and Information Systems, Dec 2017.

15. J. A. Stratton, C. Rodrigues, I.-J. Sung, L.-W. Chang, N. Anssari, G. Liu, W.-M. Hwu,
and N. Obeid, “Algorithm and data optimization techniques for scaling to massively
threaded systems,” Computer , vol.45, no.8, pp. 26–32, 2012.

16. B. G. Levine, J. E. Stone, and A. Kohlmeyer, “Fast analysis of molecular dynamics
trajectories with graphics processing units-radial distribution function histogramming,”
Journal of Computational Physics. J. Comp. Phys., pp. 3556–3569, 2011.

17. B. Jensen, J. Saez Gallego, and J. Larsen, “A predictive model of music preference
using pairwise comparisons,” in Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, March 2012, pp. 1977–1980.

18. NVIDIA GeForce Tesla V100 Whitepaper.
19. “Nvidia’s next generation cudatm compute architecture:fermi,” NVidia Developer Tech-

nology, Tech. Rep.
20. “Nvidia’s next generation cudatm compute architecture:kepler gk110,” NVidia Devel-

oper Technology, Tech. Rep.
21. NVIDIA. GTX 980 whitepaper.
22. NVIDIA GeForce GTX 1080 Whitepaper.
23. A. Agrawal and X. Huang, “Pairwise statistical significance of local sequence alignment

using sequence-specific and position-specific substitution matrices,” Computational Bi-
ology and Bioinformatics, IEEE/ACM Transactions on, vol. 8, pp. 194–205, 2011.

24. NVIDIA. CUDA C Best Practices Guide, version 7.5.
25. Analyzing GPGPU Pipeline Latency, 2014. [Online]. Available: http://lpgpu.org/wp/

wp-content/uploads/2013/05/poster_andresch_acaces2014.pdf

26. H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demystifying
GPU microarchitecture through microbenchmarking,” in IEEE International Sympo-
sium on Performance Analysis of Systems and Software, ISPASS 2010, 28-30 March
2010, White Plains, NY, USA, 2010, pp. 235–246.

27. J. Wang, X. Xie, and J. Cong, “Communication optimization on GPU: A case study of
sequence alignment algorithms,” in 2017 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017, 2017,
pp. 72–81.

28. H. Li, D. Yu, A. Kumar, and Y. Tu, “Modeling in cuda strems - a means for high-
throughput data processing,” Big Data (Big Data), IEEE International Conference,
pp. 301–310, 2014.

29. D. Bloom, “A birthday problem.” Am. Math. Mon. 80, pp. 1141–1142, 1973.
30. R. Rui and Y. Tu, “Fast equi-join algorithms on gpus: Design and implementation,” in

Proceedings of the 29th International Conference on Scientific and Statistical Database
Management, Chicago, IL, USA, June 27-29, 2017, 2017, pp. 17:1–17:12.

31. 2BS Framework. [Online]. Available: https://github.com/napath-pitaksirianan/

2-bodyFramework

32. R. Rui, H. Li, and Y. Tu, “Join algorithms on GPUs: A revisit after seven years,” in
2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA,
USA, October 29 - November 1, 2015, 2015, pp. 2541–2550.

33. N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast computation of
database operations using graphics processors,” in Procs. ACM Intl. Conf. Management
of Data (SIGMOD), ser. SIGMOD ’04, 2004, pp. 215–226.

34. B. He and Q. Luo, “Cache-oblivious nested-loop joins,” in Proceedings of the 2006
ACM CIKM International Conference on Information and Knowledge Management,
Arlington, Virginia, USA, November 6-11, 2006, 2006, pp. 718–727.

35. C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D. Blas, V. W. Lee,
N. Satish, and P. Dubey, “Sort vs. hash revisited: Fast join implementation on modern
multi-core cpus,” PVLDB, vol. 2, no. 2, pp. 1378–1389, 2009.

Algorithms and Framework for Computing 2-body Statistics on GPUs 39

36. M. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-merge joins in main
memory multi-core database systems,” PVLDB, vol. 5, no. 10, pp. 1064–1075, 2012.

37. R. Ponce, M. Cardenas-Montes, J. J. Rodriguez-Vazquez, E. Sanchez, and I. Sevilla,
“Application of gpus for the calculation of two point correlation functions in cosmology,”
in ADASS XXI (Paris, 2011) conference proceedings, 2012.

38. T. Karnagel, R. Müller, and G. M. Lohman, “Optimizing gpu-accelerated group-by
and aggregation,” in International Workshop on Accelerating Data Management Sys-
tems Using Modern Processor and Storage Architectures - ADMS 2015, Kohala Coast,
Hawaii, USA, August 31, 2015., 2015, pp. 13–24.

39. Y. Ye, K. A. Ross, and N. Vesdapunt, “Scalable aggregation on multicore processors,”
in Proceedings of the Seventh International Workshop on Data Management on New
Hardware, DaMoN 2011, Athens, Greece, June 13, 2011, 2011, pp. 1–9.

40. A. Kumar, V. Grupcev, Y. Yuan, J. Huang, Y. Tu, and G. Shen, “Computing spatial
distance histograms for large scientific data sets on-the-fly,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 10, pp. 2410–2424, 2014.

41. V. Grupcev, Y. Yuan, Y. Tu, J. Huang, S. Chen, S. Pandit, and M. Weng, “Approximate
algorithms for computing spatial distance histograms with accuracy guarantees,” IEEE
Trans. Knowl. Data Eng., vol. 25, no. 9, pp. 1982–1996, 2013.

