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Abstract—Various types of two-body statistics (2-BS) are

regarded as essential components of data analysis in many

scientific and computing domains. Due to the quadratic time

complexity, use of modern parallel hardware has become an

obvious direction for research and practice in 2-BS computation.

This paper presents our recent work in designing and optimizing

parallel algorithms for 2-BS computation on Graphics Processing

Units (GPUs). First, we classify 2-body applications into three

groups based on their data output pattern. Then, we introduce a

straightforward parallel algorithm under the CUDA framework.

The unique architecture of modern GPUs, however, provides

abundant opportunities for optimizing the algorithm. To that end,

we split the algorithm into two stages: pairwise distance function

computation and writing output. Then, we present modifications

to the basic algorithm by integrating various techniques at each

stage. Since the architecture of modern GPUs is much more

complex than that of multi-core CPUs, traditional wisdom on

decomposing problems in a parallel platform is often insufficient

in developing GPU-based algorithms. Therefore, our algorithms

design focuses on effective use of hardware/software features

that are unique in GPU platforms. In addition to the various

programming cache and atomic operations, we also introduce

novel load balancing and register content sharing techniques.

We develop models to analyze such techniques and identify the

best ones for each type of 2-BS. Experiments run on modern

GPU hardware show that our GPU algorithms outperform the

best known CPU program by at least an order of magnitude in

various applications. Furthermore, our implementation achieves

very high level of GPU resource utilization, indicating near-

optimal performance. This work builds a solid foundation to-

wards realizing our vision of a framework that can automatically

generate optimized code for any new 2-BS problems.

I. INTRODUCTION

Various types of 2-body statistics are essential components
of data analysis in many scientific domains. Bearing many
forms and definitions, 2-body statistics as we refer to in this
paper, is a group of statistical measurements that evaluate all
pairs of datum among an N-point data set. There are numerous
examples of 2-body statistics [1]: 2-tuple problem [1], all-
point nearest-neighbor classification [1], nonparametric outlier
detection and denoising [1], kernel density regression [1],
relational joins [2], two-point angular correlation function [3],
2-point correlation function [1], Radial distribution function
(RDF) [4], and spatial distance histogram (SDH) [5] to name
a few. n this paper, we simply use the word “2-body statistics”
(2-BS) to cover all of them.

In general, a 2-BS can be computed by solving a function
between all pairs of datum. Such a function often demand
constant time to compute, and for convenience of presentation,
let us call them distance functions. The worse-case quadratic
time complexity can be a big obstacle to the successful
deployment of applications that depend on the computation
of such statistics. The first line of defense against this is
obviously better algorithms with lower complexity. For exam-
ple, our previous work used quad-tree and batching technique
to reduce complexity of SDH computing to O

�
N1.5

�
[5].

Similar techniques are proposed in [6]. On the other hand,
parallel computing techniques can be utilized to speed up the
computation in practice, and is the focus of our study reported
in this paper. In the context of 2-BS, parallel computing
techniques are extremely useful for two reasons: (1) particular
types of 2-BS lack efficient algorithms. For example, kernel
functions for Support Vector Machine (SVM) [7], Pairwise
comparison in various applications [8], [9] can only be solved
in quadratic time; (2) performance of more advanced algo-
rithms can be further improved via parallelization. Related
to the latter, it is interesting to see that such algorithms
share common computational primitives with the quadratic
algorithms therefore they can be put into the same parallel
computing framework. In fact, the vision of our work is to
develop such a framework for computing a large group of
problems that show similar data access and computational
features as those found in typical 2-BSs. In this framework,
we will implement core computational units that are found in
2-BSs and optimize them towards running on modern many-
core hardware systems. That said, the scope of this paper
is set to the various techniques to implement and optimize
the computational primitives needed for computing 2-BSs on
modern Graphics Processing Units (GPUs).

With massive computing power and high-speed memory,
GPUs have become a part of many high-performance com-
puting (HPC) systems. Originally designed for graphics pro-
cessing, the popularity of general-purpose computing on GPUs
(GPGPU) has boosted in recent years with the development of
software frameworks such as Compute unified device architec-
ture (CUDA) [10] and Open Computing Language (OpenCL)
[11]. Due to the compute-intensive nature of 2-BS problems
and the fact that the main body of computations can be done in
parallel for most 2-BSs, GPUs stand out as desirable platform



for implementing 2-BS algorithms.
GPU algorithms for several 2-BS problems have been

studied in the past few years. For example, Levine et al.
parallelized algorithm for solving a special form of RDF,
which utilizes constant memory for tiling input data [4].
Another paper briefly sketched techniques for speeding up
two-point angular correlation function computation [3]. In
addition to the surprisingly little attention paid to this topic,
existing work lacks a comprehensive study of the possible
techniques to achieve maximum performance on GPUs. This is
a non-trivial task because the architecture of modern GPUs is
much more complex than that of multi-core CPUs. As a result,
traditional wisdom on decomposing problems in a parallel
platform is often insufficient. Although the 2-BS problems we
consider share the same core computations, each 2-BS problem
however carries its own characteristics that calls for different
strategies in code optimization.

In this paper, we present a series of techniques to decompose
2-BS problems and methods for effective use of computing
resources on GPUs. We identify two phases in computing
typical 2-BS problems: a pairwise data processing phase
and result outputting phase. In the first phase, we focus on
tiling methods and use of different types of GPU cache to
reduce data access latency on global memory. For the output
phase, we focus on privatization and summation of output
to reduce race condition and use of atomic operations. A
major contribution of this work is that, our algorithms, while
following general parallel computing strategies, effectively use
hardware/software features that are unique in GPU platforms.
In addition to the various programming cache and atomic
operations, we also introduce novel load balancing and register
content sharing techniques. Extensive experiments show that
our GPU algorithms outperform the best known CPU program
by at least an order of magnitude in various applications.
Furthermore, our program achieves very high level of GPU
resource utilization, indicating near-optimal performance. This
work is a first step towards our long-term goal: to combine
these techniques into a framework that can automatically
generate optimized code for any new 2-BS problems.

This paper is organized as follows: in Section II, we review
work related to 2-BC problems; in Section III, we brief back-
ground of our study; in Section IV, we demonstrate techniques
to speed up pairwise computation and writing output on GPUs;
we conclude this paper in Section V.

II. RELATED WORK

There are many applications of 2-BS problems. In addition
to those mentioned in Section I, there are a lot of applications
that use various distance measures (e.g., Euclidean, Jaccard,
and cosine distance) to find the closeness of all pairs of
input datum. One important example is the recommendation
systems for online advertising that predicts the interest of
customers and suggests correct items. Jensen et al. reports a
music predictive model [12] based on pairwise comparisons of
Gaussion process priors between musics. There are two types
of recommendation systems: content-based filtering (CB) and

collaborative filtering (CF) [8], [9]. Both require 2-BS com-
putation: CB depends on pairwise comparisons between items
and CF on those between users.

There are a number of reports on lowering complexity of
2-BS problems. For example, the state-of-art SDH algorithm
works on particle counts in nodes of a tree-based structure
[5], [13], and reduces complexity to ✓(N3/2) for 2D data and
✓(N5/3) for 3D data. The basic idea is to conduct pairwise
comparisons of tree nodes (instead of individual particles).
Therefore, the core procedure of pairwise comparison as well
as the strategy to parallelize the algorithm remains the same.

The past few years witnessed a strong movement of using
GPGPU for solving scientific computing problems and numer-
ous reports on such are generated each year. However, to the
best of our knowledge, there are few reports on computing
2-BSs on GPUs. As a part of efforts to parallelize relational
joins, He et al. implemented a nested-loop join algorithm on
GPUs and reported a 7X speedup over CPUs [2]. Similar
results are presented in [14]. Levine et al. [4] studied GPU-
based processing of RDF, of which the main task is to compute
a histogram of all point-to-point distance. They used data pri-
vatization techniques to speed up the algorithm. More recently,
Stratton et al. sketched tiling and privatization techniques in
computing two-point angular correlation function [3], yet no
technical details are reported. Unlike the focus of individual
problems and techniques seen in above work, this paper is
about a comprehensive study of the multitude of techniques
that can be used for the development and optimization of GPU-
based 2-BS algorithms.

III. BACKGROUND

A. GPU Architecture and CUDA

In this section, we briefly introduce the architecture of mod-
ern GPUs. We use the latest generation of NVidia GPU product
as an example. We believe such information is essential in our
discussions of (parallel) algorithm design in the remainder of
this paper. Readers already familiar with GPU architecture can
skip this section.

A GPU contains many processing units (cores) for handling
complex graphics computing. A group of cores is organized
into a multiprocessor and a GPU can have up to 16 multipro-
cessors. A GPU contains a few GBs of global memory that
uses DDR5 technology. Host can transfer data to the global
memory via direct memory access (DMA) over PCI-E link.
Transferring data from global memory to multiprocessors is
much faster. Global memory can be accessed by different
multiprocessors simultaneously at a bandwidth up to 224
GB/sec [15]. Each multiprocessor also provides high-speed
programmable shared memory of size 96KB. The use of shared
memory is under full control of the programmer. There are also
the programmable read-only data cache in each multiprocessor
for holding data that cannot be overwritten during the lifespan
of the program, as well as the nonprogrammable L1 cache
(within each multiprocessor) and L2 cache (shared by all
multiprocessors).



On the software side, the CUDA programming model allows
a large number of threads to be launched to compute a function
(called kernel). The entire collection of threads (named grid)
are organized into groups (called blocks), therefore each thread
can be identified by a block ID and thread ID within the
block. In the CUDA runtime environment, all threads in a
block will be executed in the same multiprocessor. On the
other hand, one multiprocessor can execute multiple blocks.
However, only a small number of threads (called a warp) can
be executed at the same time. Each warp contains 32 threads
with consecutive thread IDs in recent NVidia products. In a
warp, each thread has its own registers, and the threads are
executed in a single-instruction-multiple-data (SIMD) manner.
Divergence is the situation when threads in the same warp have
different execution paths thus should be avoided if possible.

Over the years, GPU architectures from NVidia has evolved
through several generations: Fermi [16], Kepler [17] and
Maxwell [15]. Newer architectures provide more computing
resources. Moreover, along with the newer architectures, there
are also new functions and features in the CUDA framework.
For example, starting from Kepler, shuffle instructions can be
used to exchange data in registers among threads in the same
warp. Such new features encompass additional opportunities
for improving program efficiency.

B. Computing 2-body statistics in GPUs

A straightforward GPU algorithm for computing 2-BS is
shown as Algorithm 1. Note the pseudocode is written from the
perspective of a single thread, reflecting the Single-Program-
Multiple-Data (SPMD) programming style of CUDA. Each
thread loads one datum to a local variable, and uses that to
loop through the entire input dataset for the distance function
computation. The output will be updated with the results of
each distance function computation.

To optimize the above 2-BS algorithm, the main challenges
are in dealing with the input and output data, respectively.
First, each input datum will be read many times into register
for the distance function computation. Therefore, the strategy
is to push the input data into the cache as much as we
can. The many types of cache in GPUs, however, impose
challenges in program development. Second, every thread
needs to read and update the output data at the same time.
Updating the output data simultaneously might cause incorrect
results. Some work have proposed strategies to avoid race
condition in multiprocessor [18]. However, their method is
limited by the number of threads and number of bins in
the histogram, because each thread needs to have a private
output in shared memory. Recent versions of CUDA provide
atomic instructions to ensure correctness under race condition.
However, an atomic instruction also means sequential access
to the protected data thus lowers performance. As a result, the
strategy to update output data is still important. We need to
avoid update collision as much as possible.

First, there is a need to characterize the multitude of 2-
BS cases based on the computational paths. This helps us
determine the proper combination of techniques we use for

Algorithm 1: Generic GPU-based 2-BS algorithm
Local Var: t (Thread id)

1: currentPt  input[t]
2: for i = t + 1 to N do

3: d  DisFunction(currentPt, input[i])
4: update output with d
5: end for

optimizing individual 2-BS problems. We found that the 2-
BS we studied are very similar at the point-to-point distance
function computation stage. However, members of the 2-BS
family tend to have very different patterns in the data output
stage. We have identified three groups of 2-BSs based on
the output pattern, and will introduce different techniques in
dealing with these types in the following sections.

Type-I: members of this group generate a very small amount
of output data from each thread. These output must be small
enough to be placed in registers for each thread. For exam-
ple, 2-point correlation function [1], which is fundamental
in astrophysics and biology, outputs a number of pairs of
points that determine correlation in dataset. Other examples
are all-point k-nearest neighbors (when k is small) and Kernel
density/regression [1], which output classification results or
approximation numbers from regression.

Type-II: the output in this group cannot be placed in
registers but are still small enough to be put into GPUs’ shared
memory. Examples include: (1) Spatial distance histogram
(SDH) [5], which outputs a histogram of distances between
all pairs of points; (2) Radial distribution function (RDF) [4],
which outputs a normalized form of SDH.

Type-III: in this group, the size of the output can be large so
they can only be put into global memory. In extreme cases, the
size of the output is quadratic to the size of input. Some ex-
amples are: (1) relational join [2], which outputs concatenated
tuples from two tables - total number of output tuples can be
quadratic (especially in non-equality joins) ; (2) Pairwise Sta-
tistical Significance [19], which computes pairwise alignment
between two datasets and generates quadratic output; and (3)
Kernel methods which compute kernel functions for all pairs
of data in the feature space [7].

IV. GPU ALGORITHM DESIGN AND IMPLEMENTATION

A. Algorithms for Pairwise Computation Stage

We first present design strategies in the pairwise distance
function computation stage. First of all, the input data is
stored in the form of multiple arrays of single-dimension
values instead of using an array of structures that each holds
a multi-dimensional data point. This will ensure coalesced
memory access when loading the input data. Note that the
naive algorithm loads one input (i.e., tmpPt in Algorithm 1)
to the distance function from the global memory, and there are
O
�
N2

�
total distance function calls. Due to the high latency

(i.e., about 350 cycles [20], [21]) of data transferring between
the global memory and cores, our goal is to reduce the number



TABLE I
SYMBOLS AND NOTATIONS

Symbol Meaning
C

GAtomic

latency of using Atomic operation in Global memory
C

GW

latency of writing to Global memory
C

GR

latency of Reading to Global memory
C

ShmAtomic

latency of using Atomic operation in Shared memory
C

ShmW

latency of Writing to Shared memory
C

ShmR

latency of Reading to Shared memory
H

S

Histogram Size or Output Size
N Number of input datum
B Block size
M Number of blocks

of data reads from global memory. In particular, we use the
well-known tiling method [22] to load data from the global
memory to on-chip cache. Whenever two data points are used
as inputs to the distance function, they are retrieved from cache
instead of the global memory. Symbols and notations used
throughout this paper are listed in Table I.

Fig. 1 illustrates the tiling method. We divide input data
into small blocks, and the size of a block ensures it can be
put into cache (we will discuss scenarios of loading to different
types of cache later). Normally, the data block size is the
same as the number of threads in each CUDA block. Each
thread loads one datum into the cache to ensure coalesced
access to the global memory. With blocks of data loaded to
cache, the main operation of the algorithm is now to compute
distance function between two different blocks of data (inter-
block computation). Algorithm 2 shows the pseudo code of
the tiling-based algorithm. Basically, each thread block first
loads an anchor block L, and then loads a series of other
blocks R. Specifically, all data blocks with an index higher
than that of the current thread block will be loaded one by
one as R (line 1). For each R loaded, distance function will be
computed between the thread’s datum (L[t]) and every datum
in R. Note that both inputs to the distance function is read
from data blocks that are cached. Obviously, the number of
thread blocks we launch should be the same as the data blocks
in the entire input data array. In other words, we have

M = N
B (1)

One other thing is that, each block of threads needs to compute
distance functions between all pairs of datum inside the anchor
block L (lines 9 to 12 in Algorithm 2). Only through this we
can achieve the computation of all pairwise distance functions
in the entire dataset. In particular, each thread compares its
own datum with every other datum with higher index than its
own thread ID (line 9).

To implement the above algorithm, an important decision
to make is: which cache do we use to hold block L and block
R? There is no straightforward answer due to the multiple
cache systems in the NVidia GPUs. By ignoring the non-
programmable L2 cache, we still have the programmable
shared memory and read-only data cache, both have TBps-
level bandwidth and response time of just a few clock cycles

...Input Data

Intra-block
Computaion

Inter-block
Computation

Block L Block R

Global Memoy

CacheCache

Fig. 1. Tiling method requires loading data in blocks

Algorithm 2: Block-based 2-BS computation
Local Var: t (Thread id), b (Block id)
Global Var: B (Block size), M (total number of blocks)

1: L  the b-th input data block loaded to cache
2: for i = b + 1 to M do

3: R  the i-th input data block loaded to cache
4: for j = 0 to B do

5: d  DisFunction(L[t], R[j])
6: update output with d
7: end for

8: end for

9: for i = t + 1 to B do

10: d  DisFunction(L[t], L[i])
11: update output with d
12: end for

[20], [21]. According to [20], shared memory has the lowest
latency in GPUs (i.e., 28 clock cycles). It is natural for us to
use shared memory to hold both blocks L and R, and this can
be viewed as a starting point for our discussions.

By taking a closer look at Algorithm 2, we found that
each datum will have to be placed into a register before it
can be accessed by the distance function anyway. And each
thread only accesses a particular datum throughout its lifetime.
Therefore, it makes little sense to store L in shared memory
first – we are better off by defining a local variable for each
data member of block L. By using the register modifier in
CUDA, such a variable will be stored and accessed in registers.
This will reduce the consumption of shared memory in each
thread – shared memory is a bottlenecking resource when
we consider large data output (Section IV-C). Plus, latency
of accessing registers is just one clock cycle [22]. Note that
the same argument does not hold true for block R: all data in
block R is meant to be accessed by all threads in the block but
a register is private to each thread. Therefore, we have to load
R into cache. Given that, we introduce the second technique
which optimizes the first technique by using registers to hold
one datum from block L, and allocating shared memory to hold
block R. The program also needs another change to handle the
intra-block distance computation (lines 9 to 12 in Algorithm
2): such computation requires threads to have access all data
in block L. For that, we now have to load block L to shared
memory before we run the last for loop. But the trick we play
here is: instead of asking for a new chunk of shared memory



Algorithm 3: Block-based 2-BS with optimized input
tiling and output

Local Var: t (Thread id), b (Block id)
Global Var: B (Block size), M (total number of blocks)

1: SHMOut  Initialize shared memory to zero
2: reg  the t-th datum of b-th input data block
3: for i = b + 1 to M do

4: R  the i-th input data block loaded to cache
5: for j = 0 to B do

6: d  DisFunction(reg, R[j])
7: SHMOut[d]  SHMOut[d] + 1
8: end for

9: end for

10: L  the b-th input data block to overwrite R’s cache
location

11: for i = t + 1 to B do

12: d  DisFunction(reg, L[i])
13: SHMOut[d]  SHMOut[d] + 1
14: end for

15: Output[b][t]  SHMOut[t]

for L, we overwrite the space we just used for block R. By
that, the total shared memory used is still one block. Details
of such optimizations can be found in Algorithm 3.

We also explore another solution that further relieves the
bottleneck of shared memory. Although this solution may not
yield higher performance in the distance computation stage,
it is meaningful if we have to use shared memory for other
demanding operations in the output stage (Section IV-C).
This solution basically does not change the code structure
of the second solution (with use of registers). However, we
use the read-only data cache (also named texture memory)
instead of shared memory to store blocks R (for inter-block
computation) and L (for intra-block computation). Read-only
data cache has higher latency than the shared memory [20]
(i.e., about 64 clock cycles higher) but it is still an order of
magnitude faster than global memory. As a side note about
implementation, read-only cache is not fully programmable as
the shared memory, but we can use the “const restrict ”
keyword combination before a variable to ask CUDA runtime
framework to store the variable into the read-only data cache.

B. Evaluation of Pairwise Algorithms

In this section, we present results of analytical and empirical
evaluation of the performance of algorithms mentioned above.
In particular, we evaluate: (1) SHM-SHM: caching both blocks
L and R in shared memory; (2) Register-SHM: caching one
datum in register and block R in shared memory; (3) Register-
ROC: placing one datum in register and block R in read-only
cache; and we also compare with (4) Naive: generic GPU-
Based 2-BS algorithm as shown in Algorithm 1.

Analytical Evaluation: In order to robustly compare the
performance of proposed algorithms, we present an analytical
model of the number of accesses to different types of GPU

memories during the execution of these algorithms. Rigorous
studies [20], [21] have shown the access latency of global
memory, read-only data cache (ROC) and shared memory
are 350, 92, and 28 clock cycles, respectively. Moreover,
the bandwidth of shared memory is much larger than others
(3TB/s vs. 1TB/s for the ROC). The Naive algorithm does not
benefit from shared memory and ROC, and just uses global
memory. The number of accesses to global memory for this
algorithm is:

N +
P

N�1
i=1 (N � i) (2)

Since each access costs 350 clock cycles, this algorithm is very
costly. However, other improved algorithms take advantage of
faster cache and yields better performance. SHM-SHM and
Register-SHM both use shared memory plus global memory,
and Register-ROC uses data cache and global memory. These
three mentioned algorithms have the same number of accesses
to global memory, which equals to:

N +
P

M�1
i=1 (M � i)B (3)

Having the same number of accesses to global memory,
we should consider other memory accesses for the sake of
comparison. In SHM-SHM algorithm, number of accesses to
shared memory is:

2
P

M�1
i=1 (M � i)B2 + 2

P
B�1
i=1 (B � i)M (4)

In Register-SHM, number of accesses to shared memory is:
P

M�1
i=1 (M � i)B2 +

P
B�1
i=1 (B � i)M (5)

Considering the number of accesses to shared memory by
SHM-SHM and Register-SHM, it is obvious that Register-
SHM cuts the number of accesses quite considerably, dropping
by half, that is why it is faster than SHM-SHM. On the
other hand, Register-ROC exploits data cache instead of shared
memory and the number of accesses to this memory is the
same as the number of accesses of Register-SHM to share
memory. Considering the much higher latency and smaller
bandwidth of ROC compared to shared memory, it’s clear that
Register-SHM outperforms the other.

Empirical Evaluation: We implemented all four algorithms
in CUDA and experimented using synthetic data with different
sizes. In particular, we implemented CUDA kernels to compute
a Type-I 2-BS: the 2-point correlation function (2-PCF). The 2-
PCF requires computation of all pairwise Euclidean distances
and the output is of very small size: one scalar describing the
number of points within a radius. We see 2-PCF as a good
example here because the work is almost exclusively on the
distance computation. We run our experiments in a workstation
running Linux (Ubuntu 14.04 LTS) with an Intel Xeon E5-
2640 v2 CPU, 64GB of DDR3 1333-MHz memory and an
Nvidia Titan X GPU with 12GB of global memory. This
workstation is also the platform we use for other experiments
reported throughout this paper.

Our input data has size ranging from 512 to 2 million par-
ticles. Particle coordinates are generated following a uniform
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Fig. 2. Performance of different GPU-based algorithms for computing 2-PCF:
total running time and speedup over naive algorithm

TABLE II
UTILIZATION OF DIFFERENT GPU RESOURCES IN RUNNING DIFFERENT
2-PCF KERNELS. MEMORY TYPES NOT SHOWN HERE ARE WITH VERY

LOW UTILIZATION

Kernel Arithmetic Control-flow Memory
Operation Operation

Naive 15% 3% 76% (L2 Cache)
SHM-SHM 50% 7% 35% (Shared Memory)
Reg-SHM 52% 11% 35% (Shared Memory)
Reg-ROC 24% 10% 65% (Data cache)

distribution in a region. For kernel parameters, we set the total
number of threads as the data size and the value of threads per
block to 1024, which is derived from an optimization model
developed in our previous work [23] – that model guarantees
best kernel performance among all possible parameters.

Figure 2 shows the total running time of each experimental
run. We first observe that the running time grows with data
size in a quadratic manner – this is consistent with the O(N2)
complexity of such algorithms. Among all tested parallel
algorithms, the Register-SHM kernel has the best performance
under all data sizes – it achieves an average speedup of 5.5X
(max. speedup of 6X) over the naive algorithm. The SHM-
SHM kernel shows similar results, with an average speedup
of 5.3X (max. speedup is also 6X). For data size 800K
and beyond, Register-SHM consistently shows better perfor-
mance than SHM-SHM, although with a narrow margin. The
Register-ROC kernel shows the least improvement over naive
algorithm, with an average speedup of 4.7X and maximum
speedup of 5X. The above results are clearly in conformity
with our understanding of the proposed caching solutions.

To evaluate the level of optimization we achieved in our
solutions, we looked into the resource utilizations in the GPU
while running our kernels. Normally, the bottleneck is on
the memory bandwidth in processing 2-BSs such as the 2-
PCF, due to the simple calculations in the distance function.
If we feed the cores with sufficient data, the cores show a
high utilization, and that is a good indication that the code
is highly optimized. Another way to look at this is: since the
total number of distance function calls is the same for all
solutions, the less idling time the cores experience, the better
performance the algorithm has. Information related to resource

utilization can be obtained by running the program through the
NVidia visual profiler, a tool for analyzing runtime character-
istics of CUDA kernels. Table II shows utilization of different
hardware units as recorded by the profiler. Clearly, the three
cache-based techniques significantly increases utilization of
compute core resources as compared to naive algorithm. The
Register-SHM and SHM-SHM kernels both achieve over 50%
utilization of arithmetic units. This is achieved at around 35%
of shared memory bandwidth utilization. While the shared
memory has a utilization of 35%, it is by no means saturated.
Thus, as the profiler suggests, both kernels are compute bound.
The Register-ROC kernel achieves a 24% arithmetic unit
utilization, verifying the result that its performance is not as
good as the other two. Without a surprise, it reaches a high
utilization (65%) of read-only cache bandwidth.

C. Data Output Stage

In this section, we present techniques to efficiently output
the results from GPUs in 2-BS computing. Depending on
the features of data output, the design strategy on this stage
can be different for various 2-BSs. The simplest type is
that each thread omits a very small amount of output (e.g.,
Type-I 2-BS) – we simply use local variable(s) to store an
active copy of the output data in registers, and transmit such
data back to host when kernel exits. For problems with very
large output size (e.g., Type-III 2-BSs), we have to output
results directly to global memory. The main problem for using
global memory for output is the race condition caused by
different threads’ writing into the same memory location – a
gather operation in parallel computing terminology. To avoid
incorrect results caused by race condition, atomic instructions
are used in GPUs to have protected access to (global) memory
locations. In CUDA, such protected memory location is not
cached and obviously cannot be accessed in a parallel way.
Therefore, it renders very high performance penalty to use
atomic instructions.

We adopt a privatization technique to reduce race condition.
In particular, we store private copies of the output data to be
used by a subset of the threads in the shared memory. This
solution is suitable for Type-II 2-BS problems as the latter do
not require large space for output. The read-only data cache
cannot be used here since it cannot be overwritten during the
lifespan of the kernel. That leaves the shared memory the only
choice. By this design, the data output is done in two stages:
(1) whenever the distance function generates a new distance
value, it is used to update the corresponding location of the
private output data structure via an atomic write. Although
this still involves an atomic operation, the high bandwidth
of shared memory ensures minimum overhead; (2) when all
distance functions are computed, the multiple private copies
of the output array are combined to generate the final output
(Figure 3). Here we assume the final output can be generated
via a parallel reduction algorithm such as the one presented in
[24]. Algorithm 3 shows details of the privatization technique.

As an implementation detail, we use one private copy of
the output for each thread block. Thus, the threads in the
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same block can “simultaneously” update the private output
data via atomic operations. By this, the race condition only
happens within a thread block, and as we mentioned before,
the bandwidth of the shared memory can effectively hide the
overhead. We tested more private copies per block and found
that it does not bring overall performance advantage (data
not shown). In the output reduction phase, private outputs on
shared memory are first copied (in parallel) to global memory,
which is in global scope and can be accessed by other kernels.
Then a reduction kernel is launched to combine the results
into a final version of output array. This kernel is configured
to have one thread handle one element in the output array.

D. Evaluation of Complete Algorithms

To evaluate the algorithm with optimized pairwise distance
computation and outputting stage, we first present an analytical
model of the number accesses to different types of GPU
memories during the writing output stage. The cost of access-
ing global memory for writing output in naive algorithm is
N2C

GAtomic

. As we know that the latency of accessing global
memory C

GAtomic

is high (i.e., over 350 cycle in Maxwell
[20]), the naive algorithm is bottlenecked by writing output.
On the other hand, our writing output can reduce access time
to global memory. There are two stages in output writing. In
update stage, the cost of (shared) memory access is:

P
M

i=1(N +B � i)C
ShmAtomic

(6)

In the reduction stage, the cost of memory access is:

H
s

[M(C
GW

+ C
ShmR

+ C
GR

) + C
GW

] (7)

Considering the number of accesses to global memory by
our outputting technique, it is obvious that number of accesses
to global memory drops significantly from naive algorithm:
it decreases from N2 to H

s

[2M + 1]. Moreover, global
memory accesses in the reduction stage are done without
atomic instruction. In addition, the major activities of writing
output is in shared memory with atomic operation that is of
low access cost. Putting together, our method of writing output
will significantly outperform the naive algorithm.
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Fig. 4. Performance of different GPU-based algorithms for computing SDH:
total running time and speedup over CPU algorithm

For empirical evaluation, we use the Spatial Distance His-
togram (SDH) as an example for implementing our algorithms.
Classified as a Type-II 2-BS, the SDH is a problem similar
to 2-PCF except in the output stage. In particular, SDH also
requires computing all pairwise Euclidean distances, but it
outputs a histogram that shows the distribution of all distances
computed. The output size (i.e., number of buckets) of SDH
is not related to the data size N , but it normally comes at the
level of tens of kilobytes therefore can be placed in shared
memory.

In this set of experiments, we compare six kernel functions:
the first three are algorithms we studied in Section IV:
Naive, Register-SHM, and Register-ROC. The output stage
of those three algorithms is handled in the straightforward
way: we directly output to a shared output data structure
in global memory via atomic operations. The next set of
three algorithms, named Naive-Out, Reg-SHM-Out, and Reg-
ROC-Out, are based on the above three but we optimize the
output stage with the privatization technique. In addition, we
also compare the above algorithms with a CPU-based parallel
algorithm to study the overall advantage of running 2-BS
on GPUs vs. multi-core CPUs. We again generate uniformly
distributed datasets with a size ranging from 512 to 2 million.
Other aspects of the experimental setup are the same as those
described in Section IV-B.

Design and Implementation of CPU-based Algorithm:

We implement a highly-optimized algorithm for computing
SDH in multi-core CPUs using OpenMP in C. Optimizations
applied to the CPU version are summarized as follows. First,
we optimize output stage to reduce the effects of atomic
operations. In particular, every thread is given an indepen-
dent copy of the output histogram and parallel reduction
is conducted after all distance function calls are returned.
Second, we compare the effects of OpenMP thread affinity
schedulers and choose the one most beneficial to overall
performance. OpenMP supports three methods of assigning
threads to cores: scatter, compact, and balanced. Among these
methods, balanced shows the best performance in our code
and is selected as our thread affinity scheduler. Third, parallel
loops can be executed in different scheduling modes. Available
mode in OpenMP are: static, dynamic, and guided. Selecting a



TABLE III
ACHIEVED BANDWIDTH OF DIFFERENT MEMORY UNITS IN RUNNING

DIFFERENT SDH KERNELS

Kernel Shared L2 Data cache Global
Memory Cache Load

Naive 0 B/s 270 GB/s 32 GB/s 104 GB/s
Naive-Out 1.66 TB/s 437 GB/s 138 GB/s 563 GB/s

Reg-SHM-Out 2.86 TB/s 10 GB/s 3 GB/s 10 GB/s
Reg-ROC-Out 2.59 TB/s 55 GB/s 267 GB/s 68 GB/s

TABLE IV
UTILIZATION OF DIFFERENT GPU RESOURCES IN RUNNING DIFFERENT

SDH KERNELS

Kernel Arithmetic Control-flow Memory
Operation Operation

Naive 5% N/A Max (L2)
Naive-Out 23% 5% Max (L2)

Reg-SHM-Out 25% 5% 95.33% (SHM)

Reg-ROC-Out 20% 5% 86.33% (SHM)
26.71% (ROC)

scheduling mode is usually a trade-off between overhead and
load imbalance. We studied the effects of different schedulers
and chose guided as the best one for our algorithm. Other
optimizations such as algebraic elimination of costly instruc-
tions and enabling aggressive compiler optimizations are also
applied to the CPU code. In summary, we believe our CPU
code is of very high (if not optimal) performance.

Experimental Results: Figure 4 shows the running time
of the aforementioned kernels. First of all, we found that
the three kernels without the output privatization technique
run at almost at the same speed. Therefore, we just plot
one of the three (i.e, Register-SHM) in Figure 4. The total
running time of such kernels is about one order of magnitude
longer than the ones with output privatization technique. This
clearly shows how much performance penalty can be generated
by atomic operations against a global memory location. The
Visual Profiler shows that performance of this kernel is limited
by memory bandwidth instead of compute unit. On the other
hand, applying output privatization can significantly improve
the speed of kernels, as shown by the short running time of the
three output-optimized kernels. The Reg-ROC-Out kernel, by
using the ROC for pariwise computation and shared memory
for output caching, combines the power of both cache systems
and therefore shows the best performance. Specifically, Reg-
ROC-Out is about 11 times as fast as Register-SHM.

Further profiling of the involved kernels support discussions
made above. Table III shows the achieved bandwidth in differ-
ent GPU cache systems by the tested kernels. It basically says
that shared memory is the limiting factor of the three output-
optimized kernels. Among them, Reg-ROC-Out achieved very
high bandwidth utilization in both shared memory (2.59TB/s,
which is 86.33% utilization) and read-only cache (267GB/s,
26.71% utilization), leading to the best kernel performance.
The other two kernels, Reg-SHM-Out and Naive-Out, have
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lower utilization in either shared memory or ROC. All GPU
kernels beat the CPU program running on a 8-core Intel Xeon
CPU, showing GPUs being a superior platform for computing
2-BSs. The best GPU program (i.e., Reg-ROC-Out) is about
50 times as fast as the CPU program. Even the least optimized
Reg-SHM kernel is about 3.5 times as fast as the CPU code.

We also study the effects of output size on the performance
of the output-optimized kernels. Figure 5 shows such results
of the Reg-ROC-Out kernel in computing the SDH of a dataset
with 512,000 data points. The general trend is: when output
size (i.e., total number of buckets in the output histogram)
increases, the running time also increases. Note that the
running time increases as a step function of output size. This is
because the output size affects the performance via changing
the occupancy (i.e., number of threads running concurrently
in hardware) of the kernel. Figure 5 shows that occupancy
decreases when the output size increases. Interestingly, the
kernel also shows degraded performance when the output size
is too small. This shows the other side of the story: when
an output has too few elements, it will suffer from high
contention: the many threads in the block always compete for
accessing an output element via the atomic operations.

E. Additional Techniques

In this section, we introduce two additional techniques that
could help boost the performance of 2-BS programs.

1) Load balancing technique: Code divergence is the situ-
ation when different threads taking different execution paths
in an SIMD architecture. As a result, such threads will be
executed in a sequential manner and that leads to performance
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penalties. In CUDA, since the basic scheduling unit is a
warp (of 32 threads), only divergence within a warp will
be an issue. By looking at Algorithm 2, it is not hard to
see that the kernel will only suffer from divergence in the
intra-block distance function computation (line 9 to 12 in
Algorithm 2). This is because each thread goes through a
different number of iterations (Figure 6). Here we introduce
a load balancing method to eliminate divergence from the
intra block computation. As we mentioned before, divergence
occurs because the workload on each thread is different. Our
technique thus enforces each thread to compute the same
amount of work, i.e., half of block size. Previously, for a thread
with index i in a block (thus i 2 [0, B� 1]), the total number
of datum it pairs with is B�1� i, meaning every thread has a
different number of datum to process. This leads to divergence
everywhere. With the load balancing technique, we let each
thread pair with B/2 datum. In particular, at iteration j, the
thread with index i pairs with datum with index (i + j)%B.
Figure 6 illustrates the main idea. Note that in the last iteration,
only the lower half of all threads in a block need to compute
output. This does not cause a divergence as the block size is
a multiple of warp size.

We also conduct some experiments to evaluate the load
balancing technique. In such experiments, we only record the
time for processing intra-block distance function computations
in processing the SDH. We implement the load balancing
technique on top of the tiling-based kernel Register-SHM,
which is shown to be the most efficient solution in Section
IV-B. We compare the running time of kernel before and after
applying the technique, and Figure 7 shows such results – a
12%-13% improvement can be seen.

2) Tiling with Shuffle instruction: As seen in Section IV-A,
tiling via shared memory or read-only cache is the key tech-
nique to improve kernel performance. However, under some
circumstances, both the shared memory and read-only cache
may not be available for the use of 2-BS kernels. For example,
they could be used for other concurrent kernels as a part of
a complex application. In this section, we present another
technique that relieves the dependency on cache. Note that
register content is generally regarded as private information to
individual threads. However, the shuffle instruction introduced

Algorithm 4: Block-based 2-BS with shuffle instruction
Local Var: t (Thread id), b (Block id)
Global Var: B (Block size), M (# of blocks), w (warp size)

1: reg0  the t-th datum of b-th input data block loaded
2: for i = b + 1 to M do

3: for j = t%w to B; j+=w do

4: reg1  the j-th datum of i-th input data block
loaded to register

5: for k = 0 to wsize do

6: regtmp  shuffle broadcast of reg1 from the
k-th thread

7: d  DisFunction(reg0, RegTmp)
8: update output with d
9: end for

10: end for

11: end for

Thread id

reg1

0 1 2 3 4 65 7

32 33 34 35 36 3837 39

regtmp

Interation

Shuffle Broadcast from tid 0

Shuffle Broadcast from tid 1

Shuffle Broadcast from tid 2

regtmp

regtmp
.
.
.

reg0 0 1 2 3 4 65 7

32 32 32 32 32 3232 32
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34 34 34 34 34 3434 34

Fig. 8. Tiling with shuffle instruction technique

in recent versions of CUDA allows sharing of register content
among all threads in the same warp (not in the same block). By
that, we optimize Algorithm 3 by using shuffle instructions.
Algorithm 4 shows the pseudo code. We allocate three registers
to store input data. Reg0 (line 1) is used to store datum from
L which is the same as algorithm 3; Reg1 (line 4) is used
to store datum from R and changes after every 32 iterations;
Regtmp (line 6) is a temporary variable, which updates every
iteration with shuffle instruction. Figure 8 shows tiling with
shuffle instruction method. We let each thread load a datum
to a register (line 4). Then, in each iteration, shuffle broadcast
instruction is used to load data from other thread’s registers
(line 6) to regtmp. After regtmp value is loaded, Then reg0
and regtmp are used to calculate distance (line 7). As can be
seen, this tilling method is required only two more register
and dosen’t require shared memory or read-only cache.

We also evaluate our technique by implementing it in
the algorithm for computing SDH. We conduct experiments
similar to those mentioned in Section IV-C. We compare the
shuffle instruction with tiling via shared memory and tiling
via read-only data cache. Figure 9 shows some results of the
experiments. Clearly, tiling with shuffle instruction has almost
the same performance as tiling with read-only cache and tiling
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with shared memory kernel. This shows that the technique
based on shuffle instruction can be an alternative method when
shared memory and read only cache are not available, and we
expect the algorithm to show the same level of performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study parallel algorithms for processing
2-BS by exploiting the high computing power of GPUs.
First, we introduce a straightforward parallel algorithm under
the CUDA framework. Then, we split it into two stages:
pairwise computation and writing output. In order to increase
the performance, we present modifications to the algorithm
by integrating various techniques in each stage. In pairwise
computation stage, we optimize the algorithm by applying
blocking and tiling data into multiprocessor using different
data paths, shared memory, read-only data cache, and register.
We evaluate this stage by 2-PCF problem. The results show
that tiling via shared memory and register outperforms other
techniques for this type of problems (i.e., type-I of 2-BS).
Considering writing output stage, we utilize on-chip shared
memory to privatize output and use parallel reduction method
to combine each private output. We evaluate this strategy by
implementing it on the SDH algorithm. We also found that
tiling via data cache can significantly improve speed of the
applications in type-II 2-BSs. To further improve the efficiency
of the algorithm, we also introduce load balancing and tilling
techniques with shuffle instructions.

In the near future, we plan to work on techniques that can
improve the efficiency of type-III 2-BSs on GPUs. Moreover,
future study should focus on developing the envisioned frame-
work that automatically applies different techniques presented
in this paper to a larger group of 2-BSs. The analytical
model can be refined to provide accurate prediction of kernel
running time by considering more environmental and kernel
features. Our work can also be extended to a multi-GPU
environment or even cluster-level optimization to handle very
large input/output data in 2-BS computation.
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