
Multiquality Data Replication
in Multimedia Databases

Yi-Cheng Tu, Student Member, IEEE, Jingfeng Yan, Student Member, IEEE, Gang Shen, and

Sunil Prabhakar, Senior Member, IEEE

Abstract—In contrast to other database applications, multimedia data can have a wide range of quality parameters, such as spatial

and temporal resolution and compression format. Users can request data with specific quality requirements due to the needs of their

application or the limitations of their resources. The database can support multiple qualities by converting data from the original (high)

quality to another (lower) quality to support a user’s query or precompute and store multiple quality replicas of data items. On-the-fly

conversion of multimedia data (such as video transcoding) is very CPU intensive and can limit the level of concurrent access supported

by the database. Storing all possible replicas, on the other hand, requires unacceptable increases in storage requirements. In this

paper, we address the problem of multiple-quality replica selection subject to an overall storage constraint. We establish that the

problem is NP-hard and provide heuristic solutions under two different system models: Hard-Quality and Soft-Quality. Under the soft-

quality model, users are willing to negotiate their quality needs, as opposed to the hard-quality system wherein users will only accept

the exact quality requested. Extensive simulations show that our algorithm performs significantly better than other heuristics. Our

algorithms are flexible in that they can be extended to deal with changes in query pattern.

Index Terms—Quality adaptation, integer programming, data replication, heuristic algorithm.

Ç

1 INTRODUCTION

QUALITY is an essential property for multimedia data-

bases. In contrast to other database applications,

multimedia data can have a wide range of quality

parameters, such as spatial and temporal resolution and

compression format. Quality-aware multimedia systems [1],

[2], [3], [4], [5] allow users to specify the quality of the media

to be delivered based on their practical needs and resource

availability on the client-side devices [2], [5]. The quality

parameters of interest also differ by the type of media we

deal with. For digital video, such quality parameters

include resolution, frame rate, color depth, signal-to-noise

ratio (SNR), audio quality, compression format, and

security level [1]. For example, a video editor may request

a video at very high resolution when editing it on a high-

powered desktop machine, but request the video at low

resolution and frame rate when viewing it using a PDA.

Different encoding formats may be desirable for different

applications.

From the point of view of a video database, satisfying

user quality specifications can be achieved using two

complementary approaches: 1) store only the highest

resolution copy and convert it to the quality format

requested by the user as needed at runtime or 2) precom

pute each different quality that can be requested and store

them on a disk. When the user query is received, the

appropriate copy is retrieved from the disk and sent to the

user. This first approach, often called dynamic adaptation,

suffers from a very high CPU overhead for transcoding

from one quality to another [5]. Therefore, online transcod-

ing is difficult in a multiuser environment. Our experiments

(Fig. 1), run on a Solaris machine (with a 2.4 GHz

Pentium 4 CPU and 1 GB of memory), confirm this claim:

An MPEG1 video is transcoded at a speed of only 15 to

60 frames per second (fps) when the CPU is fully loaded by

the transcoding job.1 This corresponds to 60-240 percent of

the entire CPU power if the frame rate for the video is

25 fps. We can see that CPU power is the bottleneck if we

depend on online transcoding. Current state-of-the-art CPU

design and transcoding techniques may increase the speed

by a factor of two to four, but it still does not solve the

problem. As a result, many transcode proxy servers or video

gateways [6] with massive computing power have to be

deployed. The second approach, often called static adapta-

tion, attempts to solve the problem of high CPU cost of

transcoding by storing precoded multiquality copies of the

original media on disk. By this, the heavy demand on CPU

power at runtime is alleviated. We trade disk space for

runtime CPU cycles, which is a cost-effective trade-off since

disks are relatively cheap.
Existing static adaptation systems are designed under

one or both of the following assumptions: 1) user requests

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007 679

. Y.-C. Tu, J. Yan, and S. Prabhakar are with the Department of Computer
Sciences, Purdue University, 305 N. University Street, West Lafayette, IN
47907. E-mail: {tuyc, yanj, sunil}@cs.purdue.edu.

. G. Shen is with the Department of Statistics, Purdue University,
150 N. University Street, West Lafayette, IN 47907.
E-mail: gshen@stat.purdue.edu.

Manuscript received 17 May 2006; revised 26 Sept. 2006; accepted 6 Nov.
2006; published online 24 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0258-0506.
Digital Object Identifier no. 10.1109/TKDE.2007.1013.

1. In these experiments, we use the open-source video processing tool
named transcode, which is available from http://www.transcoding.org.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

concentrate on a small number of quality profiles2 and 2) there is
always enough storage space. However, these are not true for
real-world multimedia databases. First of all, users vary
widely in their quality needs and resource availability [5].
This leads to a large number of quality-specific copies of the
same media content that need to be stored on disk. Second,
although cheap, storage space is not free. This is especially
true for commercial media databases that must provide
high reliability of disk resources (which may be leased from
vendors such as Akamai). Therefore, although storage is
cheap, the storage requirements should not grow unbound-
edly. An analysis in Section 4 shows the disk space needed
to accommodate all possible qualities could be intolerably
high. Therefore, the choice of which quality copies to store
becomes important and is the focus of this paper.

We view the selection of media copies as a data
replication problem (Fig. 2). Traditional data replication
focuses on placement of copies of data in various nodes in a
distributed environment [7]. Our quality-aware replication
of multimedia deals with data placement in a metric space
of quality values (termed quality space). In the traditional
replication scheme, data are replicated as exact or seg-
mental copies of the original, while the replicas in our
problem are multiquality copies generated via (offline)
transcoding. In this paper, we present strategies to choose
the quality of replicas under two different user require-
ments: Hard-Quality and Soft-Quality. Under the hard-
quality model, users must receive the exact quality
requested. If such a quality is not already stored on disk,
it must be generated by transcoding from an available
quality and delivered to the client simultaneously. If the
resources necessary for this transcoding are not available
(e.g., due to overloading), then the request is rejected. In a
soft-quality model, users are willing to negotiate the quality
that they receive and may be willing to accept a quality that
is close to the original request. Naturally, there is a loss in
utility for the user when he has to accept a different quality,

depending upon the difference in quality. In either model, a
request can be rejected if the system is overloaded (at the
CPU, disk, or network).

Important performance metrics for these systems in-
clude: the reject rate of requests, user satisfaction, and resource
consumption [8], [9]. Our data replication algorithms are
designed to achieve the lowest rejection rate or highest user
satisfaction under fixed resource (CPU, bandwidth, and
storage) capacities. We hope our work will provide useful
guidelines to system designers in building cost-effective
and user-friendly multimedia databases.

The remainder of this paper is organized as follows: We
first compare our work with others in Section 2. We then
introduce the system model in Section 3. Section 4 discusses
storage use of the replication process. We present our
replica selection algorithms in Sections 5, 6, and 7. Section 8
is dedicated to experimental results. We conclude the paper
in Section 9.

2 RELATED WORK AND OUR CONTRIBUTIONS

A preliminary version of this paper appears in [10]. This
work is motivated by the efforts to build quality-aware
media systems [1], [3], [4], [5]. In [1], quality-aware query
processing is studied in the context of multimedia data-
bases. In that paper, we extend the query processing/
optimization module of a multimedia DBMS to handle
quality in queries as a core DBMS functionality. Two other
related works in multimedia databases discuss quality
specification [11] and quality model [12]. None of the above
deals with replication of copies with different qualities. The
closest work in quality-aware data replication is by On et al.
[13]. They focus more on the availability and consistency of
nonmedia data.

The traditional data caching/replication problem has
been studied extensively in the context of the Web [14], [15],
distributed databases [7], [16], and multimedia systems [17],
[18]. The Web caching and replication problem aims at
higher availability of data and load balancing at the Web
servers. Similar goals are set for data replication in
multimedia systems. What differs from Web caching is that
disk space and I/O bandwidth are the major concerns in
multimedia systems. A number of algorithms are proposed
to achieve a high acceptance rate and resource utilization by
balancing the use of different resources [18], [19], [20].
Unlike Web and multimedia data, database contents are
accessed by both read and write operations. This leads to
high requirements on data consistency, which often conflict

680 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 1. Time for transcoding a 640 � 480 MPEG1 video to various

(lower) resolutions.

2. As a result of 1), many media service providers offer quality options
based on the client-side devices’ processing capabilities. For example,
CNN.com used to provide video streaming service in three different
predefined qualities: one for dial-up users, one for DSL users, and one for
T1 users. However, this solution places strong limitations on the freedom of
quality selection. Furthermore, with the development of mobile technolo-
gies, there are a large number of devices such as smart phones and PDAs,
each of which has different rendering and communication capabilities.
Thus, even by adapting this strategy, the number of possible quality-
specific copies of the same media is large and keeps increasing with the
emergence of new devices.

Fig. 2. (a) Traditional and (b) quality-aware data replication.

with data availability. Due to resource constraints, data
consistency can sometimes only be enforced loosely.

Dynamic replication of data is another important issue
since access frequencies to individual data items are likely to
change in most environments. The goal is to make the
replication strategy quickly and accurately adapt to changes
and achieve optimal long-term performance. Wolfson et al.
[21] introduced an algorithm that changes the location of
replicas in response to changes of read-write patterns of data
items. The interactions between query optimization and data
cache utilization in distributed databases are discussed in
[22]. They found that, to take advantage of cached data, it is
sometimes necessary to process individual queries using
“suboptimal” plans in order to reach higher system
performance. In [23] and [8], video replication/dereplication
is triggered as a result of changes of request rates.

Quality support in media delivery in response to
heterogeneous client features and environmental conditions
has attracted a lot of attention [2], [5]. The problem of quality
selection under storage constraints, however, has not been
well addressed due to the oversimplified assumption of
unlimited storage. A work that is close in spirit to ours is
presented in [24], where quality selection is performed with
the goal of minimizing transcoding costs. In another related
paper [25], the problem of optimal materialized view
selection is studied. Both [24] and [25] address different
data selection problems from ours. Furthermore, neither
considers quality selection in response to dynamic changes
of query pattern. Another feature of our problem is that
storage is shared by multiple physical objects, each of which
has it own quality space. How to distribute storage among
these quality spaces brings an extra dimension of difficulty.
In comparison to the preceeding papers, we make the
following contributions in our study:

1. We analytically and experimentally show that the
storage cost of static adaptation is so high that only a
small number of replicas can be accommodated in
disks.

2. In a hard-quality system where users are assumed to
be strict on quality requirements, we develop a
(near-optimal) replica selection algorithm that mini-
mizes the request reject rate based on probabilistic
analysis.

3. We formulate the replica selection under a soft-
quality model as a facility location problem with the
goal of maximizing user satisfaction. We propose a
fast greedy algorithm with performance comparable
to commercial optimizers. An improvement to the
greedy algorithm is also discussed.

4. We extend the algorithms developed in items 2 and
3 to handle dynamic changes of query pattern. Our
solutions are fast and achieve the same level of
optimality as the original algorithms.

3 SYSTEM MODEL, NOTATIONS, AND ASSUMPTIONS

We assume that the database consists of a collection of
servers that host the media content and service user queries.
For now, we consider a centralized, single server scenario.
The case of multiple, distributed servers is discussed in

Section 6.5.3. We list in Table 1 the notations that will be
used throughout this paper.

In our model, a server is characterized by the total
amounts of the following resources available: bandwidth
ðBÞ, storage space ðSÞ, and CPU cycles ðCÞ. Among them,

bandwidth can be viewed as the minimum of the network
bandwidth and the I/O bandwidth.

User requests identify (either directly or via a query) an
object to be retrieved as well as the desired quality
requirements on m quality dimensions (~q ¼ fq1; q2; . . . ; qmg,
termed as quality vector). Each quality vector can thus be
modeled as a point (hereafter called quality point) in an
m-dimensional space. Generally, the domain of a quality
parameter contains a finite number of values. For example,
the spatial resolution of a video is an integer number of
pixels within the range of 192 � 144 (low-quality MPEG1) to

1,920� 1,080 (HDTV). The total number of quality points for
a specific media object i is Mi ¼

Qm
j¼1 jQijj, where Qij is the

set of possible values in dimension j for object i andQij need
not to be identical for all media objects. Note that every
quality point is a candidate replica to be stored on disk.

Consider each possible quality, k, stored in the database.
We use the following parameters to model this object: fk, �k,
ck, sk, and bk. Quantity fk represents the query rate for this
version of the video. We assume that the query arrival is a
Poisson process with this arrival rate. The query processing
duration is assumed to follow an arbitrary distribution with
expectation 1=�k. Note that 1=�k may not be the same as the

standard playback time of the media as the users may use
VCR functionalities (e.g., stop and fast forward/backward)
during media playback. The last three parameters ðck; sk; bkÞ
correspond to the usage of resources. They can be estimated
from empirical functions derived by regression (see Sec-
tion 4). Quantity ck is fixed as the transcoding cost only
depends on the target quality. Under the hard-quality
model, the server performs the following steps upon
receiving a request:

1. attempts to retrieve from disk a replica that matches
the quality vector ~q attached to the request;

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 681

TABLE 1
Notations and Definitions

2. if the corresponding replica does not exist, it
transcodes a copy from a high-quality replica (by
consuming ck units of CPU) at runtime; and

3. rejects the request if not enough CPU is available to
perform item 2.

If either item 1 or 2 is performed, the retrieved/
transcoded media data is transmitted to the client via the
network (using bk units of bandwidth). The request is also
rejected if the required bandwidth is unavailable. We ignore
the CPU costs of nontranscoding operations as they are
negligible compared to transcoding costs and do not change
with the specified~q. In the above model, requests are either
admitted or rejected without waiting in a queue. The steps
performed in soft-quality systems are slightly different from
the above. We will discuss those in Section 6.

3.1 Assumptions

In this paper, we assume that replicas are readily
available. In practice, all replicas can be precoded and
archived on tertiary storage and copied into disk when a
replication decision is made. We also assume that rejected
queries are not reissued by the users. For analysis under
the hard-quality model (Section 5), we make the following
assumptions:

Assumption 1. CPU is a heavily overloaded resource as a result
of online transcoding requests, i.e.,

PM
k¼1 �kck ¼ mcC, where

mc � 1. On the other hand, the load put on system bandwidth
is not as heavy as that on CPU, i.e.,

PM
k¼1 �kbk ¼ mbB and

mb � mc. We call mb and mc the load coefficients of these
resources. Note that the load on system bandwidth can be
critical, i.e., mb ¼ 1 or light, i.e., mb < 1.

Assumption 2. We assume ci
C >

bj
B , 8i, j. This means that the

ratio of CPU cost to total CPU power is always higher than
that of bandwidth cost to total bandwidth.

The above two assumptions are reasonable due to our
discussion in Section 1 about CPU being the bottleneck in
our system model.

4 STORAGE REQUIREMENTS FOR QUALITY-AWARE

REPLICATION

As mentioned in Section 1, it is often assumed in previous
works that sufficient storage is available for static adapta-
tion. Now, we scrutinize this assumption. Since a user can
request any of the possible qualities, an ideal solution is to
store most, if not all, of these replicas on disk such that only
minimal load is put on the CPU for transcoding. We show
that the storage cost for such a solution is simply too high.

We use digital video as an example throughout this
paper. According to [2], the bitrate of a video replica with a
single reduced quality parameter (e.g., resolution) is
expressed as:

F ¼ F0ð1�R�Þ; ð1Þ

where F0 is the bitrate of the original video, R is the
percentage of quality change ð0 � R � 1Þ from the original
media, and � is a constant derived from experiments
ð0:5 < � < 1Þ. Suppose we replicate a media into n copies

with a series of quality changes Ri ði ¼ 1; 2; . . . ; nÞ that
cover the domain of R evenly (i.e., Ri ¼ i=n). The sum of the
bitrate of all copies is given by:

Xn
i¼0

F0 1�R�
i

� �
¼ F0 n�

Xn
i¼0

i

n

� ��" #

� F0 n�
Z n

0

i

n

� ��
di

" # ð2Þ

¼ F0 n� n

� þ 1

� �

¼ F0
n�

� þ 1
¼ F0OðnÞ:

ð3Þ

The corresponding storage requirement can be easily
calculated as TF0

n
�þ1 , where T is the standard playback

time of the media. Note that the above only considers
one quality dimension. In [2], (1) is also extended to
three dimensions (spatial resolution, temporal resolution,
and SNR):

F ¼ �F0 1�R�
a

� �
1�R�

b

� �
1�R�

c

� �
; ð4Þ

where Ra, Rb, and Rc are quality change in the three
dimensions, respectively. The constants of their transco-
der(s) are: � ¼ 1:12, � ¼ 2=3, � ¼ 0:588, and � ¼ 1:0. Using
the same technique of approximation by integration as used
in (2), we can easily see the sum of all storage needed for all
n3 replicas is TF0Oðn3Þ. To be more general, the relative
storage (to the original size) needed for static adaptation is
on the order of total number of quality points. The latter can
be represented as OðndÞ, where d is the number of and n is
the replication density along quality dimensions. The
conclusion is true as long as storage decreases polynomially
with degradation of quality. Some of the storage costs
generated using (4) are listed in Table 2. For example, when
n ¼ 10, the extra storage needed for all replicas is 117.7 times
that of the original media size. No media service can afford
to acquire hundreds of times of more storage for the extra
feature of static adaptation. Needless to say, we could have
even more quality dimensions in practice.

We have also experimentally verified the storage
requirements for replication. Again, we use the transcode
processing toolkit in these experiments. Fig. 3 shows the
relative video size when spatial resolution decreases by
various percentages. The discrete points are the resulting
video sizes and curve A represents (1). In this graph, the
areas under the curves can be viewed as the total relative
storage use. We also plot a straight line B with function
1� 1:25R to show the theoretical storage usage based on (3).
The area of the triangle formed by the X, Y axes and line B is
2
5 , which is the same as that given by (3) since � ¼ 2

3 . The fact
that the areas under these three curves are almost the same
corroborates our analysis in this section.

682 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

TABLE 2
Total Relative Storage in a 3D Quality Space

5 HARD-QUALITY SYSTEMS

In this section, we discuss data replication strategies in hard-
quality systems where users have rigid quality requirements
on service. This means a user is not willing to negotiate when
the quality she specifies cannot be satisfied. As mentioned in
Section 1, the main idea of static adaptation is to replicate
original media into multiple quality copies such that the
demand on CPU decreases. In Section 4, we have shown that
it is impractical to store all possible quality combinations.
Therefore, the problem becomes how to choose quality
points for replication given finite storage space C such that
system performance is maximized. Since the unavailability
of a requested quality results in rejection of the request, we
use the reject probability, P , as the metric for performance
evaluation. Let the output of the replica selection algorithm
be a vector ðr1; r2; . . . ; rMÞ with 0/1 elements (rk ¼ 1 if
replica k is to be stored in disk). Formally, the replica
placement problem is to

minimize P;

subject to
XM
i¼1

rksk � S;

where the fk, �k, sk, and ck values for each replica are given.
To approach the above problem, it is critical to derive the

relationship between P and the replica-specific values. First
of all, the reject probability of all quality points is a
weighted average of those of individual points:

P ¼
XM
k¼1

fkPM
k¼1 fk

Pk ¼
1

f

XM
k¼1

fkPk; ð5Þ

where Pk is the reject probability of replica k. Suppose our
replication algorithm divides the M quality points into two
disjoint sets: a set R containing replicated points and a set
R0 with nonreplicated points. Following (5), we have

P ¼ 1

f
ðfRPR þ fR0PR0Þ; ð6Þ

where fR ¼
P

i2R fi is the total request rate in set R, PR ¼
1
fR

P
k2R fkPk is the reject probability of all requests from R,

and fR0 , PR0 are the counterparts of fR, PR in set R0.
In our model, the admission of a request is determined

by the runtime availability of two resources: bandwidth and
CPU. If either is insufficient to serve the request, the request

is rejected. So, the reject probability for a set of objects, say,
those in set R, can be expressed as

PR ¼ P ðbÞR þ P
ðcÞ
R � P

ðbcÞ
R ð7Þ

where P
ðbÞ
R , P

ðcÞ
R , and P

ðbcÞ
R are probabilities of the following

events happening to set R requests: rejected by bandwidth,
rejected by CPU, and rejected by both CPU and bandwidth. Note
we cannot say P

ðbcÞ
R ¼ P ðbÞR � P

ðcÞ
R as the first two events could

be dependent on each other. Similarly, we have the
following for set R0:

PR0 ¼ P
ðbÞ
R0 þ P

ðcÞ
R0 � P

ðbcÞ
R0 ; ð8Þ

where P
ðbÞ
R0 , P

ðcÞ
R0 , and P

ðbcÞ
R0 are defined according to set R0

requests.
As no rejection by CPU will occur when a replica is

placed in disk (Section 3.1), we have P
ðcÞ
R ¼ 0, which leads to

P
ðbcÞ
R ¼ 0 and, thus, PR ¼ P ðbÞR . Plugging this and (8) into (6),

we have

P ¼ 1

f
fRP

ðbÞ
R þ fR0 P

ðbÞ
R0 þ P

ðcÞ
R0 � P

ðbcÞ
R0

� �h i
: ð9Þ

We now establish the following proposition and theorem
that will help analyze the above expression. Although both
Proposition 1 and Theorem 1 seem intuitively obvious, their
proofs are nontrivial extensions of well-established results
in queuing theory [26]. The basic idea is to map the hard-
quality system to an Erlang loss model: We can view the
bandwidth (CPU) as a resource pool with B ðCÞ channels,
the replica-specific requests are modeled as Poisson streams
with arrival rate fk, and service rate �k, and no waiting
queue exists (i.e., lossy system). What complicates our
analysis is that each request class requires a different
number of channels (i.e., ck, bk), whereas exactly one
channel is used for one request in a regular Erlang system
(e.g., one line for each telephone call). It is reported that
stationary distributions do exist for the reject probability in
such systems. The main results of such studies can be found
in Appendix A.

Proposition 1. Given two Erlang loss systems A and B, each has
a number of traffic classes. Any class i in group A is
characterized by its arrival rate fi, service time �i, and number
of channels needed for each connection ci. Similarly, a class j
in group B is by fj, �j, and bj. Let RA and RB be the total
number of channels for system A and B, respectively. If
1) RA > RB, 2) mA � mB, where mA and mB are the load
coefficients of systems A and B (i.e., Assumption 1 in
Section 3.1), and 3) mini2Afcig=RA > maxj2Bfbjg=RB (i.e.,
Assumption 2 in Section 3.1), then the reject probability in
system A is greater than that of system B.

Proof. See Appendix B. tu
Theorem 1. If the requested load on a resource in the hard-

quality system is critical or light, we have

P ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

N�f2

s !
;

where N is the scale of resource pool (i.e., N ¼ �ðBÞ for
bandwidth and N ¼ �ðCÞ for CPU) and � ¼

PM
i¼1 fk�k.

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 683

Fig. 3. Change of video size with resolution degradation.

Proof. See Appendix C. tu

The nonreplicated set R0 and replicated set R can be

mapped to groups A and B in Proposition 1, respectively.

Since storage is limited, replicating some qualities does not

change the fact that CPU is still heavily loaded (i.e.,

condition 2 always holds). Thus, we have P
ðbÞ
R < P

ðcÞ
R0 � PR0

when both resources are overloaded. This also holds true

when the bandwidth (i.e., group B) has critical or light load

because the reject probability is close to zero under such

conditions (Theorem 1, it is easy to see that � < f2 and N

are large in our problem). The second inequality in the

preceding formula is given by the fact that P
ðbÞ
R0 	 P

ðbcÞ
R0 .

Revisiting (9), as P
ðbÞ
R < PR0 , no matter how we choose

members of R and R0, a heuristic solution to the problem of
minimizing P would be to maximize fR (or minimize fR0

since fR þ fR0 ¼ f) subject to
P

k2R sk � S. In other words,
the problem becomes the classic 0-1 Knapsack problem,
which can, in turn, be solved by the following heuristic
algorithm: We sort all possible qualities by their request rate
per unit size ðfk=skÞ and select those with the highest such
values until the total storage is filled. The running time of
this algorithm is OðM logMÞ. In Appendix D, we show that
the results obtained by such a heuristic are near-optimal
when S � sk for all k 2 ½1;M
, which is a safe assumption.
The above result is interesting in that it shows that fk and sk
are the only factors we need to consider in quality selection
even though the reject probability is also a function of �k, ck,
and bk (Appendix A).

6 SOFT-QUALITY SYSTEMS

In hard-quality systems, replicas of the same media are
treated as independent entities: Storing a replica with
quality ~q1 does not help the requests to another with quality
~q2 as quality requirements are either strictly satisfied or the
request is rejected. However, users can generally tolerate
some changes of quality [2] and the parameters specified
only represent the most desirable quality. If these para-
meters cannot be exactly matched by the server, they are
willing to accept a similar set of qualities. The process of
settling down to a new set of quality parameters is called
renegotiation. Of course, the deviation of the actual qualities
a user gets from those he/she desires will have some impact
on the user’s viewing experience and the system should be
penalized for that.

6.1 Utility Functions

We generally use utility to quantify user satisfaction on a
service received [27]. For our purposes, utility functions can
be used to map quality to utility and the penalty applied to
the media service due to renegotiation is easily captured by
utility loss. As utility directly reflects the level of satisfaction
from users, it is the primary optimization goal in quality-
critical applications [9]. We thus set the goal of our replica
selection strategies to be maximizing utility. The server
operations shown in Section 3 need to be modified in soft-
quality systems. For simplicity, we assume the “renegotia-
tion” process between the client/server is instantaneously

performed on the server side based on a simple rule: In case
of a miss in Step 1, the server always chooses a replica that
yields the largest utility for the request to retrieve.

Fig. 4 shows various types of utility functions for a single
quality dimension. In general, utility functions are convex
monotones (Fig. 4A) due to the fact that users are always
happy to get a high quality service, even if the quality
exceeds his/her needs [27]. However, in a more realistic
environment, the cost of the extra quality may be high as
more resources have to be consumed (Section 1) on the
client side. Thus, excessively high quality negatively affects
utility. Taking this into account, we propose a new group of
utility functions in quality-aware media services: It achieves
the maximal utility at a single point qdesire and mono-
tonically decreases on both sides of qdesire along the quality
dimension (Fig. 4B). Note that the functions do not have to
be symmetric on both sides of qdesire. The hard-quality
model in Section 5 can be viewed as a special case: Its utility
function takes the value of 1 at qdesire and 0 otherwise. The
utility for a quality vector with multiple dimensions is
generally given as a weighted sum of the dimensional
utility [9].

6.2 Data Replication as an Optimization

In this subsection, we formally define the replica selection
problem in soft-quality systems. Let us first study how to
choose replicas for one media object i. We then extend our
discussion to all V objects in Section 6.5.1.

The problem is to pick a set of L replicas that gives the
largest total utility over time, which can be expressed as

U ¼
X

j2J fjuðj; LÞ;

where J is the set of all Mi points and uðj; LÞ is the largest
utility with which a replica in L serves a request for
quality j. Obviously, uðj; LÞ has maximum value when
j 2 L. We set uðj; LÞ to be a function of the distance between
j and its nearest neighbor in L (Section 6.1). Generally,
uðj; LÞ is normalized into a value in [0, 1]. We weight the
utility by the request rate fj and the weighted utility is
termed as utility rate. The constraint of forming set L is that
the total storage of all members of L cannot exceed S. We
name our problem the fixed-storage replica selection (FSRS)
problem, which can be formulated as the following integer
programming:

maximize
X

j2J

X
k2J fjuðj; kÞYjk; ð10Þ

subject to
X

k2J Xksk � S; ð11Þ

684 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 4. Different types of utility functions.

X
k2J Yjk ¼ 1; ð12Þ

Yjk � Xk; ð13Þ

Yjk 2 f0; 1g; ð14Þ

Xk 2 f0; 1g; ð15Þ

where uðj; kÞ is the utility value when a request to point k is
served by a replica in j, Xk is a binary variable representing
whether k is replicated, Yjk tells if j should be served by k.
Equation (11) shows the storage constraint, while (12) and
(13) mean all requests from k should be served by one and
only one replica.

The FSRS problem looks similar to a group of well-
studied optimizations known as the uncapacitated facility
location (UFL) problems [28]. Yet, it is different from any
known UFL problems in that the storage constraint in FSRS
is unique. A close match to FSRS is the so-called p-median
problem with the same problem statements, except (11)
becomes

P
Xk ¼ p, meaning only p ðp < jJ jÞ facilities are to

be built. As the p-median problem is NP-hard [29], we can
thus conclude FSRS is also NP-hard.

Theorem 2. The FSRS problem is NP-hard.

Proof. The p-median problem is equivalent to finding the
set of replicas that yields the smallest loss of utility rate
in a quality space where sk ¼ 	 ð	 > 0Þ for all k and
S ¼ p	. Thus, the p-median problem is polynomial time
reducible to the FSRS problem and this concludes the
proof. tu

6.3 The Greedy Algorithm

As in the Knapsack problem, we can use a benefit/cost
model to evaluate a replica k: The cost is obviously the
storage sk, the benefit would be the gain of utility rate of
selecting k. What complicates the problem is that the benefit
is not fixed: It depends on the selection of other replicas. To
bypass this difficulty, we propose an algorithm (we call it
Greedy) that takes guesses on such benefits. The main idea is
to aggressively select replicas one by one. The first replica is
assigned to a point k that yields the largest �Uk=sk value as
if only one replica is to be placed. We denote �Uk=sk as the
utility density of replica k, where �Uk is the marginal utility
rate gained by replicating k. The following replicas are
determined in the same way with the knowledge of replicas
that are already selected. The utility density value repre-
sents our guess of the benefit-to-cost ratio in replicating k.

Fig. 5 shows the pseudocode of the Greedy algorithm.
GREEDY calls ADD-REPLICA continuously, with a queue list
holding the replicas selected so far. The algorithm termi-
nates when no more replicas can be added due to storage
constraints. The subroutine ADD-REPLICA is the core of this
algorithm: It selects a new replica given those chosen in
slist. It does so by trying all Mi points in the quality space
(line 2) to look for the one that yields the largest utility rate.
Subroutine MAXUTILITY gives the utility from j to its
nearest replica in slistþ k, which can be done in constant
time if we store the previous nearest replica for all j. The
two loops both have to run Mi iterations; therefore, the time
complexity for Greedy is OðIM2

i Þ for one media i. Here, I is

the number of replicas eventually placed in list. In the worst
case, when all points are selected, we have I ¼Mi.

Effects of the type of utility functions. It is easy to see
that the shape of the utility functions affects the final results
of replica selection. Recall that we evaluate a replica k by itsP
fjuðj; kÞ=sk value, where j are the points k serves (line 7

in ADD-REPLICA). If the utility drops very fast, a replica can
only collect utility from points that are extremely close to it;
therefore, the Greedy algorithm favors those with high query
rates in their close neighborhood. On the other hand, if
utility drops very slowly, we may overestimate the utility
rate of a point at early stages of Greedy. As a result, the first
few replicas chosen by Greedy tend to be those with small
sk values since the utility rates of all candidates have little
difference at that moment. In Section 6.4, we propose a
solution to remedy this problem of Greedy.

The utility curves we have discussed so far are all
monotonically decreasing functions of distance (between
two points). However, our FSRS algorithm does not depend
on any special features (e.g., monotonicity and convexity) of
the utility functions. In fact, Greedy works for arbitrary types
of utility functions as long as the utility value between two
points is not affected by the replica selection process.

6.4 The Iterative Greedy Algorithm

The Iterative Greedy algorithm attempts to improve the
performance of Greedy. We notice that, at each step of
Greedy, some local optimization is achieved: The ðK þ 1Þth
replica chosen is the best given the first K replicas. The
problem is: We do not know if the first K replicas are good
choices. However, we believe the ðK þ 1Þth replica added is
more “reliable” than its predecessors because more global
information (i.e., other selected replicas) is leveraged in its
selection. Based on this conjecture, we develop the Iterative
Greedy algorithm that iteratively improves the “correctness”
of the replicas chosen. Specifically, we repeatedly get rid of
the most “unreliable” selected replica and choose a new
one. Note that the one that is eliminated is also a candidate
of the selection process.

The operations in Iterative Greedy are shown in Fig. 6. All
replicas selected by Greedy are stored in a FIFO queue slist.
In each iteration, we dequeue slist and find one replica

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 685

Fig. 5. The Greedy algorithm.

(line 6) among the remaining replicas. The newly identified
replica is then added to the tail of slist. The same
subroutine, ADD-REPLICA, is used to find new replicas.
We keep dequeuing slist and running ADD-REPLICA until
I iterations are finished. We record the set of replicas with
the largest utility rate as the final output. As ADD-REPLICA

runs in OðM2
i Þ time, Iterative Greedy has time complexity of

OðIM2
i Þ, which is the same as that of Greedy. The only

problem here is how to set the number of iterations I. Since
the primary goal of Iterative Greedy is to reconsider the
selection of the first few “unreliable” replicas, we can set I
to be smaller than the total number of replicas selected by
Greedy.

6.5 Other Issues

6.5.1 Handling Multiple Media Objects

With very few modifications, both the Greedy and the
Iterative Greedy algorithms can handle multiple media
objects. The idea is to view the collection of V physical
media as replicas of one virtual data object. The different
content in the physical media can be modeled as a new
quality dimension called content. A special feature of content
is its lack of adaptability, i.e., any replica of the movie
Matrix cannot be used to serve a request to the movie Shrek.
Assume all physical media have a quality space with
M̂ points, the FSRS problem with V media can be solved by
simply running the Greedy algorithm for the virtual media
with V M̂ points. Knowing that there is no utility gain
between two replicas with different content, we only need to
run the second loop (line 5) in ADD-REPLICA for those with
the same content. Thus, the time complexity of GREEDY

becomes OðIV M̂2Þ.

6.5.2 Relaxing/Tightening Constraints

Another point is that we set a constraint of replicating at
least one copy for the video in (12). In the multi-object
scenario, we can further relax or tighten this constraint. To
relax it, we allow no replica being selected for a video by
modifying (12) to

P
k2J Yjk � 1. This requires no changes to

our algorithms. On the other hand, the system adminis-
trator could also enforce the selection of certain replicas
(e.g., the original video). Again, our FSRS algorithms can
easily handle this: We just start running ADD-REPLICA with
a list of all replicas that must stay in storage. However, if we
stick to the original constraint (i.e., (12)) but do not specify

which replica to store for each video, the problem becomes
trickier as our algorithms may assign no replica to videos
with low query rates. The solution is to start by selecting the
smallest replica for all videos and run Greedy. This
guarantees one replica for each video, but the effects of
the constraint are minimized. Unless specified otherwise,
the following extensions are based on a multivideo
environment with the relaxed constraint.

6.5.3 Distributed Data Replication

In Sections 5 and 6, we discussed the strategies of quality-
aware data replication in a single server. Now, we extend
the solutions to a distributed system with multiple servers.
Let us first investigate how the problem is changed when
we consider multiple servers in a hard-quality system.
Here, we assume user requests can be served by any one of
n > 1 servers.3 As we can see, the analysis we show in
Section 4 still holds true and we can use (9) to guide our
replica selection: The strategy is, again, to maximize fR.
When we obtain a set of replicas with the largest possible
fA, how to assign these replicas to n servers becomes a
problem. We can immediately relate this to a load balancing
problem with the goal of achieving uniform reject prob-
ability in all servers. A more detailed justification and a
solution can be found in [30].

7 DYNAMIC DATA REPLICATION

So far, we have considered the situation of static data
replication, in which access rates of all qualities do not
change over time. The importance of studying static
replication can be justified by two observations: 1) Access
patterns to many media systems, especially video-on-
demand systems, remain the same within a period of at
least 24 hours [17]. 2) Conclusions drawn from static
replication studies form the basis of dynamic replication
research [23]. In this section, we discuss quality-aware data
replication in an environment where access patterns
change. There are two main requirements to a dynamic
replication scheme: quick response to changes and optim-
ality of results. Our goal is to design real-time algorithms
that match static replication algorithms in result optimality.

In this section, we focus on dynamic replication in soft-
quality systems. Our solution to hard-quality systems can
easily be made adaptable to dynamic situations (see [30] for
more details): The replication decision is made by sorting
replicas by their
k ¼ fk=sk values. When the query rate of a
replica changes, we just reinsert the replica into the sorted
list and make decisions based on its current position in the
list. The time complexity of this algorithm is OðlogMÞ.

Dynamic replication in soft-quality systems is a very
challenging task. The difficulty comes from the fact that the
access rate change of a single point could have cascading
effects on the choice of many (if not all) replicas. We may
have to rerun the static algorithms (e.g., Greedy) in response
to such changes but these algorithms are too slow to make
online decisions. Fortunately, the Greedy and Iterative Greedy
algorithms we developed have properties that we can

686 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 6. The Iterative greedy algorithm.

3. If each server only handles requests from its local region, the problem
is trivial as we only need to perform single-server replication at each server.

exploit in building efficient, accurate dynamic replication
algorithms. In this section, we assume that runtime
variations of access pattern only exist at the media object
level. In other words, the relative popularities of different
quality points for the same media object do not change.
Although this assumption is reasonable in many systems
[17], [18], we understand that a solution for a more general
situation is meaningful and we leave it as future work.

7.1 Replication Roadmap

Let us first investigate how ADD-REPLICA, being the core of
both Greedy and Iterative Greedy, selects replicas. The history
of total utility rate gained and storage spent on each
selected replica can be represented as a series of points in a
2D graph. We call the lines that connect these points in the
order of their being selected a Replication Roadmap (RR).
Fig. 7 shows two examples of RRs plotted with the same
scale. We can see that any RR is convex. The reason for this
is: The slope of the line connecting any two consecutive
points (e.g., r1 and r2 in Fig. 7) in an RR represents the ratio
of �Ur2 to sr2. As ADD-REPLICA always chooses a replica
with the largest �U=s value, the slopes of the lines along the
RR are thus nonincreasing.

We can also draw RRs for individual media objects. It is

not hard to see that single-media RRs are also convex. In

dynamic replication, replicas need to be reselected with

respect to the new query rate of a media object. Suppose the

query rate fi of a medium i increases by a factor 	 ð	 > 0Þ.
This makes the slopes of all pieces in i’s RR increase by 	.

What happens now is that we may consider assigning extra

storage to i as it reaches a position to use storage more
profitably than before. As storage is limited, the extra chunk

should come from another medium whose slope in the last

piece of RR is small. Take Fig. 7 as an example. Suppose we

have fully extended RRs: All future replicas are precom-

puted (empty dots in Fig. 7) and we call the last real replica

the frontier of the RR. It buys us more utility to advance

A’s frontier (take storage) and move backward on B’s RR

(give up storage). The beauty of this scheme is that we

never need to pick up points far into or over the frontier to

make storage exchanges. The convexity of RRs tells us that

the frontier is always the most efficient point to acquire/
release storage. Based on this idea, we have the an online

algorithm named SOFTDYNAREP for dynamic replication

(Fig. 8).

7.2 The SOFTDYNAREP Algorithm

The algorithm consists of two phases: the Preprocess Phase
and the Online Phase. In the Preprocess phase, we need to

extend each RR formed by Greedy or Iterative Greedy by

adding all Mi replicas.4 For all RRs, we put the immediate

predecessor of the frontier in a list called blist and the

immediate successor in a list called flist. Both lists are sorted

by the slopes of the segments stored. The Preprocess phase

runs at OðV M̂3Þ time and it only needs to be executed once.
The Online Phase is triggered once we detect a change in

query rate to an object i. The idea is to iteratively take

storage from the end of blist until a new equilibrium is

reached. The running time of this phase is OðI logV Þ, where

I is the number of storage exchanges (line 9). In the worst

case, where most of i’s replicas are to be stored, we have

I ¼ OðMiÞ. The case of query rate decrease is just handled

in the opposite way of what we discussed above. In

EXCHANGESTORAGE, there are two loops: In the outer

loop (line 3), we choose the replica ðr0Þ on the head of flist

and try to find a list ðvictimsÞ of replicas on the tail of blist

from where storage can be taken via the inner loop (line 6).

The list victims has to be formed as the size of r0 can be

larger than that of one single victim replica r1. The

subroutine EXCHANGE basically dereplicates those in

victims and replicate r0. The inner loop terminates when

enough storage is found for r0 or we reach a replica whose

utility density is greater than that of r0 (line 11). The latter

case also terminates the outer loop (as k > 0).

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 687

Fig. 7. Replication roadmaps.

Fig. 8. Soft-quality dynamic replication algorithm.

4. In practice, we do not have to extend an RR to its full length if we can
bound the possible changes of query rates.

7.3 Optimality of SOFTDYNAREP

In this section, we show that the online phase of SOFT

DYNAREP achieves (almost) the same quality in the selected
replicas as that by rerunning GREEDY at runtime.

From discussions in Section 7.1, we know that the global
RR changes as the query rates of individual replicas change
and GREEDY (implicitly) rebuilds the whole global RR.
Essentially, Greedy selects those replicas with the largest
utility density on the global RR, similarly to our solution to
the hard-quality problem (i.e., a 0-1 Knapsack). Let us
consider a modified version of Greedy named M-GREEDY,
which has a subtle difference from the original GREEDY

algorithm. In M-GREEDY, we replicate items along the
global RR until we encounter the first replica k0 that cannot
be accommodated by the available storage (equivalent to l
in Appendix D).5 We immediately see that GREEDY is
smarter than M-GREEDY: It will try to fill the available
storage with replicas with lower utility density than k0.
Thus, the replicas selected by M-GREEDY are prefixes of the
global RR (from the beginning to the one prior to k0), while
those selected by GREEDY are not a consecutive chunk in
the RR. Due to the same reasons discussed in Appendix D,
the total utility rate achieved by M-GREEDY is only trivially
smaller than that of GREEDY. To prove our claim that
SOFTDYNAREP is as good as GREEDY, we have the
following lemma:

Lemma 1. With the same replica-specific inputs and change of
query rate of a specific video, if a replica is selected by
M-GREEDY, it is also selected by SOFTDYNAREP.

Proof. Let us first study the change of the global RR before
and after the query rate change. In Fig. 9, the global RR
is represented as an array of replicas sorted by
descending order of utility density. We know that
GREEDY selects replicas from the left to the right until
no storage is available. We draw a line called boundary
between those that are replicated and those that are not.
We consider the case of query rate increase of an object
v. As a result of the query rate increase, some replicas of
v (represented as shaded boxes in Fig. 9) will move
toward the left in the array of replicas and a new
boundary will be formed. However, the relative order of
all replicas of v does not change. Therefore, there are
two types of selected replicas by the M-GREEDY

algorithm after the change: 1) those that were not
selected before the change, and 2) those that were

selected before the change. We prove SOFTDYNAREP

selects the corresponding replicas in both cases.
Case 1. Without loss of generality, we consider a

replica k of v that moves across the boundary in
M-GREEDY. The selection of k can be achieved by one
of two means: 1) The storage left before the change is
greater than sk and 2) storage is taken from replicas with
utility density is smaller than that of k. It is easy to see
that k will be the head of flist in SOFTDYNAREP. In the
former case, we go directly to line 17 of STORAGEEX-

CHANGE (Fig. 8) and replicate k. For the second
situation, a list of replicas are chosen to give up their
storage to k (loop in line 6). As long as there is enough
storage from those with smaller utility density, k will be
replicated.

Case 2. The replicas considered in this case can be
divided into two categories:

Case 2.1. Replicas whose utility density is greater than
that of k (e.g., those in region S0 in Fig. 9). These replicas
are not affected by SOFTDYNAREP as we never sacrifice
such replicas for k (line 11 of STORAGEEXCHANGE).

Case 2.2. Replicas whose utility density is smaller than
that of k (e.g., those in region S1 in Fig. 9). These replicas
are part of region S before the query rate changes. One
feature of M-GREEDY is that all replicas chosen form a
consecutive chunk in the list. To accommodate k, S is
simply cut into two consecutive regions S1 and S2. In
SOFTDYNAREP, the same list victims is also a consecutive
chunk as it is formed by always choosing the replica with
the smallest utility density, starting (backward) from the
end of S. Furthermore, it ends as long as enough storage
is found; thus, everything in S1 will not be included in
victims.

The case of multiple replicas crossing the boundary
and decrease of query rate would not complicate the
above argument. tu

8 EXPERIMENTS

We study the various algorithms described in previous
sections by extensive simulations. We use 270 MPEG1/2
videos stored in a real video database as experimental
data.6 For all replicas, we set their ��1

k values to be their
standard playback time. The videos are then transcoded
into replicas of different spatial resolution and frame rates
using transcode (Section 4) to generate the bk, ck, and sk
values for all replicas. We test various access patterns
(e.g., uniform, Zipf, 20-80, 10-90) in our simulations. The
simulated video servers possess network bandwidth of
90 Mbps (dual T3 lines), four UltraSparc 1.2 MHz CPUs,
and variable storage capacity (60 to 300 G) for data
replication. All of the above parameters are set to be close
to those in a real-world server7 and we simulate a cluster
of 10 such servers. We perform our simulations on a Sun
Workstation with a UltraSparc 1.2 MHz CPU and 2 GB of
main memory running Solaris 8.

688 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 9. Replica selection upon query rate change.

5. We use M-GREEDY as a conceptual variance to GREEDY, its
implementation is irrelevant to our discussions.

6. http://www.cs.purdue.edu/vdbms.
7. The total storage is relatively small because we only have 270 raw

videos in the simulated system and the quality of most of the videos are not
very high. In real systems, storage is more abundant, but we may also have
much more raw media with higher quality.

8.1 Results for Hard-Quality Systems

In this experiment, we compare our replica selection
algorithm (Section 5) to various heuristics under the hard
quality system model. The metric is the reject frequency
measured as the ratio of the total number of rejected
requests to total requests. The quality space is a 2D space
(resolution and frame rate) with 15 to 20 values on each
dimension (differs by each video object). Requests (with
f ¼ 7; 200=hour) are distributed in a Zipf pattern to all
M replicas.

In Fig. 10, we show the performance of three quality
selection methods: 1) our solution that chooses quality
points by their fk=sk values (“freq”), 2) an algorithm that
randomly chooses replicas one by one till all storage is filled
(“random”), and 3) an algorithm (“load”) that places the
largest possible load into set R by choosing qualities with
the largest CPU load to storage ratio ð�kcksk

Þ. The results
confirm our analysis in Section 5 as our solution (freq)
always gets the lowest reject probability (Fig. 10a). As
expected, the total request rate in set R achieved by freq is
always the highest (Fig. 10b). In fact, the fR value achieved
in our results is very close to those given as the upper
bound of the optimal such values in all cases.8

From Fig. 10c and Fig. 10d, we can see that the
rejection frequency on bandwidth is significantly smaller
than that on CPU. In these experiments, the recorded
load coefficient of bandwidth ðmbÞ range from 0.24 to
1.26. On the other hand, the load coefficients of CPU
rendered by the same jobs range from 16 to 36. This
explains why the observed reject frequency on CPU
(Fig. 10d) is always high ð> 0:88Þ. For algorithms freq and

load, as storage increases, P and P
ðcÞ
R0 decrease while P

ðbÞ
R

and fR increase. Note that, when excessive storage is
used, the decrease of P slows down as congestion on
bandwidth becomes more significant. The performance of
random is not affected by total storage.

8.2 Results for Soft-Quality Systems

In this section, we present experimental results under the
soft-quality model. We first evaluate the performance of the
GREEDY and ITERATIVEGREEDY algorithms in terms of
optimality (Fig. 11) and running time (Fig. 12). In this
experiment, we set f to 3,600 requests/hour; thus, the utility
rate is bounded by 3,600/hr. We compare our algorithms
with three others: 1) the CPEX mathematical programming
package.9 CPLEX is a widely used software for solving
various optimization problems and is well known for its
efficiency. We tune CPLEX such that the utility rate of
results obtained are within a 0.01 percent gap to that of the
optimal solution. 2) The same random algorithm as the one
described in Section 8.1. 3) A local algorithm that places
replicas in the hottest areas in the quality space.10 We run
the experiments for a total of 30 media objects.11 Each data
point represents the mean of four simulations.

From Fig. 11a, it is clear that our algorithms always find
solutions that are very close to the optimal. More details can
be found in Fig. 11b, where the relative U values obtained
by our algorithms to those by CPLEX are plotted. Utility
rates of solutions found by GREEDY are only about 3
percent smaller than the optimal values. The ITERATIVE

GREEDY cuts the gap by at least half in all cases: Its
solutions always achieve more than 99 percent of the
optimal utility rate. The performance of neither algorithm is
affected by the increase in number of quality points. Nor is
it affected by access patterns: We tested different access
patterns (e.g., Zipf, 20-80, 10-90, and uniform) and obtained
similar results (data not plotted). The solutions given by
random and local are far from optimal. Surprisingly, the local
algorithm, which is similar to our solution under the hard-
quality model (Section 5), performs even worse than the
random algorithm. This reiterates that it is dangerous to

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 689

Fig. 10. Performance of various replica selection algorithms in the hard-

quality model. (a) P . (b) P
ðbÞ
R . (c) fR=f. (d) P

ðcÞ
R .

Fig. 11. Optimality of replica selection algorithms. (a) Absolute utility

rate. (b) Relative U to optimal.

8. The upper bound is described in Appendix D and is not plotted here.

9. version 8.0.1, http://www.cplex.com.
10. Specifically, we divide the whole space into squares of equal size.

Each square is evaluated by the sum of the query rates of all quality points it
contains. We place a replica in the center of those squares with the largest
total query rates until all storage is filled.

11. Here, we choose a small number of media so that it is feasible to find
the optimal solutions as a comparison to our solutions.

consider only local or regional information in solving a
combinatorial problem.

The running time of the above experiments are shown on
a logarithmic scale in Fig. 12. CPLEX is the slowest
algorithm in all cases. This is what we expected as its
target is always the optimal solutions. Actually, we could
only run CPLEX for the five smaller cases due to its long
running time. Both Greedy and Iterative Greedy are 2-4 orders
of magnitude faster than CPLEX. It takes them about
200 seconds to solve the selection of 30 videos in a quality
space with 500 points. From Section 6, we know the running
time increases linearly with the number of media objects V .
Thus, it may take a few hours to select replicas in a real
media system with thousands of media objects. Fortunately,
we do not need to run these algorithms very often and the
running time of our online algorithm is very small, as we
will see in Section 8.3.

8.2.1 Effects of Utility Functions

We test our algorithms with four types of utility functions:
hard-quality, financial, Manhattan distance, and minimum
penalty. They are ordered by the speed of utility loss as a
function of distance in the quality space. The details of these
utility functions can be found in our technical report [30].
We used Manhattan distance in the experiments presented
in Fig. 11 and Fig. 12.

Fig. 13 shows the frequency of quality points chosen by
Greedy in a 20 � 20 space for a total of 30 videos. In Fig. 13,
any point ðx; y; zÞ shows that, out of the 30 media objects,

z objects have replicas of quality ðx; yÞ selected by the
algorithm. Larger numbers on the X, Y axes mean lower
quality. We can see that utility functions significantly affect
the choice of replicas. For hard-quality and financial, whose
utility drops very fast, the replicas are evenly distributed in
the quality space. For the other two utility functions, Greedy
selects more replicas with lower quality. A salient problem
is that, for more than 20 videos, Greedy picks the lowest
quality replica (19, 19). This confirms our discussion in
Section 6.3: With overestimated utility rates, smaller
replicas are always chosen first. The situation is improved
by the Iterative Greedy algorithm. Fig. 14 shows the
distribution of replicas after running Iterative Greedy with
the same set of inputs. The high peaks on points (19, 19)
disappear and the total utility rate increases by about
2 percent.

It should be noted that the solutions found by Greedy are
almost optimal if we use hard-quality and financial types of
utility functions. Iterative Greedy has no advantages under
this situation. Our explanation to this is: By utilizing fast
utility-dropping functions, we are making the FSRS
problem a lot easier to solve. Recall (Section 6) that the
major difficulty of solving FSRS comes from the combina-
torial effects among replicas in collecting utility. However,
the above utility functions tend to make replicas more
isolated as they can only collect utility locally.

8.3 Dynamic and Distributed Replication

We test our dynamic replication algorithm for the soft-
quality model for its optimality and speed. We simulate a
system for a period of time during which events of query
rate changes of media objects are randomly generated. We
allow the query rate of videos to increase up to 20 times and
to decrease down to 1/10 of the original rate. We first
compare the total utility rate of the selected replicas
between the online phase of SOFTDYNAREP and Greedy.
In all cases, the replicas selected exactly match with those
found by the M-GREEDY algorithm discussed in Section 7.3;
thus, the utility rates are always the same between two
solutions. As shown in Fig. 15a, the replicas selected by
SOFTDYNAREP have utility rates that are consistently
within 99.5 percent of that by the original Greedy algorithm.
In this experiment with 270 videos and a 20 � 20 quality
space, the running time of SOFTDYNAREP for each event is
on the order of 10�4 seconds, while ADD-REPLICA needs to
run about half a hour to solve the same problems. The main
reason for SOFTDYNAREP’s efficiency is the small number
of storage exchanges. In Fig. 15b, we record such numbers
for each execution of SOFTDYNAREP and very few of these
readings exceeds 15.

We also study replica selection in a multiserver environ-
ment under the hard-quality model by comparing various

690 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 13. Frequency of replicas chosen by Greedy in a 20 � 20 quality

space.

Fig. 14. Frequency of replicas chosen by Iterative Greedy in a 20 � 20

quality space.

Fig. 12. Running time of different replica selection algorithms.

load balancing strategies. Due to space limitations, readers
are referred to [30] for more details.

9 CONCLUSIONS

In this paper, we studied the problem of selecting quality-
specific replicas of media data. This problem is generally
overlooked in multimedia database research due to the
oversimplified assumption that storage space is abundant.
We demonstrated by analysis and experiments that this is
not the case if the system is to adapt to user quality
requirements with reasonable granularity. We provided
solutions to the problem under two different system
models. In the discussions on a hard-quality system model,
we concluded that the query rate and storage of individual
replicas are the most critical factors that affect performance.
We also proposed a greedy algorithm to solve the replica
selection problem on a soft-quality system model. Experi-
ments showed that the solutions found by our algorithm are
within 3 percent of the optimal. An advanced version of this
algorithm further reduced that to 1 percent. A derived
online algorithm provided an elegant solution to an
important subproblem of dynamic data replication.

APPENDIX A

REJECT (BLOCKING) PROBABILITY IN A

GENERALIZED ERLANG MODEL

We use CPU as an example to elaborate this. The CPU

requests from different replicas can be viewed as compe-

titors for a shared resource pool with a finite capacity C.

Kelly first studied the probability of rejection in such

systems [31], [32]. The main idea is to analyze the

occurrence of resource occupation states, denoted as

~n ¼ ðn1; n2; � � � ; nMÞ, where nk is the number of requests to

replica k currently being serviced. According to [32], the

reject probability of any replica k is

Pk ¼
P

~n2Sk
QM

k¼1
1
nk!
�nkkP

~n2S
QM

k¼1
1
nk!
�nkk

; ð16Þ

where Sk ¼ f~n : C � ck <
PM

k¼1 nkck � Cg and S ¼ f~n :PM
k¼1 nkck � Cg are two sets of states. The states in Sk

are those at which a request to replica k will be rejected
(as there are less than ck units of resource available) while
S is the collection of all possible states.

Due to the discrete feature of the states, it is very
difficult to discuss the characteristics of (16). Fortunately,
Gazdzicki et al. [33] give the following asymptotic
approximation to (16):

Case 1. When the resource has a light load, i.e.,PM
k¼1 �kck < C, the class-specific reject probability is

Pk ¼ e�d��IðCÞ
dffiffiffiffiffiffiffiffiffiffi

2�N
p

1� e�ck
1� e�d

� �
1þ oð1Þð Þ: ð17Þ

Case 2. When the resource has a critical load, i.e.,PM
k¼1 �kck ¼ C, Pk becomes

Pk ¼
ffiffiffiffiffiffiffi
2

�N

r
ck

1þ oð1Þð Þ: ð18Þ

Case 3. When the pool is heavily loaded, i.e.,PM
k¼1 �kck > C, we get

Pk ¼ ð1� e�ckÞ 1þ oð1Þð Þ; ð19Þ

where N is the scale of the resource pool (i.e., N ¼ �ðCÞ), �
is the unique solution to the equation

XM
k¼1

fk
�k
cke

�ck ¼ C; ð20Þ

and other relevant quantities are defined as follows:

1. d is the greatest common divisor of c1; c2; . . . ; cM ,
2. � ¼ C

d � C
d

	

, where ½a
 denotes the largest integer

such that ½a
 � a,
3. IðCÞ ¼ �C �

PM
k¼1 �kðe�ck � 1Þ, and

4.
2 ¼
PM

k¼1 �kc
2
ke
�ck .

APPENDIX B

PROOF OF PROPOSITION 1

Proof. The reject probability for groupA isPA ¼ 1
fA

P
i2A fiPi,

where Pi is the reject probability for traffic class i and
fA ¼

P
i2A fi. Similarly, we have PB ¼ 1

fB

P
i2B fjPj. For

overloaded resources, we can use (19) to quantify the
quality-specific reject probability. Therefore, we get Pi ¼
1� e�Aci and Pj ¼ 1� e�Bbj , where �A and �B are constants
that satisfy (20). Let s ¼ �A and u ¼ �B and we call s and u
the passage coefficients12 of groups A and B. To prove
PA > PB, it is sufficient to show that

1

fA

X
i2A

fis
ci <

1

fB

X
j2B

fju
bj :

We first apply a proportional scaling to the classes in
group A, that is, we increase all ci as well as the total

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 691

12. These are basically the probabilities of one single unit of resource
being free.

Fig. 15. Performance of SOFTDYNAREP. (a) Relative utility rate.

(b) Number of exchanges.

resource units RA by a factor of ! ð! > 1Þ such that
!RA ¼ RB. According to [33], such “scaling” will not
increase the class-specific reject probability, i.e., 8i,
P 0i � Pi, where P 0i ¼ 1� s0!ci is the reject probability of
class i after it is scaled. Note that s is replaced by a new
constant s0. With this transformation, this proof is
concluded if we can show

1

fA

X
i2A

fis
0!ci <

1

fB

X
j2B

fju
bj : ð21Þ

Kelly [31] states that the passage coefficient of a traffic
group can be approximated by the inverse of its load
coefficient. Thus, we get s0 � 1

mA
and u � 1

mB
. Note that

scaling does not change the load coefficient of group A.
For mA � mB, we have s0 < u for sure. With the given
condition mini2Afcig=RA > maxj2Bfbjg=RB, we immedi-
ately have mini2Af!cig > maxj2Bfbjg, which further
leads to s0!ci < ubj , 8i; j. Having this, (21) is trivially
correct. tu

APPENDIX C

PROOF OF THEOREM 1

Proof. Using the notations for the bandwidth resource

ð�k; bk; BÞ, we first derive an upper bound of P under the

critical load situation. Recalling the asymptotic approx-

imation to Pk for a critically loaded resource in (18), we

immediately have � ¼ 0 and e�bk ¼ 1.
From (18), we also get �kP

2
k ¼ 2

�N

�kb
2
kPM

k¼1
�kb

2
k

, which
leads to

XM
k¼1

�kP
2
k ¼

XM
k¼1

fk�
�1
k P 2

k ¼
2

�N
: ð22Þ

To get the upper bound for P ¼ 1
f

P
fkPk, we use the

method of Lagrangian multipliers with the following
optimization function:

L ¼
X

fkPk � �
X

fk�
�1
k P 2

k �
2

�N

� �
;

where � is the Lagrangian multiplier. We discuss how Pk

may affect the bound of P given all fk and �k. The

condition for maximality is thus @L
@Pk
¼ 0, 8k. This is the

same as

fk � 2�
fk
�k
Pk ¼ 0; 8k:

Immediately, we get Pk ¼ �k
2� as the condition for

achieving the upper bound. Plugging this into (22), we

have

2� ¼
ffi
�N

P
fk�k

2

r
:

Let � ¼
P
fk�k, we have Pk ¼ �k

ffiffiffiffiffiffiffi
2

�N�

q
under the optimal

situation. Therefore, the maximum value of P can be

expressed as

P ¼ 1

f

X
fkPk ¼

1

f

X
fk�k

ffiffiffiffiffiffiffiffiffiffi
2

�N�

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

�Nf2

s
: ð23Þ

Now, we consider the underload situation (i.e., Case 1
in Appendix A). Note that any such case can be
transformed into a critical load case by adding a new
class (i.e., class M þ 1) of requests. Specifically, we let
bMþ1 ¼ B and choose an arbitrary �Mþ1 such thatPM

k¼1 �kbk þ �Mþ1bMþ1 ¼ B. We now show that the reject
probability P always increases after the transformation.

According to [34], Pk can be obtained from the
following relation:

XMþ1

k¼1

�kbkqðj� bkÞ ¼ jqðjÞ; j ¼ 0; 1; � � � ; B; ð24Þ

where qðjÞ is the stationary probability that exactly

j units of resources are occupied and qðjÞ ¼ 0 for j < 0. It

is easy to see that
PB

j¼0 qðjÞ ¼ 1 and Pk is given by

Pk ¼
Pbk�1

i¼0 qðB� iÞ.
Running (24) recursively with the unknown quantity

qð0Þ as the base case, we have

qð0Þ þ qð1Þ þ � � � þ qðBÞ ¼ qð0Þð1þ �1 þ � � � þ �BÞ ¼ 1;

ð25Þ

where �j ð1 � j � BÞ is a constant determined by the

recursions. By adding class M þ 1 and reconsidering

(24), (25) becomes

qð0Þ þ qð1Þ þ � � � þ qðBÞ
¼ qð0Þ 1þ �1 þ � � � þ ð�B þ �Mþ1bMþ1Þ½
 ¼ 1:

ð26Þ

As a result, the value of Pk ¼
Pbk�1

i¼0 qðB� iÞ for any class

k is larger in (26) than in (25). Therefore, quantity P in

the underload case is smaller than the corresponding

critical load case generated by the above transformation.

In other words, it is also bounded by
ffiffiffiffiffiffiffiffiffi

2�
�Nf2

q
. tu

APPENDIX D

OPTIMALITY OF A SIMPLE SOLUTION TO THE

0/1 KNAPSACK PROBLEM

In the 0-1 Knapsack problem, each candidate object has its

own size and value. We define the ratio of value over size as

the value density of an object (denoted as v). We claim that

if we put the objects with the largest value density into the

knapsack, the total value obtained are near-optimal when

the size of the knapsack is far greater than the size of any

individual object.

692 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

Fig. 16. A knapsack filled with objects.

As illustrated in Fig. 16, the knapsack has size L and the
Y axis represents value density. Each candidate object is
represented as a rectangle and its size as the width, and
value as the area of the rectangle, respectively. Our
algorithm will fill the knapsack with objects with the largest
value densities until no objects can be filled as a whole. It is
easy to see that, if all L storage is filled, the solution is
optimal as any other plan will decrease the total value
achieved. If there is a unfilled region with size l, we can fill
it with the object whose value density v0 is the largest
among the unselected objects. This generates an infeasible
solution as we have to cut a piece (with size l) from the last
object. However, it gives an upper bound of the optimal
total value: v̂ ¼ �þ lv0, where � is the achieved total value
(area of the shaded region in Fig. 16). Here, lv0 can be
viewed as an upper bound of the difference between our
solution and the optimal value. When L� l, we have
lv0 � v̂.

ACKNOWLEDGMENTS

The authors would like to thank Professor Leming Qu,
Professor Xingquan Zhu, and Mr. Shan Lei for sharing with
them their valuable insights in the early stages of this study.
They are also grateful to Professor Hong Wan for her help
with the CPLEX optimization software. This work was
supported by US National Science Foundation grants IIS-
0534702 and IIS-0242421.

REFERENCES

[1] Y.-C. Tu, S. Prabhakar, A. Elmagarmid, and R. Sion, “QuaSAQ: An
Approach to Enabling End-to-End QoS for Multimedia Data-
bases,” Proc. Int’l Conf. Extending Database Technology (EDBT ’04),
pp. 694-711, Mar. 2004.

[2] S. Nepal and U. Srinivasan, “DAVE: A System for Quality Driven
Adaptive Video Delivery,” Proc. Int’l Workshop of Multimedia
Information Retrieval (MIR ’04), pp. 224-230, 2004.

[3] A. HAfiD and G. Bochmann, “An Approach to Quality of Service
Management in Distributed Multimedia Application: Design and
Implementation,” Multimedia Tools and Applications, vol. 9, no. 2,
pp. 167-191, 1999.

[4] B. Noble, M. Price, and M. Satyanarayanan, “A Programming
Interface for Application-Aware Adaptation in Mobile Comput-
ing,” Proc. Second USENIX Symp. Mobile Computing, Apr. 1995.

[5] R. Mohan, J.R. Smith, and C.-S. Li, “Adapting Multimedia Internet
Content for Universal Access,” IEEE Trans. Multimedia, vol. 1,
no. 1, pp. 104-114, 1999.

[6] E. Amir, S. McCanne, and H. Zhang, “An Application Level Video
Gateway,” Proc. ACM Multimedia, pp. 255-265, 1995.

[7] M. Nicola and M. Jarke, “Performance Modeling of Distributed
and Replicated Databases,” IEEE Trans. Knowledge and Data Eng.,
vol. 12, no. 4, pp. 645-672, July/Aug. 2000.

[8] C.-F. Chou, L. Golubchik, and J.C.S. Lui, “Striping Doesn’t Scale:
How to Achieve Scalability for Continuous Media Servers with
Replication,” Proc. IEEE Int’l Conf. Distributed Computing Systems
(ICDCS ’00), pp. 64-71, Apr. 2000.

[9] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, “A
Scalable Solution to the Multi-Resource QoS Problem,” Proc. IEEE
Real-Time Systems Symp., Dec. 1999.

[10] Y.-C. Tu, J. Yan, and S. Prabhakar, “Quality-Aware Replication of
Multimedia Data,” Proc. Database and Expert Systems Applications
(DEXA ’05), pp. 240-249, Aug. 2005.

[11] E. Bertino, A. Elmagarmid, and M.-S. Hacid, “A Database
Approach to Quality of Service Specification in Video Databases,”
SIGMOD Record, vol. 32, no. 1, pp. 35-40, 2003.

[12] J. Walpole, C. Krasic, L. Liu, D. Maier, C. Pu, D. McNamee, and D.
Steere, “Quality of Service Semantics for Multimedia Database
Systems,” Proc. Data Semantics 8: Semantic Issues in Multimedia
Systems, vol. 138, 1998.

[13] G. On, J. Schmitt, M. Liepert, and R. Steinmetz, “Replication with
QoS Support for a Distributed Multimedia System,” Proc. 27th
EUROMICRO Conf., Sept. 2001.

[14] M. Rabinovich, “Issues in Web Content Replication,” Data Eng.
Bull., vol. 21, no. 4, pp. 21-29, 1998.

[15] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the Placement
of Web Server Replicas,” Proc. IEEE INFOCOM, pp. 1587-1596,
2001.

[16] A. Milo and O. Wolfson, “Placement of Replicated Items in
Distributed Databases,” Proc. Int’l Conf. Extending Database
Technology (EDBT ’88), pp. 414-427, 1988.

[17] T.D.C. Little and D. Venkatesh, “Popularity-Based Assignment of
Movies to Storage Devices in a Video-on-Demand System,”
Springer/ACM Multimedia Systems, vol. 2, no. 6, pp. 280-287, Jan.
1995.

[18] Y. Wang, J.C.L. Liu, D.H.C. Du, and J. Hsieh, “Efficient Video File
Allocation Schemes for Video-on-Demand Services,” Springer/
ACM Multimedia Systems, vol. 5, no. 5, pp. 282-296, Sept. 1997.

[19] A. Dan and D. Sitaram, “An Online Video Placement Policy Based
on Bandwidth to Space (BSR),” Proc. ACM SIGMOD, pp. 376-385,
1995.

[20] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu,
“Approximation Algorithms for Data Placement on Parallel
Disks,” Proc. Symp. Discrete Algorithms (SODA ’98), pp. 223-232,
1998.

[21] O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive Data
Replication Algorithm,” ACM Trans. Database Systems, vol. 22,
no. 4, pp. 255-314, June 1997.

[22] D. Kossman, M. Franklin, and G. Drasch, “Cache Investment:
Integrating Query Optimization and Distributed Data Placement,”
ACM Trans. Database Systems, vol. 25, no. 4, pp. 517-558, 2000.

[23] P.W.K. Lie, J.C.S. Lui, and L. Golubchik, “Threshold-Based
Dynamic Replication in Large-Scale Video-on-Demand Systems,”
Multimedia Tools and Applications, vol. 11, pp. 35-62, 2000.

[24] W.Y. Lum and F.C.M. Lau, “On Balancing between Transcoding
Overhead and Spatial Consumption in Content Adaptation,” Proc.
MOBICOM, pp. 239-250, Sept. 2002.

[25] V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing
Data Cubes Efficiently,” Proc. ACM SIGMOD, pp. 205-216, June
1996.

[26] R.B. Cooper, Introduction to Queueing Theory. North Holland, 1981.
[27] G. Menges, Economic Decision Making: Basic Concepts and Models,

chapter 2, pp. 21-48. Longman, 1973.
[28] Z. Drezner and H.W. Hamacher, Facility Location: Applications and

Theory. Springer, 2002.
[29] O. Kariv and S.L. Hakimi, “An Algorithmic Approach to Network

Location Problems. II: The p-Medians,” SIAM J. Applied Math.,
vol. 37, no. 3, pp. 539-560, 1979.

[30] Y.-C. Tu, J. Yan, G. Shen, and S. Prabhakar, “Multi-Quality Data
Replication in Multimedia Databases,” Technical Report CSD-TR-
06-009, Purdue Univ., 2006.

[31] F.P. Kelly, “Blocking Probabilities in Large Circuit-Switched
Networks,” Advances in Applied Probability, vol. 18, no. 2,
pp. 473-505, June 1986.

[32] F.P. Kelly, “Loss Networks,” Annals of Applied Probability, vol. 1,
no. 3, pp. 319-378, Aug. 1991.

[33] P. Gazdzicki, I. Lambadaris, and R. Mazumdar, “Blocking
Probabilities for Large Multirate Erlang Loss Systems,” Advances
in Applied Probability, vol. 25, pp. 997-1009, Dec. 1993.

[34] J.S. Kaufman, “Blocking in a Shared Resource Environment,” IEEE
Trans. Comm., vol. 29, no. 10, pp. 1474-1481, Oct. 1981.

TU ET AL.: MULTIQUALITY DATA REPLICATION IN MULTIMEDIA DATABASES 693

Yi-Cheng Tu received the bachelor’s degree in
horticulture from Beijing Agricultural University
(Beijing, China), the MS degree in computer
science in 2003 from Purdue University, and is
currently a PhD student in the Department of
Computer Sciences at the same university. His
current research efforts address load manage-
ment in data stream management systems for
the purpose of meeting real-time requirements
of user queries, and application of control theory

in self-tuning database systems. He has also worked on performance
analysis of peer-to-peer systems, QoS-aware query processing, and
data placement in multimedia databases. He is a student member of the
IEEE and ACM.

Jingfeng Yan received the BS degree in
chemistry from Eastern China University of
Science and Technology (Shanghai, China) in
1996 and the master’s degrees in chemistry and
computer science from Peking University (Beij-
ing, China) in 1999 and Depaul University
(Chicago, Illnois) in 2002, respectively. He is a
PhD student in the Department of Computer
Sciences at Purdue University. His current
research is on query optimization in streaming

database. He has also worked on performance evaluation and tuning for
video database management system. He is a student member of the
IEEE.

Gang Shen received the BA degree in econom-
ics from Fudan University, China, in 1992, the
MS degree in applied statistics from Worcester
Polytechnic Insitute (WPI) in 2004, and is
currently a PhD student in the Department of
Statistics at Purdue University. Prior to joining
the MS program at WPI, he hold positions in
DHL (as a project manager) and China Mer-
chants Bank (as a credit standing analyst). His
research interests lie in the fields of stochastic

processes, time series analysis, and Bayesian statistics. He is a
member of American Statistics Association (ASA).

Sunil Prabhakar received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Delhi, in 1990 and the MS and PhD
degrees in computer science from the University
of California, Santa Barbara in 1998. He is an
associate professor of computer sciences at
Purdue University. He has served on the
editorial boards of the Distributed and Parallel
Databases journal, the Journal of Database
Management, and the Journal of Ubiquitous

Computing and Intelligence. He has served on the program committees
of leading conferences including SIGMOD, VLDB, and ICDE. He is the
recipient of the US National Science Foundation CAREER award. He is
a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

694 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 5, MAY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

