
Nonparametric Copula Density Estimation
in Sensor Networks

Leming Qu
Department of
Mathematics

Boise State University
Boise, Idaho 83725-1555, USA

Email: lqu@boisestate.edu

Hao Chen
Department of Electrical
& Computer Engineering

Boise State University
Boise, Idaho 83725, USA

Email: haochen@boisestate.edu

Yicheng Tu
Department of Computer

Science & Engineering
University of South Florida
Tampa, Florida 33620, USA

Email: ytu@cse.usf.edu

Abstract—Statistical and machine learning is a fundamental
task in sensor networks. Real world data almost always exhibit
dependence among different features. Copulas are full measures
of statistical dependence among random variables. Estimating
the underlying copula density function from distributed data is
an important aspect of statistical learning in sensor networks.
With limited communication capacities or privacy concerns,
centralization of the data is often impossible. By only collect-
ing the ranks of the data observed by different sensors, we
estimate and evaluate the copula density on an equally spaced
grid after binning the standardized ranks at the fusion center.
Without assuming any parametric forms of copula densities,
we estimate them nonparametrically by maximum penalized
likelihood estimation (MPLE) method with a Total Variation
(TV) penalty. Linear equality and positivity constraints arise
naturally as a consequence of marginal uniform densities of
any copulas. Through local quadratic approximation to the
likelihood function, the constrained TV-MPLE problem is cast as
a sequence of corresponding quadratic optimization problems. A
fast gradient based algorithm solves the constrained TV penalized
quadratic optimization problem. Numerical experiments show
that our algorithm can estimate the underlying copula density
accurately.

Index Terms—sensor network; dependence; copula; copula
density estimation;

I. I NTRODUCTION

Sensor networks have attracted considerable attention in
the past two decades [1]. Distributed inference using sensor
networks remains as an active research area due to its advan-
tages such as increased reliability and greater coverage over
centralized processing. Distributed inference refers to the de-
cision making problem involving multiple distributed agents.
The recent emergence of wireless sensor networks (WSN)
has added many new dimensions to this classical inference
problem. The limited capacity and other resource constraints
make it imperative that each sensor node compress (often with
very high ratio) their local observations before forwarding
the data onto other sensors or fusion centers. Study of WSN
has greatly enriched the theory of distributed inference, as
evidenced by the rapidly increasing literature in recent years.
Perhaps more importantly, the feasibility of having networked
mobile and miniature sensor nodes has greatly broadened po-
tential applications beyond sensing and surveillance. Examples
include health care, environmental monitoring, and monitoring

and diagnostics of complex systems. Many sensor network
topologies are possible for the distributed inference problem,
of which we focus on the parallel fusion topology which is
the most popular and widely used one.

The observations by different sensors are often dependent.
For simplicity, independence assumption is often made. The
efforts to take the dependence into account is often carried
out within a parametric modeling framework, in which the
observed data are assumed to follow specific models such as
a Gaussian probability distribution for random observations.

Copulas are full measures of statistical dependence among
random variables. Understanding and quantifying dependence
is an important, yet challenging, task in multivariate statistical
modeling. In a linear, Gaussian world stochastic dependencies
are captured by correlations. In more general settings, one
often needs a complete specification of a joint distributionto
have a complete knowledge of the dependence structure. The
difficulty level of building such multivariate distributions can
be greatly lowered if one uses a copula model to separate the
marginal distributions from the dependence structure. Copula
(otherwise known as dependence function) has emerged as a
useful tool for modeling stochastic dependence. Sklar’s theo-
rem [2] is the theoretical foundation of the copula usage which
states that a joint multivariate cumulative distribution function
(CDF) equals the copula function of all univariate marginal
CDFs. If all the univariate marginal CDFs are continuous, then
the copula is unique. In other words, a copula is a multivariate
CDF with standard uniform marginals. A copula density is
the partial derivative of the copula, just as a joint multivariate
probability density function (PDF) is the partial derivative of
the joint CDF for continuous random variables. The name
“copula” was chosen to emphasize the manner in which a
copula “couples” a joint CDF to its univariate marginals. Some
recent review papers on copulas include [3]–[7]. Some recent
books on copulas include [8]–[10].

In the past two decades, copulas have been widely used in
a variety of applied work, notably in finance and insurance.
See [3], [8], [11]–[16] for example applications specific to
finance and insurance. Some copula applications started to
appear in signal and image processing recently. In [17],
connections between Cohen-Posch theory of positive time-



frequency distributions and copula theory were established. In
[18], useful copula models for image classification were used
in the frame of multidimensional mixture estimation arising
in the segmentation of multicomponent images. In [19], the
problem of detecting footsteps was considered where copulas
were used to fuse acoustic and seismic measurements. In [20],
Gaussian copula was used in the problem of tracking a colored
object in video. Copula theory was used to detect changes
between two remotely sensed images before and after the
occurrence of an event in [21]. Generalized Gaussian copula
was used for texture classification in [22]. A new divergence
measure based on the copula density functions for image
registration was explored in [23]. A possible link between
copula and tomography was elaborated in [24]. In [25], a
copula-based semi-parametric approach for footstep detection
using seismic sensor networks was proposed. In [26], a novel
approach for the fusion of correlated decisions to detect ran-
dom signals under a distributed setting was proposed using the
copula theory. In [27], a maximum-likelihood estimation based
approach using copula functions was proposed to estimate the
location of a source of random signals using a network of
sensors. In [28], a parametric copula based framework for
hypothesis testing using heterogeneous data was presented.

In these applications, parametric model assumptions were
typically motivated by data or prior application-specific do-
main knowledge. However, when data is sparse or prior
knowledge is vague, these parametric models may become
questionable. Nonparametric methods are often desirable in
such situations. Predd et al. [29] surveyed nonparametric
distributed learning in WSN.

In what follows, we focus on the bivariate case only for
simplicity. That is, we assume the network has two sensors,
with each observing a specific random variable. For example,
the first sensor records the temperatures in the surrounding,
while the second sensor records the pressure in the same
surrounding. The fusion center wishes to learn how the tem-
perature and pressure are related to each other through the
copula density. The proposed methodology is extendable to
more than two dimensions.

The copula density estimation has been mostly studied in
a parametric framework, whereby a bivariate copula density
c(u, v) is assumed to be a member of a copula family deter-
mined by a few parameters (for example, [30]). The parametric
copula density estimation problem is then essentially reduced
to estimate the few parameters that determine the copula.
Choros et al. [31] provided a brief survey of parametric,
semiparametric and nonparametric estimation procedures for
copula models. We propose here to learn the bivariate copula
density in the fusion center nonparametrically. For practition-
ers, nonparametric estimates could be used as the first step
toward selecting the right parametric family.

Nonparametric estimation of copula and its density does
not assume a specific parametric form for the copula and the
marginals and thus provides great flexibility and generality.
Nonparametric estimators of a bivariate copula density using
kernels have been suggested by [32] and [33]. The advantage

of kernel based copula density estimation is that it provides a
smooth (differentiable) reconstruction of the copula function
without putting any particular parametric a priori on the depen-
dence structure between margins and without losing the usual
parametric rate of convergence [33]. Kernel estimators have a
severe drawback as they require a very large amount of data
(page 195, [34]) and suffer from a corner bias. Nonparametric
estimator of a copula using splines was proposed in [35] for a
new class of copulas called linear B-spline copulas. Sancetta
and Satchell [36] employed techniques based on Bernstein
polynomials. Bernstein copula family belongs to the familyof
polynomial copulas [9] and can be used as an approximation
to any copula. Nonparametric estimators of a copula density
using wavelets were proposed in [37] [38] and [39]. Hall and
Neumeyer [37] used a wavelet estimator to approximate a
copula density. Genest et al. [38] used wavelet analysis to
construct a rank-based estimator of a copula density. Autin
et al. [39] dealt with the copula density estimation using
wavelet methods by adaptive shrinkage procedures based on
thresholding rules. These wavelet methods can better adaptto
nonsmooth regions such as corners of a copula density.

What does a copula densityc(u, v) look like? In one
extreme, for two independent random variables,c(u, v) is
a constant with value 1. When two random variables are
dependent,c(u, v) can be smooth, have sharp boundaries,
or even be unbounded along boundaries. It is reasonable to
assume that the total variation (TV) ofc(u, v), or at least its
discrete version, is bounded. In practice, we often estimate and
display the density in a finite grid. We propose a maximum
penalized likelihood estimation (MPLE) with TV penalty
method. This method is capable of capturing sharp changes in
the target copula density, suffering less from edge effectswhen
the copula density can be unbounded at boundaries in some
statistically important cases, whereas conventional kernel or
spline techniques have difficulties in nonsmooth regions. Our
method preserves data privacy because each sensor is only
required to send ranks of its individual records instead of the
original observations to the fusion center.

The TV penalty based MPLE for copula density was
proposed in [40], where the penalty term is the TV of the
log density, and the unity requirement for a density func-
tion is imposed. However, the marginal unity, symmetry and
positivity for a copula density are not enforced. In [41], the
TV of the density is the penalty and the marginal unity and
symmetry are enforced by linear equality constraints, but the
positivity is not enforced. In fact, we are not aware of any
method that explicitly imposes all the essential properties for
a copula density. The main reason behind this is probably
related to the difficulty of the induced high dimensional
optimization problem. In this paper, we enforce the marginal
unity and symmetry properties as linear equality constraints,
and positivity property as linear inequality constraints for
the discretized copula density. We solve the problem of
minimizing penalized negative log likelihood with TV penalty
subject to linear equality and inequality constraints through
local quadratic approximation to the likelihood function first.



The constrained TV-MPLE problem is then cast as a sequence
of corresponding quadratic optimization problems. We apply
a fast gradient based algorithm to solve the constrained TV
penalized quadratic optimization problems. The effectiveness
of our method is illustrated through numerical experiments.

The rest of the paper is organized as follows: In Section II,
we formulate the problem. In Section III, we present the local
quadratic approximation (LQA) algorithm, and in section IV
show the experimental results. Finally, Section V concludes
the paper.

II. PROBLEM FORMULATION

A bivariate copula densityc(u, v), [u, v] ∈ [0, 1]2 can be
regarded as the joint PDF of a bivariate standard uniform
random variable(U, V ). Most copulas are exchangeable, thus
implying c(u, v) is symmetric. Thec(u, v) must satisfy the
following four properties:

(P1) c(u, v) ≥ 0, for [u, v] ∈ [0, 1]2 ;
(P2)

∫ 1

0
c(u, v)du = 1, for 0 ≤ v ≤ 1;

(P3)
∫ 1

0
c(u, v)dv = 1, for 0 ≤ u ≤ 1;

(P4) c(u, v) = c(v, u).
Note that (P2) and (P4) implies (P3), so (P3) is redundant.

A bivariate copulaC(u, v) defined on the unit square[0, 1]2

is a bivariate CDF with univariate standard uniform margins:

C(u, v) =

∫ u

0

∫ v

0

c(s, t)dsdt.

Sklar’s Theorem ( [2]) states that the joint CDFF (x, y) of a bi-
variate random variable(X,Y ) with marginal CDFFX(x) and
FY (y) can be written asF (x, y) = C(FX(x), FY (y)), where
copulaC is the joint CDF of(U, V ) = (FX(X), FY (Y )). This
indicates a copula connects the marginal distributions to the
joint distribution and justifies the use of copulas for building
bivariate distributions.

Let X1, . . . ,Xn be a random sample from the unknown
distribution FX that is observed at sensor 1. LetY1, . . . , Yn

be a random sample from the unknown distributionFY that is
observed at sensor 2. Further assume(X1, Y1), . . . , (Xn, Yn)
be a random sample from the unknown distributionF of
(X,Y ). We wish to estimate the copula density function
c(u, v).

When the two marginal distributions are continuous, the
copula densityc(u, v) is the unique bivariate density of
(U, V ) = (FX(X), FY (Y )) as implied by Sklar’s theorem.
As copulas are not directly observable, a nonparametric copula
density estimator has to be formed in two stages: obtaining the
observations for(U, V ) first and then estimating the copula
density based on these observations.

In the first stage, the original data set(Xi, Yi) for i =
1, . . . , n is converted to(Ûi, V̂i) = (F̂X(Xi), F̂Y (Yi)), where
F̂X and F̂Y are conventional estimators ofFX and FY . If
models are available for the marginal distributions ofX andY
but not for the joint distribution, one can use a technique such
as maximum likelihood to estimate the marginal distribution
functions. Otherwise, some nonparametric univariate CDF
estimation methods or simply the empirical CDFs (ECDFs)

can be used. When ECDFs are used as the marginal CDF esti-
mators (e.g., in [38], [39]),̂Ui = rank(Xi)/n where rank(Xi)
is the rank ofXi amongX1, . . . ,Xn and V̂i = rank(Yi)/n
where rank(Yi) is the rank ofYi amongY1, . . . , Yn. Hence
{(Ûi, V̂i)}

n
i=1 is nothing but the standardized ranks which

are close substitutes for the unobservable pairs(Ui, Vi) =
(FX(Xi), FY (Yi)) forming a random sample from the copula
C(u, v).

In the second stage, we estimate the copula densityc(u, v)
based on the observations{(Ûi, V̂i)}

n
i=1.

Here we do not assume any parametric form forc(u, v) and
instead, obtain an estimate of it that satisfies properties (P1-P4)
and is defined on a partition of the unit square. Specifically,
the partition equally divides domain ofc(u, v), [0, 1]2, into
N = m2 rectangle cells with cell size(1/m) × (1/m) . A
reasonable grid size is64 × 64 (i.e., m = 64) for sample
size n = 2000 and m = 32 for n = 500. A much finer
discretization will increase problem size unnecessarily.In most
numerical scheme, one fixes a grid resolution of1/m much
smaller than2−Jn with Jn = ⌊ 1

2
log2(

n

logn
)⌋ (page 207 of

[39]).
Let us usei, j = 1, . . . ,m to index all theN cells of this

grid. On each cell(i, j), let xij denote the constant estimate of
c(u, v) over the cell and setpij to the number of observations
{(Ûi, V̂i)}

n
i=1 falling in this cell.

A naive solution toxij is x̂ij = pijN/n, which produces
the 3D-histogram of the relative frequencies of the pseudo-
observations(rank(Xi)/n, rank(Yi)/n) measured on the grids
of the unit square. To illustrate this, we generated random
samples of sizen = 2000 from the Gaussian copula with
parameterθ = 0.5 and displayed the 3D-histograms in panel
(c) of Fig. 1. The true Gaussian(0.5) copula density is plotted
in panel (a) followed by the rank-rank plot in panel (b). The
distinctive features of this copula are apparent as evidenced by
the sharp corners, but the histogram is rather erratic and rough
compared to the true copula density. Similar plots are shown
in panels (a), (b), (c) in Figs. 2, 3 and 4 for Clayton(0.8),
Frank(4) and Gumbel(1.25) copula density respectively.

The histograms obviously do not satisfy the marginal unity
property (P2). The marginal integral ofc(u, v) can be approx-
imated by the Riemann sum

∫ 1

0

c(u, v)du ≈
1

m

m
∑

i=1

xij = 1, j = 1, . . . ,m

and
∫ 1

0

c(u, v)dv ≈
1

m

m
∑

j=1

xij = 1, i = 1, . . . ,m.

The marginal unity (P2) implies

m
∑

i=1

xij = m, j = 1, . . . ,m, and

m
∑

j=1

xij = m, i = 1, . . . ,m.



The purpose of this paper is to present a smoothed version
of the 3D-histogram that practitioners could use as: (1)a
graphical tool to spot the key features of a copula dependence
structure such as skewness or heavy-tail behavior, (2)as a
model selection tool to choose a particular parametric copula
from families of copulas. In more technical terms, what will
be proposed is a non-parametric (rank-based) estimator of the
copula density

c(u, v) =
∂2

∂u∂v
C(u, v), [u, v] ∈ [0, 1]2.

The approach described here is based on the maximum
penalized likelihood estimation with a total variation penalty
and by enforcing the copula density properties. That is, we
estimate a copula densityc(u, v) as am × m discrete image
x by solving:

min
x

Tλ(x) = −
∑

i,j

pij logxij + λ TV(x),

such that
m

∑

i=1

xij = m, j = 1, . . . ,m, and

xij = xji, i, j = 1, . . . ,m, and

xij > 0, i, j = 1, . . . ,m.

whereλ is a smoothing parameter controlling the smoothness
of the estimate.

As is customary, a discrete imagex = [xij ]
m
i,j=1 ∈ R

m×m

will be dealt with as a vector in the usual Euclidean space
R

N through the column stacking isometryxij ↔ xi+mj . In
the sequel,x could mean either a 2D array or a 1D column
vector depending on the context in which it appears. The linear
equality constraints in the above minimization problem canbe
written in the formAx = b by forming them(m + 1)/2×N
sparse matrixA andm(m+1)/2-vectorb. The details ofA, b
can be found in [41].

In a typical TV-based image restoration problem, TV(x) is
based on the first order finite difference which stems from
the piecewise constant assumption of the underlying image
x. A well-known drawback of the first order finite difference
based TV regularized estimates is the staircase effect: the
estimated values produced by TV regularization tend to cluster
in patches [42], [43]. A copula density functionc(u, v) is
continuous for[u, v] ∈ [0, 1]2, hence the first order finite
difference ofx may not be sparse. But the higher order finite
difference ofx are typically sparse. We choose the second
order finite difference to define TV(x). The even higher order
finite difference based TV(x) leads to unrealistic oscillatory
solutions in our numerical experiments.

The L2 norm and second order finite difference based
discrete TV is

x ∈ R
m×m, TV2(x) =

m−1
∑

i,j=2

√

(xi+1,j − 2xi,j + xi−1,j)2 + (xi,j+1 − 2xi,j + xi,j−1)2,

and theL1-based TV is

x ∈ R
m×m, TV1(x) =

m−1
∑

i,j=2

|xi+1,j − 2xi,j + xi−1,j | + |xi,j+1 − 2xi,j + xi,j−1|

where we set the (standard) reflexive boundary conditions

xm+2,j ≡ xm+1,j ≡ xm,j , j = 1, . . . m;

xi,m+2 ≡ xi,m+1 ≡ xi,m, i = 1, . . . ,m.

The algorithms developed in this paper can be applied to both
the L2- and L1-TV. Since the derivations and results for the
L2 and L1 cases are very similar, to avoid repetition, all of
our derivations will consider theL1-TV.

Let l(x) ≡ −
∑m

i,j=1
pij logxij , then ∇l(x) = −p./x,

where ∇ denotes the gradient operator with respect tox
and ./ denotes element-wise division. The HessianH(x) =
∂2l(x)/∂x2 is a diagonal matrix with diagonal vectorp./x2

The gradient and Hessian will be used in the optimization
algorithm discussed in the next section.

Our proposed copula density estimate solves:

min
x

{l(x) + λTV(x)} , such thatAx = b, x > 0. (1)

When λ → ∞, the solution of (1) isx̂ = 1 leading to
ĉ(u, v) = 1 which implies the indepence ofX andY for the
density estimation and apparently over-smoothes the density
for dependent case. Whenλ = 0, the solution of (1) is the
histogram estimate which under-smoothes the density. For an
appropriately chosenλ, the solution is a properly regularized
estimate with the right amount of smoothness.

III. L OCAL QUADRATIC APPROXIMATION (LQA)
ALGORITHM

To solve problem (1), we first approximatel(x) locally by
its quadratic expansion aroundxk at kth iteration:

l(x) ≈ l(xk)+(x−xk)T∇l(xk)+
1

2
(x−xk)T H(xk)(x−xk).

For k = 0, 1, . . ., we then solve the following problem

min
x

{

xT∇l(xk) +
1

2
(x − xk)T H(xk)(x − xk) + λTV(x)

}

,

such thatAx = b, x > 0, (2)

until certain convergence criteria is met.
Problem (2) is a special case of the optimization problem

with a composite objective function [44]:

min
x

{F (x) ≡ f(x) + g(x)} , (3)

with the following assumptions:

• g(x) : R
m×m → (−∞,+∞] is a proper closed convex

function which is possibly nonsmooth;
• f(x) : R

m×m → (−∞,∞) is continuously differentiable
with Lipschitz continuous gradient

||∇f(x) −∇f(y)|| ≤ L(f)||x − y|| ∀x, y ∈ R
m×m



where||·|| denotes the standard Euclidean norm andL(f)
is the Lipschitz constant of∇f ;

• problem (3) is solvable, i.e.,B∗ := arg minx F (x) 6= ∅.

Problem (3) reduces to problem (2) by setting

f(x) ≡ xT∇l(xk) +
1

2
(x − xk)T H(xk)(x − xk), (4)

g(x) ≡ λTV(x) + δC(x) (5)

whereC = {x ∈ R
N : Ax = b, x > 0} a closed convex

set andδC being the indicator function onC. The Lipschitz
constant of this specificf(x) is the maximum of the Hessian
diagonal vector, which isLk = max

{

p./(xk)2
}

.
To solve problem (3), Beck and Teboulle [44] [45] proposed

a gradient-based algorithm which shares a remarkable simplic-
ity together with a proven global rate of convergence which is
significantly better than currently known gradient projections-
based methods. The algorithm is termed MFISTA which stands
for monotone fast iterative shrinkage/thresholding algorithm.
The key idea is to adopt a quadratic separable approximation
to f(x) around the current estimatey:

fQ(x) ≡ f(y) + (x − y)T∇f(y) +
1

2α
||x − y||2,

for a givenα > 0. This approximation interpolates the first-
derivative information off(x) and uses a simple diagonal
Hessian approximation to the second-order term. Hence a
quadratic separable approximation toF (x) around the current
estimatey is

FQ(x) ≡ fQ(x) + g(x)

= f(y) + (x − y)T∇f(y) +
1

2α
||x − y||2 + g(x).

This quadratic approximation toF (x) can also be interpreted
as a regularization method with a quadratic proximal term that
would measure the local error in the linear approximation,
and also results in a well defined, i.e., a strongly convex
approximate minimization problem for (3) [46]:

x∗ ≡ arg min
x

FQ(x)

= arg min
x

{

0.5||x − (y − α∇f(y))||2 + αg(x)
}

. (6)

Apparently, theα serves the role of step size. There are many
data adaptive ways to search for step size, including backtrack-
ing line search algorithm (section 3.1 of [47]) and spectral
gradient method [48]. Under the assumption off(x) having
Lipschitz continuous gradient, it turns out thatα = 1/L(f) is
a good fixed step size.

Instead of solving problem (6) at the current iteratey,
FISTA algorithm smartly solve the problem at they which is
formed by a very specific linear combination of the previous
two iterates.

For a givenz ∈ R
m×m and a scalarα > 0, the proximal

map of Moreau [49] [50] associated to a convex functiong(x)
is defined by

proxg(z, α) := arg min
x∈Rm×m

{

0.5||x − z||2 + αg(x)
}

. (7)

The problem (6) is obviously a proximal map by settingz ≡
y − α∇f(y).

When the subproblem (7) is not solved accurately, the
FISTA may diverge. To get rid off this trouble, the objective
function F (x) in (3) is forced to be non-increasing at each
step, which leads to the monotone version of FISTA: MFISTA.

With the specificg(x) in (5), the problem (7) becomes the
constrained TV-based denoising problem:

min
x∈C

{

0.5||x − z||2 + αλTV(x)
}

. (8)

One of the intrinsic difficulties to solve this problem is the
nonsmoothness of the TV function. This was overcome by a
dual approach in [44] which followed [51]. The objective func-
tion for the dual problem is continuously differentiable and its
Lipschitz constant has an analytical upper bound. Hence, the
dual problem is solvable by a fast gradient projection algorithm
based on FISTA. The dual problem requires a projection onto
the linear equality and positivity constrained convex set which
we discuss below.

A. Projection onto Linear Equality and Positivity Constrained
Convex Set

For a giveny ∈ R
N , this projection is to solve

min
x

||x − y||2, such thatAx = b, x > 0. (9)

By penalizing the square of theL2 norm of the difference
betweenAx andb, we obtain the following approximation to
problem (9)

min
x

{

0.5β||Ax − b||2 + 0.5||x − y||2
}

, s.t. x > 0 (10)

with a sufficiently large penalty parameterβ. This type of
quadratic penalty approach can be traced back as early as
[52] in 1943. It was discussed in section 17.1 in [47]. It is
well known that the solution of (10) converges to that of (9)
as β → ∞. This quadratic penalty approach was popular in
large-scale underdetermined linear equality constrainedsparse
recovery problems in recent years [48]. It was used in a new
alternating minimization algorithm for total variation image
reconstruction [53] as well.

We prefer to solve the following equivalent problem to (10):

min
x

{

0.5||Ax − b||2 + 0.5µ||x − y||2
}

, s.t x > 0 (11)

with a small penalty parameterµ, because problem (11) is
more stable than (10) in case whenA is ill-conditioned.

It is straightforward to apply FISTA algorithm to solve
problem (11) by setting

f(x) = 0.5||Ax − b||2, ∇f(x) = AT (Aβ − b),

L(f) = maxeig(AT A), g(x) = 0.5µ||x − y||2 + δ{x>0}(x).

We note that the maximum eigen value ofAT A asL(f) should
be precomputed outside the main loop and be passed to FISTA



to avoid redudant computation . The closed-form solution to
the sub-problem (7) in this case is:

proxg(z, α) : = arg min
x>0

{

||x − z||2 + αµ||x − y||2
}

= P{x>0}

(

z + αµy

1 + αµ

)

,

whereP{x>0}(·) is simply the positivity projection operator.

IV. SIMULATIONS

We conduct simulation studies designed to demonstrate the
effectiveness of the TV-MPLE subject to linear equality and
positivity constraints for copula density estimation.

The stopping criterion for LQA in the main algorithm was
||xk+1 − xk||/||xk|| <= 10−6 or total number of iterations
reaching 10.

In the simulation, the marginal CDFsFX andFY were esti-
mated by ECDFs. This amounts to use the standardized ranks
of the sample{(Xi, Yi)}

n
i=1 as estimates of{(Ui, Vi)}

n
i=1

(remind thatUi = FX(Xi) and Vi = FY (Yi)). The CDF
of a continuous random variable is continuous and strictly
increasing within its domain, which implies that the ranks of
Xi’s are the same as the ranks ofUi’s, so are the ranks of
Yi’s and those ofVi’s. Therefore it is unnecessary to explicitly
specify theFX and FY in our simulation for copula density
estimation. One can first generate{(Ui, Vi)}

n
i=1 from an

underlying copula densityc(u, v), then use their standardized
ranks as their estimates.

We tested four parametric families of copulas: Gaussian,
Clayton, Frank and the Gumbel families. For each copula
model, independent and identically distributed (i.i.d.) stan-
dard uniform bivariate random variables{(Ui, Vi)}

n
i=1 were

generated from the specified copula with parameterθ using
MATLAB’s copularnd() function. That was,{Ui}

n
i=1 was

a sample from a Uniform(0,1) distribution, and so was the
{Vi}

n
i=1. The joint pdf of (U, V ) was the specified copula

densityc(u, v) with parameterθ. The sample sizes considered
wasn = 2000. The grid sizes used wasm = 64.

Various error measures were evaluated over the equally
spaced grid points within[0, 1]2 where the copula densities
were estimated. For one data set, the quality of an estimate
ĉλ(u, v) of the true copula densityc(u, v) was measured by
an error measureLoss(ĉλ, c), which is relative errors

REq(λ) =
||ĉλ − c||N,q

||c||N,q

, for q = 1, 2. (12)

The regularization parameterλ was chosen from 10 equally
spaced numbers in[10−4, 10−2] in a log10 scale:λ1 > λ2 >
. . . > λ10 with λ1 = 10−2 and λ10 = 10−4. We started
solving problem (1) withλ = λ1 using the initial value
xinit = 1. We then proceeded to solve problem (1) with
λ = λ2 and set the initial value forx as the previous solution.
This choice of initial value is the so-called warm start [53].
Finally, we select the bestλ out of {λ1, . . . , λ10}. For the
error measure Loss(ĉλ, c), the best regularization parameterλ̂
is the one which minimizes Loss(ĉλ, c) and the best estimate

is ĉ
λ̂
. All the best regularization parameters were found near

the central portion of this grid.
Fig. 1 displays the surface plots of the estimated copula

densities in panels (e) (f) for Gaussian(0.5) copula. For com-
parison, we computed a 2D kernel density estimate using the
kde2D program [54] [55] as shown in panel (d). Obviously,
there is an oversmoothing by KDE. The TV estimates catch
the two peaks in the front and back corners well.

Figs. 2, 3 and 4 display the results for Clayton(0.8), Frank(4)
and Gumbel(1.25) respectively. Again, The TV estimates are
close to the truth.

Fig. 1. True and estimated copula densities in a typical run ofthe case:
Gaussian copula withθ = 0.5, sample sizen = 2000, grid sizem = 64.

Our TV-MPLE copula density estimate can serve the pur-
pose to select a parametric copula from several parametric
families. A parametric copulacθ is wholly determined by its
parameterθ. The parameterθ can be estimated by classical
parameter estimation methods such as maximum likelihood.
We measure the distance between our nonparametric estimate
ĉλ and the parametric estimatec

θ̂
by their relative errors

REq(θ̂) =
||ĉλ − c

θ̂
||N,q

||c
θ̂
||N,q

, for q = 1, 2,∞.

The selected parametric copula is the one with the smallest
REq(θ̂) among all parametric candidates.

A simulation study was to illustrate this model selection
strategy. An i.i.d. standard uniform bivariate random sample
{(Ui, Vi)}

n
i=1 with n = 2000 was generated from the Gaussian

copula density withθ = 0.5 . TV-MPLE estimateĉλ was
constructed based on the data{(Ûi, V̂i)}

n
i=1 with grid size

m = 64 and λ selected by the bestλ in terms of RE2(λ).



Fig. 2. True and estimated copula densities in a typical run ofthe case:
Clayton copula withθ = 0.8, sample sizen = 2000, grid sizem = 64.

Fig. 3. True and estimated copula densities in a typical run ofthe case:
Frank copula withθ = 4, sample sizen = 2000, grid sizem = 64.

The θ was estimated by the Canonical Maximum Likelihood
(CML) method using MATLAB’scopulafit() function. Table
I reports theREq(θ̂) for 4 different candidates. TV-MPLE
estimate is closest to the Gaussian estimate in terms of any

Fig. 4. True and estimated copula densities in a typical run ofthe case:
Gumbel copula withθ = 1.25, sample sizen = 2000, grid sizem = 64.

relative errors. We correctly select the Gaussian model among
four parametric families considered.

TABLE I
RELATIVE ERRORREq(θ̂) FOR THE SIMULATED DATA FROM

GAUSSIAN(0.5) WITH n = 2000, m = 64

Parametric Estimate RE1(θ̂) RE2(θ̂) RE∞(θ̂)
Gaussian 0.0527 0.0917 0.3997
Clayton 0.1621 0.3406 0.7605
Frank 0.0933 0.1270 0.5889

Gumbel 0.7567 0.7869 0.9468

V. CONCLUDING REMARKS

In a distributed sensor network, working with rank data only
in the processing center, we presented a TV penalized max-
imum likelihood copula density estimate subject to the con-
straints that the marginal distributions are standard uniforms.
The linear equality and positivity constrained TV regularized
MPLE problem is solved by a local quadratic approximation
algorithm in the main iteration. The sub-problem of con-
strained quadratic programming with TV penalty is solved by
MFISTA. The resulting nonparametric copula density estimate
captures the salient features of the underlying copula density.
The data adaptive choice of the regularization parameterλ will
be implemented in the future.
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