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Social Trust Prediction Using Heterogeneous Networks
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Along with increasing popularity of social websites, online users rely more on the trustworthiness information
to make decisions, extract and filter information, and tag and build connections with other users. However,
such social network data often suffer from severe data sparsity and are not able to provide users with enough
information. Therefore, trust prediction has emerged as an important topic in social network research.
Traditional approaches are primarily based on exploring trust graph topology itself. However, research in
sociology and our life experience suggest that people who are in the same social circle often exhibit similar
behaviors and tastes. To take advantage of the ancillary information for trust prediction, the challenge
then becomes what to transfer and how to transfer. In this article, we address this problem by aggregating
heterogeneous social networks and propose a novel joint social networks mining (JSNM) method. Our new
joint learning model explores the user-group-level similarity between correlated graphs and simultaneously
learns the individual graph structure; therefore, the shared structures and patterns from multiple social
networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction
in the target graph but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize
the proposed objective function, we use the alternative technique to break down the objective function into
several manageable subproblems. We further introduce the auxiliary function to solve the optimization
problems with rigorously proved convergence. The extensive experiments have been conducted on both
synthetic and real- world data. All empirical results demonstrate the effectiveness of our method.
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1. INTRODUCTION

The ever-increasing popularity of social websites such as Facebook and LinkedIn has
yielded complicated social networks and corresponding datasets with enormous sizes.
With such a large amount of information about users’ interaction activities, public
profiles, and private content, the question of whom and what to trust has become an
important challenge to users. Many online social networks allow users to explicitly
express evaluations of other users, or the content they created. For example, Facebook

Corresponding author’s address: H. Huang, Department of Computer Science and Engineering, University
of Texas at Arlington, Arlington, TX; email: heng@uta.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax: +1 (212)
869-0481 or permissions@acm.org.
c© 2013 ACM 1556-4681/2013/11-ART17 $15.00

DOI: http://dx.doi.org/10.1145/2541268.2541270

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 4, Article 17, Publication date: November 2013.

http://dx.doi.org/10.1145/2541268.2541270
http://dx.doi.org/10.1145/2541268.2541270


17:2 J. Huang et al.

users may choose to accept or decline friend requests from strangers, based on their
confidence in trustworthiness. Yahoo allows community members to rate any comment
from another user as spam or regular message. Researchers generally adopt graphs
to model such behaviors in social networks. Trust tags in a social network can be
represented as a trust graph1 G = 〈V, E〉, where V represents the collection of nodes
(users) and an edge between node i and j denotes a trust vote from user i to user j.
Because most users only know a very small fraction of the users and tag explicitly an
even smaller number of such users, it is necessary to infer the missing values for trust
prediction at the whole social network level.

Trust prediction is mainly concerned with predicting the unobserved relation be-
tween users [Leskovec et al. 2010], finding out who are friends and who are enemies in
a social network. The accurate trust prediction using the available trust and distrust
information observed from users is necessary to develop the social computing appli-
cations. For example, one important function for popular social websites is to suggest
new relationships to a user based on the user’s common friends, interests, or other
properties. Since most users generally have pre-existing attitudes and opinions toward
others who share certain characteristics, the online suggestion should be based on the
existing evidence from the trust graph. However, trust prediction in real-world social
networks is a very difficult task due to the severe data sparsity. There are two main
reasons for such sparsity: the first one is the lack of diligence on the users’ part and the
other one is the users’ concern of privacy in sharing trust links publicly. As a result,
the general graph mining algorithms that rely on exploring the individual trust graph
are not so well developed. In the literature, there are a few trust prediction papers
using trust propagation [Guha et al. 2004; Kamvar et al. 2003]. The assumption for
these methods is that users tend to trust each other given a trustable common friend.
However, for popular social websites, only a small portion of entries in the trust graph
are explicitly tagged. For instance, Facebook.com now has 800 million registered users
according to Wikipedia, most users have at most a few thousand friends; therefore, the
number of explicit connected edges is almost negligible considering the total number
of potential users. The prospect of these approaches seems gloomy due to such severe
sparsity of the trust graph.

It has been discovered in McPherson et al. [2001] that people who are in the same
social circle often share similar behaviors and tastes. In Crandall et al. [2008], Crandall
et al. give the following two main reasons. One is that people generally adopt behaviors
exhibited by those they interact with. Such process is called social influence. The other
more distinct reason is that people incline to form relationships with others who are
already similar to them. Prior research works on inferring individual users’ interests
and attributes from their social neighbors [Bedi et al. 2007; Massa and Avesani 2007;
Mislove et al. 2010; Wen and Lin 2010]. These articles show the possibility of improving
the users’ attributes prediction from the trust graph. However, a straightforward and
interesting question can be raised here: is it possible to reverse the direction and explore
the trust graph with the users’ behavior information instead? Or is it possible to achieve
an even more aggressive goal? That is, if we construct the auxiliary information graph
where a large amount of entries are also missing, can we utilize all the available
information and improve the predictions for both graphs?

In this article, we propose a joint social networks mining (JSNM) model to predict
the trust and distrust in social networks by aggregating heterogeneous social networks
from both the target trust domain and the auxiliary information domain. In this
article, when we say two graphs are heterogenous, it implies they are from different

1In this article, the words trust graph and trust matrix are used interchangeably.
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domains and have no apparent structural similarity and their entries generally
have different scales. Because the rating information can also be formulated into a
graph, our approach is to alleviate the sparsity problem in the trust graph by taking
advantage of the supplementary knowledge about user behavior and discovering the
implicit group-level similarity, which is jointly determined by the user-user trust
graph matrix and user-item auxiliary graph matrix. This helps us find the optimal
like-minded user groups across both domains. Moreover, we construct the individual
affinity graphs to explore the individual geometric structures of the feature manifold
to improve the prediction of the missing elements. In addition to the improvement
in trust prediction accuracy, our model also helps predict the missing values in the
auxiliary matrix. Meanwhile, our method can also be extended to the homogeneous
datasets as a powerful collaborative filtering tool. The solution yielded by our algo-
rithm is unique due to the orthonormal constraints and can be easily interpreted.
Experimental evaluations have been carried out by using one synthetic dataset and
two real-world datasets. All empirical results demonstrate that our proposed JSNM
method outperforms the classic methods using a single social network graph.

The remainder of this article is organized as follows. In Section 2, we first do a brief
literature review about the trust or link prediction in social networks. In Section 3,
we describe the notations used in this article and formulate the new objective func-
tion. We derive our optimization method and provide the algorithm in Section 4. In
Section 5, we prove the convergence of our new algorithm. We empirically validate the
effectiveness of our method for trust prediction in Section 6 and conclude the article in
Section 7.

2. RELATED WORK

Trust prediction can be viewed as a special case of the more general link prediction
problem. There have been quite a few methods in link prediction from various perspec-
tives, relational data modeling [Getoor and Diehl 2005], structural proximity measures
[Liben-Nowell and Kleinberg 2003], and a more advanced stochastic relational model
[Yu et al. 2006; Yu and Chu 2007; Yu et al. 2007]. As to the collaborative filtering
methods, there are also a few classic ones, such as memory-based methods [Sarwar
et al. 2001] to find k-nearest neighbors based on defined similarity measure, model-
based methods [Hofmann and Puzicha 1999] to learn the preference models for similar
users, and matrix factorization methods [Srebro and Jaakkola 2003; Salakhutdinov
and Mnih 2007, 2008] to find a low-rank approximation for the user-item matrix. It
is tempting to apply the previously mentioned collaborative filtering methods to solve
the trust prediction problem; however, the trust graph has two structure properties
different from the user-item matrix. The trust graph generally has transitivity and
symmetric properties between a few nodes. Transitivity enables the trust propagation
among users. Symmetry comes from the mutual trust between users in a social net-
work. Such additional properties distinguish the trust graph from the typical user-item
graphs where collaborative filtering methods are applicable.

Our work is more related to multirelational learning, where several relations are
modeled jointly and their structures are captured simultaneously. Most methods ex-
press the given relations as a few related matrices where a row or column represents
an entity. Several methods have been developed to share parameters or structure in-
formation by jointly factorizing related matrices so that knowledge can be transferred
across different tasks. In Singh and Gordon [2008] and Zhu et al. [2007], an entity is
represented by the same latent feature in different matrices. A few Bayesian models
were also proposed, such as nonparametric latent variable models [Xu et al. 2009; Cao
et al. 2010]. In particular, transfer learning has been applied to collaborative filtering
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Fig. 1. A demonstration for our motivation and learning process. The shared group structure matrix is jointly
determined by the rating graph and trust graph. The rating matrix contains two groups of users’ reviews
about movies, where a smile face represents satisfactory and an angry face represents unsatisfactory. The
trust matrix contains users’ trust evaluation toward other users, where 1 represents trust and 0 represents
distrust. The question mark represents missing value in both graphs. The 1s in the cluster information
matrix indicate users are in the corresponding group, while 0s represent users are not in that group.

[Pan et al. 2010], where Pan et al. proposed to take advantage of an auxiliary user-
item rating matrix to help the prediction of the target user-item rating matrix. While
this idea is intuitive and straightforward, such method is too idealistic to assume the
existence of such a related and dense auxiliary rating matrix. Our recent work [Huang
et al. 2012] was the first one utilizing the transfer learning between the trust graph
and rating graph to simultaneously predict human social behaviors. This article is an
extension of our previous work in Huang et al. [2012].

3. JOINT MANIFOLD FACTORIZATION

In this section, we will introduce our new JSNM objective function to aggregate the
heterogeneous social networks. Prior to this, we will reveal the implicit connection
between the target user-user trust graph and auxiliary user-item rating graph.2

As mentioned, trusted users in a social network often display similar behaviors and
tastes. Meanwhile, social network users become friends due to the similar background
and interest. Therefore, the trust graph and rating graph should contain some struc-
ture similarity in spite of the apparent difference, if the coincidence of the similar
ratings contributes to such trust. As a result, the trust prediction accuracy can be
improved with the aid of rating graph information and vice versa. In summary, we
transfer the knowledge from different domains to circumvent the sparsity constraint
and help predict the entries in both matrices. Figure 1 is a demonstration of our
motivation.

In our proposed solution, we plan to share the implicit group structure between two
graphs, which is jointly determined by the trust graph and rating graph. This answers
the two most important questions for transfer learning: what to transfer and how to
transfer [Pan et al. 2010].

3.1. Notations

We use boldface uppercase letters, such as X, to denote matrices, and Xi., X. j , and Xij to
denote the ith row, jth column, and the entry located at (i, j) of X, respectively. In our
setting, for simplicity, we only discuss two matrices, G1 and G2 case, then extend the
objective function to multiple matrices case. We further assume that G1 ∈ R

n×m1and
G2 ∈ R

n×m2 are the trust graph and rating graph, respectively, where n is the number
of identical users in both domains, m1 is the number of users who receive trust votes,
and m2 is the number of different items. �1 ⊂ G1 and �2 ⊂ G2 are entries known in
corresponding graphs.

2We will use abbreviation trust graph and rating graph for the following context.
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3.2. Objective Function Formulation

Inspired by the aforementioned assumption, we target the joint matrix factorization to
find out the shared group structure between two graphs:

min
U,V1,V2,c

∥∥G1 − UVT
1

∥∥2
F + ∥∥cG2 − UVT

2

∥∥2
F . (1)

Here U ∈ R
n×l, V1 ∈ R

m1×l, and V2 ∈ R
m2×l, where l is the number of group parameter to

be determined. c > 0 is a scalar adjusting the scale inconsistency between graphs since
the two graphs are from different domains. Here U is jointly determined by the trust
graph and rating graph structures; therefore, it provides the shared group structure
for both graphs. Since rows represent users in both graphs, we could group users based
on U and then conduct the trust and rating prediction with V1 and V2, respectively.
It can be observed that U carries the knowledge of both trust graph and rating graph,
and such framework becomes especially useful since both graphs usually have data
sparsity issues for real datasets.

While the previous model takes into account the common row group structure in
terms of both matrices, it fails to take into account the social network constraint. To
overcome this drawback, we include the Laplacian regularity term [He and Niyogi
2003; Cai et al. 2008]. To be specific,

min
U,V1,V2,c

∥∥G1 − UVT
1

∥∥2
F + ∥∥cG2 − UVT

2

∥∥2
F

+ λTr
(
VT

1 L1V1
) + λTr

(
VT

2 L2V2
)

(2)

s.t. V1VT
1 = I, V2VT

2 = I, U ≥ 0, V1 ≥ 0, V2 ≥ 0.

Here λ > 0 is a scalar parameter to be tuned; L1 and L2 are the Laplacian graphs based
on the columns of G1 and G2, respectively; and Tr is the trace operation that yields the
sum of diagonal elements of the matrix.

In our objective function, to incorporate the social network information, we add two
graph Laplacian regularization terms. As the trust graph, the G1 graph explicitly
shows the users’̄ trust/friendship relations in social networks. As the rating graph, the
G2 graph indicates the users’̄ taste/hobby similarity, from which we can learn users’̄
implicit relations. Thus, the graph Laplacian L1 and L2 represent the explicit and
implicit social relations of users. When we predict the users’̄ trust relations, these
existing social relations between users should be preserved. Thus, we add two graph
Laplacian regularization terms as in Equation (2).

The details of L1 and L2 constructions are given in the next section. We impose
the orthogonal constraints on V1 and V2 to ensure the uniqueness of the solution.
Suppose U∗, V∗

1, and V∗
2 are the solutions to Equation (2); then for any given nonzero

constant c1 > 1, c1U∗ and V∗
1/c1 would give the same value in the first term and a

lower value for the third term. This is true no matter if U∗ and V∗
1 are local or global

optimum solutions. The same reasoning applies to V2. In other words, the optimal
solution to Equation (2) does not exist without the constraints. With the orthogonal
and nonnegative constraints for V1 and V2, our solution is the unique local optimum
solution for the nonconvex objective function 2.

3.3. General Formulation

There are a few possible generalizations to Equation (2) we want to point out.
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First, it can be easily extended to the multiple matrices case. The objective function
would then be

min
U,V1...Vn

n∑
i=1

∥∥ciGi − UVT
i

∥∥2
F + λ

n∑
i=1

Tr
(
VT

i LiVi
)
.

s.t. VT
i Vi = I, Vi ≥ 0, i = 1, . . . , n

(3)

The U here would then contain the common information among multiple matrices.
Second, although our motivation is to capture the shared pattern among users, it

could be used as a powerful collaborative filtering tool. For example, our framework
can also be applied to the item-user case (Section 6.3), where the reviews are from
users in different domains.

4. OPTIMIZATION AND ALGORITHM

In the following, we will derive a solution to Equation (2). As we see, minimizing
Eqquation (2) is with respect to U, V1, V2, and c, and we cannot give a closed-form
solution. We will present an alternating scheme to optimize the objective; this procedure
repeats until convergence.

4.1. Initialization

As mentioned in the introduction, the social graphs generally have a large number of
missing values; therefore, the initialization is almost necessary in trust prediction to re-
place those missing values for methods that require similarity calculation or structure
exploration. In this article, for any missing entry Gi j , we use the mean of the available
entries in the corresponding row and column to impute this. For a user-item rating
matrix, such initialization combines the available information for both the individual
user rating habit and other users’ ratings on a particular item. For a user-user trust
matrix, such initialization considers both user i’s and user j’s social circle influence.

After the initial imputation, we construct the Laplacian graphs of both social net-
works. As mentioned, the main purpose of the Laplacian terms is to incorporate the
data geometric information, because it is found that many real-world data distribute on
low-dimensional manifold embedded in the high-dimensional ambient space [Roweis
and Saul 2000]. The Laplacian graph is to discretely approximate the manifold, whose
vertices correspond to the data samples, while the edge weight represents the affinity
between the data points. One common assumption about the affinity between data
points is the cluster assumption [Chapelle et al. 2006], which claims if two data sam-
ples are close to each other in the input space, then they are also close to each other
in the embedding space. This assumption has been widely used in spectral clustering
[von Luxburg 2006; Shi and Malik 2000; Ng et al. 2001]. To be specific, in this paper,
we define the edge weight matrix W as follows:

Wi j =
{

1 : Gi. ∈ Nk(G. j) or G j. ∈ Nk(G.i),
0 : otherwise

where Nk(Gi.) denotes the set of k nearest neighbors of Gi.. We calculate the Euclidean
distances between users for each graph, then construct the corresponding Ws based
on the top k similar users for each user. It is easy to see Ws are symmetric. Let graph
Laplacian L = D − W, where D is a diagonal matrix whose entries are column sums of
W, Dii = ∑

j Wi j . Corresponding to trust graph G1 and rating graph G2, we construct
L1 and L2.

After that, we construct V1 and V2 based on k-means on columns for G1 and G2,
respectively. For the ith row of V1, if this row belongs to the jth cluster, then V1(i, j) = 1,
and all other elements in the ith row are 0. V2 is initialized in the same manner.
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Now we come to the optimization of our objective function. When we optimize the
objective function Equation (2), we iteratively solve U, V1, V2, and c in an alternating
manner. In other words, we will optimize the objective with respect to one variable
while fixing the other variables. Such process repeats until convergence.

4.2. Computation of U

Optimizing Equation (2) with respect to U is equivalent to optimizing

J1 = ∥∥G1 − UVT
1

∥∥2
F + ∥∥cG2 − UVT

2

∥∥2
F

s.t. VT
1 V1 = I, VT

2 V2 = I, V1 ≥ 0, V2 ≥ 0.
(4)

Setting ∂ J1
∂U = 0 leads to the following updating formula:

U = G1V1 + cG2V2

2
. (5)

4.3. Computation of V1

Optimizing Equation (2) with respect to V1 is equivalent to optimizing

J2 = ∥∥G1 − UVT
1

∥∥2
F + λTr

(
VT

1 L1V1
)
.

s.t. VT
1 V1 = I, V1 ≥ 0

(6)

For the constraint VT
1 V1 = I, we cannot get a closed-form solution of V1. There-

fore, we will present an iterative multiplicative updating algorithm. We introduce the
Lagrangian multiplier α ∈ R

l×l, and the corresponding Lagrangian function is

L(V1) = ∥∥G1 − UVT
1

∥∥2
F + λTr

(
VT

1 L1V1
) − Tr

(
α
(
VT

1 V1 − I
))

. (7)

Setting ∂L(V1)
∂V1

= 0 and using the orthogonal constrain VT
1 V1 = I, we obtain

−GT
1 U + λL1V1 − V1α = 0

⇒ α = −VT
1 GT

1 U + λVT
1 L1V1.

(8)

Using the Karush-Kuhn-Tucker condition [Boyd and Vandenberghe 2004] α · V1 = 0,
where · is the element-wise product operator and thereafter, we get( − VT

1 GT
1 U + λVT

1 L1V1
) · V1 = 0. (9)

Introducing L1 = L+
1 −L−

1 , V1 = V+
1 −V−

1 , and U = U+ −U− where U+
i j = (|Uij |+Uij)/2

and U−
i j = (|Uij | − Uij)/2 [Ding et al. 2010] and L1,V1 defined in a similar fashion, we

obtain (
GT

1 U− + λL+
1 V1 + V1α

− − GT
1 U+ − λL−

1 V1 − V1α
+) · V1 = 0. (10)

Equation (10) leads to the following updating formula:

(V1)i j ← (V1)i j

√√√√[
GT

1 U+ + λL−
1 V1 + V1α+]

i j[
GT

1 U− + λL+
1 V1 + V2α−]

i j

. (11)
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4.4. Computation of V2

Optimizing Equation (2) with respect to V2 is equivalent to optimizing

J3 = ∥∥cG2 − UVT
2

∥∥2
F + λTr

(
VT

2 L2V2
)
.

s.t. VT
2 V2 = I, V2 ≥ 0

(12)

The optimization with the previous equation is almost identical to the previous
subsection,

L(V2) = ∥∥cG2 − UVT
2

∥∥2
F + λTr

(
VT

2 L2V2
) − Tr

(
β
(
VT

2 V2 − I
))

. (13)

Setting ∂L(V2)
∂V2

= 0 and using the orthogonal constrain VT
2 V2 = I, we obtain

−cGT
2 U + λL2V2 − V2β = 0

⇒ β = −cVT
2 GT

2 U + λVT
2 L2V2.

(14)

Using the Karush-Kuhn-Tucker condition [Boyd and Vandenberghe 2004] β · V2 = 0,
we get (−cVT

2 GT
2 U + λVT

2 L2V2
) · V2 = 0. (15)

Introducing L2 = L+
2 −L−

2 , V2 = V+
2 −V−

2 , and U = U+−U− where U+
i j = (∣∣Uij

∣∣ + Uij
)
/2

and U−
i j = (∣∣Uij

∣∣ − Uij
)
2 [Ding et al. 2010] and L2,V2 defined in a similar fashion, we

obtain (
cGT

2 U− + λL+
2 V2 + V2β

− − cGT
2 U+ − λL−

2 V2 − V2β
+) · V2 = 0. (16)

Equation (16) leads to the following updating formula:

(V2)i j ← (V2)i j

√√√√[
cGT

2 U+ + λL−
2 V2 + V2β

+]
i j[

cGT
2 U− + λL+

2 V2 + V2β
−]

i j

. (17)

4.5. Computation of c

Optimizing Equation (2) with respect to c is equivalent to optimizing

J4 = ∥∥cG2 − UVT
2

∥∥2
F . (18)

The above task is equivalent to

min
c

Tr
(
cG2 − UVT

2

)(
cG2 − UVT

2

)T
.

This can be written as

min
c

Ac2 − 2Bc + D,

where A = Tr(G2GT
2 ), B = Tr(UVT

2 GT
2 ), D = Tr(UVT

2 V2UT ). It is a quadratic equation
in c, and the solution is then

c = Tr
(
UVT

2 GT
2

)
Tr

(
G2GT

2

) . (19)

In summary, we present the iterative multiplicative updating algorithm of optimizing
Equation (2) in Algorithm 1. Because the targeted problem is a nonconvex one, there
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ALGORITHM 1: Joint Manifold Factorization Algorithm
Input: G1,G2, maximum number of iterations T
Output: Converged U, V1, and V2
Initialize missing entries in G1 and G2 using the row-column average.
Initialize V1 and V2 using k-means clustering, initialize c according to scale discrepancy
between graphs.
Construct Laplacian graphs L1 and L2.
while not converged and iteration t less than T do

Compute U = G1V1+c G2V2
2

Compute (V1)i j ← (V1)i j

√[
GT

1 U++λL−
1 V1+V1α+

]
i j[

GT
1 U−+λL+

1 V1+V2α−
]
i j

Compute (V2)i j ← (V2)i j

√[
cGT

2 U++λL−
2 V2+V2β+]

i j[
cGT

2 U−+λL+
2 V2+V2β−]

i j

Compute c = Tr(UVT
2 GT

2 )

Tr(G2GT
2 )

end

is no guarantee that Algorithm 1 will converge to the global optimum. However, the
orthogonal constraints in objective function ensure the yielded solution is unique.

The convergence criterion here is the relative change of the object function value at
the consecutive steps is less than 10−4. The previously mentioned loop always exits
within 20 iterations for the subsequent experiments.

4.6. Algorithm Complexity Analysis

In this part, we want to analyze the time complexity of our algorithm. We would analyze
the cost for each phase separately. Let us assume n ≥ max(m1, m2) to keep the notations
simple.

For the missing values initialization, each missing entry needs to calculate its row
and column average, of order O(n + m1) and O(n + m2), respectively. Therefore, the
initialization cost would be O(n2m1) and O(n2m2), respectively, and the total cost would
be O(n2(m1 + m2)).

Now it comes to the V1 and V2 initialization. k-means of G1 takes O(knm1) and
k-means of G2 takes O(knm2); therefore, the total cost would be O(kn(m1 + m2)).

The last step of the initialization is to construct the Laplacian graphs. It takes
O(knm1) and O(knm2) to construct the k-nearest neighbor graphs for G1 and G2, re-
spectively. The total cost would then be O(kn(m1 + m2)).

Now it comes to the computation of U, V1, and V2. We focus on the discussion of the
tth iteration.

From the U updating formula Equation (5), it takes at most O(m3
1 + m3

2); however,
since V1 was initialized to have only one nonzero element in each row and in general
sparse during the updating process, indeed it could be reduced to O(m2

1 + m2
2) [Yuster

and Zwick 2005].
For the update of V1, since V1 is sparse, it takes O(k2m2

1) to calculate α; as Eq. (11)
is an element-wise operation, it takes O(nkm1) to update V1.

For the update of V2, again since V2 is sparse, it takes O(k2m2
2) to calculate β; as

Eq. (17) is an element-wise operation, it takes O(nkm2) to update V2.
For the update of c, it takes O(k2m2

2) to calculate A, O(m3
2) to calculate B, and the

total cost would then be O(m3
2).

Therefore, the total cost for one iteration is O(n2(m1 + m2)). As specified, our algo-
rithm usually converges in a few iterations independent of matrix size, and the total
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multiplicative update process takes O(n2(m1 + m2)). The total complexity of our algo-
rithm is then O(n2(m1 + m2)).

5. CONVERGENCE ANALYSIS

In this section, we will prove the convergence of Algorithm 1. We use the classic auxil-
iary function approach used in Lee and Seung [2000].

Definition 5.1 (Auxiliary Function) [Lee and Seung 2000]. Z(h, h′) is an auxiliary
function for F(h) if the conditions

Z(h, h′) ≥ F(h), Z(h, h) = F(h)

are satisfied.

LEMMA 5.2 [LEE AND SEUNG 2000]. If Z is an auxiliary function for F, then F is
nonincreasing under the update

h(t+1) = arg min
h

Z(h, h(t)).

PROOF. F(h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = F(h(t)). �

LEMMA 5.3 [DING ET AL. 2010]. For any nonnegative matrices A ∈ R
n×n, B ∈ R

k×k,
S ∈ R

n×k, S′ ∈ R
n×k, and A, B are symmetric, and then the following inequality holds:

n∑
i=1

k∑
p=1

(AS′B)ipS2
ip

S′
ip

≥ Tr(ST ASB).

THEOREM 5.4. Let

J(V1) = Tr
(
λVT

1 L1V1 − 2GT
1 UVT

1 + αVT
1 V1

)
. (20)

Then the following function

Z(V1, V′
1) = λ

∑
i j

(L+
1 V′

1)i jV2
1,i j

V′
1,i j

− λ
∑
i jk

(L−
1 ) jkV′

1, jiV
′
1,ki

(
1 + log

V1, jiV1,ki

V′
1, jiV

′
1,ki

)

− 2
∑

i j

GT
1 U+V′

1,i j

(
1 + log

V1,i j

V′
1,i j

)
+ 2

∑
i j

GT
1 U− V2

1,i j + V
′2
1,i j

2V′
1,i j

+
∑

i j

α+V2
1,i j −

∑
i jk

α−V′
1,i jV

′
1,ik

(
1 + log

V1,i jV1,ik

V′
1,i jV

′
1,ik

)

is an auxiliary function for J(V1). Furthermore, it is a convex function in V1 and its
global minimum is

(V1)i j ← (V1)i j

√√√√[
GT

1 U+ + λL−
1 V1 + V1α+]

i j[
GT

1 U− + λL+
1 V1 + V2α−]

i j

. (21)

PROOF. See Appendix A. �

THEOREM 5.5. Updating V1 using Equation (11) will monotonically decrease the value
of the objective in Eq. (2); hence, it converges.
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PROOF. By Lemma 5.2 and Theorem 5.4, we can get that J(V0
1) = Z(V0

1, V0
1) ≥

Z(V1
1, V0

1) ≥ J(V1
1) ≥ · · · so J(V1) is monotonically decreasing. As J(V1) is nonnegative

(i.e, bounded below), the theorem is self-evident.

THEOREM 5.6. Let

J(V2) = Tr
(
λVT

2 L2V2 − 2cGT
2 UVT

2 + βVT
2 V2

)
. (22)

Then the following function

Z(V2, V′
2) = λ

∑
i j

(L+
2 V′

2)i jV2
2,i j

V′
2,i j

− λ
∑
i jk

(L−
2 ) jkV′

2, jiV
′
2,ki

(
1 + log

V2, jiV2,ki

V′
2, jiV

′
2,ki

)

− 2
∑

i j

cGT
2 U+V′

2,i j

(
1 + log

V2,i j

V′
2,i j

)
+ 2

∑
i j

cGT
2 U− V2

2,i j + V
′2
2,i j

2V′
2,i j

+
∑

i j

β+V2
2,i j −

∑
i jk

β−V′
2,i jV

′
2,ik

(
1 + log

V2,i jV2,ik

V′
2,i jV

′
2,ik

)

is an auxiliary function for J(V2). Furthermore, it is a convex function in V2 and its
global minimum is

(V2)i j ← (V2)i j

√√√√[
cGT

2 U+ + λL−
2 V2 + V2β

+]
i j[

cGT
2 U− + λL+

2 V2 + V2β
−]

i j

. (23)

PROOF. See Appendix B. �

6. EXPERIMENTS

In this article, we will compare the prediction performance with other methods on both
the trust graph and rating graph. The competitive methods include average filling
(AF); k-nearest neighbors (KNN) using Jaccard’s coefficient, which is based on node
similarities; SimRank [Jeh and Widom 2002], which is based on path ensembles; and
SVD approximation [Billsus and Pazzani 1998] and matrix completion via trace norm
(MC) [Candes and Recht 2012], which are based on the global graph structure.

We are going to give a brief description about MC since this is a relatively new
technique in missing value imputation. MC seeks a lower-rank matrix, as SVD does.
The key difference between MC and SVD is that MC tries to minimize the nuclear
norm of the matrix (sum of singular values of the matrix); therefore, its convex objective
function guarantees its global optimum solution. On the other hand, SVD is often stuck
at the local optimum. MC is generally more robust to outliers than SVD. In this article,
we stack the trust graph and rating graph using common users (movie titles) for the
matrix completion method in this section in the form of M = [G1, G2]; to be specific, it
attempts to find X such that

min
X

‖X‖∗
s.t. X� = M�,

where M� is the subset of the observed elements and ‖X‖∗ is the trace norm of X.
Researchers also relax the constraints and optimize the following one:

min
X

∥∥X� − M�

∥∥2
F + ς ‖X‖∗ ,
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where ς is the regularity coefficient. This would serve as the benchmark transfer
learning method in comparison to JSNM. It might be expected that the trust graph
and rating graph also share their structures with this method; however, as we will
demonstrate in the experiment part, such a naive idea does not work well.

For KNN, we search k in the list {1, 2, . . . , 9} to impute the missing value using the
node with the highest Jaccard similarity score. For the SimRank method, we set the
parameters using the default value suggested by the author. For SVD, we choose the
rank from the list ( R

10 , 2R
10 . . . , R), where R = min(n, m), the minimum of the number of

rows and columns. For MC, ς is tuned from the list {10−2, 10−1, 1, 10}.
6.1. Evaluations on Synthetic Data

In this part, we first do the experiments on a synthetic dataset, which consists of the
MovieLens100K rating graph [Herlocker et al. 1999] and the synthetic trust graph we
would construct.

MovieLens100K consists of 100,000 ratings (from 1 to 5) from 943 users on 1,682
movies; here each user rated at least 20 movies. Since this dataset has around 94%
missing values, we first fill in the missing values with the mean of the available
information in that row. Then we construct the Laplacian graph W based on users with
parameter settings as follows: Euclidean distance as metric measure, heat kernel with
scale parameter 5, and number of neighborhoods k = 100. After that, we normalize
each column into an �2 unit vector. At last, we construct the trust graph T based on
the threshold θ, which is set at 0.01, T(i, j) = 1 if W(i, j) > θ, and 0 otherwise. Via the
aforementioned setting, the two users get 1 mutually (trust each other) if their reviews
on items are similar. We find by such procedure that the ratio of 1s in the trust graph
is about 12%.

Due to the lack of ground truth for unobservable rating entries, we have to hide
existing rating entries to simulate missing ones; here we randomly leave half of them
available (about 3%) and mask half of them for the test. Since the trust graph is
constructed from the Laplacian graph of the rating graph, our evaluation would be
limited to the rating graph in this subsection. Note that the trust graph is constructed
from very limited rating entries; nevertheless, we show that with the auxiliary trust
information, the accuracy of rating graph imputation is better than classical imputation
methods that explore the rating graph alone.

We adopt two evaluation metrics: Mean Absolute Error (MAE) and Root Mean Square
Error ( RMSE):

MAE =
∑

Ri j∈TE

|Ri j − R̂i j |/|TE|

RMSE =
√ ∑

Ri j∈TE

(Ri j − R̂i j)2/|TE|, (24)

where Ri j and R̂i j are the true and predicted ratings, respectively, and |TE| is the
number of test ratings. In all experiments, we run 10 random trials when generating
the missing and observed ratings, use AF methods to initialize missing values, and
do the imputation with all the methods in the twofold cross-validation process. The
averaged results are reported in Table I.

It can be observed that our method consistently outperforms other methods in terms
of MAE and RMSE, and it successfully incorporates the auxiliary information in the
trust graph. We now want to investigate the influence of parameters for our method.
First, we set l = 3 and maximum iteration T = 20 and vary the value of λ; the MAE
and RMSE results are shown in Figure 2(a).
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Table I. Prediction Result for MovieLens

Prediction Measure Methods Result
MAE AF 0.802 ± 0.005

KNN 0.812 ± 0.006
SimRank 0.814 ± 0.006
SVD 0.962 ± 0.007
MC 0.826 ± 0.005
JSNM 0.745 ± 0.004

RMSE AF 0.996 ± 0.004
KNN 1.019 ± 0.004
SimRank 1.024 ± 0.004
SVD 1.183 ± 0.008
MC 1.032 ± 0.004
JSNM 0.931 ± 0.003

Fig. 2. Investigation of parameters in our method.

Next, with λ = 10−3 and T = 20, we plot the MAE and RMSE curves when the
number of clusters l varies in Figure 2(b).

The MAE and RMSE results for each iteration have been displayed in Figure 2(c)
with l = 3 and λ = 10−3.

It can be observed that our method is generally robust to the choice of the parameter
λ, the number of clusters, and maximum iterations. For the subsequent experiments,
unless otherwise specified, we set λ = 10−3, l = 3, and T = 20.

We provided the theoretical proof about the monotone decrease of our objective func-
tion in the preceding section. To give a concrete example, we also include the objective
function value plot using the previously mentioned default setting. From Figure 2(d),
we can observe that our objective function is very stable as the iteration increases.
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This synthetic dataset demonstrates that with a synthetic auxiliary trust graph, our
method has better performance than other classical methods. Our next real dataset
shows that such transfer learning process is mutual beneficial; it improves the predic-
tion for both the trust graph and the rating graph.

6.2. Evaluations on Real Data

In this part, we will compare our method with other methods on trust prediction using
the Epinions dataset. This dataset was collected by Paolo Massa [Massa and Avesani
2009] in a five-week crawl from Epinions.com. It consists of two parts: one is the ratings
part; the other is the trust part. The Epinions dataset consists of 49,290 users, 139,738
items, 664,824 reviews from users to items, and 487,181 trust statement between users.
Users express their web of trust, that is, reviewers whose reviews and ratings they have
consistently found to be valuable and offensive [Massa and Avesani 2009]. Therefore,
it is reasonable to assume that most individual users tend to cast trust votes toward
other users if the users have similar rating patterns toward those items. As a result,
the rating matrix and trust matrix could have similar row structure given common
users.

Inspired by the previous observation, we design the experiments as follows: we select
the top 2,000 users with the highest degrees (who cast and receive the most votes),
and then we select items with more than 68 ratings from the previously mentioned
selected users. The resulting trust graph G1 of size 2,000 × 2,000 has 149,146 trust
votes (represented by 1), which consists of 3.73% of all possible votes; those distrust or
unknown votes are represented by 0. The rating graph G2 of size 2,000×96 has 10,225
ratings (from 1 to 5), which consists of 5.33% of all possible ratings; those missing
ratings are represented by 0. Among those available ratings, the number of ratings 1,
2, and 3 are roughly equal; 4 is twice as many as 1; and 5 is about four times as many
as 1; such a skewed distribution might be due to users’ reluctance to give low ratings
for unsatisfactory items.

Evaluation Metric. Since the binary trust votes have a very skewed distribution,
precision and recall are more suitable than receiver operating characteristic (ROC)
[Davis and Goadrich 2006]. The precision and recall of the evaluation metric are defined
as follows:

recall = TP
TP + FN

, precision = TP
TP + FP

F1 = 2 × recall × precision
recall + precision

, (25)

where TP, FN, and FP are numbers of true positives, false negatives, and false positives,
respectively. Since the predicted values for the trust graph are generally not 0/1 integers
for most methods, here we must decide the transformation criterion. The simplest one
is probably the threshold method: if the predicted value is less than the threshold θ ,
we decide it is 0; otherwise, it is 1.

We still hide half of the available entries and conduct the prediction via twofold
cross-validation as in the previous subsection. To evaluate the prediction result in a
comprehensive manner, we calculate the recall and precision values for both trust and
distrust, as theθ value varies from 0 to 1 with step 0.01. We can then compute the cor-
responding AUC values for all methods for both trust and distrust predictions together
with the F1 score values. From Table II(a), JSNM has better performance than other
methods except the F1 score for trust links, where AF shows some slight advantage.
Note that it is impractical and time consuming to tune the threshold for real applica-
tion; therefore, our method still shows better performance in trust link prediction than
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Table II. Evaluation Result for Trust-Rating Dataset

(a) Recall-Precision Curve Evaluations
Link Methods AUC F1
Trust AF 0.207 0.223

KNN 0.183 0.218
SimRank 0.185 0.218
SVD 0.123 0.160
MC 0.075 0.122
JSNM 0.215 0.221

Distrust AF 0.914 0.977
KNN 0.916 0.977
SimRank 0.916 0.977
SVD 0.583 0.971
MC 0.972 0.981
JSNM 0.992 0.991

(b) Rating Graph Evaluation Results
Prediction Measure Methods Result

MAE AF 0.864 ± 0.003
KNN 0.839 ± 0.004
SimRank 0.832 ± 0.005
SVD 0.924 ± 0.006
MC 0.828 ± 0.005
JSNM 0.772 ± 0.003

RMSE AF 1.062 ± 0.006
KNN 1.045 ± 0.003
SimRank 1.034 ± 0.003
SVD 1.263 ± 0.012
MC 1.024 ± 0.004
JSNM 0.963 ± 0.004

the AF method considering the significant AUC advantage. We can conclude that our
method has the best performance in trust prediction in all the methods we listed in
terms of trust links and distrust links. Table II(b) lists all methods’ optimal value in
terms of MAE and RMSE for the rating graph. Again JSNM has the best MAE and
RMSE results. Based on Tables II(a) and II(b), we can conclude that transfer learning
does provide the bridge for the trust graph and rating graph to share the valuable
information with each other. This helps alleviate the common data sparsity issue in
social network data. On the other hand, as we have shown, the naive transfer learning
MC method does not work very well here; the MC method fails to extract the common
row structure with matrices stacked.

6.3. Application to Homogeneous Dataset

The previous two datasets both deal with the trust graph and the rating graph, which
are heterogeneous in terms of domain and scale. There are also cases in which homo-
geneous social graph inference is desired. One example is to predict user preferences
on books and movies. In this subsection, we want to demonstrate that our framework
also applies to such homogeneous-type data, two movie rating datasets. Note that for
homogeneous datasets, we would drop the scale adjusting parameter c in objective
Equation (2), which is a special case of our framework.

In our experiment, two movie rating datasets used are the Netflix training set and
MovieLens [Herlocker et al. 1999]. The Netflix rating data contains more than 108

ratings with values from 1 to 5, which are given by around 500,000 users on around
20,000 movies. The MovieLens rating data contains more than 107 ratings with values
from 1 to 5 and a scale of 0.5. We construct the dataset used in this experiment
as follows: first we extract common movie titles that have at least 100 ratings in both
datasets; after that we select the first 100 users each. Via this way, we get both matrices
with size 1,381 × 100. Next, we randomly split available ratings into 20 parts. Each
time preserving one part and masking all others,3 we do the prediction and evaluate
the performance of all methods. We calculate the average MAE and RMSE for these
20 experiments. Such process is repeated 10 times to calculate the mean and standard
deviation.

From Tables III(a) and III(b), we can observe that our method still outperforms other
methods in terms of MAE and RMSE. Meanwhile, the performance of all methods

3For performance purposes, we do the row sampling based on movies and ensure each movie has a few
available ratings.
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Table III. Netflix-MovieLens Evaluation

(a) Prediction Result for Netflix
Prediction Measure Methods Result

MAE AF 0.942 ± 0.007
KNN 0.928 ± 0.008
SimRank 0.925 ± 0.008
SVD 1.724 ± 0.014
MC 0.983 ± 0.008
JSNM 0.903 ± 0.005

RMSE AF 1.234 ± 0.005
KNN 1.189 ± 0.005
SimRank 1.164 ± 0.005
SVD 1.924 ± 0.011
MC 1.162 ± 0.006
JSNM 1.072 ± 0.005

(b) Prediction Result for MovieLens
Prediction Measure Methods Result

MAE AF 0.802 ± 0.005
KNN 0.812 ± 0.006
SimRank 0.814 ± 0.006
SVD 1.843 ± 0.007
MC 1.045 ± 0.006
JSNM 0.764 ± 0.004

RMSE AF 1.023 ± 0.004
KNN 1.043 ± 0.004
SimRank 1.037 ± 0.004
SVD 2.046 ± 0.008
MC 1.173 ± 0.005
JSNM 0.987 ± 0.003

Table IV. Manifold Term Investigation

(a) Trust Graph Evaluation for Epinion
Link Methods AUC F1
Trust JSNM 0.214 ± 0.003 0.220 ± 0.002

DGF 0.209 ± 0.003 0.213 ± 0.004

Distrust JSNM 0.992 ± 0.002 0.992 ± 0.003

DGF 0.982 ± 0.004 0.984 ± 0.003

(b) Rating Graph Evaluation for Various Datasets
Data Methods MAE RMSE
Epinion JSNM 0.772 ± 0.004 0.963 ± 0.005

DGF 0.802 ± 0.011 1.004 ± 0.007

Netflix JSNM 0.904 ± 0.004 1.074 ± 0.006

DGF 0.918 ± 0.009 1.136 ± 0.011

MovieLens JSNM 0.766 ± 0.005 0.987 ± 0.004

DGF 0.783 ± 0.009 1.012 ± 0.012

have decreased quite significantly compared with rating graph results in the previous
subsection. One possible reason is that since these two matrices are now made up of
common movies but different users, the ratings for any movie have more variability
than the data in the proceeding section. We would conduct more investigations in our
future research for such type of data.

6.4. Social Network Regularization Effect Investigation

In this section, we look into the effect of the manifold term in objective function
Eq. (2). We compare the performance of our framework (JSNM) with the objective
function without the manifold terms. We call the new method dual graph factorization
(DGF). We still set λ = 10−3 in JSNM and then repeat the same experiment procedure
in the previous subsections. We summarize the results in Table IV. In terms of trust
prediction evaluation, JSNM improves the DGF result 2% to 3% based on the DGF
result for the trust link and 1% for the distrust link. As to the rating evaluation, JSNM
improves 3.7% and 4% on Epinion for both MAE and RMSE, 1.2% and 1.5% on Netflix,
5% and 2% on MovieLens, respectively. From the table, we can conclude that the social
network regularity term plays a role in our framework.

7. CONCLUSION

In this article, we developed the joint social network mining (JSNM) method to perform
the trust prediction with the ancillary rating matrix. We transfer the common group
structure knowledge between two related matrices and simultaneously explore the
individual matrix geometric structure. With publicly available datasets, our method
shows its advantage over classical trust prediction methods for both the trust matrix
and rating matrix. Furthermore, our method can also be applied to homogeneous-type
data and yield similar improvement in the prediction.
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Although most websites do not have (publish) both trust graph and rating graph
datasets, we believe our method provides many websites a new perspective to improve
their service. Taking amazon.com and facebook.com for example, users may consent
to information sharing between these two sites, as their friends lists and purchase
histories generally cause no severe privacy leakage. Amazon may recommend users
items their friends purchased to boost their sale; on the other hand, Facebook users
could have the opportunity to link to other users and make new friends who purchased
similar topics of books or styles of music and demonstrated same interest. In future
work, we will investigate the effectiveness of our framework applying to more general
related dual graphs.

APPENDIXES

A. PROOF OF THEOREM 5.4

PROOF. We rewrite Equation (20) as

J(V1) = Tr
(
λVT

1 L+
1 V1 − λVT

1 L−
1 V1 − 2GT

1 U+V1

+ 2GT
1 U−V1 + α+VT

1 V1 − α−VT
1 V1

)
.

According to Lemma 5.2, we have

Tr
(
VT

1 L+
1 V1

) ≤
∑

i j

(L+
1 V′

1)i jV2
1,i j

V′
1,i j

α+Tr
(
VT

1 V1
) ≤ α+ ∑

i j

V2
1,i j .

Meanwhile, by the inequality x ≤ (x2+y2)
2y ,∀y > 0, we have

Tr
(
GT

1 U−VT
1

) =
∑
i, j

(
GT

1 U−)
i j V1,i j

≤
∑
i, j

(
GT

1 U−)
i j

V2
1,i j + V

′2
1,i j

V′
1,i j

.

On the other hand, to get the lower bound for the remaining terms, we employ the
inequality z ≥ 1 + log z,∀z > 0, and then

Tr
(
GT

1 U+VT
1

) ≥
∑

i j

(
GT

1 U+)
V′

1,i j

(
1 + log

V1,i j

V′
1,i j

)

Tr
(
VT

1 L−
1 V1

) ≥
∑
i jk

(L−
1 ) jkV′

jiV
′
ki

(
1 + log

V1, jiV1,ki

V′
1, jiV

′
1,ki

)

Tr
(
VT

1 V1
) ≥

∑
i jk

V′
1,i jV

′
1,ik

(
1 + log

V1,i jV1,ik

V′
1,i jV

′
1,ik

)
.

By summing over all the bounds, we get Z(V1, V′
1) and it is easy to conclude that

Z(V1, V′
1) ≥ J(V1), Z(V1, V1) = J(V1).
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To find the minimum of Z(V1, V′
1), we take derivative with respect to V1,i j ,

∂ Z(V1, V′
1)

∂V1,i j
= 2λ

(L+
1 V′

1)i jV1,i j

V′
1,i j

− 2λ(L−
1 V′

1)i j
V′

1,i j

V1,i j

− 2
(
GT

1 U+)
i j

V′
1,i j

V1,i j
+ 2

(
GT

1 U−)
i j

V1,i j

V′
1,i j

+ 2α+V1,i j − 2α− V′
1,i j

V1,i j
,

and the Hessian matrix of Z(V1, V′
1),

∂2 Z(V1, V′
1)

∂V1,i j∂V1,kl
= δikδ jl

(
2λ

(L+
1 V′

1)i j

V′
1,i j

+ 2λ(L−
1 V′

1)i j
V′

1,i j

V2
1,i j

+ 2
(
GT

1 U+)
i j

V′
1,i j

V2
1,i j

+ 2
(GT

1 U−)i j

V′
1,i j

+ 2α+ + 2α− V′
1,i j

V2
1,i j

)
,

is a diagonal matrix with positive elements due to V1 initialization and update rule;
δik is the delta function, δik = 1 if i = k, and 0 otherwise. Therefore, Z(V1, V′

1) is a
convex function of V1, and we can obtain the global minimum of Z(V1, V′

1) by setting
∂ Z(V1,V′

1)
∂V′

1,i j
= 0 and solving for V1, and we can get Equation (21). �

B. PROOF OF THEOREM 5.6

PROOF. We rewrite Equation (22) as

J(V2) = Tr
(
λVT

2 L+
2 V2 − λVT

2 L−
2 V2 − 2cGT

2 U+V2

+ 2cGT
2 U−V2 + β+VT

2 V2 − β−VT
2 V2

)
.

According to Lemma 5.2, we have

Tr
(
VT
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2 V2

) ≤
∑

i j

(L+
2 V′

2)i jV2
2,i j

V′
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β+Tr
(
VT
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) ≤ β+ ∑
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V2
2,i j .

Meanwhile, by the inequality x ≤ (x2+y2)
2y ,∀y > 0, we have

Tr
(
GT

2 U−VT
2

) =
∑
i, j

(
GT

2 U−)
i j V2,i j

≤
∑
i, j

(
GT

2 U−)
i j

V2
2,i j + V

′2
2,i j

V′
2,i j

.
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On the other hand, to get the lower bound for the remaining terms, we employ the
inequality z ≥ 1 + log z,∀z > 0, and then

Tr
(
GT

2 U+VT
2

) ≥
∑

i j

(
GT

2 U+)
V′

2,i j

(
1 + log

V2,i j

V′
2,i j

)

Tr
(
VT

2 L−
2 V2

) ≥
∑
i jk

(L−
2 ) jkV′

jiV
′
ki

(
1 + log

V2, jiV2,ki

V′
2, jiV

′
2,ki

)

Tr
(
VT

2 V2
) ≥

∑
i jk

V′
2,i jV

′
2,ik

(
1 + log

V2,i jV2,ik

V′
2,i jV

′
2,ik

)
.

By summing over all the bounds, we get Z(V2, V′
2) and it is easy to conclude that

Z(V2, V′
2) ≥ J(V2), Z(V2, V2) = J(V2).

To find the minimum of Z(V2, V′
2), we take derivative with respect to V2,i j ,

∂ Z(V2, V′
2)

∂V2,i j
= 2λ

(L+
2 V′

2)i jV2,i j

V′
2,i j

− 2λ(L−
2 V′

2)i j
V′

2,i j

V2,i j

− 2
(
cGT

2 U+)
i j

V′
2,i j

V2,i j
+ 2

(
cGT

2 U−)
i j

V2,i j

V′
2,i j

+ 2β+V2,i j − 2β− V′
2,i j

V2,i j
,

and the Hessian matrix of Z(V2, V′
2),

∂2 Z(V2, V′
2)

∂V2,i j∂V2,kl
= δikδ jl

(
2λ

(L+
2 V′

2)i j

V′
2,i j

+ 2λ(L−
2 V′

2)i j
V′

2,i j

V2
2,i j

+ 2
(
cGT

2 U+)
i j

V′
2,i j

V2
2,i j

+ 2

(
cGT

2 U−)
i j

V′
2,i j

+ 2β+ + 2β− V′
2,i j

V2
2,i j

)
,

is a diagonal matrix with positive elements due to V2 initialization and update rule;
δik is the delta function, δik = 1 if i = k, and 0 otherwise. Therefore, Z(V2, V′

2) is a
convex function of V2, and we can obtain the global minimum of Z(V2, V′

2) by setting
∂ Z(V2,V′

2)
∂V′

2,i j
= 0 and solving for V2, and we can get Equation (23). �
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