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Abstract— Particle simulation has become an important re-
search tool in many scientific and engineering fields. Data gen-
erated by such simulations impose great challenges to database
storage and query processing. One of the queries against particle
simulation data, the spatial distance histogram (SDH) query, is
the building block of many high-level analytics, and requires
quadratic time to compute using a straightforward algorithm.
In this paper, we propose a novel algorithm to compute SDH
based on a data structure called density map, which can be easily
implemented by augmenting a Quad-tree index. We also show the
results of rigorous mathematical analysis of the time complexity
of the proposed algorithm: our algorithm runs on Θ(N

3
2 ) for

two-dimensional data and Θ(N
5
3 ) for three-dimensional data,

respectively. We also propose an approximate SDH processing
algorithm whose running time is unrelated to the input size N .
Experimental results confirm our analysis and show that the
approximate SDH algorithm achieves very high accuracy.

I. INTRODUCTION

Many scientific fields have undergone a transition to data
and computation intensive science, as the result of automated
experimental equipments and computer simulations. Recent
years have witnessed significant efforts in building data man-
agement tools suitable for processing scientific data [1], [2],
[3], [4], [5]. Scientific data imposes great challenges to the
design of database management systems that are tradition-
ally optimized toward handling business applications. First,
scientific data often come in large volumes, thus requires us
to rethink the storage, retrieval, and replication techniques in
current DBMSs. Second, user accesses to scientific databases
are focused on complex high-level analytics and reasoning
that go beyond simple aggregate queries. While many types
of domain-specific analytical queries are seen in scientific
databases, the DBMS should be able to support those that are
frequently used as building blocks for more complex analysis.
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However, many of such basic analytical queries require super-
linear processing time if handled in a straightforward way,
as they are in current scientific databases. In this paper, we
report our efforts to design efficient algorithms for a type of
query that is extremely important in the analysis of particle
simulation data.

Particle simulations are computer simulations in which the
basic components of large systems (e.g., atoms, molecules,
stars, galaxies ...) are treated as classical entities (i.e., particles)
that interact for certain duration under postulated empirical
forces. For example, molecular simulations (MS) explore rela-
tionship between molecular structure, movement and function.
These techniques are primarily applicable in the modeling of
complex chemical and biological systems that are beyond the
scope of theoretical models. MS are most frequently used
in material sciences, biomedical sciences, and biophysics,
motivated by a wide range of applications. In astrophysics, the
N–body simulations are predominantly used to describe large
scale celestial structure formation [6], [7], [8], [9]. Similar to
MS in applicability and simulation techniques, the N–body
simulation comes with even larger scales in terms of total
number of particles simulated.

Results of particle simulations form large datasets of particle
configurations. Typically, these configurations store informa-
tion about the particle types, their coordinates and velocities
- the same type of data we have seen in spatial-temporal
databases [10]. While snapshots of configurations are interest-
ing, quantitative structural analysis of inter-atomic structures
are the mainstream tasks in data analysis. This requires the
calculation of statistical properties or functions of particle
coordinates [6]. Of special interest to scientists are those
quantities that require coordinates of two particles simultane-
ously. In their brute force form these quantities require O(N2)
computations for N particles [7]. In this paper, we focus on
one such analytical query: the Spatial Distance Histogram
(SDH) query, which asks for a histogram of the distances of
all pairs of particles in the simulated system.
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A. Motivation

The SDH is a fundamental tool in the validation and analysis
of particle simulation data. It serves as the main building block
of a series of critical quantities to describe a physical system.
Specifically, SDH is a direct estimation of a continuous statis-
tical distribution function called radial distribution functions
(RDF) [6], [11], [12]. The RDF is defined as

g(r) =
N(r)

4πr2δrρ
(1)

where N(r) is the number of atoms in the shell between r
and r + δr around any particle, ρ is the average density of
particles in the whole system, and 4πr2δr is the volume of
the shell. The RDF can be viewed as a normalized SDH.

The RDF is of great importance in computation of thermo-
dynamic characteristics of the system. Some of the important
quantities like total pressure, and energy cannot be calculated
without g(r). For mono–atomic systems, the RDF can also
be directly related to the structure factor of the system [13].
In current solutions, we have to calculate distances between
all pairs of particles and put the distances into bins with
a user-specified width, as done in state-of-the-art simulation
data analysis software packages [14], [12]. MS or N–body
techniques generally consist of large number of particles. For
example, the Virgo consortium has accomplished a simulation
containing 10 billion particles to study the formation of
galaxies and quasars [15]. MS systems also hold up to millions
of atoms. Such scale of the simulated systems prohibits the
analysis of large datasets following the brute-force approach.
From a database viewpoint, it would be desirable to make SDH
a basic query type with the support of scalable algorithms.

B. Contributions and roadmap

We claim the following contributions via this work:
1. We propose an innovative algorithm to solve the SDH

problem based on a Quadtree-like data structure we call
density map;

2. We accomplish rigorous performance analysis of our
algorithm and prove its time complexity to be Θ

(
N

3
2
)

and Θ
(
N

5
3
)

for 2D and 3D data, respectively;
3. Our analytical results on the algorithm give rise to an

approximate SDH solution whose time complexity is
independent to the size of the dataset. In practice, this
algorithm computes SDH with very low error rates.

We continue this paper by formally defining the SDH prob-
lem and listing important notations in Section II; we introduce
our SDH processing algorithm in Section III; performance
analysis of our algorithm is sketched in Section IV; we discuss
an approximate SDH solution in Section V; Section VI is
dedicated to experimental evaluation of our algorithms; we
provide a brief survey on related work in Section VII, and
conclude this paper by Section VIII.

II. PROBLEM STATEMENT AND LIST OF NOTATIONS

The SDH problem can be defined as follows: given the
coordinates of N points in space, we are to compute the counts

of point-to-point distances that fall into a series of l ranges in
the R domain: [r0, r1), [r1, r2), [r2, r3), · · · , [rl−1, rl]. A range
[ri, ri+1) in such series is called a bucket, and the span of the
range ri+1−ri is called the width of the bucket. In this paper,
we focus our discussions on the case of standard SDH query
where all buckets have the same width p and r0 = 0, which
gives the following series of buckets: [0, p), [p, 2p), · · · , [(l−
1)p, lp]. Generally, the boundary of the last bucket lp is set
to be the maximum distance of any pair of points. Although
almost all scientific data analysis only require the computation
of standard SDH queries, our solutions can be easily extended
to handle histograms with non-uniform bucket width and/or
arbitrary values of r0 and rl. The only complication of non-
uniform bucket width is that, given a distance value, we need
O

(
log l

)
time to locate the corresponding bucket instead of

constant time in processing SDH with equal bucket width.
The SDH is basically a series of non-negative integers h =
(h1, h2, · · · , hl) where hi (0 < i ≤ l) is the number of pairs
of points whose distances are within the bucket [(i− 1)p, ip).

In Table I, we list the notations that are used throughout
this paper. Note that symbols defined and referenced in a local
context are not listed here.

TABLE I

SYMBOLS AND NOTATIONS.

Symbol Definition
p width of histogram buckets
l total number of histogram buckets
h the histogram with elements hi (0 < i ≤ l)

N total number of particles in data
i an index symbol for any series

DMi the i-th level density map
d number of dimensions of data
δ side length of a cell
S area of a region in 2D space
ε error bound for the approximate algorithm
H total level of density maps, i.e., tree height

III. OUR APPROACH

A. Overview

In processing SDH using the naı̈ve approach, the difficulty
comes from the fact that the distance of any pair of points
is calculated to determine which bucket a pair belongs to.
An important observation here is: a histogram bucket always
has a non-zero width. Given a pair of points, their bucket
membership could be determined if we only know a range
that the distance belongs to and this range is contained in a
histogram bucket. With the bucket width p increases (i.e., user
sends in a coarser SDH query), the chance that any such range
with a fixed span will fall into a bucket also increases. In other
words, we need to save time in our algorithm by calculating
point-to-point distances approximately.

The central idea of our approach is a conceptual data
structure called density map. For a 3D space, a density map
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a. low resolution map b. high resolution map 

Fig. 1. Two density maps of different resolutions.

is essentially a 3D grid that divides the simulated space into
cubes of equal volumes. For a 2D space, it consists of squares
of equal size. From now on, we use 2D data and grids to
elaborate and illustrate our ideas unless specified otherwise.
Note that extending our discussions to 3D data/space would be
straightforward. In every cell of the grid, we record the number
of particles that are located in the space represented by that
cell as well as the four coordinates that determine the exact
boundary of the cell. The reciprocal of the cell size is called
the resolution of the density map. In order to process SDH,
we build a series of density maps with different resolutions.
We organize the array of density maps in a way such that the
resolution of a density map is always doubled as compared
to the previous one in the series. Consequently, any cell in a
density map is divided into exactly four (eight for a 3D space)
disjoint cells in the next density map. In Figure 1, we illustrate
two density maps with different resolutions built for the same
dataset. For example, the simulated space is divided into six
cells in Fig. 1a, each with side length 2, and cell XA has 14
particles in it. The next density map is shown in Fig. 1b: cells
are of side length 1 and XA is divided into 4 cells on this map:
X0A0, X0A1, X1A0, and X1A1. A natural way to organize
the density maps is to connect all cells in a quad-tree. We will
elaborate more on the implementation of the density maps in
Section III-C.

B. The Density-Map-based SDH (DM-SDH) algorithm

In this section, we describe how to use the density maps
to process the SDH query. The details of the algorithm are
shown in Fig. 2. The core of the algorithm is a procedure
named RESOLVETWOCELLS, which is given as inputs a pair
of cells m1 and m2 on the same density map.

In RESOLVETWOCELLS, we first compute the minimum
and maximum distances between any particle from m1 and any
one from m2 (line 1). This can be accomplished in constant
time given the corner coordinates of two cells stored in the
density map (only three cases are possible, as shown in Fig.
3). When the minimum and maximum distances between m1

and m2 fall into the same histogram bucket i, we say these
two cells are resolvable on this density map, and they resolve

Algorithm DM-SDH
Inputs: all data points, density maps built beforehand,

and bucket width p
Output: an array of counts h

1 initialize all elements in h to 0
2 find the first density map DMi whose cells have

diagonal length k ≤ p
3 for all cells in DMi

4 do n← number of particles in the cell
5 h1 ← h1 + 1

2n(n− 1)
6 for any two cells mj and mk in DMi

7 do RESOLVETWOCELLS (mj , mk)
8 return h

Procedure RESOLVETWOCELLS (m1, m2)
0 check if m1 and m2 are resolvable
1 if m1 and m2 are resolvable
2 then i← index of the bucket m1 and m2 resolve into
3 n1 ← number of particles in m1

4 n2 ← number of particles in m2

5 hi ← hi + n1n2

6 else if m1 and m2 are on the last density
map (i.e., the one with highest resolution)

7 for each particle A in m1

8 for each particle B in m2

9 do f ← distance between A and B
10 i← the bucket f falls into
11 hi ← hi + 1
12 else
13 DM ′ ← next density map with higher resolution
14 for each partition m′

1 of m1 on DM ′

15 for each partition m′
2 of m2 on DM ′

16 do RESOLVETWOCELLS (m′
1, m′

2)

Fig. 2. The density-map-based SDH algorithm.

into bucket i. If this happens, the histogram is updated (lines
2 - 5) by incrementing the count of the specific bucket i by
n1n2 where n1, n2 are the particle counts in cells m1 and
m2, respectively. If the two cells do not resolve on the current
density map, we move to a density map with higher (doubled)
resolution and repeat the previous step. However, on this new
density map, we try resolving all four partitions of m1 with
all those of m2 (lines 12 - 16). In other words, there are
4× 4 = 16 recursive calls to RESOLVETWOCELLS if m1 and
m2 are not resolvable on the current density map. In another
scenario where m1 and m2 are not resolvable yet no more
density maps are available, we have to calculate the distances
of all particles in the non-resolvable cells (lines 6 - 11). The
DM-SDH algorithm starts (line 2) at the first density map
DMi whose cell diagonal length is smaller than the bucket
width p (i.e., cell side length δ ≤ p√

2
). It is easy to see that

no pairs of cells are resolvable in density maps with resolution
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A

B

B

B

Fig. 3. Three scenarios to consider when computing the minimum and
maximum distance between two cells A and B, with solid (dotted) line
representing minimum (maximum) distance in each case.

lower than that of DMi. Within each cell on Mi, we are sure
that any intra-cell point-to-point distance is smaller than p thus
all such distances are counted into the first bucket with range
[0, p) (lines 3 - 5). The algorithm proceeds by resolving inter-
cell distances (i.e., calling RESOLVETWOCELLS) for all pairs
of cells in M (lines 6 - 7).

Clearly, the main idea behind our algorithm is to avoid
computing any point-to-point distances. By only considering
atom counts in the density map cells, we are able to process
multiple point-to-point distances between two cells in one shot.
This translates into significant improvements over the brute-
force approach.

A case study. Let us study an example by revisiting Fig.
1. Suppose the query asks for SDH with a bucket width of
3 (i.e., histogram buckets are [0, 3), [3, 6), [6, 9), · · · ) and we
start on the low-resolution map in Fig. 1a. First, since all
particles in XA are within a distance 2

√
2 < 3, we can safely

increase the count of the first bucket (with range 0-3) by
14× (14− 1)/2 = 91, and we do this for all other cells in Fig.
1a. Then we try to resolve XA with each and every other cell
in the same density map, e.g., cell ZB. However, we cannot
draw any conclusions as the distances between a particle in
XA and one in ZB are within the range [2,

√
52] ≈ [2, 7.2111],

which overlaps with the first and second buckets. In this case,
we turn to the next density map in Fig. 1b, in which a cell in
Fig. 1a is divided into four smaller cells. We start comparing
counts of all XA cells (i.e., X0A0, X0A1, X1A0, and X1A1)
with all ZB cells (i.e., Z0B0, Z0B1, Z1B0, and Z1B1). Out
of the 16 pairs of cells, six can be resolved (Table II). For
example, since the distances between any particle in X0A0 and
any one in Z0B0 are within [

√
10,
√

34] ≈ [3.162, 5.831], we
increment the count of the second bucket (with range [3, 6)) in
the histogram by 5×4 = 20. For those the are not resolvable,
we need to visit a density map with an even higher resolution,
or, calculate all the inter-cell point-to-point distances when
no such density maps exist. Note that those cells with a zero
particle count (e.g., cell Y0B0) can be ignored in this process.

C. Implementation of density maps

In DM-SDH, we assume that there are a series of density
maps built beforehand for the dataset. In this section, we de-
scribe relevant details on the implementation and maintenance
of the density maps.

TABLE II

INTER-CELL DISTANCE RANGES ON DENSITY MAP SHOWN IN FIG. 1B.

RANGES MARKED WITH * ARE RESOLVABLE INTO BUCKETS OF WIDTH 3.

ZB XA cells

cells Z0B0 Z0B1 Z1B0 Z1B1

X0A0
ˆ√

10,
√

34
˜∗ ˆ√

13,
√

41
˜ ˆ√

4,
√

45
˜ ˆ√

20,
√

52
˜

X0A1
ˆ
3,
√

29
˜∗ ˆ√

10,
√

34
˜∗ ˆ√

4,
√

40
˜ ˆ√

17,
√

45
˜

X1A0
ˆ√

5,
√

25
˜ ˆ√

8,
√

32
˜ ˆ√

10,
√

34
˜∗ ˆ√

13,
√

41
˜

X1A1
ˆ
2,
√

20
˜ ˆ√

5,
√

24
˜ ˆ

3,
√

29
˜∗ ˆ√

10,
√

34
˜∗

1) Tree structure: As mentioned earlier, we organize the
cells on different density maps into a tree structure, much like
the point region (PR) Quad-tree presented in [16]. The nodes
in the tree hold the following information:

(p-count, x1, x2, y1, y2, child, p-list, next)

where p-count is the number of particles in the cell, x1
to y2 are the four coordinates that define the region of the
cell (for 3D data, we need two more coordinates for the 3rd
dimension), child is a pointer to the first child on the next
level.1 The p-list element, which is meaningful only for
leaf nodes, is the head of a list of data structures that store
the real particle data. Unlike a regular Quad-tree, we add a
next pointer to chain the sibling nodes together (the order
of the four siblings in the list can be arbitrarily determined).
Furthermore, for the last of the four siblings, its next pointer
is used to point to its cousin. By this, all nodes on the same
level are connected - such a connected list essentially forms
a density map with a specific resolution. The head of all
listed can be stored in an array for the ease of locating the
appropriate density map to start the DM-SDH algorithm (line
2, Fig. 2). From now on, we use the phrases “density map’
and “tree level”, “cell” and “tree node” interchangeably. For
example, the density maps in Fig. 1 can be put into a tree
structure as shown in Fig. 4, in which each node is shown
with its p-count field.

2) Tree height.: To be able to answer SDH queries with
different parameters (e.g., bucket width p, subregion of the
simulated space), we need to build a series of density maps
from the most coarse resolution to the finest. On the coarsest
end, we can build a single node map that covers the whole
simulated space. The question is from the other end: what
should be the highest resolution in the maps? This is a
subtle issue: first, given any bucket width p, the percentage of
resolvable cells increases with the level of the tree. However,
the number of pairs of cells also increases dramatically (i.e.,
by a factor of 2d).

Recall that DM-SDH saves our time of processing SDH by

1A parent pointer could be added to each node to achieve logarithmic
data insertion/deletion time. However, we assume the scientific dataset is static
(no sporadic insertions, no deletions) therefore a child pointer is sufficient
for efficient bulk loading.
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Fig. 4. Tree structure to organize the density maps in Fig. 1. Here we show
the p-count (number in each node), next (dotted lines), child (thin solid
lines), and p-list (lines connecting to a ball).

resolving cells such that we need not calculate the point-to-
point distances one by one. However, when the p-count of
a cell decreases, the time we save by resolving that cell also
decreases. Imagine a cell with a p-count of 4 or smaller (8
or smaller for 3D data/space), it does not give us any benefit
in processing SDH to further partition this cell on the next
level: the cost of resolving the partitions could be higher than
directly retrieving the particles and calculating distances (lines
7 - 11 in RESOLVETWOCELLS). Based on this observation,
the total level of density maps H is set to be

H =
⌈

log2d

N

β

⌉
+ 1 (2)

where d is the number of dimensions and 2d is essentially the
degree of tree nodes, β is the average number of particles we
desire in each leaf node. In practice, we set β to be slightly
greater than 4 in 2D (8 for 3D data) since the CPU cost
of resolving two cells is higher than computing the distance
between two points.

3) Other issues: In addition to the bucket width p, user can
attach other conditions to a SDH query. Two common varieties
of the regular SDH query are: (1) Compute the SDH of a
specific region of the whole simulated space; and (2) Compute
the SDH of all particles of a specific type (e.g., carbon atoms)
in the dataset. The first variety requires modifications to our
algorithm: in RESOLVETWOCELLS, we need to check if both
cells are contained by the query region and add one more case
for the recursive call, that is, if the cells are resolvable but at
least one of the cells overlaps with, or locates out of, the query
region, we still need to go to the next density map. If both
cells are out of the query region, nothing needs to be done. In
calculating the distances of particles (lines 7 - 11), again, we
only consider those particles that are within the query region.
The second variety requires more information be stored in the
density map cells: in addition to the p-count field, we keep
a list of counts, one for each possible type of particles in
the data. Fortunately, the number of particle types is not very
large in the sciences of interest (e.g., about 10 for molecular
simulation).

Another piece of information we can store in the tree
nodes is the minimum bounding rectangle (MBR) formed by
of all the particles in a node. In RESOLVETWOCELLS, we

can use the MBR of the two cells to compute the minimum
and maximum point-to-point distances. As compared to the
theoretical bounds of the space occupied by a tree node, the
MBR will cover a smaller area. Intuitively, the chance of a
cell’s being resolvable under a given p increases as the cell
shrinks. The use of MBR can thus shorten the running time by
making more cells resolvable at a higher level on the tree. The
MBR can be easily computed when data points are loaded to
the tree, with the storage overhead of four extra coordinates
in each node.

IV. ANALYSIS OF THE ALGORITHM

The running time of DM-SDH consists of two main parts:
1. the time spent to check if two cells are resolvable (line 0

in RESOLVETWOCELLS, constant time needed for each
operation); and

2. distance calculation for data in cells non-resolvable even
on the finest density map (lines 7 - 11 in RESOLVETWO-
CELLS, constant time needed for each distance).

As compared to the brute-force algorithm, we save time by
performing operation 1 in hope of handling multiple distances
in one shot. However, it is not clear how much overhead this
bears. Consider a tree illustrated in Fig. 5 where each level
represent a density map but each node represents a pair of cells
in the original density map. Given a histogram bucket width
p1, we start from a density map DMi with ci cells. Thus, there
are O(c2

i ) entries on the corresponding level of the tree shown
in Fig. 5. On the next map DMi+1, there are 4×4 = 16 times
of cell pairs to resolve. However, some of the cells in DMi+1

do not need to be considered as their parents are resolved
on DMi. Consider a resolvable entry a in DMi, the whole
subtree rooted at a needs no further consideration, leaving a
“hole” on the leaf level. Similarly, if b is a resolvable entry on
a lower level DMj , the time needed for resolving everything
in the subtree of b is also saved. However, this subtree is
smaller than that of a, leading to less savings of time. From
this we can easily see that the running time depends on the
bucket width: if we are given another query with bucket width
p2 < p1 such that we will start DM-SDH from level DMj of
the tree, more cell comparisons have to be done, giving rise
to longer running time.

In analyzing the time complexity of DM-SDH, we are
interested in how the running time increases as the total
number of particle N increases, with a fixed p as the query
parameter. Qualitatively, as N increases, the height of the
trees also increases (as we fix β in Equation (2)), thus a
higher percentage of particle pairs can be resolved in the
cells. However, the total number of entries on the leaf level in
Fig. 5 also increases (quadratically). Therefore, a quantitative
study on the percentage of resolvable cells on a given level is
essential in such analysis.

We have accomplished a quantitative analysis on the running
time of our algorithm, which involves non-trivial geometric
modeling. Due to space limitations, here we only sketch the
main ideas of the analysis. Interested readers can find more
details in a longer version of this paper [17].
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DMi: starting level for p1

DMj: starting level for p2

…  ...

Leaf nodes

List of particle pairs

a

b

Fig. 5. A conceptual tree structure with each node representing a pair of
cells in a density map. Similarly, the data nodes hold pairs of particles.

Given any cell A on the first level of density map visited,
our analysis develops formulae for the area of a theoretical
region Ai containing all particles that can possibly resolve
into the ith bucket with any particle in A. For example, the
region A1 in Fig. 6 refers to the one for bucket 1: it consists
of four quarter cycles with radius p and four rectangles with
side length δ and p (note that δ = p√

2
is the side length

of cell A), plus cell A itself. The cells that are resolvable
into bucket i with any sub cells in A also form a region
(whose border shows a zigzag pattern) denoted as A′

i. When
the resolution of the density map increases, the boundary of
region A′

i approaches that of Ai. In Fig. 6, the blue lines form
one such region related to bucket 1 on the density map four
levels down. The shape of region Ai becomes more complex
when i > 1: its outer boundary is similar to A1 except the
quarter cycles are with radius ip, but it also contains a hole
in it [17]. We define the ratio of

∑
i A

′
i to

∑
i Ai as the

covering factor. This is a critical quantity in our analysis as it
tells how many of the particle pairs are handled by resolving
cells. Obviously, the covering factor increases when we visit
more levels of density map. Table III shows the values of the
covering factor under different situations. Of special interest to
our analysis is the complement to covering factor named the
non-covering factor, which represents the percentage of areas
that are not resolvable. Let us present the most important result
in our analysis in the following lemma.

Lemma 1: For any given standard SDH query with bucket
width p, let DMi be the first density map our DM-SDH
algorithm visits, and α(m) be the non-covering factor of a
density map that lies m levels below DMi (i.e., map DMi+m).
We have

lim
p→0

α(m + 1)
α(m)

=
1
2
.

Proof: See [17] for details.

What Lemma 1 tells us is: the chance that any pair of cells
is not resolvable decreases by half with the density map level
increases by one. In other words, for a pair of non-resolvable
cells on DMi (or any level lower than DMi), among the 16

A1’

A

A1

Fig. 6. Boundaries of bucket 1 regions of cell A, with the bucket width p
being exactly

√
2δ. The arrowed line is of length p.

pairs of subcells on the next level, we expect 16 × 0.5 = 8
pairs to be resolvable. From Table III, we can also conclude
that Lemma 1 not only works well for large l (i.e., smaller p,
and more meaningful in simulation data analysis), it quickly
converges even when l is reasonably small. Furthermore, the
above result is also true for 3D data, although we can only
give numerical results due to complex forms of the formulae
developed in the 3D analysis (see Section IV-D of [17]).

A. Time complexity of DM-SDH

With Lemma 1, we achieve the following analysis of the
time complexity of DM-SDH.

Theorem 1: In DM-SDH, the time spent on operation 1
(i.e., resolving two cells) is Θ

(
N

2d−1
d

)
where d ∈ {2, 3} is

the number of dimensions of the data.

Proof: Given a SDH query with parameter p, the
starting level DMi is fixed in DM-SDH. Assume there are
I pairs of cells to be resolved on DMi. On the next level
DMi+1, total number of cell pairs becomes I22d. According to
Lemma 1, half of them will be resolved, leaving only I22d−1

pairs unresolved. On level DMi+2, this number becomes
I22d−1 1

222d = I22(2d−1). Therefore, the number of calls to
resolve cells on the different density maps form a geometric
progression

I, I22d−1, I22(2d−1), . . . , I2n(2d−1)

where n is the total number of density maps visited. The time
spent on all cell-resolving operations Tc is basically the sum
of all items in this progression :

Tc(N) =
I
[
2(2d−1)(n+1) − 1

]
22d−1 − 1

. (3)

We use Tc(N) to denote the time under a given size N of
the dataset. According to Equation (2), one more level of
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TABLE III

EXPECTED PERCENTAGE OF PAIRS OF CELLS THAT CAN BE RESOLVED UNDER DIFFERENT LEVELS OF DENSITY MAPS AND TOTAL NUMBER OF

HISTOGRAM BUCKETS. COMPUTED WITH MATHEMATICA 6.0.

Map Total Number of Buckets (l)

levels 2 4 8 16 32 64 128 256

m=1 50.6565 52.1591 52.5131 52.5969 52.6167 52.6214 52.6225 52.6227

m=2 74.8985 75.9917 76.2390 76.2951 76.3078 76.3106 76.3112 76.3114

m=3 87.3542 87.9794 88.1171 88.1473 88.1539 88.1553 88.1556 88.1557

m=4 93.6550 93.9863 94.0582 94.0737 94.0770 94.0777 94.0778 94.0778

m=5 96.8222 96.9924 97.0290 97.0369 97.0385 97.0388 97.0389 97.0389

m=6 98.4098 98.4960 98.5145 98.5184 98.5193 98.5194 98.5195 98.5195

m=7 99.2046 99.2480 99.2572 99.2592 99.2596 99.2597 99.2597 99.2597

m=8 99.6022 99.6240 99.6286 99.6296 99.6298 99.6299 99.6299 99.6299

m=9 99.8011 99.8120 99.8143 99.8148 99.8149 99.8149 99.8149 99.8149

m=10 99.9005 99.9060 99.9072 99.9074 99.9075 99.9075 99.9075 99.9075

density map will be built when N increases to 2dN . Revisiting
Equation (3), we have the following recurrence:

Tc(2dN) =
I
[
2(2d−1)(n+2) − 1

]
22d−1 − 1

= 22d−1Tc(N)− o(1) (4)

Based on the master theorem [18], the above recurrence gives

Tc(N) = Θ
(
N log2d 22d−1)

= Θ
(
N

2d−1
d

)
.

Now let us investigate the time complexity for performing
operation 2, i.e., calculating distance between particles. We
have similar results as in Theorem 1.

Theorem 2: In DM-SDH, when the spatial distribution of
particles is reasonable, the time spent on operation 2 (i.e.,
distance calculation) is also Θ

(
N

2d−1
d

)
.

Proof: As in the derivation of Equation (4), we consider
the situation of increasing the dataset size from N to 2dN .
For any pair of cells on the last density map when dataset
is of size N , we have the chance to divide each cell into 2d

smaller cells when another density map is built (as a result of
the increase of N ). Altogether we have on the new density map
2d2d = 22d pairs to resolve, among which half are expected
to be resolved (Lemma 1). When the spatial distribution of
particles is reasonable (e.g., a uniform distribution), this leaves
half of the distances in the unresolved cells and they need
to be calculated. By changing the size of the dataset from
N to 2dN , the total number of distances between any pair
of cells increases by 22d times. Since half of the distances
need to be calculated, the total number of distance calculations
Td increases by 22d−1. Therefore, we have the following
recurrence:

Td(2dN) = 22d−1Td(N),

which is essentially the same as Equation (4), and this con-
cludes the proof.

In the proof of Theorem 2, we extended Lemma 1 from
percentage of cell pairs to that of distances. This extension
is obviously true for uniformly distributed data. Actually, this
conclusion is also true as long as the particle distribution is
not positively related to non-resolvable cell pairs, which is
generally true in MS data. These distributions are what we
call reasonable distributions. More details can be found in
Section IV-F of [17], in which we also present remedies to
our algorithm under the bizarre cases of unreasonable particle
distributions.

Theorem 3: The time complexity of the DM-SDH algo-
rithm is Θ

(
N

2d−1
d

)
.

Proof: Proof is concluded by combining Theorem 1 and
Theorem 2.

B. Other costs

I/O costs. In the previous analysis, we focus on the CPU
time of the algorithm. Depending on the blocking strategy
we use for retrieving data from disk, the exact I/O cost of
DM-SDH varies. The bottomline, however, is that the I/O
complexity will be asymptotically lower than the quadratic I/O
cost needed for calculating all distances.2 A straightforward
implementation of DM-SDH will give us an I/O complexity
O

(
(N

b )
2d−1

d

)
where b is the number of records in each page.

To be specific:

1. the distance calculations will happen between data points
organized in data pages of associated density map cells
(i.e., no random reading is needed). On average, one data
page only needs to be paired with O

(√
N

)
other data

pages for distance calculation (Theorem 2) in 2D space;
2. I/O complexity for reading density map cells will be the

same as in 1. In practice, it will be much smaller, as the
size of the nodes is small.

2To be specific, it is O
`
(N

b
)2 1

B

´
where b is the page factor and B is the

blocking factor if we use a strategy like in block-based nested-loop join.
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It would be interesting to investigate how we can improve our
algorithm to take advantage of blocking and prefetching.

Storage overhead. The storage cost of our algorithm is
bound by the size of the density map of the highest resolution
we store (leaf nodes in the Quad-tree), as map size deceases
exponentially with the decrease of resolution. Obviously, the
space complexity is O

(
N

)
. The total storage overhead will be

really small if we have a Quadtree index built for the dataset,
which is a popular practice in scientific databases [19]. In this
case, we only need to add a p-count field and next pointer
to each index node.

V. APPROXIMATE SDH QUERY PROCESSING

While the DM-SDH algorithm is more efficient than current
SDH processing methods, its running time for large datasets is
still undesirably long. Actually, there are cases where even a
coarse SDH will greatly help the fine-tuning of simulation
programs [6]. On the other hand, the main motivation to
process SDHs is to study the statistical distribution of point-to-
point distances in the simulated system [6]. Since a histogram
by itself is an approximation of the underlying distribution
g(r) (Equation 1), an inaccurate histogram generated from a
given dataset will still be useful in a statistical sense. In this
section, we introduce a modified SDH algorithm to give such
approximate results to gain better performance in return. Two
must-have features for a decent approximate algorithm are :1)
provable and controllable error bounds such that the users can
have an idea on how close the results are to the fact; and 2)
analysis of costs to reach (below) a given error bound, which
enables desired performance/correctness tradeoffs. Fortunately,
our analytical results shown in Section IV makes the derivation
of such error bounds and cost model an easy task.

In the DM-SDH algorithm, we have to : 1) keep resolving
cells till we reach the lowest level of the tree; 2) calculate
point-to-point distances when we cannot resolve two cells on
the leaf level of the tree. Our idea for approximate SDH
processing is: stop at a certain tree level and totally skip
all distance calculations if we are sure that the number of
distances in the unvisited cell pairs fall below some error
tolerance threshold.

Recall that, for any given density map DMi+m and total
number of buckets l, our analytical model gives the percentage
of non-resolvable cell pairs α(m), which can be efficiently
computed. We list some values of 1 − α(m), the percentage
of resolvable cell pairs, in Table III. Given a user-specified
error bound ε, we can find the appropriate levels of density
maps to visit such that the unvisited cell pairs only contain
less than εN(N−1)

2 distances. For example, for a SDH query
with 128 buckets and error bound of ε = 3%, we get m = 5
by consulting the table. This means, to ensure the 3% error
bound, we only need to visit five levels of the tree (excluding
the starting level DMi), and no distance calculation is needed.
According to Lemma 1 and Table III: α(m) almost exactly
halves itself when m increases by 1. Therefore, a rule-of-

thumb for choosing m for given error bound ε is

m = lg
1
ε
.

The cost of the approximate algorithm only involves resolving
cells on the m+1 levels of density maps. Borrowing Equation
(4), we obtain the time complexity of the new algorithm

Tc(N) ≈ I2(2d−1)m = I2(2d−1) lg 1
ε = I

(
1
ε

)2d−1

(5)

where I is the number of cell pairs on the starting density map
DMi, and it is solely determined by the query parameter p.
Apparently, the running time of this algorithm is not related
to the input size N .

(i-1)p ip (i+1)p (i+2)pu v
......

distance

Range of inter-cell
distances

bucket
i+1

bucket
i

bucket
i+2

Fig. 7. Distance range of two non-resolvable cells overlap with three buckets.

Now let us discuss how to deal with those non-resolvable
cells after visiting m+1 levels on the tree. In giving the error
bounds in our approximate algorithm, we are conservative
in assuming the distances in all the unresolved cells will be
placed into the wrong bucket. In fact, this almost will never
happen because we can distribute the distance counts in the
unvisited cells to the histogram buckets heuristically and some
of them will be done correctly. Consider two non-resolvable
cells in a density map with particle counts n1 and n2 (to-
tal number of n1n2 distances between them), respectively.
We know their minimum and maximum distances u and v
(calculated in resolving two cells) fall into multiple buckets.
Fig. 7 shows an example that spans three buckets. Using this
example, we describe the following heuristics to distributed
the n1n2 total distance counts into the relevant buckets. These
heuristics are ordered in their expected correctness.

1. Put all n1n2 distance counts into one bucket (chosen
arbitrarily beforehand or randomly at runtime);

2. Evenly distribute the distance counts into the three buck-
ets involved, i.e., each bucket gets 1

3n1n2;
3. Distribute the distance counts based on the overlaps

between range [u, v] and the buckets. In Fig. 7, the
distances put into buckets i, i + 1, and i + 2 are

n1n2
ip− u

v − u
, n1n2

p

v − u
, and n1n2

v − (i + 1)p
v − u

, respec-

tively. Apparently, by adapting this approach, we assume
the (statistical) distribution of the point-to-point distances
between the two cells is uniform;

4. Assuming a spatial distribution model (e.g., uniform) of
particles within individual cells, we can generate the
statistical distribution of the distances either analytically
or via simulations, and put the n1n2 distances to involved
buckets based on this distribution.
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Fig. 10. The simulated hydrated dipalmitoylphosphatidylcholine bilayer
system. We can see two layers of hydrophilic head groups (with higher atom
density) connected to hydrophobic tails (lower atom density) are surrounded
by water molecules (red dots) that are almost uniformly distributed in space.

Note that all four methods need constant time to compute a
solution for two cells (In the fourth one, the distribution of the
distances can be derived offline). According to our experiments
(Section VI-B), they generate much less error than we expect
from the theoretical bounds given by Table III.

VI. EXPERIMENTAL RESULTS

We have implemented the algorithms using the C pro-
gramming language and tested it with various synthetic/real
datasets. The experiments are run in an Apple Mac Pro
workstation with two dual-core 2.66GHz Intel Xeon CPUs,
and 8GB of physical memory. The operating system is OS X
10.5 Leopard.

A. Exact SDH processing using DM-SDH

The main purpose of this experiment is to verify the time
complexity of DM-SDH. In Fig. 8, the running time of our
algorithm are plotted against the size of 2D experimental
datasets. Fig. 8a shows the results of using synthetic datasets
where the locations of individual atoms are distributed uni-
formly in the simulated space and Fig. 8b for those following a
Zipf distribution with order one, and Fig. 8c for data generated
from Pandit’s previous work to simulate a bilayer membrane
lipid system in NaCl and KCl solutions, as illustrated in Fig.
10. This dataset has 286000 atoms in it, we randomly choose
and duplicate atoms in this dataset to reach different total
number of atoms to make the experiments comparable to those
in Fig. 8a and 8b. Note that both the running time and data
size are plotted on logarithmic scales therefore the gradient of
the lines reflects the time complexity of the algorithms. In all
graphs, we show the results of a series of doubling N values
ranging from 100,000 to 6,400,000.3

3Each point in the graphs shows the result of one single run of DM-SDH as
the long running time under large N prohibits having multiple runs. However,
we did run multiple experiments with different random seeds for the cases of
smaller N and observed very little variances in running time.

For all three datasets, the brute-force approach (‘Dist’)
shows an exact quadratic running time (i.e., the gradient of the
line is 2). The other lines (with spots) represent experiments
using our algorithm under different bucket numbers. Clearly,
the running time of our algorithm grows less dramatically -
they all have a gradient of about 1.5. For comparisons, we draw
a dotted line in each graph with a slope of exactly 1.5. When
bucket size decreases, it takes more time to run our algorithm,
although the time complexity is still Θ(N1.5). The cases of
large bucket numbers (‘l = 256’) are worth some attention:
its running time is similar to that of the brute-force approach
when N is small. However, as N increases, the gradient of
the line changes to around 1.5. The reason for this is: when N
is small, we have a tree with very few levels; when the query
comes with a very small bucket size p, we end up starting
DM-SDH from the leaf level of the tree (recall Fig. 5) and
have to essentially calculate most or all distances. However,
the same query will get the chance to resolve more cells
when the tree becomes taller, as a result of larger N . Another
interesting discovery is that the actual running time for the
skewed data (Zipf) is always lower than the uniform data. This
can be seen by the relative positions of colored lines to the
‘T = O(N1.5)’ line. This gain of performance comes from the
larger number of empty cells on each density map when the
particles are clustered. This also confirms our argument that
skewed distribution does not affect the correctness of Theorem
2. The results of the real dataset are almost the same as those
for the uniform data.

We have similar results for 3D data (Fig. 9): the corre-
sponding lines for DM-SDH have slopes that are very close
to 5

3 , confirming our asymptotic analysis. Again, the cases for
large l values are worth more discussions. For ‘l = 64’, we
started to see the scenarios of ‘l = 256’ in the 2D case: the
running time grows quadratically till N becomes fairly large
(1,600,000) and then the line changes its slope to 5

3 . One thing
to notice is the slope of the last segment of ‘l = 64’ in Fig.
9b is almost 2. This does not mean the time complexity is
going back to quadratic. In fact, it has something to do with
the zigzag pattern of running time change in the Zipf data:
for three consecutive doubling N values (8-fold increase), the
running time increases by 2, 4, and 4 times, which still gives
a 2 × 4 × 4 = 32 fold increase in total running time (vs. a
64-fold increase in algorithms with quadratic time).

B. Approximate histogram processing

Figure 11 shows the results of running the approximate
algorithm. In these experiments, we set the programs to stop
after visiting m levels of density maps and distribute the
distances using the first three heuristics in Section V. We then
compare the approximate histogram with those generated by
regular DM-SDH. The error rate is calculated as

∑
i |hi −

h′
i|/

∑
i hi where for any bucket i, hi is the accurate count

and h′
i the count given by the approximate algorithm.

According to Fig. 11a, the running time does not change
with the increase of dataset size for m = 1, 2, 3. When m
is 4 or 5, the running time increases when N is small and
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Fig. 8. Running time of the SDH processing algorithms with 2D data.
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Fig. 9. Running time of the SDH processing algorithms with 3D data.

then stays as a constant afterwards. Note that the ‘unlimited’
case shows the results of the basic SDH algorithm. Again, this
is because the algorithm has less than 4 or 5 levels to visit
in a short tree resulted from small N values. In these cases,
our algorithm only saves the time to calculate the unresolved
distances. When N is large enough, running time no longer
changes with the increase of N .

We observe surprising results on the error rates (Fig. 11
c-d): all experiments have error rates under 3%, even for the
cases of m = 1! These are much lower than the error bounds
we get from Table III. The correctness achieved by heuristic
1 is significantly lower than those by heuristic 2 and 3, as
expected. The performance of the latter two are very similar

except in the case of m = 1 where heuristic 2 had error rates
around 0.5%. When m > 2, the error rate approaches zero
with the dataset becomes larger. Heuristic 3 achieves very low
error rates even in scenarios with small m values.

C. Discussions

At this point, we can conclude with confidence that the
DM-SDH algorithm has running time in conformity with our
analytical results. On the other hand, we also see that, in
processing exact SDHs, it shows advantages over the brute-
force approach only when N is large (especially when l is also
big). However, we would not call this a major limitation of
the algorithm as the SDH problem is less meaningful when N
is small (especially for large l). Its limitation, in our opinion,
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Fig. 11. Running time and correctness of the approximate SDH processing algorithm.

is that the time complexity, although superior to quadratic, is
still too high to compute SDH for reasonably large simulation
dataset. Fortunately, our approximate algorithm provides an
elegant practical solution to the problem. According to our
experiments, extremely low error rates can be obtained even
we only visit as few as three levels of density maps. Note that
for large N , the trees are very likely to have more than three
levels to explore even when l is large.

The potential of the approximate algorithm shown by cur-
rent experiments is very exciting. Our explanation for the
surprisingly low error rate is: in an individual operation to
distribute the distance counts heuristically, we could have
made a significant mistake by putting too many counts into a
bucket (e.g., bucket i in Fig. 7) than needed. But the effects of
this mistake could be canceled out by a subsequent mistake
where too few counts are put into bucket i. The error rate
is measured after the binning is done, thus reflecting the
net effects of all positive and negative mistakes. While more
experiments under different scenarios are obviously needed,
investigations from an analytical angle are more urgent. We
understand that the bound given by Table III is a loose bound.
The real error bound should be described as ε = ε1ε2 where
ε1 is the percentage given by Table III and ε2 is the error rate
created by the heuristic binning.

VII. RELATED WORK

Conventional (relational) database systems are designed
and optimized towards data and applications from the busi-
ness world. In recent years, the database community has
invested much efforts into constructing database systems
that are suitable for handling scientific data. The following
are well-known examples of such projects: the GenBank
(http://www.ncbi.nlm.nih.gov/Genbank) database for biologi-
cal sequences; the Sloan Digital Sky Survey [2] to explore
over 200 million astronomical objects in the sky; the QBISM
project [20] for querying and visualizing 3D medical images;
the BDBMS project [3] for handling annotation and prove-
nance of biological sequence data; and the PeriScope [5]

project for declarative queries against biological sequences.
The main challenges and possible solutions of scientific data
management are discussed in [1]. Traditionally, molecular
simulation data are stored in large files and queries are im-
plemented in standalone programs, as represented by popular
simulation/analytics packages [21]. The scientific community
has gradually moved towards using database systems for the
storage, retrieval, and analysis of large-scale simulation data,
as represented by the BioSimGrid [4] and SimDB [22] projects
developed for molecular simulations. However, such systems
are still in short of efficient query processing strategies. To
the best of our knowledge, the computation of SDH in such
software packages is done in a brute-force way.

Although the SDH problem has not been studied in the
database community, our work is deeply rooted in the phi-
losophy of using tree-based indexing for pruning the infor-
mation that is not needed. Quadtree has been a well-studied
data structure that has applications spanning databases, image
processing, GIS, and computer graphics [23] and has been a
topic for research till now: a recent work [24] showed some
performance advantages of Quadtree over R-tree in query
processing. Various metric trees [25], [26] are closely related
to our density map construction: in these structures, space is
partitioned into two subsets on each level of the tree. However,
the main difference between our work and these tree-based
strategies is: we consider the relative distance of cells to group
the distance between the data in the cells while they focus
more on searching based on a similarity measure.

In particle simulations, the computation of (gravita-
tional/electrostatic) force is of similar flavor to the SDH query.
Specifically, the force (or potential) is the sum of all pairwise
interactions in the system, thus requires O(N2) steps to
compute. The simulation community has adopted approximate
solutions represented by the Barnes-Hut algorithm that runs on
O(N log N) time [27] and the Multi-pole algorithm [28] with
linear running time. Although both algorithms use a Quad-tree-
like data structure to hold the data, they provide little insights
on how to solve the SDH problem. The main reason is that
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these strategies take advantage of two features of force: 1). for
any pairwise interaction, its contribution to the force decreases
dramatically when particle distance increases; 2). the effects of
symmetric interactions cancel out. However, neither features
are applicable to SDH computation, in which every pairwise
interaction counts and all are equally important.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we argue that the SDH query is critical in
analyzing particle simulation data. To improve the efficiency
of processing this query, we take advantage of the fact that
distance calculation can be processed in a batch instead of
individually. We build a data structure based on a point region
Quadtree to systematically solve this problem. Our analysis
shows that the time complexity of our basic algorithm beats
current solutions: it runs at Θ

(
N

2d−1
d

)
with d being the data

dimension number. An approximate algorithm derived from
our approach runs at constant time while giving surprisingly
low error rates. We believe our work has provided valuable
theoretical and practical insights on the problem such that
computing SDH in large simulations has become a reality.

Our work on this topic can be extended in multiple di-
rections. First, the approximate algorithm has shown great
potential. Based on the experimental results shown in this
paper, we strongly believe there is a tighter bound on the
level of errors. Sophisticated (statistical) models should be
generated to study this error bound. Second, we should explore
more space partitioning plans in building the Quadtree in
hope to find one with the “optimal” (or just better) cell
resolving percentage. Another topic that we did not pay much
attention to is the optimization targeting at the I/O costs. The
main issue is how to pack tree nodes into pages and what
prefetching strategy we can adopt to improve I/O performance.
Finally, our discussions totally ignored another dimension in
the data - time. Simulation data are essentially continuous
snapshots (called frames in simulation terminology) of the
simulated system. With large number of frames, processing
SDH separately for each frame will take intolerably long time
for any meaningful simulation dataset. Incremental solutions
need to be developed, taking advantage of the similarity
between neighboring frames.
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