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Change Point Estimation of Bilevel Functions 
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Reconstruction of a bilevel function such as a bar code signal in a partially blind deconvolution problem 
is an important task in industrial processes. Existing methods are based on either the local approach or the 
regularization approach with a total variation penalty. This article reformulated the problem explicitly in 
terms of change points of the 0-1 step function. The bilevel function is then reconstructed by solving the 
nonlinear least squares problem subject to linear inequality constraints, with starting values provided by 
the local extremas of the derivative of the convolved signal from discrete noisy data. Simulation results 
show a considerable improvement of the quality of the bilevel function using the proposed hybrid 
approach over the local approach. The hybrid approach extends the workable range of the standard 
deviation of the Gaussian kernel significantly. 
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Introduction 

 
Reconstruction of bilevel functions has 
important practical applications in modern life. 
A particular example of bilevel functions is the 
bar code signal. The ubiquitous alternating black 
and white strips (the bar code) are now widely 
used in every day life and industrial processes.  

The problem of recovering a bar code 
signal f(t) from the noisy signal y(t) detected by 
a bar code scanner (Esedoglu, 2004, 
Shellhammer, Goren, & Pavlidis, 1999) is to 
construct a one-dimensional 0-1step function f(t) 
given the samples yi = y(ti), i = 1, ..., M, of the 
continuous-time observation 
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where α > 0 is the unknown amplitude, the ε (t) 
is the additive unobservable noise process and 
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and G(t) is a Gaussian kernel of the convolution: 
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where σ > 0 is the unknown standard deviation 
which increases as the scanner moves away from 
the bar code. According to Wittman, (2004), 
the σ2  is assumed to be smaller than the width 
of the thinnest (WTB) bar. The approach 
proposed in this article can extend this range. 
The simulation result in section V shows that f(t) 
can still be reconstructed even σ2  is as large as 
1.4 times the WTB at high signal to noise ratio 
level. Figure 1 illustrates the results of the 
convolution with additive noise for a UPC bar 
code (Wittman, 2004) encoding 0123456789.    

Without using the special characteristics 
of a bar code signal, f(t) in model (1) is treated 
as a bilevel function with levels 0 or 1. Thus, the 
goal is to reconstruct the bilevel function f(t) 
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from the noisy discrete data y = (y1, …, yM)T. 
This problem differs slightly from standard 
restoration problems of image processing in that 
the convolution kernel contains unknown 
quantities. It is a partially blind deconvolution 
problem somewhat closer to blind 
deconvolution.   
 
Previous Work and Current Approach 
 Previous work on the bar code 
reconstruction problem (Wittman, 2004) is 
based on the following: 
 
(a) local approach: finding local minima and 

maxima in the derivative of   
 
                      ).()( tfGts ∗⋅= α                    (2) 

 
Note the above is the noise-free version of 

model (1); 
 

(b) global approach: regularization methods for 
ill-posed inverse problems such as total 
variation based restoration (Esedoglu, 2004). 
 

The approach (a) tries to relate the local 
minima and maxima in s'(t) to the edges of bars 
which are the change points in f(t). Locating 
these local extremas is sensitive to noise ε (t). 
Furthermore, these local extrema are difficult to 
relate to the true change points of f(t) due to 
convolution distortion (Shellhammer, Goren, & 
Pavlidis, 1999). Such techniques use only local 
information and would have difficulty to detect 
thin bars closely adjacent to each other. For 
example, in Figure 1, the s(t)  is near flat around 
location 0.55 even though three adjacent thin 
bars stand there.  

To overcome these shortcomings, 
approach (b) in Esedoglu (2004) tried to recover 
f(t) by regularization using the total variation 
penalty, a technique commonly used in image 
restoration literature. It models systematically 
the interaction of neighboring bars in f(t) under 
convolution with G(t), as well as the estimation 
of α and σ from global information contained in 
the y(t). It is proved in Esedoglu (2004) that 
under certain regularity conditions, the infimum 
of the total-variation energy is attained. 

Numerical results show that bar codes from 
highly degraded signals can be recovered.   

The regularization approach in inverse 
problems must deal with the choice of the 
regularization parameter, a difficult problem 
itself. In Esedoglu (2004), there are two 
regularization parameters which need to be 
chosen. In the numerical results of Esedoglu 
(2004), the regularization parameters are 
preselected and kept fixed.  

It is felt that all the existing works did 
not fully utilize the information about f(t): a 
bilevel function with levels 0 or 1. To recover 
f(t) is to recover the change points of f(t) for t ∈ 
T. The number of change points in f(t) is twice 
the number of bars in the bar code. Recovering 
the f(t), t ∈ T is usually an ill-posed problem, 
although recovering the change points is a well-
posed problem if the number of observations 
exceed the number of unknown parameters. The 
well-posed problem is essentially to estimate the 
nonlinear parameters in finite dimension with 
linear inequality constraints. The formulation of 
the bilevel function deconvolution was not 
found in terms of the change points explicitly in 
the existing literature. Therefore, a nonlinear 
least squares solution is proposed to the change 
points of f(t), σ and α with the constraints of the 
ordered change points. The local approach is 
used to provide the starting values for the global 
minimization problem. This method is a hybrid 
of local and global approaches in spirit. 
 
Change Point Estimation 

Assume the total number of bars of f(t) 
is the known integer K. For example, K = 22 for 
the UPC bar code in the test problem. Denote ξ2j-

1 and ξ2j as the beginning and ending location of 
the jth bar for j = 1, …, K of the bilevel function 
f(t). 

Then f(t) can be defined explicitly as: 
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where I() is the usual indicator function and  
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are the ordered change points.  
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The goal of the bilevel function 
reconstruction is to recover the change points ξ 
= (ξ1, ξ2, …, ξ2K-1, ξ2K)T from the observed data y 
= (y1, …, yM)T at t = (t1, …, tM)T, without any 
knowledge of σ and α. 

With the special structure of f(t), the 
convolution G * f(t) can be explicitly expressed 
as a function of ξ and σ. Thus,  
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be the ith residual. Denote r = (r1, …, rM)T the 
residual vector and 
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the residual sums of squares. The least squares 
solution of ξ, σ and α is sought. That is to find 
ξ̂ ，σ̂ ，and α̂  which minimizes the merit 
function h(ξ, σ, α) subject to the required 
conditions.   

More explicitly, the constrained nonlinear 
least squares problem is  
 
                         minξ, σ, α h(ξ, σ, α)                     (3) 
 
such that 
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These constraints are simply linear inequality 
constraints A[ξT, σ, α]T < u with a sparse matrix 
A whose elements are 
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and u = (0, … , 0, 1, 0, 0)T is a (2K + 3) column 
vector.  

 
The recast of the bilevel function 

reconstruction into a constrained nonlinear least 
squares problem enables us to utilize the existing 
techniques for solving nonlinear least square 
problem subject to linear inequality constraints 
in the statistical and numerical analysis 
literature. 

The Fletcher-Xu hybrid Gauss-Newton 
and BFGS method (Fletcher & Xu, 1987) for 
nonlinear least squares problem is super linearly 
convergent. This method along with other five 
methods for constrained nonlinear least squares 
problems is implemented in the cls Solve solver 
of the TOMLAB 4.7 optimization environment 
[9].    

The Gauss-Newton method needs the 
gradient of the merit function h(ξ, σ, α), which is 
the product of the Jacobian matrix of r and r. 
The Jacobian matrix of r is easily obtained by: 
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 The success of the (2K + 2) dimensional 
global minimization problem (3) heavily 
depends on good starting values. Our numerical 
experiments indicated that simple starting values 
such as equally spaced grids on T for ξ did not 
give satisfactory solutions. Next, the initial 
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parameter estimation based on the local 
approach is discussed. 
 
Initial Estimation 

The local extremas of the derivative of 
s(t) are close to ξ, the edges of the bars. Then the 
initial estimation of ξ in terms of the local 
extremas of the derivative signal is the following 
problem: given the noisy discrete observations 
of s(t): 

,,...,1,)( Mitsy iii =+= ε  
 
finding the local extremas of s'(t).  

There are approaches of estimating s'(t) 
based on different smoothing or denoising 
methods. Many of these try first to find )(ˆ ts , the 
estimate of s(t), using the chosen smoothing or 
denoising method; then estimate s'(t) based on 

)('ˆ ts . See, for example, the spline regression 
based method in Zhou and Wolfe (2000) or the 
wavelet denoising based method in Cai (2002). 
For equally spaced {ti} and when M is a power 
of 2, there exists a fast algorithm with 
complexity O(M) to carry out discrete wavelet 
transform (DWT). In this simulation, the 
wavelet thresholding method is used to estimate 
s(ti) first, then estimate s'(ti) based on )(ˆ its using 
a first derivative filter. 

After obtaining the initial estimate ξ0 of 
ξ by the K pairs of local maxima and minima of 

)('ˆ its , σ0 is estimated, the initial σ, by 
techniques suggested in Joseph and Pavlidis 
(1993), Joseph and Pavlidis (1994), and 
Esedoglu (2004). Proposition 1 of Joseph and 
Pavlidis (1993) suggested approximating σ by 
the distance from the last local maxima of )(ˆ its  
to the last local minima of )('ˆ its . Proposition 2 
of Joseph and Pavlidis (1994) suggested 
approximating σ by )(ˆ/)('ˆ )3( ∗∗ tsts where t* is 

a point such that )('ˆ)('ˆ itsts ≥∗ for i = 1, …, 

M. The smaller vale of σ̂  based on the two 
propositions is used first. If it is outside the 
reasonable range [0.001, 0.02], then the value 
0.0079 is used as suggested in Esedoglu (2004) 
for the true σ ranging from 0.011 to 0.013. In 
contrast, the thinnest bar has width 0.0132 in 

this simulation study. The initial value of α, α0, 
is simply the ordinary least squares estimate 
given the ξ0 and σ0. 

 
Simulation Results 
 In the experiment, a clean bar code f(t) 
encoding 0123456789 was blurred by 
convolving it with G(t) of known σ, amplified by 
the amplitude α =1, sampled at ti = i/M, for i = 1, 
…, M, followed by the addition of white 
Gaussian noise εi ~ N(0, σε2 ). The amount of the 
added noise makes the signal-to-noise ratio SNR 
= 20log 10 (std(s)/ σε) at the specified level. 
 Estimation of s(ti) is carried out by the 
soft Wavelet thresholding technique 
implemented in the Wavelet Toolbox in 
MATLAB. The thresholds are chosen by a 
heuristic variant of Stein's Unbiased Risk 
Estimate with multiplicative threshold rescaling 
using a single estimation of level noise based on 
the finest level wavelet coefficients (Donoho & 
Johnstone, 1995). The wavelet filter used is db6: 
the Daubechies wavelet with 6 vanishing 
moments. 
 The first derivative filter for estimating 
s'(ti) from )(ˆ its  is 
 

d1 = [-0.015964, -0.121482, -0.193357, 
             0.00, 0.193357, 0.121482, 0.015964]; 

 
as recently suggested in Farid and Simoncelli 
(2004). This filter is significantly more accurate 
than those commonly used in the image and 
signal processing literature. 

Table 1 shows the Monte-Carlo 

approximations to ⎟
⎠
⎞⎜

⎝
⎛ −= )2/(ˆ 2

2
KEMSE ξξ of 

this method based on 100 independent 
simulations as the σ is varied at 0.011, 0.012 and 
0.0125, the sample size M is varied dynamically 
from M = 256 through 1024, and SNR is varied 
from high to moderate levels. The range of the σ 
is in contrast with the WTB equal to 0.0132. 
 Table 2 shows the Monte-Carlo 
approximations to MSE = E(||ξ0 - ξ||22/(2K)). The 
results show a considerable reduction of MSE 
for ξ̂  over ξ0 in most cases. The most 
significant improvement occurs for the three 
tested values of σ with high SNR. 
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Fgures 1 and 2 present results from two 
of these experiments. Figure 1 is an example of 
completely successful reconstruction while the 
Figure 2 an example that the estimation fails  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

when the noise level or the blur factor σ gets too  

high. It seems that when 44/ˆ 2

2
ξξ −  is less 

than the scale of 1.0e-5, a successful 
reconstruction is obtained. 

 
 

 
 

Table 1. Monte Carlo Approximations To ⎟
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Table 2. Monte Carlo Approximations To MSE = E(||ξ0 - ξ||22/(2K)) 
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Figure 1. Top to bottom: the bar code, the reconstructed bar code, the corresponding clean 
convolved signal, the noisy convolved signal. The true parameter used to generate the corrupted 
signal: M = 512, σ = 0.0118, α = 1, SNR = 18. The estimated parameter: σ̂  = 0.0119, α̂  = 
1.0036. The square error 44/ˆ 2

2
ξξ − = 9.6e-8. CPU time: 51 seconds. 

 

 
Figure 2. Top to bottom: the bar code, the failed reconstructed bar code, the corresponding clean 
convolved signal, the noisy convolved signal. The true parameter used to generate the corrupted 
signal: M = 512, σ = 0.0129, α = 1, SNR = 16. The estimated parameter: σ̂  = 0.0136, α̂  = 

1.0287. The square error 44/ˆ 2

2
ξξ − = 2.1e-4. CPU time: 66 seconds. 
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Setting the cut-off 44/ˆ 2

2
ξξ −  at 1.0e-

5 for a successful reconstruction, Table 3 
displays the percentage of successful 
reconstructions of ξ. Table 4 displays the 
percentage of successful reconstructions of ξ0. 
The successful rate of our hybrid approach is 
100% in most cases with high SNR. The local 
approach alone will not work.  
 The simulation result also indicates that 
σ̂  gives much better solution than the initial 
estimate σ0 in terms of the reduction of MSE. 
The same is true forα̂ . 
 The computational time for finding the 
solution  is  relatively  fast.  For example, for the 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

most time consuming scenario σ = 0.125, M = 
1024, SNR = 21, the average CPU time is 86 
seconds, contrary to the reported 6 minutes 
using the regularization approach in Wittman 
(2004). 
 Most current bar code decoding works 
only in the range when σ is up to 0.7 times the 
WTB. The result in Table 3 indicates that this 
approach can attain 100% successful rate even 
when σ is up to 0.95 times the WTB at the SNR 
= 38 level. In contrast, the local approach alone 
can attain a successful rate of 94% when σ is up 
to 0.83 times the WTB at the SNR = 38 level as 
indicated in Table 4. This approach seems to 
break down at σ = 0.0120 and SNR = 21. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Table 3. Percentage Of Successful Reconstruction Of ξ 
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Conclusion 
 

 A nonlinear least squares estimation for 
change points of a bilevel function is proposed. 
The local information contained in the derivative 
of the convolved signal is used to provide 
starting values for the global optimization 
solution. This hybrid approach uses all available 
information for parameter estimation to the full 
extent. Monte Carlo simulation results show the 
good performance of the hybrid approach over 
the local approach. It also indicates that the 
hybrid approach extends the workable range of 
the standard deviation of the Gaussian kernel 
significantly.   
 If extra information such as the WTB or 
the width of thickest bar or space is available, 
they can be easily incorporated into the linear 
inequality constraints. Actually, in UPC barcode 
system, the WTB is always known. A barcode is 
decoded based on the bar widths relative to the 
WTB. Each should be 1, 2, 3, or 4 times the 
WTB. This knowledge could lead to an 
interesting combinatorial problem for bar code 
deconvolution and an additional constraint: 
choosing the change points to reflect the fact 
that the widths are 1 through 4 times the WTB.    
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Currently, the value K of the number of 
bars is assumed to be known in advance. In real 
bar code, the range of possible K values will be 
fairly small. A future research effort is to 
estimate the bilevel function without this 
assumption. Then model selection methods are 
needed for such problem. 
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