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ABSTRACT
Processing relational joins on modern GPUs has a�racted much
a�ention in the past few years. With the rapid development on the
hardware and so�ware environment in the GPU world, the existing
GPU join algorithms designed for earlier architecture cannot make
the most out of latest GPU products. In this paper, we report new de-
sign and implementation of join algorithms with high performance
under today’s GPGPU environment. �is is a key component of
our scienti�c database engine named G-SDMS. In particular, we
overhaul the popular radix hash join and redesign sort-merge join
algorithms on GPUs by applying a series of novel techniques to
utilize the hardware capacity of latest Nvidia GPU architecture and
new features of the CUDA programming framework. Our algo-
rithms take advantage of revised hardware arrangement, larger
register �le and shared memory, native atomic operation, dynamic
parallelism, and CUDA Streams. Experiments show that our new
hash join algorithm is 2.0 to 14.6 times as e�cient as existing GPU
implementation, while the new sort-merge join achieves a speedup
of 4.0X to 4.9X. Compared to the best CPU sort-merge join and
hash join known to date, our optimized code achieves up to 10.5X
and 5.5X speedup. Moreover, we extend our design to scenarios
where large data tables cannot �t in the GPU memory.
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1 INTRODUCTION
�e multitude of modern parallel computing platforms has pro-
vided opportunities for data management systems and applications.
While CPUs are still the most popular platform for implementing
database management systems (DBMSs), GPUs have gained a lot
of momentum in doing the same due to its computing power, high
level of parallelization, and a�ordability. In this paper, we present
our recent work in the context of a GPU-based data management
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named G-SDMS [22]. In particular, we focus on the design and im-
plementation of relational join algorithms. Our goal is to develop
GPU-based join code that signi�cantly outperform those found in
literature [6, 9, 11–13, 20, 21, 24].

In the past few years, in addition to the computing capacity that
has grown exponentially, the GPUs have undergone a dramatic
evolution in hardware architecture and so�ware environment. On
the other hand, existing join algorithms are designed for earlier
GPU architectures therefore it is not clear whether they can make
the most out of latest devices in the market. Although the GPU code
may scale well with the increasing amount of computing resources
in newer GPU devices, maximum performance cannot be achieved
without optimization towards new GPU components and features
in the runtime system so�ware. Our analysis and empirical eval-
uation of existing GPU join algorithms con�rmed such reasoning
[19]. �erefore, the objective of our work reported in this paper is
a novel design of join algorithms with high performance under to-
day’s GPGPU environment. In particular, we overhaul the popular
radix hash join and redesign sort-merge join algorithms on GPUs by
applying a series of novel techniques to utilize the hardware capac-
ity of latest Nvidia GPU architecture and new features of the CUDA
programming framework. As a result, while our implementation
borrows code for common data primitives (e.g., sorting, searching
and pre�x scan) from popular CUDA libraries, our algorithms are
fundamentally di�erent from existing work.

Our hash join is based on the well-known radix hash join. We
used a two-pass radix partitioning strategy to reorganize the input
relations. In order to increase hardware utilization, we keep a
shared histogram in the shared memory for each thread block and
all threads in the same block update the shared histogram via atomic
operations. �is reduces the usage of shared memory per thread
therefore allows for more concurrent threads working together. We
also assign multiple works per thread by loading more data into
the large register �le in the new GPU architecture. By doing this
each individual thread improves instruction-level parallelism and
higher overall e�ciency is achieved. Previous work [12, 15] requires
two scans of the inputs before writing the output to memory. To
remove this large overhead, we propose an output bu�er manager
that enables probe in only one pass. With the help of e�cient
atomic operations, threads acquire the next available slot from the
global bu�er pointer and output independently. Finally, we take
advantage of the convenient Dynamic Parallelism supported by
the latest CUDA SDK to dynamically invoke additional threads to
tackle skewed partitions without additional synchronization and
scheduling e�orts.

Our sort-merge join algorithm shares the same idea of using
registers to allow more work per thread. Apart from that, our im-
plementation heavily relies on an e�cient parallel merge algorithm
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named Merge Path [10, 18] in both sort and merge stages. Merge
Path partitions the data in such a way that threads can work inde-
pendently with balanced load. With a linear total work e�ciency,
Merge Path is faster than traditional parallel merge algorithm that
requires a binary search for each tuple. �e sort algorithm is de-
signed in a hierarchical manner. First, each thread sequentially
sorts their own chunk of data in register. �en all the threads in
the same block work together to merge their data into a list stay-
ing in shared memory. A�er that, all the thread blocks combine
their data in the same manner in global memory. It is obvious that
this method makes full use of the memory hierarchy of the GPU,
especially the register �le and shared memory.

We also extend our designs to the scenario of large tables that
cannot �t into the GPU global memory. �is is an aspect that is
largely unexplored in existing work. Our strategy is to maximize
the overlap between the transmission of partitions of input tables
and the processing of resident data. By using CUDA streams, we
divide the single work�ow into two pipelines so that input data
transfer and kernel execution can overlap.

Experiments show that our new hash join obtains a 2.0X to 14.6X
speedup over the best implementation known to date, while the
new sort-merge join achieves a speedup of 4.0X to 4.9X. Statis-
tics provided by CUDA Visual Pro�ler also show that our new
algorithms achieve much higher multiprocessor occupancy, higher
shared memory bandwidth utilization and be�er cache locality.
Compared with the latest CPU code, our hash join and sort-merge
join are respectively up to 5.5X and 10.5X as fast. When handling
data larger than the GPU device memory size, our new algorithms
achieves 3.6-4.3X and 11-12.8X speedup in hash join and sort-merge
join, respectively.

�is paper makes the following contributions. First, we design
and implement GPU-based join algorithms by optimizing various
stages of sort merge and hash joins on the latest GPU architecture.
Comparing with previous GPU join algorithms, our code achieves
a large speedup, and the utilization of GPU resources increases con-
siderably. It is safe to say that our join code represents the current
state-of-the-art in this �eld. Second, we present a design of GPU
joins that reduces I/O overhead in dealing with input tables that
cannot be stored in GPU memory. To the best of our knowledge,
this is the �rst reported work in joining tables beyond the memory
size of GPU devices. Finally, we carry out a thorough comparison
of the performance of GPU-based join algorithms and their CPU
counterparts. In addition to the conclusion that GPU-based algo-
rithms are superior over best known CPU counterparts, we provide
an anatomy of such algorithms to interpret the observed results.

In the remainder of this article, Section 2 summarizes related
work on parallel join algorithms; Section 3 presents the design
and implementation of GPU hash and sort-merge join; Section 4
evaluates the newGPU algorithms by comparing themwith existing
GPU-based join and best CPU parallel join programs; and Section
5 concludes the paper.

2 RELATEDWORK
Designing and optimizing algorithms for join and other database
operators on many/multi-core systems has been an active topic
in the database �eld. On the CPU side, Kim et al. implemented

optimized sort-merge join and hash join on a Core i7 system [15].
�ey took advantage of the SIMD instructions available on the
CPU to achieve more data parallelism. �ey also concluded that
the hash join is faster than the sort-merge join but future SIMD
instructions may bring more bene�ts to the la�er. Blanas et al. [8]
studied a wide variety of multi-core hash join algorithms, �nding
that a simple hash join with a shared hash table and no partition
performs su�ciently well over other complex, hardware-conscious
ones. However, their conclusion was based on a particular dataset
as pointed out by [5]. Albutiu et al. designed a massively parallel
sort-merge join where each thread only works on its local sorted
partitions in a non-uniform memory access (NUMA) system [2].
In [5], Balkesen et al. makes a counterclaim to [8], stating that
hardware-conscious optimization is still necessary for optimal per-
formance in hash join, and provided with the fastest radix hash
join implementation featuring bucket chain method proposed by
Manegold et al. [17], which is faster than the SIMD implementation
in [15]. Balkesen et al. later revisited sort-merge join vs. hash join
with extensive experiments and analysis [4]. �ey provided the
fastest implementation of both algorithms and claimed that the
radix hash join outperforms sort-merge join with the sort-merge
catching up only when the data is very large. To deal with the
high memory consumption of hash join, Barber et al. proposed
a memory-e�cient hash join by using a concise hash table while
maintaining competitive overall performance [7].

On the GPU side, He et al. designed a series of GPU-based data
operators as well as four join algorithms [12]. �eir algorithmswere
designed to take advantage of an early generation of CUDA-enabled
GPUs. Bakkum et al. implemented an SQL command processor that
was integrated into an open-source database so�ware [3]. Yuan et
al. studied the performance of GPUs for data warehouse queries
and provided insights of narrowing the gap between the comput-
ing speed and data transfer speed [24]. Wu et al. proposed an
implementation of compiler and operators for GPU-based query
processing [23]. Kaldewey et al. revisited the join processing on
GPU to utilize the Uni�ed Virtual Addressing (UVA) to alleviate the
cost of data transfer [14]. �ere are also reports of CPUs’ working
cooperatively with GPUs to process data [11, 13]. Close in spirit
to [3, 23, 24], we are in the process of developing a scienti�c data
management system named G-SDMS that features a push-based
I/O mechanism and GPU kernels for data processing. A sketch of
the G-SDMS design can be found in [22].

�ere are controversial views on whether GPU is superior to
CPU in join processing. In [12], the authors claimed a 2-7X GPU-to-
CPU speedup for various join algorithms. However, in [15], more
optimized CPU code achieved up to 8X speedup over GPU joins. By
studying various operators on CPUs and GPUs, Lee et al. claimed
that GPU is about 2.5X as e�cient as CPU on average [16]. Our
previous work [19] showed that hardware development over the
past few years a�ects both CPU and GPU joins. By testing the
same CPU and GPU code used in [12], it is shown that the GPUs
were up to 19X faster in sort-merge join and 14X faster in hash
join. However, such experiments did not consider the most recent
development of CPU and GPU joins. In this paper, we propose join
algorithms that are optimized for the latest GPUs, and compare
their performance with the best CPU code presented in [5] and [4].
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Figure 1: Layout of latest NVidia GPU architecture

3 JOIN ALGORITHM DESIGN ON GPUS
In this section, we introduce the recent development of GPU archi-
tecture, and then highlight hardware and so�ware features that are
most relevant to join processing. Based on that, we present new
GPU hash and sort-merge join algorithms that take advantage of
such features to e�ectively utilize GPU resources.

3.1 GPU Architecture
Before we discuss GPU joins, it is necessary to sketch the main
components of the GPGPU environment we work on. In this paper,
we focus on NVidia GPU devices and the CUDA programming
model. �e layout of the latest NVidia GPU (e.g., Maxwell and
Pascal) architecture is shown in Figure 1. Such a GPU consists of a
few multiprocessors, each of which contains 128 computing cores,
a large register �le, shared memory and cache system. In CUDA,
the threads are grouped into thread blocks. Each block runs on
one multiprocessor, and 32 threads form a basic scheduling unit
called a warp. A block may contain several warps. �e threads are
scheduled in SIMDmanner where a warp of threads always execute
the same instruction but on di�erent data at the same time.

�e memory hierarchy in the GPU also has di�erent scopes. �e
variables of a thread are stored in the register �le and private to that
thread. However, CUDA provides shu�e instructions that allow
threads in the same warp to shared data in the registers. At block
level, shared memory is a programmable L1-level cache that can be
used for fast data sharing among threads in the same block. �e
global memory, or device memory, serves as the main memory for
GPU. Although it provides up to a few hundreds GB/s of bandwidth,
coalesced memory access is needed to fully utilize the bandwidth.
�ere is also an L2 cache that bu�ers the global memory access for
the multiprocessors.

3.1.1 New features of GPUs. �e hardware design of GPUs has
experienced drastic changes in recent years. �is has deep impacts
on our join algorithm design and implementation.

First, the number of computing cores increases steadily, giving
rise to much higher GFLOPs of the GPU. �e Titan X has nearly
30X more cores than that in 8800GTX, but CPU core counts only
increase by 4-5X during the same period of time. Apart from the
quantity, the organization of the multiprocessor has also changed
over time. For example, one multiprocessor in Maxwell consists of
128 computing cores divided into four blocks. Each block of cores

has dedicated scheduler with dual issue capability. �is improves
the e�ciency of scheduling, power consumption and chip area, but
requires more parallelism to achieve high utilization.

An important change is the large number of registers starting
from Kepler architecture. Each multiprocessor has 64K 32-bit reg-
isters, resulting in 256KB capacity, which is larger than that of
L1-level cache! �is implies that the register �le can hold larger
amount of data, hence more work per thread is made possible at
register speed. Data in registers had been set to be private to each
thread, but now they can be shared among threads within the same
warp via shu�e instructions.

Atomic operations are widely used in parallel algorithms to
operate on shared data or to gather results. In early GPUs, atomic
operations are supported via a locking mechanism. It is improved
in Kepler via native atomic operations in global memory, and the
a�ected memory addresses are aggressively cached (in L2 cache).
Maxwell and Pascal go one step further by supporting them in
shared memory. �is improvement simpli�es applications that
need to update shared counters or pointers, and more importantly,
relieves a major performance bo�leneck associated with atomic
operations due to the high bandwidth of shared memory.

Dynamic parallelism is another new feature available starting
from Kepler. It allows an active kernel to launch other kernel calls,
thus dynamically creating additional workload when the parent
kernel is running. �is feature enables recursive kernel calls which
is not possible in earlier generations of GPUs. We will discuss
in detail on how we use this feature to tackle the data skewness
problem in hash join.

Creating overlaps between the processing of in situ data and
shipping of new data inputs/outputs is a key technique in joining
large tables. Such concurrency of di�erent activities are made pos-
sible by a CUDA mechanism called CUDA stream. In presenting
our algorithm design, we �rst assume the input tables can be com-
pletely placed in global memory, then we remove that assumption
in Section 3.4.

3.2 Hash Join
Our hash join is based on the popular idea of radix hash. �e
process consists of three parts: partitioning input data, building
hash table and probing. However, we adopt the idea used in [12]
that by reordering the tuples in a relation according to its hash
value, the partitioning and building stages are combined into one.
�erefore, the tuples with the same hash value are clustered into
a continuous memory space, which ensures coalesced memory
access when threads load data from a certain partition. Despite this,
our hash join algorithm implementation is fundamentally di�erent
from the design reported in [12] in most parts.

3.2.1 The Partitioning stage. �e partitioning stage starts with
building histograms for hash values to reorder the tuples of both
input tables. In previous work, a thread reads and processes one
tuple at a time because the multiprocessor has very few registers.
�is method is straightforward but is less capable of hiding latency
via instruction-level parallelism. To utilize the large register �le
in new GPU architecture, our implementation loads VT (short for
values per thread) tuples into registers of the thread all at once so
that each threads are assigned more workload at the beginning.
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Figure 2: Shared histogram used in Partitioning and Reordering in
GPU hash join. (i,j) is the shared histogram for partition i in block
j. �e pre�x-scan of the histograms P(i,j) gives the starting position
for the data in block j that belongs to partition i

�is increases the instruction-level parallelism within each thread,
and the memory access can be overlapped with computation to
hide latency. Each thread processes its own data independently and
updates the shared histogram in shared memory (Fig. 2).

Being di�erent from the method in [12], where each thread
keeps private histograms for each partition in shared memory,
our algorithm keeps only one shared copy of histogram in each
thread block, as Algorithm 1 shows3. In early generation of GPUs,
atomic operations are either not supported or involve considerable
overhead. It was not feasible to update shared histogram among a
number of threads. �e problem with keeping private histograms
in each thread is that it would consume too much shared memory
when either the number of threads in each block or the number of
partitions is high, reducing the number of active threads running
on each multiprocessor (i.e., called occupancy). �is might not be a
serious issue in old devices such as 8800GTX. Since they only have
8 cores per multiprocessor, a small number of threads are enough
to keep it busy. However in newer architectures, more concurrent
threads are required to keep the hardware at optimal performance.
By using one shared copy of the histogram, the amount of shared
memory consumed by a block is reduced by a factor that equals the
block size, and is no longer depending on the number of threads in
a block, resulting in more active threads for multiprocessors. Also
thanks to native atomic operation support on shared memory in
Maxwell and Pascal, all the threads in a block can update the shared
histograms with a very small overhead.

In previous work, a multi-pass radix, or a variable number of
pass partition is used. However, in this method we found there
is a non-linear growth of number of partitions with the table size
increasing. �is results in a non-linear execution time increase. We
adopt a two-pass radix partition mechanism in our implementation.
We keep the partition size to be small enough (e.g., less than 512
tuples for each thread block) to �t into shared memory, therefore
the probe stage only needs to read the data once from the global
memory. To achieve such small partition for large input, we have
3All pseudocode is wri�en from the perspective of a single thread, following
the Single-Program-Multi-Data (SPMD) programming style in CUDA.

Algorithm 1: Histogram in GPU Hash Join
Require: Relation R
Ensure: array of histograms SharedHisto[]
1: Initialize SharedHisto[nPartitions] to 0;
2: data[VT]← load VT tuples from relation R;
3: for i = 0 to VT-1 do
4: h← Hash(data[i].key);
5: atomicAdd(SharedHisto[h],1);
6: end for
7: Write SharedHisto[nPartitions] to global memory;

to create a large number of partitions. If a single-pass method is
used, the shared memory is not able to hold that many histograms.
�us, we use a two-pass method where the �rst pass reorganizes
the input into no more than 1024 partitions, and the second pass
further divides the partitions from the �rst pass into smaller ones.
By using this method, we can process a single table containing 500
million pairs of integers (key+ value). �is is a reasonable size since
in our experiment the Titan X with 12GB memory can hold two
128 million-tuple arrays plus intermediate data.

To reorder the tuples (Algorithm 2), each thread block has to
know its starting positions of the partitions. �e shared histograms
are copied to global memory. �en a pre�x scan is performed to
determine the starting position of all the partitions for each block
(Fig. 2). Once the positions are obtained, all the threads can reorder
the tuples in parallel by atomically incrementing the pointers for
each partition. Since our method uses shared histogram and its
pre�x sum, the writing positions of the threads in the same block
are also localized. �is increases locality of memory access, thus
the cache would be in use to bu�er the writes.

Algorithm 2: Reorder in GPU Hash Join
Input: relation R
Output: reordered relation R’
1: SharedHisto[nPartitions]← load the exclusive pre�x sum

of the histogram from global memory;
2: Synchronize;
3: data[VT]← load VT tuples from relation R;
4: for i = 0 to VT-1 do
5: h← Hash(data[i].key);
6: //get current writing position and then increment
7: pos← atomicAdd(SharedHisto[h],1);
8: R’[pos]← data[i];
9: end for

3.2.2 The Probe stage. In the probe stage (Figure 3), each parti-
tion of input table R is loaded into shared memory by one block of
threads. A partition of the other table S with the same hash value is
loaded into registers by the same threads. �is is the same mecha-
nism mentioned in previous section, thus every access to partitions
of S is at register speed. To write the outputs back to memory, the
traditional wisdom (as in [12] and even CPU work such as [15])
is to perform the probe twice. �e �rst probe returns the number
of outputs for each partition to determine the location of the out-
put bu�er for writing outputs. �e total number of outputs and
starting position of each partition is obtained by a pre�x scan of
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these numbers. Given the number of outputs, the output array can
be allocated and then the second probe is performed to actually
write the output tuples. �is scheme eliminates the overhead of
synchronization and dynamic allocation of bu�ers, and e�ciently
outputs in parallel by doing more work. �e pseudocode of such a
design of probe is shown in Algorithm 3.

Figure 3: Work�ow of threads of probe stage in hash join

Direct data output: However, we realize that the overhead of
probing twice is too high. To reduce such overhead, we design a
bu�er management mechanism in which threads directly output to
di�erent locations of a bu�er pool in global memory (Fig. 4). We
�rst allocate an output bu�er pool of size B and divide it into small
pages of size b. A global pointer P holds the position of the �rst
available page in the bu�er pool. Each thread starts with one page
and �lls the page with output tuples by keeping its own pointer to
empty space in the page. Once the page is �lled, the thread acquires

Algorithm 3: Probe in GPU Hash Join
Input: relations R and S
Output: array of matching pairs globalPtr ;number of matches for each

block matches;
1: pid← blockIdx.x; //Partition id
2: while pid < nPartitions do
3: matches← 0;
4: SharedBuf[VB]← load partition pid of R;
5: Synchronize;
6: data[VT]← load VT tuples from partition pid of relation S;
7: bufPtr← atomicAdd(globalPtr,bufSize);
8: count← 0;
9: for i = 0 to VT-1 do
10: for j = 0 to VB-1 do
11: if Hash(data[i].key) == Hash(SharedBuf[j].key) then
12: bufPtr[count++]← (data[i],ShareBuf[j]);
13: if count == bufSize then
14: bufPtr← atomicAdd(globalPtr,bufSize);
15: count← 0;
16: end if
17: end if
18: end for
19: end for
20: pid← pid + NumBlocks;
21: end while

a new page pointed to by P via an atomic operation and increment
P . With the direct output bu�er, threads can output directly in the
probe stage in parallel and no complex synchronization is needed.
We basically trade the cost of acquiring new pages for elimination of
the second probe. Since the atomic operation only happens when
a page is �lled, we expect li�le con�icts in accessing the global
pointer P . Plus, we can adjust the page size b to reach the desirable
tradeo� between such overhead and bu�er space utilization (i.e.,
larger page reduces overhead but may render more empty space
within pages).

To tune the output bu�er even more aggressively, an alternative
is to divide the whole output bu�er into chunks. Each thread block
is assigned one chunk for output their results. Each block keeps a
pointer in the shared memory that redirects to the next available
slot in the output chunk. When a thread in a block needs to output,
it acquires the current value of the pointer in the shared memory
and increases it via an atomic operation, then it outputs the result
to the available slot. �is technique will take advantage of low cost
of atomic operations against shared memory locations.

Figure 4: A case of direct output bu�er for GPU hash join, showing
�read 3 acquiring chunk 4 as output bu�er

3.2.3 Skew Handling. Our hash join design takes data skew into
consideration. Here by “data skew” we mean some of the partitions
based on the hash value can be larger than others. In extreme
cases, most of the data are distributed in just a few partitions. As a
result, the corresponding thread blocks in the probe stage become
the bo�leneck of the whole procedure. To deal with data skew,
previous work processes these skewed partitions in a separate
kernel function that provides more working threads for the extra
data. �is method is simple and e�cient, but needs to keep more
intermediate states for scheduling.

In our implementation, we take advantage of dynamic paral-
lelism that was introduced since Kepler architecture. �is tech-
nique allows dynamic creation of additional kernels within current
work�ow. If the size of a certain partition exceeds the prede�ned
threshold, the block that is processing this partition creates a child
kernel that exclusively works on this partition. �e child kernel
runs concurrently with the parent kernel and other child kernels
until it �nishes. �en it returns to its parent thread. We can dy-
namically change the launching parameters of the child kernels (i.e.
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Figure 5: Parallel merge with 7 threads using Merge Path

block size and grid size) according to the sizes of their correspond-
ing partitions. �is technique brings more �exibility for dealing
with skewed data.

3.3 Sort-Merge Join
As usual, sort-merge join is divided into two stages: (1) sorting the
input relations by the a�ribute(s) involved in the join condition;
and (2) merging the two sorted relations to �nd matching tuples.

3.3.1 The Sort stage. Our program features a highly e�cient
parallel merge-sort algorithm. Previous work o�en implements
radix sort [25] or bitonic sort [12] that are also suitable for par-
allel computing. However, they both have limitations in that the
radix sort only applies to numeric data and it becomes costly as
the key size grows, while the bitonic sort has a unique pa�ern of
comparison which requires power-of-two number of data points.
Merge-sort can sort any type of data and are more �exible on data
size than bitonic sort. Although bitonic sort in serial code has low
time complexity (O(log2 n)), its best parallel version has a subpar
O(n log2 n) total computation [1]. It is also hard to exploit locality
and coalesced memory access when data is large as it accesses dif-
ferent locations each time. Merge-sort, on the contrary, merges two
consecutive chunk of data at a time, which can utilize the register
blocking, coalesced global memory access and shared memory of
the GPU. According to our experiments, this highly e�cient use
of memory bandwidth results in a 7X speedup compared with the
bitonic sort in existing work.

Our sort is based on a parallel merge algorithm named Merge
Path [10, 18], the main idea of which is shown in Fig. 5. Consider
the merge of two sorted arrays A and B, a merge path is the history
of the merge decisions. It is more clearly illustrated by a |A| × |B |
matrix, in which an element (i,j) is 1 when A[i] < B[j], and 0
otherwise. We can obviously see that the merge path lies exactly on
the boundary between the two regions containing only 0s and 1s,
respectively. If we break the merge path into equal-sized sections,
the projections of each section on A and B arrays correspond to
the elements to be merged by this section, thus each section can
merge their own data independently. �e most essential part in
this method is how to �nd the merge path without actually carry

Algorithm 4: BlockSort
Input: Input relation R;
Output: Sorted sublists;
1: data[VT]← load VT tuples from relation R;
2: sort data[ ] sequentially;
3: copy data[ ] to shared memory;
4: for n← 2, 4, 8, …, BlockSize do
5: L← VT×n/2
6: �nd the merge path of two sorted data[ ] of length L;
7: merge the two sorted data[ ] into one list of length 2L in shared

memory with n threads cooperatively;
8: end for
9: Store the sorted tuples to global memory;

out the merging process. To �nd the merge path, we need the
help of cross-diagonals, which are the dash lines in Fig. 5. By
performing binary searches on the pairs of A[i] and B[j] along the
cross-diagonals of the matrix, where i + j equals to the length of the
corresponding cross-diagonal, we obtain the intersections of the
merge path and the cross-diagonals. �ese intersections provide
the starting and ending points of each sections of the merge path.
As the sections are equal-sized, load balancing would be naturally
achieved without additional e�ort. Based on this highly parallel
and load-balanced merge procedure, e�cient merge-sort algorithm
can be realized on GPUs.

In our sort stage, input relations are �rst partitioned into small
chunks of size VT.�en each thread loads a chunk of input data into
its registers as an array using static indexing and loop unrolling
to achieve more e�ciency, as shown in Algorithm 4. �at is to
access the array using for loops in a sequential way. �is method
ensures the whole chunk resides in registers as long as the number
of registers needed does not exceed 256 per thread. Each thread
performs sequential odd-even sort on its own chunk and stores the
sorted chunks into shared memory. Since VT is set to 8 a�er some
tests for optimal performance for the GTX Titan X, the overhead of
using odd-even sort on data si�ing in registers is acceptable. A�er
each thread has their own chunk sorted, all the threads in a thread
block work cooperatively to merge the chunks in shared memory
using Merge Path until they become a single sorted array. �en all
the blocks store their outputs to global memory and cooperatively
merge the arrays using Merge Path again, until the whole relation is
sorted (Algorithm 5). �e arrays are loaded into the shared memory,
and each thread executes serial merge independently on their own
partitions, and stores the merged list to registers which is to be
output later to global memory in batch. In summary, our sort stage
relies heavily on registers (in BlockSort) and shared memory, which
were of much smaller volume in early GPUs.

3.3.2 The Merge Join stage. In the merge join stage, the two
sorted relations are treated as if they were to be merged into one
list. Previous work �rst partitions relation R into small chunks that
�t into the shared memory, then searches the other relation S for
matching chunks. Each tuple in a chunk of S �nds matches using
binary search on the corresponding chunk of R.

In our implementation, the Merge Path method is used at this
stage as well. To �nd matching tuples, we start from partitioning
the input relations using merge path so that each thread can work
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Algorithm 5:Merge Data from di�erent blocks
Input: sorted sub-arrays of size VT×BlockSize;
Output: a single sorted list;
1: VB← VT×BlockSize;
2: for n = 2, 4, 8, …, NumBlocks do
3: L← VB×n/2;
4: �nd the merge path of two sorted sub-arrays of length L;
5: dataShared[VB]← corresponding partitions of

sub-arrays for current block;
6: merge the tuples in dataShared[ ] into one list of length

2L to registers;
7: store the sorted list to global memory;
8: end for

on individual chunks of the input. A�er loading the corresponding
chunks from the two inputs into register, each thread loops over
each elements of R and runsmerge path to �nd the starting point(e.g.
the lower bound) of matching in S. �is procedure resembles a serial
merge of two sorted lists, thus the total work of all threads is linear
to the number of inputs. �e second step is similar to the �rst one,
except that this step is to �nd the starting point of matching of R
for each elements in S, which is exactly the ending point (e.g., the
upper bound) of matching in S for tuples in R. By subtracting the
starting position from the ending position, the number of matches
for each tuple in R is obtained. Before output results, a pre�x scan
on the array of number of matches gives the total size for allocating
output bu�er. Since we know where to �nd the matches, a second
scan is no longer needed in the output stage.

3.4 Handling Large Input Tables
So far we have made the assumption that both tables as well as
the intermediate results of the join can be put into the GPU global
memory. �is sets a limit on the size of tables that can be processed.
In this section, we report our e�orts in removing that assumption.
Following the ideas of disk-based joins, we can obviously break
the input tables into chunks and process pairs of chunks (one from
each table) in a GPU using the aforementioned join algorithms. Join
results of each pair of chunks are wri�en back to host memory.

�e �rst aspect is how to schedule the shipping / processing of
di�erent data chunks to/in the GPU. Note that a thorough study has
to consider the relative table sizes and the number of GPU devices.
In this paper, we focus on the following scenario: there is only one
GPU, table R can be completely stored in the global memory while
table S is of an arbitrarily (large) size. Such a scenario represents a
typical business database design such as the one found in TPC-H.
Furthermore, solutions developed for such will build the foundation
for more complex scenarios. Given that, we �rst load R entirely into
GPU, and join R with each and every chunk of S, and ship results
back to host memory. Apparently, as R resides in GPU, we conduct
the �rst stage (e.g., partition, sorting) of the join only once for R.

Another aspect is to hide the data shipping latency with join
computation on the device. In particular, we take advantage of the
CUDA Stream mechanism to allow concurrent data transfer and
kernel execution between neighboring rounds of chunked joins (Fig.
6). Speci�cally, each chunked join involves a kernel launch, and the
series of kernel launches are encapsulated into CUDA streams. A�er

table R is transmi�ed to GPU memory, the kernel for processing
(i.e., sorting or building hash) R and the transfer of S1 are issued
simultaneously. When the join results C1 are being wri�en back to
the host, the shipping of S2 happens at the same time. In this way,
the work �ow is pipelined and the overlapping of kernel execution
and data transfer helps reduce the total running time.

R
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R

S1

R,S1 C1

S2 S2

Default Work Flow

Pipelined Work Flow Using CUDA Stream

Time

…

…

…

Stream1

Stream2
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Data Transfer 
Host To GPU

Data Transfer 
GPU to Host

Data 
Processing
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Figure 6: Overlapping data transmission and join processing using
two CUDA streams

We also worked on the scenario of processing joins in multiple
GPU devices. It involves innovative data transmission scheduling
among the di�erent GPU cards as well as between the card and
host. Note that the two types of transmission are done in di�erent
physical PCI-E channels therefore we can handle cases in which
one table can only be placed in multiple GPUs without much per-
formance penalty. Due to page limits and the complex techniques
involved, we unfortunately have to skip such details. We leave the
study of joins between very large tables (such that neither table
is smaller than the aggregated memory size of multiple GPUs) as
future work.

4 EVALUATIONS
We evaluate the performance of our GPU-based join algorithms by
comparing them with existing GPU and latest CPU join code. In
addition, we also show the e�ects of di�erent factors on the perfor-
mance. �e hardware and so�ware con�gurations are described in
Section 4.1.

4.1 Experimental Setup
We choose two Intel CPUs and two NVidia GPUs for our experi-
ments, and the speci�cations of the hardware are listed in Table 1.
�e E5-2650v3 and Titan X represent a recent generation of their
kind while the E5-2670 and Titan represent high-end hardware that
are 3-4 years old. Plus, the corresponding CPU and GPU hardware
have very similar price tags. �e E5-2630v3 and E5-2670 are in-
stalled on two separate servers running Red Hat Linux under kernel
version 2.6.32 and GCC version 4.4.7. �e GPUs are connected via
PCI-E 3.0 16X interface to the same server that hosts the E5-2630v3.
Our GPU code is compiled under NVCC 7.5. We also use an NVidia
tool named NVPro�ler to study the runtime characteristics of our
GPU code. To maximize the performance of the CPUs, we run 16
threads for the CPU code, which is the optimal number obtained
from a series of tests.
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Table 1: Speci�cations of hardware mentioned in this pa-
per. Information is mainly extracted from the Intel and
Nvidia corporate websites, with other information obtained from
www.techpowerup.com and www.cpu-world.com

Device
CPU GPU

Xeon
E5-2630v3

Xeon
E5-2670

Maxwell
Titan X

Kepler
Titan

Clock Rate 2.40GHz 2.60GHz 1.00GHz 0.84GHz
Core counts 8 8 24 × 128 14 × 192
L1 Cache 256KB 256KB 96KB×24 64KB×14
L2 Cache 2MB 2MB 3MB 1.5MB
L3 Cache 20MB 20MB – –

Memory* 128GB
DDR4

64GB
DDR3

12GB
GDDR5

6GB
GDDR5

Memory
Bandwidth *

59GB/s 51.2GB/s 337GB/s 288GB/s

Max GFLOPS 153.6 166.4 6144 4494
* For CPUs, here we refer to the host memory of the computer.
For GPUs, we mean the global memory.

Unless speci�ed otherwise, we set the two input relations to be
of the same size. Each tuple in the tables consists of two parts: a
32-bit integer unique key and a 32-bit integer payload that serves
as the ID of the tuple. �e keys are �rst generated in order and then
shu�ed randomly. �e keys are uniformly distributed between 1
and table size N . We perform equi-join on the key, the selectivity
of the join condition is set to render one output item per tuple.

We �rst report results on in-memory join where the data size �ts
the capacity of GPU memory. We compare our code with existing
GPU join algorithms and the latest CPU join code, and go through
di�erent factors that potentially a�ect join performance. Finally, we
use the GPU to handle large data that exceeds its memory capacity,
and compare its performance with CPU.

4.2 Experimental Results
4.2.1 Comparing with Existing GPU Code. De�ning the appro-

priate baseline for such experiments has been surprisingly di�cult.
A�er a thorough investigation of the known related work, our com-
parisons are focused on the GPU join programs presented in He et
al. [12]. Among the multitude of studies on GPU database systems,
few discussed join algorithm design and implementation. Others
[23, 24] focus on query engine without clearly modularized code
for joins. Another work [14] aims at improving data transmission
e�ciency by UVA while uses the code of [12] as building blocks.
�erefore, we are con�dent that [12] is by far the most up-to-date
and systematic work on GPU-based joins. Plus, their code is also
used by CPU-based parallel join work [15] as a comparative base-
line. Our a�empts to extract and test standalone join code from the
work of [23] and [24] failed due to compilation errors and lack of
documentation to help �x such errors.

According to Fig. 7, our GPU code signi�cantly outperforms that
introduced in [12]. Speci�cally, the new sort-merge join achieves
4.0-4.9X speedup, with speedup goes slightly higher as the data size
increases. On the other hand, a 2.0-14.6X speedup is observed for
the new hash join. �e same results can be seen in both theMaxwell
Titan X and Kepler Titan cards. Only issue is that due to the small
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Figure 7: Speedup of new GPU join algorithms over existing GPU
code under di�erent table sizes

global memory of Titan (6GB), the join code cannot run under a
128M table size. �e large variation of the speedup in hash join is
caused by the partitioning strategy of the old code. In particular,
when table size reaches 32 million tuples, the partitioning process
changes from two-pass to three-pass in order to keep each partition
small. �is results in a sudden increase of running time. In contrast
to that, the new hash join generates more partitions per pass thus
we ensure two passes is enough for a large range of data sizes. As
a result, its running time grows proportionally to the input size.

Resource Utilization of join code: To get insights on the big
performance gap between old and new joins, we study the GPU
resource utilization achieved by major kernels in both pieces of
code. Such data are collected via NVPro�ler and presented in Tables
2 and 3. Note the block sizes shown represent those that deliver
the best kernel performance. For sort-merge join (Table 2), the
old code used a bitonic sorting network that directly operates on
global memory. Only when sorting a partition of the data (kernel
PartBitonic), the shared memory is used but only 50% bandwidth
(1586GB/s) is utilized. When combining all the partitions (kernel
Bitonic), the accesses to the global memory are entirely random
and non-coalesced. Although these kernels have relatively high
multiprocessor occupancy (e.g., the number of threads that can run
at the same time on a multiprocessor), they are bounded by the
utilization of shared memory and bandwidth of global memory,
respectively. On contrary, our new sort-merge join makes every
step local to the threads. In the blocksort kernel, each thread sorts
their own items in registers in a sequential mannerwith zero latency.
�en the the whole block of threads combine their tiles together
in the shared memory. Even though the occupancy of this kernel
is only 62%, the nearly 100% (3.3TB/s) bandwidth utilization on
the shared memory ensures the overall performance. Furthermore,
all the merging operations are also completed in shared memory.
Finally, all the data are in order and can be output to global memory
e�ciently with coalesced access.

For hash join (Table 3), the main problem with the old code is
the unbalanced use of GPU resources. In particular, due to the
lack of atomic operations in older GPUs, each thread keeps its own
copy of an intermediate output (i.e., histogram of radix partition)
in the shared memory. As a result, in the Histogram and Reorder
kernels, only eight threads can be put into each block. �at is even
smaller than the basic scheduling unit of the GPU, which is 32
threads (a warp) at a time. Because of that, only 16% occupancy is
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Table 2: Resource utilization of major kernels in the new and old GPU sort-merge join code

Kernel New Algorithms Existing Algorithms
BlockSort Merge partBitonic Bitonic

Block Size 256 256 512 512
Registers/�read 41 31 16 10

Shared Memory/Block 9KB 9KB 4KB 0KB
Occupancy Achieved 62.1% 98.8% 93.2% 84.8%

Shared Memory Bandwidth Use 3308.2GB/s 1098.6GB/s 1585.9GB/s 0GB/s
L2 Cache Bandwidth Use 84.6GB/s 295.3GB/s 110.1.0GB/s 262.6GB/s

Global Memory Bandwidth Use 84.5GB/s 253.3GB/s 109.5GB/s 262.9GB/s

Table 3: Resource utilization of major kernels in the new and old GPU hash join code

Kernel New Algorithms Existing Algorithms
Histogram Reorder Probe Histogram Reorder Probe

Block Size 256 256 256 8 8 128
Registers/�read 13 20 22 14 16 18

Shared Memory/Block 4KB 4KB 4KB 8KB 8KB 4KB
Occupancy Achieved 87.6% 89.1% 91.0% 16.6% 16.4% 83.1%

Shared Memory Bandwidth Use 201.5GB/s 19.5GB/s 775.3GB/s 275.9GB/s 85.6GB/s 637.3GB/s
L2 Cache Bandwidth Use 357.3GB/s 171.3GB/s 28.3GB/s 36.4GB/s 59.8GB/s 28.6GB/s

Global Memory Bandwidth Use 103.2GB/s 98.1GB/s 8.5GB/s 36.4GB/s 58.9GB/s 23.3GB/s

achieved by these kernels, meaning that the multiprocessors are
extremely underutilized. In our redesigned hash join kernels, both
the histogram kernel and reorder kernel achieve more than 87%
occupancy. With the help of atomic operation, one copy of shared
histogram is kept for a block, thus only 4KB of shared memory is
used even for a block size of 256. Writing to global memory is also
improved because of the shared histogram. All threads in a block
write to a limited space of the output. �is increases locality thus
the utilization of L2 cache increases. In both sort-merge and hash
joins, use of registers per block has increased signi�cantly to take
advantage of the large register �le in the latest GPU.

Hash join vs. sort-merge join: Previous work [4, 15] con-
cluded that hash join is more e�cient than sort-merge join in
current CPU hardware, while the la�er would bene�t from wider
SIMD instructions. For GPUs, the key to this problem is the uti-
lization of the memory system. �e sorting stage in the sort-merge
join relies heavily on the fast shared memory and register �le to
reorganize the inputs. However, the radix partition of the hash join
has more random access, thus is hard to be localized into shared
memory. At best, the memory access can be cached by L2, but its
bandwidth is one magnitude lower than that of shared memory.
�erefore, in our code the sort-merge join is up to 26% faster than
the hash join.

4.2.2 Comparing with latest CPU code. �eCPU code we use for
our comparisons are developed by Balkesen and co-workers [4, 5],
which is obviously the most e�cient parallel developments for both
sort-merge and hash joins. Fig. 8 shows the relative performance of
our GPU code to the latest CPU-based joins. We �rst want to point
out that the older E5-2670 outperforms the newer E5-2630v3 in all
cases but the newer Titan X GPU is always the winner. �erefore,
the relative performance between Titan X and E5-2630v3 shows
the maximal GPU-to-CPU speedup while that of Titan to E5-2670
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Figure 8: Speedup of our GPU code over the latest CPU code

shows the minimal in our tests. Clearly, the GPUs outperform
CPUs in both sort-merge join and hash join by a large margin.
In sort-merge join, the Maxwell Titan X achieves more than 10X
speedup over the Haswell E5-2630V3, while the Kepler Titan has
up to 6.8X speedup over the Sandy-Bridge E5-2670. In hash join,
the advantage of GPUs shrinks but is still considerable, our code
running on Titan X achieves a 5.5X speedup over the E5-2630V3,
while the Titan obtains a 4.0X speedup over the E5-2670.

In terms of performance improvement between two generations
of hardware, the GPUs see more bene�t. �e Maxwell Titan X
improves by 22% and 35% in overall performance over the Kepler
Titan for sort-merge join and hash join, respectively. �is can be
easily interpreted as the result of the computing capacity of new
generations of GPUs that increased signi�cantly over the past few
years (Table 1). On the CPU side, the newer Haswell E5-2630v3
is even 26% and 2% slower than the older E5-2670 in sort-merge
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Figure 9: Execution time breakdown (percentage) of new and old
GPU algorithms running on Titan X

join and hash join, respectively. �is shows that the architectural
update on CPUs does not bring any performance advantage in join
processing. Although the E5-2630v3 works on a new generation of
memory (i.e., DDR4), the higher clock rate of E5-2670 cores actually
makes be�er use of the memory bandwidth.

4.2.3 Time Breakdown. �e execution time breakdown of our
GPU code and that provided by [12] is shown in Fig. 9. �e �rst
thingwe notice is that the transmission of input/output data to/from
GPU is an extra cost for the GPU code, and it counts for 35% and
27% of the total time in the new sort-merge join and hash join,
respectively. Since the join kernels of sort merge is faster than hash
join, the data transfer time takes up higher percentage in hash join
– almost 1/3 – of the total execution time.

When comparing the new algorithms with the old ones, we �nd
that the join processing time in new code contributes less to the
total running time while the data transfer time contributes more.
In sort-merge join, the percentage of sorting stage time drops from
82.7% to 57.1%, which corresponds to a 7X of performance speedup.
�e merge-join is, however, not a time consuming stage, taking
up less than 8% of execution time. �e reason why the merge-join
stage in our new code is a li�le slower is that the old code uses
a di�erent mechanism. It builds tree indexes for one of the input
relation a�er sorting. �e merge stage gained some bene�t from
the indexes. But our sort-merge join is still much faster in terms
of GPU processing time. In hash join, both partition and probe
stages are much faster than existing code, achieving 6.2X and 3.8X
speedup respectively. �e results indicate that our newly designed
kernels are more e�cient than those in the existing code by using
optimizations that take advantages of the new GPU architectural
features. If we do not consider the time for data transfer between
host and GPU, both sort-merge and hash in GPU will get a much
higher speedup. For sort-merge the speedup would become 15.5-
17.5X while for hash join it is 6.3-8.3X. Obviously, a GPU is way
more e�cient than a CPU in processing the join itself but gets a
big hit in data communication via the PCI-E bus.

4.2.4 E�ects of Join Selectivity. Fig. 10 shows the impact of
varying selectivity, i.e., the total number of output tuples. �e GPU
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Figure 10: Impact of join selectivity on speedup of Titan X over
E5-2630v3 under data size 64M

sort-merge join enjoys a speedup around 10X over the CPU except
at 4X of outputs where it drops to 8.5X. On the other hand, the GPU
hash join su�ers from the increasing outputs with a decreasing
speedup over the CPU from 5.1X to 2.6X. It is expected that when
more tuples are generated as a result of the join, the GPU program
will bear a higher overhead as more data will be wri�en back to host
via the PCI-E bus. �is explains why the hash join performance de-
grades. However, the impact of selectivity on sort join performance
does not seem obvious. By scrutinizing the behavior of our code,
we found that the actual running time of our sort merge code does
increase as more output tuples are returned. On the other hand, due
to a special design of a data structure for holding output tuples, the
CPU-based sort-merge join code sees serious performance cut when
the output size increases.7 �is overshadows the performance loss
observed in GPU code therefore the GPU-to-CPU speedup stays
on the same level. As a general trend, we believe lower selectivity
will hurt the performance of GPU programs to a extent that there
is no competitive advantage of GPUs, as we discussed earlier in
4.2.3. But our strategy of overlapping data transmission and join
processing can also o�set such e�ects.

4.2.5 E�ects of Direct Output. By using the direct output bu�er,
the hash join sees a signi�cant bene�t. Fig. 11A shows the results
of our hash join code comparing with the same code without using
a direct output bu�er. Under page size of one, improvement starts
with 25% under 16M data size and, as the input data becomes larger,
the improvement gradually drops down to 20%. Such drop is due to
the increase of atomic operations to acquire the pointer to the bu�er
in global memory. When the input size increases, the number of
output tuples also grows proportionally. Each thread has to request
more chunks to store the output, thus increases the number of
atomic operations, as a overhead to the code. For the data sizes we
tested, the overhead is acceptable. We test this technique with the
sort-merge join as well, but it does not improve the performance
because the join stage in sort-merge join is di�erent from that in
hash join. A linear search is used for the sorted data to determine
the range of the output without scanning the whole table, so it
saves more time compared with the double-probing approach in
the hash join.

We also ran tests to determine the optimal page size for the
output bu�er. To our surprise, small page sizes of one or two helps
7To be fair, this is likely a small problem that can be easily �xed. However, we decided
to keep the CPU code as intact as possible for a more accurate comparison.
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achieve the best performance with our original dataset. �is is
mainly because larger page size also requires larger overall bu�er
size since there may be empty holes in some of the pages. �e
time spent on transferring the output bu�er back to main memory
increases as the result of increasing bu�er size. �is could o�set
the bene�t of reducing atomic operations. However, larger chunk
size may help when the number of outputs per thread increases.
�erefore we ran the test on a dataset of the same size as our
original dataset but generates 4 times of the outputs, and the result
is shown in Fig. 11B. As we see that the four di�erent chunk sizes
have similar performance at 64M and 128M, while the chunk size
four stands out at smaller data sizes. Chunk size of eight is the
worst case, indicating that there are still empty holes in it.

We also tested how the bu�er chunk size a�ects the performance
when the total number of threads decreases and work per thread
increases. Since when outputs per thread increases, a larger page
size helps reduce the number of requests to the global pointer.
However, the results indicate that larger chunk size only brings
marginal improvement. It is possible that the atomic operation in
GPU is implemented very e�ciently and the pointer is cached in
L2, thus the atomic operation is not so sensitive to contentions.

Anotherway to reduce contention is to distribute the acquisitions
of the shared pointer to thread block level. We divide the output
bu�er into small chunks so that each block can take one of them
and outputs independently. �e threads in the same block share
a pointer in the shared memory that points to the next available
slot in their own chunk. A thread acquires the pointer and increase
it using atomic operation, then outputs to the available position.
Larger selectivity bene�ts from this method, as shown in Fig. 12.
Maximum improvement of 45.9% is achieved when the number of
output is 16X. However, as the number of outputs continues to

increase, the number of atomic operations on shared pointers also
comes to a point where it begins to limit performance improvement.

4.2.6 E�ects of Skewed Data. �is section we present the perfor-
mance of both the CPU and new GPU hash joins when the data has
a skewed distribution (in the hashed domain). Speci�cally, we gen-
erate data that follow the Zipf distribution with di�erent z factors.
We run a version of our hash join without the dynamic parallelism
(DP) code, and it obviously su�ers from imbalance among the parti-
tions under skewed data (Fig. 13). As the z-factor increases, data is
more skewed and there is more performance degradation. Particu-
larly, when the z-factor goes beyond 0.5, only a few blocks are kept
busy processing the largest partitions while most of other blocks
�nish early. In the extreme case of z = 1, it causes a 4X slowdown
as compared to the case of balanced data (i.e., z = 0). A�er applying
DP to the code, threads can determine whether current partition
is too large for their thread blocks to process, thus launch addi-
tional threads in a child kernel to work only on this partition. �e
total execution time does not change signi�cantly as the z-factor
increases. However, we do notice that there is a slight penalty when
the z-factor reaches 0.75. �is is mainly due to the overhead of
launching new kernels. �e CPU code is not a�ected much by data
skew. In fact, the CPU code tackles this problem using a similar idea
but in a slightly di�erent way. It decomposes unexpectedly large
partitions into smaller chunks. �e small chunks are processed by
using all the threads.
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4.2.7 Joins under Large Data. Nowwe report the results of using
new GPU join algorithms to handle large data that exceeds the
capacity of GPU global memory. In such experiments, we keep the
size of table R �xed (128M tuples for hash join and 256M tuples
for sort-merge join) and vary the size of table S from 256M to 2.56
billion tuples. In order to process such a large table, we slice it into
chunks and all of the chunks take turns to join with table R . It
is worth mentioning that since the memory usage of hash join is
higher than the sort-merge join, hash join can only handle a 128M-
tuple chunk at a time while the sort-merge join takes a 256M-tuple
chunk in each iteration. So for a given data size, the hash join have
to go through more loops which impacts the overall performance.

Fig 14 shows the speedup of the Titan X over the E5-2630v3. �e
sort-merge join on GPUs is more capable of processing large data,
resulting in speedup between 11X to 13X. Its speedup �uctuates
but does not decrease as the size of table S increases. Since the
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Figure 14: Speedup of TitanX over E5-2630v3with large tables. For
each join, we test the code with and without overlaps between data
transmission and join processing

GPU sort-merge join algorithm needs fewer loops than the hash
join, the running time grows in a nearly linear manner. �is is
the reason why it maintains the high speedup. �e hash join on
GPU achieves a 5.1X speedup under 256M tuples. However, it
decreases as the table size increases and converges to around 3.5X.
�e kernel execution and data transfer overlapping (via multiple
CUDA streams) is e�ective for both algorithms. However, the
e�ects of such are less signi�cant than we thought: on average,
there is a performance gain of 8% and 6% for sort-merge join and
hash join, respectively. By looking into the pro�les of our code, we
found that the main reason is that various kernel synchronization
activities decrease the level of concurrency at runtime. Note that
the CPU hash join code actually sets a limit on table size such that
it cannot handle the case of 2.5B records in table S.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose new GPU-based hash join and sort-merge
join algorithms. We take advantage of the various new features
in the latest GPU hardware and CUDA so�ware. On one hand, it
achieves considerable performance boost over the existing state-
of-the-art algorithm. �e kernels have improved in many aspects
including work e�ciency and bandwidth utilization. On the other
hand, experiments show that our optimized GPU code far outper-
forms the latest CPU hash join and sort-merge join code. �is
indicates that the GPU is a promising platform for join processing.
Of course, the performance advantage of GPU is not only brought
by raw computing power, but also by carefully designed algorithms
towards the GPU hardware’s features.

Future work can be conducted along a few directions. An imme-
diate task is to extend our work to more scenarios of joins, such as
joins of more than two tables, or two tables each with an arbitrarily
large size. With the promise of many times of memory and commu-
nication bandwidth in the coming GPU architectures, it is necessary
to test how that a�ects the performance of our GPU algorithms, or
the design of such algorithms. We can also explore the application
of GPUs in data stream systems where GPU’s computing power can
be fully utilized and the latency of data transfer can be amortized
in concurrent queries.
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