
PET: Reducing Database Energy Cost via Query
Optimization

Zichen Xu
The Ohio State University

xuz@ece.osu.edu

Yi­Cheng Tu
The University of South Florida

ytu@cse.usf.edu

Xiaorui Wang
The Ohio State University

xwang@ece.osu.edu

ABSTRACT

Energy conservation is a growing important issue in designing mod-

ern database management system (DBMS). This requires a deep

thinking about the tradeoffs between energy and performance. De-

spite the significant amount of efforts at the hardware level to make

the major components consume less energy, we argue for a revisit

of the DBMS query processing mechanism to identify and harvest

the potential of energy saving. However, the state-of-art architec-

ture of DBMS does not take energy usage into consideration in its

design. A major challenge in developing an energy-aware DBMS

is to design and implement a cost-based query optimizer that eval-

uates query plans by both performance and energy costs. By fol-

lowing such a strategy, our previous work revealed the fact that

energy-efficient query plans do not necessarily have the shortest

processing time.

This demo proposal introduces PET – an energy-aware query op-

timization framework that is built as a part of the PostgreSQL ker-

nel. PET, via its power cost estimation module and plan evaluation

model, enables the database system to run under a DBA-specified

energy/performance tradeoff level. PET contains a power cost es-

timator that can accurately estimate the power cost of query plans

at compile time, and a query evaluation engine that the DBA could

configure key PET parameters towards the desired tradeoff. The

software to be demonstrated will also include workload engine for

producing large quantities of queries and data sets. Our demonstra-

tion will show how PET functions via a comprehensive set of views

from its graphical user interface named PET Viewer. Through such

interfaces, a user can achieve a good understanding of the energy-

related query optimization and cost-based plan generation. Users

are also allowed to interact with PET to experience the different

energy/performance tradeoffs by changing PET and workload pa-

rameters at query runtime.

1. INTRODUCTION
The fast spreading of energy management research in the field of

database management systems (DBMSs) is driven by rapid increase

of energy cost in database services [3, 5]. Techniques such as hard-

ware power-model control and query rescheduling [2] have been

proposed to save energy in database systems. In comparison to [2],

our earlier work [6] presents a framework inside a DBMS kernel

for energy reduction while ensuring acceptable performance. In

this demo, we will present a more advanced version of that frame-

work named Power-Energy-Time (PET) framework and show its

functionalities using an extensive set of database workloads gen-

erated from various TPC and scientific database benchmarks. The

main purpose of developing PET is to reveal the existence of and

study the energy-saving potential of many energy-efficient query

plans. The database community has had some controversial views

[4] on whether most (time) efficient plans always have high en-

ergy efficiency such that energy-aware query optimization is not

worthwhile for energy reduction purposes. As our expression to

this problem, this demo will show that, in the plan search space en-

hanced with energy cost estimation for most queries we tested, we

could find energy-efficient candidates that are usually ignored by

the conventional query optimizer.

To seize such energy-saving opportunities, PET augments the

existing query optimizer of PostgreSQL with energy-related mod-

eling and control functionalities. Specifically, the PET query op-

timizer evaluates query plans by both the (time) performance and

energy consumption. For that purpose, a power modeling module is

deployed as part of PET to provide estimations of power consump-

tion of query plans of interest. The performance cost (provided

by existing query optimizer) and power estimation are treated as

inputs to a composite cost model that, in turn, guides query plan

selection. Furthermore, a key parameter of the cost model can be

used as the handle for the control of query plan selection in order

to realize different levels of tradeoff between performance and en-

ergy cost. Such tradeoffs are determined by the database service

providers and can be specified by DBAs. Due to the dynamical

feature of workload and system environment for databases, the ca-

pability to adjust such tradeoffs at runtime is essential in the design

and implementation of energy-aware DBMS.

For each query sent into DBMS server, the SQL statement will

be compiled into a sequence of operations that correspond to re-

lational operators. For each operation, query optimizer decides

which relational operator processing algorithm should be assigned

to it. For example, for a single table scan, it could be implemented

with sequential scan, index scan or bitmap scan in PostgreSQL.

Similar decisions are made for joins as well. Those operators, along

with the original and intermediate tables, will form a path tree as

the implementation for the sequence of operations. In this way, the

SQL statement will be executed by processing along the path of

this sequence of relational operator. One example of such a query

plan tree is shown in Fig. 1. Note that in each node, the cost in-

volves both time and power – this is the main difference between

such plan trees in PET and those in traditional DBMSs.



Figure 1: An example of a plan-node path tree of a SQL state-

ment (i.e., Q2 of the TPC-H benchmark). Each node stands

for a relational operator. It contains the possible algorithms

for processing this operator and the estimated time and power

costs of individual algorithms. The cheapest root node, which

is the final execution plan will be selected by query optimizer

for processing the query.

Generally, the search space of path tree grows exponentially with

the initial number of lead nodes (i.e., number of tables involved in

the query). The query optimizer will eliminate most of intermediate

nodes since their costs are high and could never been selected as

the candidates for the next level node generation based on some

predefined rules. This strategy effectively prunes the search space

therefore ensures the high performance of the optimizer. To find

the cheapest node, the (time) performance cost is estimated before

the execution according to the cost model. In producing energy-

efficient query path tree, PET follows the same mechanism using a

query cost model that considers both energy and performance.

To automate the above process, we design and develop PET in

the kernel of PostgreSQL, an open source DBMS.1 Its kernel in-

cludes a power cost estimation model and a optimization evaluation

model, which provides functions in the backend of PostgreSQL

to generate different path trees for arbitrary queries. To better il-

lustrate the internal mechanisms of the PET framework, we cre-

ate an graphical user interface called PET Viewer associated with

our powerful workload generation engine which provides a mas-

sive number of workload types for testing the PET functionalities.

Another important purpose is to illustrate that there exist energy

efficient processing paths in DBMSs, and such paths are not neces-

sarily the ones with lowest performance cost.

2. THE PET FRAMEWORK
This section mainly discusses the important components and func-

tionalities of the PET. In PET, three are three main parts, namely

the power cost model, plan evaluation model, and the GUI. Another

important part of our demonstrated software, although not a part of

the PET framework, is a workload engine. The software architec-

ture of the demonstration can be found in Fig. 2. The workload

engine will produce queries according to user’s specifications on

1http://postgresql.org

DBMS

Optimizer

Power Cost Model

Model 

Calibration

System

Power

Meter

Workload Output

Power

 Coefficient

Workload 

Engine

Evaluation

Model

PET

Profile View

Configuration View

Timeline View

Figure 2: An overview of the PET framework in the demo sys-

tem, with its different components associated with the three dif-

ferent views of the PET Viewer.

query arrival rate and query type. When the query enters the sys-

tem, it will be estimated with its time and power performance cost,

evaluated with the customized optimization goal. As a result, a new

path tree will be generated as in Fig. 1. When the query is in execu-

tion, the power monitor will report the difference of the real power

and model estimated power. The difference will be used as a signal

to recalibrate the cost model in the DBMS. In this process, PET

Viewer serves as a portal that helps the DBA monitor and manip-

ulate the process. More details will be introduced in the following

sections.

2.1 Power Cost Estimation
Considering a query job Qi, the power cost P for this query can

be represented as:

P = Wcpu ×Ntuples (1)

Where Wcpu is the power cost weight to process one tuple in CPU

and Ntuples is the number of fetched tuples from storage.

The theoretical model shown in Eq. (1) is too general to cap-

ture the resource consumption patterns of query plans.Specifically,

since the cost of different types of operations is different, keeping

a single unit power cost parameter is obviously an oversimplified

solution. Motivated by time cost estimation models in traditional

query optimizers, we could build the power cost estimation model

for each relational operator to refine the model in Eq. (1). Note that

the query optimizer in a typical DBMS (i.e., those with the System

R style design) takes a bottom-up approach to build query trees,

and alternative plans in each substree (representing an operator as

shown in Fig. 1) will have to be evaluated. With the operator-level

cost models, we can follow the same bottom-up strategy to build

the cost model for the entire query plan.

As shown in [6], since we have identified CPU as the major ac-

tive power consumer, we only need to focus on the number of tuples

to be processed by the CPU. Each operator could be assigned with

one or more power coefficients to estimate its run time power cost.

In PET, we deploy power models for a set of popular relational op-

erators. A summary of such operator-level power models can be

found in Table 1 while relevant model coefficients are listed in Ta-

ble 2. As compared to similar models presented in [6], the models

listed here in this paper are the results of significant research efforts

in power modeling in databases.

The power cost of a plan is calculated from those of the higher-

level operations, which consist of basic operations shown in Table

1. Table 2 lists all the important variables for the computation of

the power cost for each operators. Clearly, these formulae use the

values of basic operations as building blocks. Again, we follow the

exact same mechanism for calculating time costs in PostgreSQL to

generate these formulae. Readers who are interested in classic time

cost estimation in DBMS can refer to the textbook [1].



Table 1: Power cost functions for relational operators.

Methods Cost function

Sequential Scan wsn

Index Scan win

Sorting wtnR

Bitmap Scan win+ wtnR

Nested Loop Join wi(n1 + n1n2c)
Sort Merge Join wt(n1R1 + n2R2) + wi(n1 + n2)

Hash Join wi

(

n1

H
+ n2

)

Table 2: Key quantities in power estimation models.

Symbol Definition

n The number of tuples retrieved for CPU processing

ws The CPU power cost for processing a regular tuple

wi The CPU power cost for processing an index tuple

wt The CPU power cost for sorting a tuple

H The number of hash partitions

R The number of runs in a sorting algorithm

c Selectivity of join condition

2.2 Plan Evaluation Model
The plan evaluation model is used to grant the superiority of al-

ternative query plans towards a predefined optimization goal. The

conventional cost model in DBMS (i.e. PostgreSQL) only involves

the time cost. However, it is no longer the case in PET since we

have two performance metrics, namely time and power. In this

study, we need a criterion to reflect adjustable trade off between

power cost P and processing time T . Specifically, a metric model

of the following format is adapted in PET:

C = PT
n = ET

n−1
(2)

where C is the aggregated cost, n is a coefficient that reflects the

relative importance of P and T , and E = PT is the total energy

cost of the plan. Intuitively, it means if sacrificing a 1% degradation

in time performance, there would be saving in n% power. The

model is flexible in that it can be used for different optimization

goals with the choice of n. More details can be found in [6]. In

PET, we will make the model parameter n a runtime knob that can

be changed via the PET Viewer. This enables the DBA to adjust

system behaviour towards different tradeoffs between performance

and energy according to his/her desire (which may involve non-

technical factors in decision making).

3. DEMONSTRATION

3.1 Testbed and Workloads
The testbed contains one computer and a power meter (WattsUp-

Pro power meter with a ±1.5% measurement error). The laptop,

named server hereafter, is installed with the PET-augmented Post-

greSQL to run DBMS service.

The workload generator produces datasets and workloads that

create scenarios of a real-world database services. First, the work-

load generator borrows data and queries from three sets of bench-

marks:

(1) The generator produces a query pool that consists of 2,000

queries derived from the 22 standard queries in the TPC-H

benchmark by changing the selection predicates. The work-

load generator draws queries from such pool with a prede-

fined distribution of query arrival time and features such as

the level of resource sharing, query priority, and multipro-

gramming level.

(2) We demonstrate the PET’s capability of energy saving in

processing large datasets, we also use a 1TB astronomical

database that includes 53 million unique astronomical ob-

jects such as stars, galaxies, and quasars. The set of 400

queries against this database are extracted from the query

templates posted on the website of the SDSS project – a

large-scale scientific database. 2 The SDSS query set mainly

consists of large table scans and joins of few tables (mostly

two-table joins).

(3) Finally, we use a TPC-C benchmark tool named TPCC-UVa3

to generate OLTP-style workloads. One thing to point out

here is that TPCC-UVa is a closed benchmark tool in that

users cannot access or modify the queries. Such a tool forms

a black-box testing environment for the effectiveness of the

PET functionalities.

3.2 The PET Interfaces
The demonstration will use the PET Viewer, a new graphic user

interface we built for better illustrations of the PET runtime envi-

ronment. Specifically, users can use this GUI to:

(1) get better on-the-fly observations of the details of query exe-

cution in a real DBMS such as the query plan trees;

(2) provide customized optimization goals to achieve desirable

energy/performance tradeoffs in the DBMS query processing

engine; and

(3) track the energy consumption of different database work-

loads at runtime for the purpose of energy benchmarking.

For the above purposes, we summarize the core functionalities of

PET Viewer into those related to the power cost model, evaluation

model and real-time execution. For each category of functionali-

ties, we provide a corresponding interface (view) as follows:

• Configuration View, used to define the optimization goal and

concurrency degree.

• Profile View, used to display the detailed information of run-

ning query, such as execution path tree and its energy and

performance cost.

• Timeline View, used to visualize the run time power usage of

query execution and other energy-related statistics.

3.2.1 Configuration View

Our demonstration suggests a set of queries covering all standard

operations of our power profiling experiments, from small transac-

tional operations to more complex aggregates on larger sets of data.

Any users are allowed to modify the specifications of any query

(e.g., the attribute that affects the search selection). Some samples

of the default queries for our demonstration are as follows:

Q1 Search an item in the lineitem table:

SELECT l name FROM lineitem WHERE ...

Q2 Find all information for a shipped item:

SELECT p mfgr, s address, s phone, ...

FROM part, supplier, partsupp,nation, region

WHERE ...

Q3 Return 1000 objects in Galaxy table:

SELECT TOP 1000 objID

FROM Galaxy

WHERE ...

2http://www.sdss.org/dr7
3 http://www.infor.uva.es/˜diego/tpcc-uva.html



Figure 3: An query editor interface part of the Configuration

View of PET Viewer.

Figure 4: The profile view interface of the PET Viewer showing

details of a benchmark query.

Q4 Find galaxies in a given area of the sky:

SELECT colc g, colc r

FROM Galaxy

WHERE ...

Q1 and Q2 are extracted from TPC-H standard benchmark while

Q3 and Q4 are borrowed from SDSS sample queries of exploring

the SDSS astronomical database. The search range and attribute

can be modified in the configuration view. Also, it allows users

to get a specific range so that the workload engine will automati-

cally generate multiple copies of the query with different projection

statements. A snapshot of the interface can be found in Fig. 3.

3.2.2 Profile View

Once the query is fed into the DBMS engine and the query op-

timizer computes the optimal execution plan, the path tree that we

discussed above will be printed out as the reference to understand

the processing of this query. We will show that when different op-

timization goals are given by the configuration view, different path

trees of the target query can be displayed in the profile view. Also,

we will allow users to give runtime hints to affect query optimizer

in plan selection. For example, we can enforce PET to use a par-

ticular type of operator processing algorithm (e.g., hash join, se-

quential scan). A snapshot of the profile view is shown in Fig. 4.

In summary, it assists users to read the runtime estimation cost to

understand how the cheapest performance plan or power-oriented

plan are generated, whether they are different and why.

Figure 5: The runtime statistics of executing one query in PET

is shown in the Timeline View.

3.2.3 Timeline View

When the query is in execution, we will show the runtime power

cost of the whole machine and all the statistic data from previous

profile view. A snapshot of the Timeline View is shown in Fig.

5, which displays the statistics of the running query. Also, via the

different plans chosen according to the different optimization goal,

we could observe real power savings by only manipulating the in-

ternal processing structure of the DBMS instead of installing new

hardware devices.

4. SUMMARY
This demo will serve the purpose of illustrating the extensive ex-

periments and conceptual explorations we conducted in the topic

of energy-aware database systems. With those experiments and ex-

plorations, we could firmly stand behind our argument that power-

aware DBMS is not only a hardware issue or operating system is-

sue. Therefore, we need to rethink the design of the DBMS to allow

different tradeoffs between energy and performance metrics. In this

way, we may not optimize the whole system towards best time per-

formance. Instead, the goal is to build a balanced system that best

fits the performance and economical/environmental requirements

of the database service provider.

5. REFERENCES
[1] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database

Systems: The Complete Book. Prentice Hall Press, 2008.

[2] W. Lang and J. M. Patel. Towards eco-friendly database

management systems. In CIDR, 2009.

[3] M. Poess and R. O. Nambiar. Energy cost, the key challenge

of today’s data centers: a power consumption analysis of

TPC-C results. PVLDB, 1(2):1229–1240, 2008.

[4] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing

the energy efficiency of a database server. In SIGMOD, pages

231–242. ACM, 2010.

[5] U.S. Environmental Protection Agency. Report to congress on

server and data center energy efficiency. Government Report,

2007.

[6] Z. Xu, Y.-C. Tu, and X. Wang. Exploring power-performance

tradeoffs in database systems. In ICDE, pages 485–496, 2010.


