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Abstract Many scientific and engineering fields produce1

large volume of spatiotemporal data. The storage, retrieval,2

and analysis of such data impose great challenges to data-3

base systems design. Analysis of scientific spatiotemporal4

data often involves computing functions of all point-to-point5

interactions. One such analytics, the Spatial Distance Histo-6

gram (SDH), is of vital importance to scientific discovery.7

Recently, algorithms for efficient SDH processing in large-8

scale scientific databases have been proposed. These algo-9

rithms adopt a recursive tree-traversing strategy to process10

point-to-point distances in the visited tree nodes in batches,11

thus require less time when compared to the brute-force12

approach where all pairwise distances have to be computed.13

Despite the promising experimental results, the complexity14

of such algorithms has not been thoroughly studied. In this15

paper, we present an analysis of such algorithms based on16

a geometric modeling approach. The main technique is to17

transform the analysis of point counts into a problem of quan-18

Work was done when Chen was a visiting professor at the University

of South Florida.

S. Chen

Department of Mathematics, Wuhan University of Technology,

122 Luosi Road, 430070 Wuhan, Hubei,

People’s Republic of China

e-mail: chensp@whut.edu.cn

Y.-C. Tu (B)

Department of Computer Science and Engineering,

The University of South Florida, 4202 E. Fowler Ave.,

ENB118, Tampa, FL 33620, USA

e-mail: ytu@cse.usf.edu

Y. Xia

Computer and Information Science Department,

Indiana University-Purdue University Indianapolis,

723 W. Michigan St., SL280, Indianapolis, IN 46202, USA

e-mail: yxia@cs.iupui.edu

tifying the area of regions where pairwise distances can be 19

processed in batches by the algorithm. From the analysis, we 20

conclude that the number of pairwise distances that are left 21

to be processed decreases exponentially with more levels of 22

the tree visited. This leads to the proof of a time complexity 23

lower than the quadratic time needed for a brute-force algo- 24

rithm and builds the foundation for a constant-time approxi- 25

mate algorithm. Our model is also general in that it works for 26

a wide range of point spatial distributions, histogram types, 27

and space-partitioning options in building the tree. 28

Keywords Scientific databases · Correlation function · 29

Quad-tree · Spatial distance histogram 30

1 Introduction 31

The development of advanced experimental devices and 32

computer simulations have given rise to explosive render- 33

ing of data in almost all scientific fields. As a result, scien- 34

tific data management has gained much momentum in the 35

database research community. Recent years have witnessed 36

increasing interest in developing database systems for the 37

management of scientific data [11,13,15,19,23,33,39,40]. 38

While taking advantage of the optimized I/O and query- 39

ing power of relational DBMSs, such systems still fall short 40

of algorithms and strategies to satisfy the special needs of 41

scientific applications, which are very different from those 42

in traditional databases in their data types and query pat- 43

terns. In this paper, we are interested in query processing 44

against scientific spatiotemporal data. Such data are very 45

popular in various scientific [2,14,31] and engineering [22] 46

fields where natural systems (e.g., cells, galaxies) are often 47

studied by computer simulations performed on the level of 48

basic system components (e.g., atoms, stars). By nature, such 49
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Fig. 1 A simulated hydrated dipalmitoylphosphatidylcholine bilayer

system. We can see two layers of hydrophilic head groups (with higher

atom density) connected to hydrophobic tails (lower atom density) are

surrounded by water molecules (red dots) that are almost uniformly

distributed in space

applications generate very large datasets. For example,50

molecular simulations often deal with systems with up to51

millions of atoms (see Fig. 1 for an example). In an extreme52

case, the Virgo consortium recently accomplished a simula-53

tion that consists of 10 billion stars [30].54

Apart from the challenges of data storage/retrieval55

imposed by the gigantic volume of scientific data, we also56

face the issue of designing efficient algorithms for data que-57

rying and analysis. Scientific data analysis often requires58

computation of mathematical (statistical) functions [11,17]59

whose complexity goes beyond simple aggregates, which60

are the only analytics supported by modern DBMSs. Many61

complex analytics in scientific applications are found to be62

hierarchical in that they are often defined on top of a small63

number of low-level analytics as building blocks. Therefore,64

it is desirable to have built-in support for efficient process-65

ing of such low-level analytics in the DBMS. One salient66

example of such analytics is the n-body correlation functions67

(n-BCF). Generally, an n-BCF is a statistical measure of all68

the n-point subsets of the whole dataset. In a dataset with N69

data points, an n-BCF requires O(N n) time to compute in a70

brute-force way.71

One type of 2-BCF query called the Spatial Distance72

Histogram (SDH) is of vital importance in computational73

sciences and thus the focus of this paper. The SDH problem74

can be formally stated as follows.75

Given the coordinates of N particles in a (2D or 3D)76

metric space, draw a histogram that represents the77

distribution of the pairwise distances between the N78

points.79

The histogram has a single parameter l, which is the total80

number of buckets. Since the dataset is always generated81

from a system with fixed dimensions, the maximum distance82

between any two points Lmax is also fixed. We often deal with 83

standard SDHs whose buckets are of the same width. The 84

width of the buckets (i.e., histogram resolution) p = Lmax/ l 85

is often used as the parameter of the query instead. In other 86

words, SDH asks for the counts of pairwise distances that fall 87

into ranges [0, p), [p, 2p), . . . , [(l − 1)p, lp], respectively. 88

Basically, SDH is a discrete representation of a continuous 89

2-BCF called Radial Distribution Functions (RDF) [4,31]. 90

The latter is required for the computation of many critical 91

high-level analytics such as pressure, energy, [14] and struc- 92

ture factor [12]. Without RDF, meaningful analysis of the 93

physical/chemical features of the studied natural system is 94

not possible. 95

While a naive way to compute SDH takes O(N 2) time, 96

more efficient algorithms have been proposed in our previ- 97

ous work [38] and in the data mining community [16,25]. 98

As summarized in Sect. 2.3, the main idea of this type of 99

algorithms is to derive the histogram by studying the dis- 100

tances between two clusters of particles instead of those 101

between two individual points. The clusters are represented 102

by nodes in a space-partitioning tree structure. Although 103

different implementations exist in [16,25] and [38], such 104

an approach can be abstracted into a recursive tree-based 105

algorithm described in Sect. 3. Since the recursion always 106

happens between two disjoint subtrees, these algorithms are 107

called dual-tree algorithms [16]. While experimental results 108

support the efficiency of such algorithms, their complexity 109

has not been thoroughly studied. In this paper, we present 110

an analytical model to accomplish quantitative analysis of 111

the performance of this algorithm. The main technique is to 112

transform the analysis of particle counts into a problem of 113

quantifying the area of interesting geometric regions. Our 114

analysis not only leads to a rigorous proof of the algorithm’s 115

time complexity but also builds the foundation for approxi- 116

mate algorithms [16,38]. With time complexity that depends 117

only on a controlled error bound, such algorithms are the 118

only practical solutions to SDH computation in large data- 119

sets. Although we focus on a specific 2-body correlation func- 120

tion, the dual-tree algorithm can be easily extended to handle 121

higher-order correlation functions [25]. Furthermore, the sig- 122

nificance of this work is not limited to scientific databases: 123

the dual-tree algorithm is also used to process a series of que- 124

ries useful in data mining, such as batch k-nearest neighbor, 125

outliner detection, kernel density estimation, and k-means 126

[16]. 127

Paper organization This paper is organized as follows: in 128

Sect. 2, we summarize the contributions of the paper via com- 129

parison to related work; in Sect. 3, we sketch the dual-tree 130

algorithm; we present our basic analytical model in Sect. 4 131

and two important extensions of the model in Sect. 5; we 132

show an analysis of the time complexity of the dual-tree algo- 133

rithm in Sect. 6; we report experimental results in Sect. 7 and 134

conclude our paper in Sect. 8. 135
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Dual-tree algorithm for computing SDH

2 Related work and our contributions136

2.1 Scientific data management137

The scientific community has been in a transition from devel-138

oping ad hoc data processing systems based on flat files to139

utilizing modern database technologies for data management140

tasks. There are a large number of scientific databases built141

on top of existing relational DBMSs. Well-known examples142

include the following: the GenBank1 database provides pub-143

lic access to about 80 million gene sequences; the Sloan144

Digital Sky Survey [33] enables public access to more than145

100 attributes of 200 million objects in the sky; the QBISM146

project [3] delivers a prototype of querying and visualiz-147

ing 3D medical images; and the Stanford Microarray Data-148

base2 is a portal for storing and querying gene expression149

data.150

However, scientific data are different from traditional data151

in that: (1) the volume of scientific data can be orders of152

magnitude larger; (2) data are often multidimensional and153

continuous; and (3) queries against scientific data are more154

complex. While the basic database system architecture can155

still be adapted, the above differences impose significant156

challenges to DBMS design. To meet such challenges, the157

database community has taken two different paths. The first158

one is to address domain-specific data management issues by159

modifying particular modules of existing relational DBMSs.160

There is a series of work dedicated to various aspects such as161

I/O scheduling [24], query processing [9,28] and data prov-162

enance management [10]. Another thrust is to build a gen-163

eral-purpose platform from scratch to support a wide range164

of scientific applications [6,21,32]. The work presented in165

this paper falls into the first category by emphasizing effi-166

cient processing of a special yet highly useful analytical167

query.168

2.2 Computation of force/potential fields169

The SDH/RDF problem is often confused with another group170

of problems—the computation of force/potential fields in171

scientific simulations. Specifically, the physical properties172

of a system component (represented as a point in space) is173

determined by the force applied to it by all other points in174

the system. Therefore, to compute the force applied to all175

points, O
(

N 2
)

time is required. Since the force/potential176

can be expressed as an empirical integration formula, much177

efforts have been devoted to efficient force computation from178

a numerical analysis viewpoint. Most of the research in this179

field are derived from two lines of work: the Barnes–Hut [5]180

algorithm that requires O (N log N ) time, and the fast multi-181

1 http://www.ncbi.nlm.nih.gov/Genbank.

2 http://smd.stanford.edu/.

pole algorithm [18] with linear time complexity. These meth- 182

ods utilize unique features of the force (e.g., symmetry and 183

fast degradation with distance) to bound the computational 184

errors. However, they provide little insights into the SDH 185

problem as the latter lacks such features. 186

Another method based on well-separated pair decompo- 187

sition (WSPD) was proposed by Callahan and Kosaraju [7]. 188

A WSPD is a series of pairs of subsets of the data points. 189

Each pair of subsets Pi and Pj is well separated: the dis- 190

tance between the smallest balls (with radius r ) covering 191

the particles in Pi and Pj is at least sr where s is a sys- 192

tem-level parameter. Following the algorithm in [7] that also 193

utilizes a space-partitioning data structure called fair-split 194

tree, a WSPD can be built in O(N log N ) time and there 195

are only O(N ) such pairs of subsets that cover all pairs of 196

particles. As a result, the force fields can be computed in 197

O(N ) time, given the WSPD. It may look intuitive that a 198

WSPD can also be used to compute SDH: for each subset 199

pair, their point-to-point distances fall into the range [rs, rs+ 200

4r ]; by carefully choosing s and r , we can fit this range 201

into relevant buckets of the histogram. However, the pitfall 202

here is: s is a configurable parameter of the WSPD con- 203

struction algorithm while r is not—it can be any value in 204

each pair of subsets. If we enforce a specific value for r , 205

the O(N ) performance guarantee is lost. Therefore, it does 206

not provide a shortcut to efficient SDH processing to use the 207

WSPD. In summary, the difficulty of the SDH problem is 208

to put distances into buckets with clearly defined boundaries 209

(Sect. 6.1) while the WSPD can only be manipulated to work 210

with fuzzy ranges. 211

2.3 Algorithms for efficient SDH computation 212

Despite the importance of SDH, efficient SDH processing 213

has not been intensively studied. Popular simulation data 214

analysis softwares such as GROMACS [20] still follow the 215

brute-force way to compute SDH. In [34] and [35], the SDH 216

is processed by dividing the simulation space into bins and 217

treating each bin as a single entity and run quadratic algo- 218

rithms on these bins. Such an approximate solution, while 219

reducing the computation time, can obviously yield uncon- 220

trollable errors. One approach to get the exact SDH is to 221

issue a series of range queries (i.e., one for each bucket) for 222

each data point, taking advantage of the kd-trees for range 223

queries. This method, so called the single-tree algorithm, 224

was extended to the dual-tree algorithm where the kd-trees 225

are still used [16]. In our previous work [38], we utilized the 226

Quad/Oct-tree to divide the simulation space into equally- 227

sized cells and used it explicitly for SDH processing. The 228

main idea behind the dual-tree algorithm is to process clus- 229

ters of particles to take advantage of the non-zero width of the 230

SDH bucket. The name “dual-tree” comes from the fact that 231

it always works on a pair of such clusters (i.e., subtrees) while 232

123

Journal: 778 Article No.: 0205 MS Code: VLDB-D-09-00108.2 TYPESET DISK LE CP Disp.:2010/10/20 Pages: 24 Layout: Large

A
u

th
o

r
 P

r
o

o
f

http://www.ncbi.nlm.nih.gov/Genbank
http://smd.stanford.edu/


u
n
co

rr
ec

te
d
 p

ro
o
f

S. Chen et al.

the single-tree algorithm on one data point and one subtree.233

Note that the kd-tree is equivalent to a Quad-tree if we assume234

the particles are uniformly distributed in space. However, it235

turns out the use of Quad-tree is critical to achieve rigorous236

analysis. In addition to convincing experimental results, both237

work reported results of some asymptotical analysis. How-238

ever, the results in [16] come with no technical details at all239

while our earlier paper [38] only sketched the main analytical240

results.241

2.4 Contributions of this work242

This paper significantly extends [38] by introducing the mod-243

els behind the analytical results. In summary, this paper244

makes the following contributions.245

1. We present details of an analytical model based on a geo-246

metric modeling approach. Such content is not found in247

any previous work;248

2. The results in [16] and [38] are strictly based on the249

assumption that particles follow a uniform spatial dis-250

tribution in space. This assumption is obviously unrea-251

sonable in real simulation environments. We relax this252

assumption in this paper;253

3. We present an extended model for performance analysis254

in 3D space; and255

4. We extend the analysis to arbitrary space-partitioning256

parameters (i.e., node degree) in building the spatial tree.257

5. We also show the dual-tree algorithm has the same time258

complexity in processing SDHs with variable bucket259

width.260

3 The dual-tree algorithm261

In this section, we present the main idea of the dual-tree262

SDH algorithm (DT-SDH). DT-SDH is an abstraction of both263

methods presented in [16] and [38]. With the assumption of264

uniform particle distribution, the kd-tree in [16] is equivalent265

to a region Quad-tree, which is explicitly used in [38] and266

also the abstracted DT-SDH algorithm.267

The algorithm first divides the simulated space into a grid,268

each cell of which records the number of data points in it.269

We call such a grid a density map and density maps with270

different cell sizes have to be maintained. We therefore orga-271

nize all point coordinates into a point region Quad-tree [27]272

with each node representing a cell (square for 2D data and273

cube for 3D) in space. Point counts of each cell are cached274

in the corresponding tree node. Those with zero point count275

are removed from the tree. The height of the tree (denoted276

as H ) is determined in a way such that the average num-277

ber of points in all possible leaf nodes is no smaller than a278

Fig. 2 Procedure ResolveTwoTrees—core of the DT-SDH algorithm

Fig. 3 Three scenarios in computing the minimum and maximum dis-

tance between two cells A and B, with solid (dotted) line representing

minimum (maximum) distance in each case

predefined threshold β. To be specific, we have 279

H =
⌈

log2d

N

β

⌉

(1) 280

where d is the number of dimensions and 2d is essentially 281

the maximal degree of tree nodes. 282

The focal point of this algorithm is a procedure named 283

ResolveTwoTrees (Fig. 2). To resolve two cells A and 284

B (with total particle counts na and nb, respectively), we 285

first read the coordinates of the two cells and compute the 286

range of distances between any pair of points, one from A 287

and one from B. Note that, given the coordinates of the two 288

cells, this distance range can be computed in constant time 289

(Fig. 3). If this range is contained in the range of a histogram 290

bucket i , we say A and B are resolvable and they resolve 291

into bucket i . In this case, we simply increment the count of 292

bucket i by nanb (line 2). If the two cells are not resolvable, 293

we recursively resolve all pairs of their child nodes (line 6). 294

It is easy to see that, no matter how small the cells are in a 295

density map, non-resolvable cell pairs always exist. There- 296

fore, when we reach the lowest level of the tree, we have to 297

calculate all distances of the particles in the unresolved cells 298

(line 8). 299

In practice, β is set to be around 2d . The intuition behind 300

that is, when a pair of non-resolvable cells contains less 301

than 16 (64 for 3D) distances (i.e., roughly 4 points in each 302

cell), it does not help to further divide them. The process 303

of tree construction can be accomplished in O(N log N ) 304

time. 305
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Dual-tree algorithm for computing SDH

The algorithm starts from a certain level of the tree where306

the diagonal of the cells is no greater than the bucket width p.307

We denote this level as density map DM0. In other words,308

we require309

δ ≤
p

√
d

(2)310

where δ is the side length of the cells in DM0 and d is the311

number of dimensions in the data. Note that no cells can be312

resolved if the above inequality does not hold true. The dual-313

tree algorithm runs as: first, all intra-cell particle-to-particle314

distances on DM0 can be put into the first bucket [0, p), as p315

is larger than the cells’ diagonal length; second, Resolve-316

TwoTrees is executed for all pairs of non-empty cells on317

DM0.318

3.1 Basic ideas in analyzing DT- SDH319

The running time of DT- SDH is consumed by the following320

two types of operations:321

(i) checking if two cells are resolvable (i.e., line 1 in Re-322

solveTwoTrees); and323

(ii) distance calculation for data points in cell pairs that are324

non-resolvable even on the finest density map (i.e., line325

8 in ResolveTwoTrees).326

When compared to the brute-force algorithm, we perform327

type (i) operations in hope of handling multiple distances in328

one shot such that the number of type (ii) operations is min-329

imized. Given a histogram bucket width p, we start from a330

density map DM0 with c cells. Thus, there are O(c2) type (i)331

operations to be performed on level DM0. On the next map332

DM1, there are 4 × 4 = 16 times of cell pairs to resolve.333

However, some of the cells in DM1 do not need to be con-334

sidered as their parents are resolved on DM0. From this, we335

can easily see that the running time has something to do with336

p since it determines the number of cells in DM0. However,337

in analyzing the time complexity of DT- SDH, we are inter-338

ested in how the running time increases as the total number339

of points N increases, as p is a fixed query parameter. Qual-340

itatively, as N increases, the height of the Quad-tree also341

increases (due to a fixed β), giving rise to a higher percent-342

age of resolvable cell pairs on the leaf level. On the other343

hand, the total number of cell pairs also increases (quadrat-344

ically). An essential question our analysis needs to answer345

is: given a cell A on DM0, how many pairs of points are346

contained by those resolvable cells related to A as we visit347

more and more levels of density maps? Although this appar-348

ently has something to do with the spatial distribution of the349

points, our main strategy is to first analyze how much area350

are covered by the resolvable cells to simplify the process,351

and then discuss the effects of particle spatial distribution on352

Table 1 Notations and definitions

Symbol Definition

N Total number of particles in data

l Total number of histogram buckets

p Width of histogram buckets

m An index of the density map (level on the Quad-tree)

i An index on histogram buckets

δ Side length of the cells on DM0

α(m) Non-covering factor on level DMm

S The area of some region

s Tiling factor

d Number of dimensions in data (up to 3)

this basic analysis. In the following section, we use a geo- 353

metric modeling approach to quantify the area of resolvable 354

cells of interest. Some of the symbols used throughout this 355

paper are listed in Table 1. 356

4 Main analytical results 357

4.1 Overview of our approach 358

Given any cell A on density map DM0, our analysis first 359

quantifies the area of a theoretical region containing all par- 360

ticles that can possibly resolve into the i th bucket with any 361

particle in A. We call this region the bucket i region of cell 362

A and denote it as Ai. In a 2D example illustrated in Fig. 4, a 363

cell A is drawn with four corner points O, O1, O2, and O3, 364

and A1 is bounded by curves and line segments connected 365

by points C1 through C8. In our analysis, we consider the 366

A

O

O1O2

O3

Q

Q1

Q2

Q3

C1

C3

D1

C2

C4C5

C6

C7

C8

D2

D3

D4D5

D6

D7

D8

Fig. 4 Boundaries of bucket 1 and bucket 2 regions of cell A, with the

bucket width p being exactly
√

2δ. Here we show arcs Q̂1 Q2, Ĉ1C2,

and D̂1 D2, all of which are centered at point O
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Table 2 Values of

α(m + 1)/α(m) in 2D space

under different values of m and l

Computed with Mathematica 6.0

based on the formulae generated

in Sect. 4.4. Precision up to the

6th digit after decimal point

Map levels Total number of histogram buckets (l)

2 4 8 16 32 64 256

m = 1 0.508709 0.501837 0.50037 0.50007 0.500012 0.500002 0.5

m = 2 0.503786 0.500685 0.500103 0.500009 0.499998 0.499999 0.5

m = 3 0.501749 0.500282 0.500031 0.499998 0.499997 0.499999 0.5

m = 4 0. 500838 0.500126 0.50001 0.499997 0.499998 0.499999 0.5

m = 5 0. 50041 0.500059 0.500004 0.499998 0.499999 0.5 0.5

m = 6 0.500203 0.500029 0.500002 0.499999 0.499999 0.5 0.5

m = 7 0.500101 0.500014 0.500001 0.499999 0.5 0.5 0.5

m = 8 0.50005 0.500007 0.5 0.5 0.5 0.5 0.5

m = 9 0.500012 0.500003 0.5 0.5 0.5 0.5 0.5

m = 10 0.500025 0.500002 0.5 0.5 0.5 0.5 0.5

boundary situation of formula (2): the side length of cell A is367

set to be exactly δ = p√
2

. As we can easily see later, the case368

of δ <
p√
2

will not change the analytical results. Technical369

details on the quantification of the area of Ai is presented in370

Sect. 4.2.371

The cells that are resolvable into bucket i with any subcells372

in A also form a region. We call such region the coverable373

region and denote it as A′
i. Due to the shape of subcells, the374

boundary of such regions shows a zigzag pattern, as repre-375

sented by solid blue lines in Fig. 6. When DT- SDH visits376

more levels of the tree, the resolution of the density map377

increases, and the boundary of region A′
i approaches that of378

Ai. The quantification of the coverable regions’ area is dis-379

cussed in Sect. 4.3.380

With the above results, we then study the area of coverable381

regions over all buckets and how the density map resolution382

affects it. Specifically, we define the ratio of
∑

i A′
i to

∑

i Ai383

as the covering factor. This is a critical quantity in our analy-384

sis as it tells how much area are “covered” by resolved cells.385

Obviously, the covering factor increases when we visit more386

levels of density map. Of special interest to our analysis is387

the non-covering factor, which represents the percentage of388

area that is not resolvable. The details about covering fac-389

tor can be found in Sect. 4.4. A very important feature of390

the non-covering factor can be summarized in the following391

theorem.392

g(i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(2π + 4
√

2 + 1)δ2 i = 1
[

2π i2 + 4
√

2i

−(i − 1)2
(

8 arctan
√

8(i − 1)2 − 1 − 2π
)

+
√

8(i − 1)2 − 1
]

δ2 i > 1

(3)393

Theorem 1 Let DM0 be the first density map where the394

DT- SDH algorithm starts running, and α(m) be the per-395

centage of pairs of cells that are not resolvable on the density396

map that lies m levels below DM0 (i.e., map DMm). We have397

lim
p→0

α(m + 1)

α(m)
=

1

2
.398

Proof The proof is developed in the remainder of this section 399

starting from Sect. 4.2. 400

While shown in the form of a limit under large l (i.e., 401

small p), Theorem 1 also works well under small l values. 402

This can be effectively verified by numerical results obtained 403

from the closed-form formulae we derive Eq. (9) and Eq. (10) 404

to accomplish the proof. In Table 2, we can easily see that 405

the ratio of α(m + 1) to α(m) quickly converges even when 406

l is very small. 407

Theorem 1 is important in that it shows the number of non- 408

resolvable cell pairs decreases exponentially (by half) when 409

more levels of the tree are visited. In ResolveTwoTrees, if 410

a cell pair is not resolved, we have to make 16 recursive calls 411

to the same routine for the 4 children of each cell. Theorem 1 412

says that we can expect 16×0.5 = 8 pairs of the child nodes 413

to be resolvable. For these resolved cell pairs, there is no need 414

to further explore the pair of subtrees rooted by them. This 415

greatly eases our analysis of the time complexity of DT-SDH 416

(Sect. 6).3 Now let us consider a formal proof of Theorem 1. 417

4.2 Maximal bucket region 418

As mentioned earlier, the bucket 1 region for cell A 419

in Fig. 4 is connected by C1 through C8. Specifically, 420

C1C2, C3C4, C5C6, and C7C8 are all 90-degree arcs centered 421

at the four corners of cell A and their radii are of the same 422

value p; C2C3, C4C5, C6C7, and C8C1 are line segments. It 423

is easy to see that the area of this region is πp2 + 4pδ + δ2. 424

Let us continue to consider distances that fall into the second 425

bucket (i.e., [p, 2p]). Again, the bucket 2 region of A is of 426

similar shape to the bucket 1 region except the radii of the 427

arcs are 2p, as drawn in Fig. 4 with a curve connected by 428

points D1, D2, . . . , D8. However, points that are too close 429

3 The techniques to derive Theorem 1 are important. However, read-

ers can get a big picture of this work by browsing Theorem 2 (a more

general form of Theorem 1) in Sect. 5.2 and then moving to Sect. 6.
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Dual-tree algorithm for computing SDH

Q1

C

O

D

E

O2

Fig. 5 A magnification of region B (i.e., Q Q1 Q2 Q3 formed by four

arcs in Fig. 4). Here we only show arc Q1 O2, which is a half of arc

Q1 Q2

to A can only resolve into bucket 1 since their distances to430

any point in A will always be smaller than p. These points431

are contained in a region as follows: on each corner point of432

A, we draw an arc with radius p on the opposite corner (i.e.,433

arcs Q Q1, Q1 Q2, Q2 Q3, and Q3 Q). Therefore, the bucket 2434

region should not include this inner region (denoted as region435

B hereafter, see Fig. 5 for a magnified illustration).436

The area of the bucket 2 region is π(2p)2 + 8pδ less the437

area of region B, which consists of eight identical smaller438

regions such as Q̂1 O2 D (Fig. 5) and cell A itself. To get the439

area of Q̂1 O2 D, we first compute the magnitude of the angle440

� Q1 O O2 as follows.441

� Q1 O O2 = � Q1 O E − � C O E = arctan
Q1 E

E O
−

π

4
442

= arctan

√

p2 −
(

δ
2

)2

δ
2

−
π

4
443

Thus, the area of sector Q̂1 O2 O is 1
2

p2 � Q1 O O2. The area444

of region Q̂1 O2 D can be obtained by the area of this sector445

less the area of triangles O2 DC and Q1C O as follows:446

S
Q̂1 O2 D

= S
Q̂1 O2 O

− S△O2 DC − S△Q1C O447

=
1

2
p2

⎡

⎣arctan
2

√

p2 −
(

δ
2

)2

δ
−

π

4

⎤

⎦

448

−
δ

4

√

p2 −
(

δ

2

)2

449

and we have π(2p)2 + 8pδ − 8S
Q̂1 O2 D

− SA as the area of450

the bucket 2 region.451

The approach to obtain the area of bucket i (i > 2) regions452

is the same as that for bucket 2. For the area of the region453

formed by the outer boundary, we only need to consider that454

the arcs in Fig. 5 are of radii i p. Along with the fact p =
√

2δ,455

our efforts lead to a general formula to quantify the area of456

the bucket i region in Eq. (3) shown on top of this page.457

a

C

 D

A’

A

b

A’
D

FE

G

A

C

A’

A

C

D

c

Fig. 6 Actual (solid blue line) and approximated (dotted blue line)

coverable regions for bucket 1 under: a. m = 1; b. m = 2; and c.

m = 3. Outer solid black lines represent the theoretical bucket 1 region.

All arrowed line segments are drawn from the centers to the correspond-

ing arcs with radius p

4.3 Coverable regions 458

The are two different scenarios to consider in deriving the 459

area of coverable regions. 460

4.3.1 Case 1: the first bucket 461

Let us start our discussions on the situation of bucket 1. 462

In Fig. 6, we show the coverable regions of three differ- 463

ent density map levels: m = 1, m = 2, and m = 3, as 464
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represented by blue-colored lines and denoted as A′ in all sub-465

graphs. Recall that, for two cells to be resolvable into bucket466

i , the minimum and maximum distance between them should467

both fall into range [(i − 1)p, i p]. For m = 1, the resolv-468

able cells are only those surrounding A. All other cells, even469

those entirely contained by the bucket 1 region, do not resolve470

with any level 1 subcell of A. As we increase m, the region471

A′ grows in area, with its boundary approaching that of the472

bucket 1 region. To represent the area of A′, the technique473

we adopt is to develop a continuous line to approximate its474

boundary. This technique will be used throughout our analy-475

sis. One critical observation here is: the furtherest cells in A′
476

are those that can resolve with cells on the outer rim of A. For477

example, the cell cornered at point D resolves with the cell478

cornered at point C in A. If we draw a 90-degree arc centered479

at C, the arc goes through D and all cells on the northwest-480

ern corner of A′ are bounded by this arc. To approximate481

the boundary of A′, we can draw such an arc at all four cor-482

ners of the graph and connect them with line segments (e.g.,483

EF connecting the northwestern and northeastern arcs cen-484

tered at point G in Fig. 6b), as shown by the blue dotted line.485

Obviously, this line approaches the theoretical boundary as m486

increases because the center of the arcs (e.g., point C) move487

further to the corner points of A as the cells become smaller.488

Note that this line gives rise to an optimistic approximation489

of A′. In sect. 6, we will show that this overestimation will490

not harm our analysis on the time complexity of DT- SDH.491

The area of the coverable region for bucket 1 at level m can492

thus be expressed as493

SA′ = πp2 + 4p

(

δ −
2δ

2m

)

+
(

δ −
2δ

2m

)2

(4)494

where the first item πp2 is the area of the four 90-degree495

sectors centered at point C, the second item is the area of the496

four rectangles (e.g., EFGC in Fig. 6b) connecting the four497

sectors, and the last item is the area of the smaller square498

(e.g., the one with side CG in Fig. 6b) within cell A.499

4.3.2 Case 2: the second bucket and beyond500

The cases of buckets beyond the first one are more compli-501

cated. First of all, the outer boundary of the bucket i (i ≥ 2)502

regions can be approximated using the same techniques we503

introduced for bucket 1 (Sect. 4.3.1). To be specific, we can504

use the following generalized form of Eq. (4) to quantify the505

area of the region formed by the outer boundaries only.506

Sout (i) = π(i p)2 + 4i p

(

δ −
2δ

2m

)

+
(

δ −
2δ

2m

)2

(5)507

However, we also need to disregard the cells that lie in the508

inner boundary (e.g., those within or near region B). This has509

to be considered in two distinct cases: m = 1 and m > 1.510

Bucket 3 boundaries

A

C

Bucket 2 boundaries

O

Fig. 7 Inner boundaries of the coverable regions of buckets 2 and 3

under m = 1. All arrowed line segments are of length 2p

Let us first study the case of m = 1. Figure 7 shows 511

examples with m = 1 with respect to the second and the 512

third bucket. It is easy to see that any cell that contains a seg- 513

ment of the theoretical region B boundary will not resolve 514

into bucket i because they can only resolve into bucket i −1. 515

Furthermore, there are more cells that resolve into neither 516

bucket i − 1 nor bucket i . Here our task is to find a boundary 517

to separate those m = 1 cells that can resolve into bucket 518

i with any subcell in A and those that cannot. Such bound- 519

aries for buckets 2 and 3 are shown in Fig. 7 as solid blue 520

lines. The boundary can be generated as follows: on each 521

quadrant (e.g., northwest) of cell A, we draw an arc (dotted 522

blue line) centered at the corner point C of the furthest (e.g., 523

southeast) subcell of A with radius (i − 1)p. Any cell that 524

contains a segment of this arc cannot resolve into bucket i 525

(because they are too close to A) but the cells beyond this line 526

can. Therefore, we can also use these arcs to approximate the 527

zigzagged real boundaries. Let us denote the region bounded 528

by this approximate curve as region B′. For m = 1, the arcs 529

on all four quadrants share the same center C therefore they 530

form a circle as region B′. The radii of the circles are exactly 531

(i − 1)p for bucket i . Note that this, again, could give rise to 532

an optimistic approximation of the area of coverable regions. 533

Therefore, the area of the coverable region for m = 1 and 534

i ≥ 2 is: 535

SA′ = π(i p)2 − π [(i − 1)p]2 (6) 536

where the first item is the area of the region formed by the 537

approximated outer boundary, which is given as a special 538

case of Eq. (5) for m = 1 and happens to be a circle; and the 539

second item is that of the region formed by the approximated 540

inner boundary (i.e., region B′). 541

For the case of m > 1, we can use the same technique 542

described for the case of m = 1 to generate the curves 543

to form region B′. However, these curves are no longer a 544
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Dual-tree algorithm for computing SDH

O

Bucket 2 boundaries

Bucket 3 boundaries

A

C

m = 2

m = 3

Bucket 2 boundaries

A

O

C

Bucket 3 boundaries

a

b

Fig. 8 Inner boundaries of the coverable regions of buckets 2 and 3

under m = 2 and m = 3. All arrowed line segments are of length 2p

series of circles. In Fig. 8, we can find such curves for buck-545

ets 2 and 3 under m values of 2 and 3. As the four arcs546

on different quadrants no longer share the same center, the547

region B′ boundaries (dotted blue lines) are of similar shapes548

to the theoretical region B boundaries (solid black lines).549

From the graphs, it is easy to see that the approximated curve550

fits the actual boundary better as m increases. Here we skip551

the formal proof as it is straightforward. Furthermore, it also552

converges to the region B boundary when m gets bigger. This553

is because the centers of the two arcs (with the same radii),554

points C and O, become closer and closer when the cell size555

decreases (as m increases).556

The area of region B′ (Fig. 9) can be computed in the same557

way as that of region B. Following that, the area of coverable558

H

O

C

B

D

E

F
G

Fig. 9 An illustration on how to compute the area of region formed by

four arcs in Fig. 8. Here we only show half of one of the arcs

region for m > 1 can be derived. The details of such results 559

can be found in Appendix A. We define θ as a function of m 560

for the convenience in further discussions: 561

θm =
1

2
−

1

2m
. 562

Let us denote the area of the coverable region A′ for bucket 563

i under different m values as f (i, m). By combining and 564

simplifying Eqs. (4), (6), and the results in Appendix A with 565

p =
√

2δ, we get Eq. (7) (as shown on top of this page), in 566

which 567

γm =
√

2(i − 1)2 − θ2
m . 568

4.4 Covering factor and derivation of Theorem 1 569

In this section, we give a quantitative analysis on the relation- 570

ship between f (i, m) and the area of the theoretical region 571

g(i) for all buckets. For that purpose, given any density map 572

level m, we define the covering factor c(m) as the ratio of the 573

total area of the coverable regions to that of the theoretical 574

bucket i regions over all i . Relate this to Theorem 1, the more 575

interesting quantity is the non-covering factor: 576

f (i, m) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

2π + 4
√

2 + 1

− (8
√

2 + 4) 1
2m + 4

22m

]

δ2 i = 1, m ≥ 1

[2π(2i − 1)] δ2 i > 1, m = 1
{

2π i2 + 4
√

2i

−(8
√

2i + 4) 1
2m + 4

22m

−8
[

(i − 1)2
(

arctan
γm

θm
− π

4

)

− 1
2
θm (γm − θm)

]

+ 1
}

δ2 i > 1, m > 1

(7) 577

α(m) = 1 − c(m) =
∑l

i=1[g(i) − f (i, m)]
∑l

i=1 g(i)
(8) 578

With Eq. (8) and the results we have in Sects. 4.2 and 4.3, we 579

are now ready to prove Theorem 1. Recall that we defined 580

θm = 1
2

− 1
2m and θm+1 = 1

2
− 1

2m+1 . Plugging Eqs. (3) and 581
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(7) into Eq. (8), we get α(m+1)
α(m)

= A(m)
B(m)

where582

A(m) =
2

2m
−

1

4m
+

2
3
2

2m
(l + l2) +

l
∑

i=2

√

8(i − 1)2 − 1583

− 4

l
∑

i=2

θm+1

√

2(i − 1)2 − θ2
m+1584

+ 8

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m+1

θm+1
585

− 8

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (9)586

and587

B(m) =
4

2m
−

4

4m
+

2
5
2

2m
(l + l2) +

l
∑

i=2

√

8(i − 1)2 − 1588

− 4

l
∑

i=2

θm

√

2(i − 1)2 − θ2
m589

+ 8

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m

θm

590

− 8

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (10)591

The case of p → 0 is equivalent to l → ∞. Despite their592

formidable length and complexity, A(m) and B(m) are found593

to bear the following feature594

lim
l→∞

A(m)

B(m)
=

1

2
(11)595

and this concludes the proof of Theorem 1. More details on596

derivation of Eq. (11) can be found in Appendix C.597

5 Extensions598

5.1 3D analysis599

The strategies used to accomplish the analysis in Sect. 4 can600

be extended to 3D data. The outer and inner boundaries of601

bucket i regions are illustrated in Fig. 10. The analysis should602

be based on the volume of relevant regions surrounding a603

cube A with side length δ. The bucket 1 region (Fig. 10a) of604

A consists of the following components:605

(1) quarter cylinders (green) with length δ and radius606

p =
√

3δ;607

(2) one-eighth of a sphere (red) with radius p;608

(3) cuboids (white) with dimensions δ, δ, and p; and609

Fig. 10 Geometric structures of the bucket 1 and bucket 2 regions for

3D data

(4) cube A itself, which is not shown in Fig. 10a, but can be 610

seen in Fig. 10b. 611

There are eight pieces of each of the first two items and six 612

pieces of item (3). The inner boundary (region B) of the 613

bucket 2 region (Fig. 10b) consists of eight identical por- 614

tions of a spherical surface centered at the opposite corner of 615

A with radius p. Note that the projection of these regions on 616

2D are exactly those found in Fig. 4. Again, the shape of the 617

region does not change with respect to bucket number i—we 618

only need to change the radius from p to i p. The volume of 619

the bucket i region can thus be expressed as 620

g(i) =

⎧

⎨

⎩

4
3
πp3 + 6pδ2 + 3πp2δ + δ3, i = 1

4
3
π(i p)3 + 6i pδ2 + 3π(i p)2δ + δ3

−v(i, p, δ), i > 1

621
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Table 3 Values of

α(m + 1)/α(m) in 3D space

under different values of m and l

Computed with Mathematica

6.0 based on formulae in

Appendix B. Precision up to the

6th digit after decimal point

Map levels Total number of histogram buckets (l)

2 4 8 16 32 64 256

m = 1 0.531078 0.509177 0.502381 0.500598 0.50015 0.500038 0.500002

m = 2 0.514551 0.504128 0.50102 0.500247 0.50006 0.500013 0.5

m = 3 0.505114 0.500774 0.500051 0.499987 0.499991 0.501551 0.500004

m = 4 0.498119 0.497695 0.499076 0.499717 0.499931 0.498428 0.5

m = 5 0.490039 0.49337 0.496703 0.499313 0.499811 0.499966 0.499983

m = 6 0.47651 0.485541 0.49586 0.498521 0.499586 0.499897 0.499897

m = 7 0.448987 0.469814 0.48972 0.497032 0.499241 0.499793 0.500138

m = 8 0.38559 0.435172 0.478726 0.494029 0.49848 0.499448 0.5

where the first four items in both cases represent the volume622

of the four components listed above and v(i, p, δ) is that for623

the region formed by half of a spherical surface in Fig. 10b.624

With p =
√

3δ, the above equation becomes625

g(i) =

⎧

⎨

⎩

(

4
√

3π + 6
√

3 + 9π + 1
)

δ3 i =1
[

4
√

3π i3 + 6
√

3i + 9π i2 + 1 − v(i, p)

]

δ3 i >1
626

where v(i, p) = 16VB and VB is the volume of region B (see627

Appendix B for details).628

We continue to develop formulae for the coverable regions629

f (i, m) and non-covering factor α(m) as we do in Sects. 4.3630

and 4.4. These formulae can be found in Appendix II of631

our technical report [37]. The complexity of such formu-632

lae hinders an analytical conclusion on the convergence of633

α(m + 1)/α(m) toward 1
2

. Fortunately, we are able to com-634

pute the numerical values of α(m + 1)/α(m) under a wide635

range of inputs. These results (listed in Table 3) clearly show636

that it indeed converges to 1
2

. This technique can be extended637

to higher dimensions and we conjecture that Theorem 1 still638

holds true. However, since the real simulation data has up to639

three dimensions, our analysis stops at 3D.640

5.2 General tiling approach in space partitioning641

In DT-SDH, the Quad-tree is built using a regular tiling [29]642

approach to partition the space, i.e., the subcells are of the643

same shape as the parent cell. In the previous analysis, for644

each node, we evenly cut each dimension by half, leading645

to 2d partitions (child nodes) on the next level. However, in646

general, we could cut each dimension into s > 2 equal seg-647

ments, giving rise to sd equal-sized squares or cubes as in648

Fig. 11. In this section, we study how this affects the value649

of α(m).650

First, the bucket i regions given by Eq. (3) are not affected.651

For the coverable regions, we incorporate the tiling fac-652

tor s into the same reasoning as what we utilize to obtain653

Eq. (7). One exception here is the case of m = 1, i ≥ 2:654

s = 3 s = 4s = 2

Fig. 11 Partitions of a 2D cell under different tiling factors

the approximate coverable region does not form a series of 655

circles when s > 2, therefore Eq. (6) does not hold and 656

this case should be handled in the same way as the case of 657

m > 1, i ≥ 2. Skipping the details, we get an improved ver- 658

sion of Eq. (7) for s > 2 as Eq. (12), where θ ′
m = 1

2
− 1

sm 659

and γ ′
m =

√

2(i − 1)2 − θ ′
m

2. 660

f (i, m, s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

2π + 4
√

2 + 1

−(8
√

2 + 4) 1
sm + 4

s2m

]

δ2 i = 1, m ≥ 1
{

2π i2 + 4
√

2i − (8
√

2i + 4) 1
sm + 4

s2m

−8

[

(i − 1)2

(

arctan
γ ′

m

θ ′
m

− π
4

)

− 1
2 θ ′

m

(

γ ′
m − θ ′

m

)

]

+ 1
}

δ2 i > 1, m > 1

(12) 661

With Eq. (12) to describe the coverable regions, we can 662

easily generate new equations for the covering factor as a 663

function of m and s. By studying these functions, we get the 664

following theorem. 665

Theorem 2 With a tiling factor s (s ∈ Z+), the non-cover- 666

ing factors have the following property 667

lim
l→∞

α(m + 1)

α(m)
=

1

s
. 668

Proof The techniques to achieve this proof are very similar 669

to those for Theorem 1. See Appendix D for the details. 670

Theorem 2 is obviously a nicely formatted extension of 671

Theorem 1. Like Theorem 1, it is well supported by numeri- 672

cal results even under smaller values of l (details not shown 673

in this paper). In Sect. 6, we will discuss the effects of s on 674

the time complexity of DT-SDH. 675
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6 Time complexity of DT-SDH676

With Theorem 2, we achieve the following analysis of the677

time complexity of DT- SDH as a function of the input size678

N .679

Theorem 3 If the data points are uniformly distributed in680

space, the time complexity of DT- SDH under a general til-681

ing factor s is �

(

N
2d−1

d

)

where d ∈ {2, 3} is the number of682

dimensions of the data.683

Proof We derive the complexity of the algorithms by study-684

ing how the required time changes with the increase in system685

size N . Since the average number of particles in the leaf nodes686

is a constant β, one more level of tree will be built when N687

increases to sd N . Therefore, we need to build a recurrence688

function that relates the running time under system size sd N689

to that under N .690

We first study the time spent on operation (i) (i.e., resolv-691

ing the cell pairs). We denote this time as Tc. For a given692

bucket width p, the starting level DM0 is fixed in DT- SDH.693

Assume there are I pairs of cells to be resolved on DM0,694

the total number of cell pairs becomes I s2d on the next level695

DM1. According to Theorem 2, only one s-th of the I pairs on696

DM0 will not be resolved, leaving I s2d−1 pairs to resolve on697

DM1. On level DM2, this number becomes I s2d−1 1
s
s2d =698

I s2(2d−1), and so on. Therefore, Tc(N ) can be expressed as699

the summation of numbers of cell pairs to resolve in all levels700

of the tree starting from DM0:701

Tc(N ) = I + I s2d−1 + I s2(2d−1) + · · · + I sn(2d−1)
702

=
I
[

s(2d−1)(n+1) − 1
]

s2d−1 − 1
(13)703

where n is the total number of levels in the tree visited by the704

algorithm. The value of n increases by 1 when N increases to705

sd N . Therefore, by revisiting Eq. (13), we have the following706

recurrence:707

Tc(s
d N ) =

I
[

s(2d−1)(n+2) − 1
]

s2d−1 − 1
= s2d−1Tc(N ) − o(1)708

(14)709

Based on the master theorem [8], the above recurrence gives710

Tc(N ) = �

(

N log
sd s2d−1

)

= �

(

N
2d−1

d

)

.711

Note that the above conclusion about operation (i) has712

nothing to do with the data distribution.713

Now let us investigate the time complexity for perform-714

ing operation (ii), i.e., pairwise distance calculation. Inter-715

estingly, we have similar results as in Eq. (14).716

As shown in the derivation of Eq. (14), there are I sn(2d−1)
717

pairs of leaf nodes to resolve, among which I sn(2d−1) 1
s

=718

I sn(2d−1)−1 will be unresolved and the pairwise distances719

of the particles in them need to be computed one by one.720

When system size increases from N to sd N , the num- 721

ber of unresolved leaf node pairs (denoted as L) becomes 722

I s(n+1)(2d−1)−1. Thus, we get the following recurrence: 723

L(sd N ) = s2d−1L(N ), 724

which is essentially the same as Eq. (14) and we easily get 725

L(N ) = �

(

N
2d−1

d

)

(15) 726

Note that L(N ) is the number of non-resolvable cell pairs. 727

Due to the assumption of uniformly distributed data, the 728

number of point-to-point distances in these cells also fol- 729

lows Eq. (15). In Sect. 6.1, we will show that this claim still 730

holds true when the assumption of uniform data distribution 731

is relaxed. 732

Putting the above results about operations (i) and (ii) 733

together, we conclude that the time complexity of DT-SDH 734

is �

(

N
2d−1

d

)

. 735

We have mentioned that our analysis is done based on an 736

overestimation of the coverable regions on each density map, 737

and the estimation error decreases as m increases. Relate this 738

to Theorem 2, we have an underestimated non-covering fac- 739

tor α on each level. Since the estimation is more accurate 740

on larger m, the real ratio of α(m + 1) to α(m) can only be 741

smaller than the one given by Theorem 2, making 1
s

an upper 742

bound. As a result, the complexity of the DT-SDH algorithm 743

becomes O
(

N
2d−1

d

)

. 744

Note that the time complexity has nothing to do with the 745

tiling factor s. In practice, we prefer smaller s values. Recall 746

that the first map DM0 should be the first level with cell size 747

δ ≤ p/
√

d . With a bushy tree as a result of large s value, the 748

cell size decreases more dramatically and we could end up 749

a DM0 with cell size way smaller than p/
√

d , giving rise to 750

more cells to resolve (Eq. (13)). 751

6.1 Effects of spatial distribution of data points 752

To prove Theorem 3, we need to transform Eq. (15) into 753

one that describes the number of distance calculations in the 754

unresolved leaf nodes. This is obviously true for uniformly 755

distributed data, in which the expected number of points in 756

a cell is proportional to the cell size. However, in this sub- 757

section, we will show that Theorem 3 can be true even if we 758

relax the assumption of uniformly distributed data points. 759

Let us consider any pair of non-resolvable cells A (with 760

point count a) and B (with point count b) on the leaf level 761

DMk of the tree. Note that we cannot say a = b (due to the 762

non-uniform data distribution), and we expect to have Tk =ab 763

distances to compute between these two cells. When the sys- 764

tem size increases from N to sd N , we build another level 765

of density map DMk+1, in which A and B are both divided 766

into sd cells. Figure 12 shows an example for s = 2 and 767
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Dual-tree algorithm for computing SDH

Fig. 12 Two non-resolvable

leaf cells are divided into four

subcells when data size

increases by a factor of sd

b4

a b

a1 a2

a3 a4

b1 b2

b3

d = 2. Let us denote the original number of data points768

in the subcells as ai (i ∈ {1, 2, . . . , sd}) and b j ( j ∈769

{1, 2, . . . , sd}). In other words, we have a =
∑sd

i=1 ai and770

b =
∑sd

j=1 b j . When N increases to sd N , all values of ai771

and b j get a sd -fold increase and the expected number of772

distance calculations becomes773

Tk+1 =
∑

i, j

Pi, j s
dai s

db j (16)774

where Pi, j is a binary variable that tells whether subcells i and775

j are non-resolvable on DMk+1. Without any assumptions,776

we only know that the average of Pi, j over all combinations777

of i and j is 1
s

(Theorem 2). For Theorem 3 to be true, we778

need to show that779

Tk+1 ≤
s2d

s
Tk = s2d−1ab (17)780

6.1.1 Effects of a common point distribution781

We first show that, if the distribution of data points is cell-782

wise uniform on density map DMk , the condition specified783

in formula (17) is satisfied. Being cell-wise uniform means784

that the data are uniformly distributed within each cell, i.e.,785

we have786

a1 = a2 = · · · = asd =
a

sd
787

and788

b1 = b2 = · · · = bsd =
b

sd
,789

which easily leads to790

Tk+1 =
1

s

∑

Pi, j s
dasdb = s2d−1ab.791

Being a less constrained assumption than system-wise uni-792

form distribution (which also requires a = b), the cell-wise793

uniform distribution is a safe assumption in many scientific794

domains. This is because components of natural systems are795

generally not compressed arbitrarily to form high-density796

clusters due to the existence of chemical bonds or inter-797

particle forces [1,26]. As a result, data points tend to spread798

out “evenly”, at least in a localized area. The water molecules799

is a good example of this. Note that we only need to make the800

assumption of cell-wise uniformity in the leaf nodes to make801

Theorem 3 true. In fact, we often found uniform regions on802

high-level tree nodes. For example, by studying the dataset803

c     d    ip   e    f c     d    ip   e    fc     d    ip   e    f

Fig. 13 Three cases of distribution of distances around the edge of

buckets i and i + 1, with the solid curves representing portions of the

density function of the distances; [c, d] and [e, f ] are examples of dis-

tance ranges of resolvable subcells. Those of the non-resolvable subcells

are not shown. Line segments are not drawn on scale. For example, i p

does not have to be the middle point of [c, f ] in practice

illustrated in Fig. 1, we found that atoms are uniformly dis- 804

tributed in 61 out of 64 of the nodes on level 3 of the Quad- 805

tree. Cell-wise uniformity is also a popular observation in 806

many traditional spatiotemporal database applications [36]. 807

6.1.2 More general conditions 808

A more general discussion on the necessary conditions of 809

Theorem 3 would be helpful in identifying the limitations 810

of DT- SDH. We believe that skewed point distributions will 811

affect the correctness of Theorem 3 only in rare cases. Intu- 812

itively, a skewed point distribution can give rise to a skewed 813

distance distribution. Revisiting Fig. 12 and Eq. (16), we can 814

easily see that Tk+1 is basically a sum of s2dai b j weighted by 815

the binary variable Pi, j , which has an average of 1
s

according 816

to Theorem 2. Therefore, the condition for Theorem 3 to hold 817

true is that there is no positive correlation between the occur- 818

rence of Pi, j = 0 and large values of ai b j . In other words, 819

as long as the peaks in the data distribution do not always co- 820

exist with the non-resolvable cell pairs, Theorem 3 will not 821

be harmed. We know Pi, j is determined solely by the geom- 822

etry of the cells and p. If we model the data placement as a 823

regular stochastic process (e.g., Zipf, mixed-Gaussian, . . .) , 824

the lack of correlation between Pi, j and data distribution (on 825

which the values of ai , b j depend) can be easily justified. 826

An adversary can certainly generate cases to beat DT- SDH 827

by adding more constraints to the data distribution. We will 828

discuss that in Sect. 6.1.3. 829

Another way to describe the above condition is, as shown 830

in the middle graph of Fig. 13, we cannot have high density 831

of distances centering around (most or all of the) the bucket 832

boundaries. Suppose two cells (e.g., A and B in Fig. 12) have 833

a distance range [c, f ], which overlaps with buckets i and 834

i + 1. With one more level of density map built, their subcell 835

pairs could generate resolvable distance ranges such as [c, d] 836

and [e, f ] (because they do not contain i p—the boundary of 837
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S. Chen et al.

the two buckets). It also generates non-resolvable distance838

ranges that contain i p. If the distribution of distances has839

high density around i p, most of the area under the density840

curve will fall into the non-resolvable ranges. On the con-841

trary, if the density curve around i p is not a sharp peak (e.g.,842

left graph in Fig. 13), we could have roughly equal amount843

of area under the resolvable and non-resolvable ranges. Or,844

in another extreme case (e.g., right graph of Fig. 13) where845

the density is very low around i p, most of the distances will846

be in the resolvable ranges.847

Interestingly, there are easy remedies to the situation848

shown in the middle graph of Fig. 12. We can849

(1) compute another SDH by moving the boundaries of all850

buckets to the left (or right) by
p
2

, or851

(2) decrease the bucket width to γ p where 0 < γ < 1.0 and852

1
γ

is not an integer.853

By both methods, we can generate a histogram that shows all854

the trends in the distance distribution (exactly what we need855

in a SDH) yet most of the distance calculations are avoided.856

In the second case, the SDH generated is of an even higher857

resolution. The technical details of designing such algorithms858

are beyond the scope of this paper.859

6.1.3 Counterexamples to Theorem 3860

In this subsection, we discuss data distribution patterns that861

serve as adversaries against DT- SDH. We have mentioned862

that Theorem 3 still holds true under cell-wise uniform distri-863

bution. Therefore, an adversary case would obviously involve864

tightly clustered data points. However, such clusters by them-865

selves do not necessarily increase the time complexity of866

DT- SDH. To do that, additional conditions have to be satis-867

fied.868

Figure 14 illustrates a high-density cluster A in 2D space.869

To study the impact of cluster A on Theorem 3, we have to870

consider the locations of data points out of A. If the other data871

points spread out in the whole space, Theorem 3 would still872

be true as this is roughly the scenario of cell-wise uniform873

distribution. Therefore, it requires a large number of parti-874

cles to be located in the non-coverable regions of A to make875

a “bad” case for DT- SDH. There can be two scenarios: 1)876

the other data points spread out in the non-coverable regions877

of A and 2) there are high-density clusters (e.g., B in Fig. 14)878

within the non-coverable regions. One thing to point out is:879

for the above scenarios to be effective adversaries, the points880

out of A must reside in a very narrow band. This is because the881

non-coverable regions shrink as the cells on the leaf nodes of882

the Quad-tree get smaller (due to the increase of N , as shown883

by Theorem 1).884
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Fig. 14 A cell (denoted as cell A) with a large number of data points in

2D space and its first two non-coverable regions on the lowest level of

the tree. The non-coverable regions are represented by annuli (rings).

Only one quarter of the regions are plotted

From the above discussions, we have shown the follow- 885

ing two conditions about data distribution are required for 886

constructing an adversary input for DT- SDH. 887

(1) high-density data clusters must exist; 888

(2) at least one pair of such clusters are in each others’ 889

non-coverable regions. 890

Some examples of such datasets are shown in Fig. 15, 891

in which a large number of particles are in high-density clus- 892

ters, and the distances between pairs of clusters equal to i p 893

where i is a positive integer. In an extreme case (top graph 894

in Fig. 15) where the distance between any pair of clusters 895

is i p, the particles are organized in a linear pattern. Fortu- 896

nately, real scientific data will not likely follow such data 897

distributions because the particles in nature tend to spread 898

out in space (instead of forming clumps with a particular dis- 899

tance from each other). Again, all cases mentioned here can 900

be easily handled by the remedies introduced in Sect. 6.1.2. 901

6.2 SDH with variable bucket width 902

So far, we have studied the performance of DT- SDH in com- 903

puting a standard SDH in which all buckets are of the same 904

width p. In this subsection, we extend our analysis to the pro- 905

cessing of SDHs with variable bucket width. We denote pi 906

as the ending point of bucket i , i.e., bucket i covers the range 907

[pi−1, pi ). Due to the variable bucket width, the results in 908

Sect. 4 cannot be directly adopted to accomplish the analysis. 909

Instead, we consider a variation of the DT- SDH algorithm 910

(which we call DT- SDH’) to compute the non-standard SDH 911
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Dual-tree algorithm for computing SDH

ip

p p p p

ip ip

ip

ip

ip

ip

Fig. 15 Several patterns of particle spatial distribution that lead to large

number of non-resolvable distances near the bucket boundaries. Each

ball represents a cluster of particles. Line segments are not drawn to

scale

and derive its time complexity. We then prove that the running912

time of DT- SDH is equivalent to that of DT- SDH’.913

For a SDH with l buckets of variable size, DT- SDH’ com-914

putes it in l − 1 steps. In the i th step, we run DT- SDH to915

compute a SDH with only two buckets that are separated by916

pi (i.e., the two buckets are [0, pi ) and [pi , Lmax ]). It is easy917

to see that the SDH of interest can be obtained from all such918

two-bucket SDHs. The only thing to point out is that, in each919

step of running DT- SDH, we choose the DM0 based on the920

width of the smaller bucket (recall Eq. (2)).921

Theorem 4 The time complexity of running DT- SDH’ for922

computing a non-standard SDH that divides the distance923

domain into two buckets is O
(

N
2d−1

d l
)

where d ∈ {2, 3}.924

Proof The DT- SDH’ runs DT- SDH for a total of l−1 times,925

each time it computes a two-bucket SDH. To prove the theo-926

rem, it is sufficient to show that the time complexity of DT-927

SDH on computing any two-bucket SDH is O
(

N
2d−1

d

)

—928

same as that for DT- SDH to computer a standard SDH. With-929

out loss of generality, we denote the smaller one of the two930

bucket width as q and that of the other bucket as r = Lmax −q.931

We can still use the techniques shown in Sect. 4 to analyze932

this, except we only need to consider two buckets [0, q) and933

[q, Lmax ]. For the two buckets, we can then generate the934

area of the bucket regions g(1) and g(2), and that for the935

coverable regions f (1, m) and f (2, m). The formulae for936

the above area can be found in Appendix E. We then get the937

non-covering factor as938

α(m) =
g(1) + g(2) − f (1, m) − f (2, m)

g(1) + g(2)
939

And the covering factor has the following feature940

α(m + 1)

α(m)
≤

1

2
.941

The above is similar to Theorem 1 and we easily conclude942

the proof by following the path we took to prove Theorem 3.943

The following theorem gives the time complexity of 944

DT- SDH on computing a non-standard SDH. 945

Theorem 5 The time complexity of running DT- SDH for 946

computing a SDH with variable bucket width is also 947

O
(

N
2d−1

d l
)

where d ∈ {2, 3}. 948

Proof We achieve the proof by comparing the number of 949

operations in the DT- SDH to that in DT- SDH’. Specifically, 950

we have the following observations: 951

(1) type (ii) operations: if a pair of points fall into a pair of 952

non-resolvable leaf cells in DT- SDH, they are also in the 953

same non-resolvable leaf cells in DT- SDH’; 954

(2) type (i) operations: for any pair of cells, if they are vis- 955

ited by DT- SDH’ for an attempt to resolve them, they 956

are also visited by DT- SDH for the same purpose. 957

The above two facts show that the time spent by DT- SDH is 958

no more than that by DT- SDH’ to process the same dataset, 959

and this concludes the proof. 960

7 Empirical evaluations 961

7.1 Experimental setup 962

We have implemented the DT- SDH algorithms using the C 963

programming language and tested it with synthetic and real 964

datasets. The experiments were run in an Apple Mac Pro 965

workstation with two dual-core Intel Xeon 2.66 GHz CPUs, 966

and 12 GB of physical memory. The operating system was 967

OS X 10.5 Leopard. 968

The datasets used in our experiments include three groups 969

of synthetic ones and data from real simulations. Among the 970

synthetic data groups, one was generated following a uniform 971

distribution of data points, one following a Zipf distributions 972

with various orders, and one from mixed-Gaussian distri- 973

butions. All point coordinates in the synthetic datasets are 974

rendered in a 3D cube whose side length is 25,000 units. For 975

the Zipf-based datasets, we divided the entire data space into 976

a large number of small blocks (i.e., cubes with side length 977

5 to 50), and each small cube was assigned a random rank. 978

Given two cubes with ranks i and j , the expected number of 979

data points are of ratio jα : iα where α ≥ 1.0 is the order 980

of the Zipf distribution. The well-known fact is that, even 981

with order 1.0, a Zipf distribution brings high level of skew- 982

ness in the data. We also generated test data using the mixed- 983

Gaussian model. Specifically, the data points are rendered 984

from 3 to 5 normal distributions with a fixed standard devi- 985

ation and means randomly chosen within a 2D simulation 986

space. Each normal distribution carries the same weight, and 987

we assume there is no correlation among the two dimensions. 988

123

Journal: 778 Article No.: 0205 MS Code: VLDB-D-09-00108.2 TYPESET DISK LE CP Disp.:2010/10/20 Pages: 24 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

S. Chen et al.

We used a series of C libraries provided by the randlib 4 pack-989

age to generate relevant random numbers.990

Another dataset was generated from a real molecular991

dynamics study to simulate a bilayer membrane lipid sys-992

tem in NaCl and KCl solutions, as illustrated in Fig. 1. The993

original dataset records the coordinates of 286,000 atoms994

over 10,000 time instances (data in each time step is called995

a frame). In order to make the experiments comparable to996

those using synthetic data, we randomly choose and dupli-997

cate atoms in this dataset to reach different dataset sizes N .998

Specifically, we combine the data from consecutive frames999

to create datasets with size greater than 286,000.1000

All experiments were run under a series of N values rang-1001

ing from 100,000 to 25,600,000. In the following text, we1002

report the results of three lines of experiments.1003

7.2 Model verification1004

The objective of this set of experiments is to evaluate the1005

correctness of our basic analytical model, which gives The-1006

orem 1 as the foundation of complexity analysis. Instead of1007

verifying the values of α(m +1)/α(m) listed in Tables 2 and1008

3, we focus on the number of distances in the non-resolvable1009

cells under different m values to study how data distribution1010

(especially the skewed ones) affects the effectiveness of our1011

model. Ideally, the number of unresolved distances should1012

follow the same pattern as described in Theorem 1—it should1013

decrease by half every time m increases by 1.1014

Figure 16 shows the absolute number of resolved distances1015

(plotted on a logarithmic scale) achieved. Each line repre-1016

sents one experiment on a dataset of a particular size. For all1017

experiments, we can see that the line starts from a small value1018

and then reaches the highest value on the following level.1019

The first value in each line reflects those distances resolved1020

on DM0—it is small because it only contains those intra-cell1021

distances that resolve into bucket 1. Starting from DM1, the1022

values drop at a rate that is close to 1
2

—this trend can be eas-1023

ily seen by comparing the slopes of the data lines to that of a1024

standard function y = c
(

1
2

)x
. One thing to point out is: the1025

slopes of some of the data lines in Fig. 16 (e.g., the top lines1026

in all 3D experiments) are even slightly smaller than that of1027

the standard curve. This indicates that the distances are con-1028

sumed in a higher rate than what we expect from our model.1029

To better interpret the experimental results, we need to see1030

from an opposite angle by showing how many distances are1031

left unresolved on each level.1032

For the same experiments, Fig. 17 plots the percentage1033

of unresolved distances on a logarithmic scale. Again, each1034

line starts by the reading of DM0 and we draw a standard1035

line with slope − 1
2

to indicate the expected trend given by1036

Theorem 1. It is easy to see that the distances are resolved1037

4 http://randlib.sourceforge.net/.

at a rate close to 1
2

. The only exceptions appear in the real 1038

3D simulation data experiment (Fig. 17f) where the number 1039

of distances decrease at a slightly slower rate on the middle 1040

levels. But the final values all ended up below the standard 1041

line. Clearly, this is in conformity with Theorem 1, which 1042

says half of the uncovered area will be covered by going 1043

one level down the tree. In fact, a majority of the plotted 1044

values are below the corresponding standard lines, support- 1045

ing our claim that Theorem 1 is actually a lower bound of 1046

the expected performance. The important information here is 1047

that the number of resolved distances shows the same trend 1048

for all datasets, indicating the robustness of our model. The 1049

skewed Zipf point distribution does not at all cause degraded 1050

performance. In fact, we found that, among the three data- 1051

sets, it always took the least amount of time for DT-SDH to 1052

process the Zipf dataset. Here we hold the discussions on the 1053

effects of data skewness on running time till Sect. 7.4 where 1054

the results of more skewed datasets (Zipf, mixed-Gaussian) 1055

will be reported. 1056

7.3 Efficiency of DT- SDH 1057

The main purpose of this experiment is to verify the time 1058

complexity of DT- SDH. In Fig. 18, the running time of our 1059

algorithm is plotted against the size of 2D experimental data- 1060

sets. Fig. 18a shows the results of uniformly distributed data 1061

and Fig. 18b for those following the Zipf distribution, and 1062

Fig. 18c for the real simulation data. Both the running time 1063

and data size are plotted on logarithmic scales; therefore, the 1064

slopes of the lines reflect the time complexity of the algo- 1065

rithms. For comparisons, we draw an identical dotted line in 1066

each graph with a slope of 1.5. Each point in the graphs shows 1067

the result of one single run of DT- SDH as the long running 1068

time under large N prohibits having multiple runs. However, 1069

we did run multiple experiments with different random seeds 1070

for the cases of smaller N and observed very little variances 1071

in running time. 1072

The brute-force approach (‘Dist’) always shows an exact 1073

quadratic running time (i.e., the slope of the line is 2). The 1074

other lines (with spots) represent experiments using our algo- 1075

rithm under different bucket numbers l. Clearly, the running 1076

time of our algorithm grows less dramatically—they all have 1077

a slope of about 1.5. When bucket size decreases, it takes 1078

more time to run our algorithm, although the time com- 1079

plexity is still �(N 1.5). The cases of large bucket numbers 1080

(‘l = 256’) are worth some attention: the running time is 1081

similar to that of the brute-force approach when N is small. 1082

As N increases, the slope of the line changes to around 1.5. 1083

The reason for this is: when N is small, we have a tree with 1084

very few levels; when the query comes with a very small 1085

bucket size p, we end up starting DT- SDH from the leaf 1086

level of the tree and have to essentially calculate most or all 1087

distances. However, the same query will get the chance to 1088
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Fig. 16 Number of distances resolved on different levels of the tree

resolve more cells when the tree becomes taller, as a result1089

of larger N . Again, the actual running time for the skewed1090

dataset is always shorter than that for the uniform dataset1091

with the same size. This can be seen by the relative positions1092

of colored lines to the ‘T = O(N 1.5)’ line. The results of1093

the real dataset are almost the same as those for the uniform1094

data.1095

We have similar results for 3D data (Fig. 19): the corre-1096

sponding lines for DT- SDH have slopes that are very close1097

to 5
3
, confirming our asymptotic analysis. Again, the cases1098

for large l values are worth more discussions. For ‘l = 64’,1099

the running time grows quadratically till N becomes fairly1100

large (1,600,000) and then the slope of the line changes to1101

5
3

. One thing to notice is that the slope of the last segment of1102

‘l = 64’ in Fig. 19b is almost 2. This does not mean the time1103

complexity is going back to quadratic. In fact, it has some-1104

thing to do with the zigzag pattern of running time change in1105

the Zipf data: for three consecutive doubling N values (i.e.,1106

a 8-fold increase), the running time increases by 2, 4, and 41107

times, which still gives a 2 × 4 × 4 = 32 fold increase in1108

total running time (instead of a 64-fold increase in a quadratic1109

algorithm).1110

7.4 Effects of skewed data distribution 1111

To further test the effects of skewed datasets on the per- 1112

formance of DT- SDH, we run 2D experiments using data 1113

generated from Zipf distribution of different orders and the 1114

mixed-Gaussian distributions with different standard devi- 1115

ations (SD). By increasing the order of Zipf or decreasing 1116

the SD of the mixed-Gaussian, we are supposed to generate 1117

more skewed datasets as more points will be concentrated 1118

on smaller regions. In these experiments, we computed a 1119

histogram with bucket width 4419.0.5 Four random seeds 1120

were used to generate data of different sizes ranging from 1121

100,000 to 25,600,000. Thus, for a particular N (under one 1122

Zipf order), we tested the algorithm with four datasets. 1123

The results of the Zipf datasets are shown in Fig. 20, in 1124

which both data size and running time are plotted on logarith- 1125

mic scales. The same experiments were run under two block 1126

sizes (50 and 5), representing two levels of “tightness” of the 1127

5 This is exactly the diagonal of cells on the 4th level of the tree. We

chose a relatively large p to save the total experimental time. We believe

it is sufficient to show the trends.
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Fig. 17 Non-covering factors upon visiting different levels of the tree. Here the factor is calculated as the ratio of number of unresolved distances

to total number of distances after visiting m levels in the tree
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Fig. 18 Running time of the DT-SDH algorithm with 2D data

clusters in the data. We plot the running time of each run of1128

DT- SDH as a dot. By comparing the results of the Zipf data1129

to those of the uniform data, we can easily see that, at most1130

of the time, the time spent to compute SDH in a Zipf dataset 1131

is less than that for the uniform dataset. The only exceptions 1132

are those generated from one random seed under Zipf order 1133
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Fig. 19 Running time of the DT-SDH algorithm with 3D data

Fig. 20 Running time of

DT- SDH with Zipf input data

under different orders. Both left

and right graphs are plotted on

the exact same scale for easy

comparisons

10
-2

10
0

10
2

10
4

10
6

10
5

10
6

10
7

R
u

n
n
in

g
 t

im
e 

(s
ec

)

Total number of atoms

Uniform
Z1.0
Z2.0
Z3.0
Z4.0

10
-2

10
0

10
2

10
4

10
6

10
5

10
6

10
7

R
u

n
n
in

g
 t

im
e 

(s
ec

)

Total number of atoms

Uniform
Z1.0
Z2.0
Z3.0
Z4.0

a b

2.0 and block size 50 (Fig. 20a). We will scrutinize those1134

cases later. When the Zipf order increases from 1.0 to 4.0,1135

we can observe two trends:1136

(1) the running time decreases. In some cases of Zipf order1137

4.0, we can see a decrease of up to 4 orders of magni-1138

tude; and1139

(2) the variances of the running time among the four ran-1140

dom datasets (under the same N ) increase.1141

The first observation directly shows that data skewness has1142

positive effects on the efficiency of DT- SDH in general. The1143

large variances for the high-order Zipf cases indicate that the1144

position of clusters plays a role in determining running time,1145

given the fact that all four runs used data with the exact same1146

“skewness”. We also used the Gnuplot function-fitting tools1147

to derive functions that describe the relationship between N1148

and the running time for all Zipf orders. Specifically, we1149

fit the dots into functions of the form T = aN b + c and1150

such functions are drawn in the same color as that of their 1151

corresponding dots in Fig. 20. The positions of such lines in 1152

Fig. 20 show the above trends clearly. In Fig. 20a, the func- 1153

tion of Zipf order 1.0 (e.g., ‘Z1.0’) has a similar slope (i.e, 1154

1.427) to that of the uniform data (e.g., 1.5) while the slopes 1155

of higher-order Zipf datasets are in the range of (1.27, 1.28). 1156

This shows that, in addition to the absolute running time, the 1157

time complexity of DT- SDH also tends to decrease when 1158

more skewed data are input. One thing to point out is: non- 1159

linear function fitting is not exact science and the details of the 1160

function-fitting methods used by Gnuplot are not revealed. 1161

Therefore, the parameter b in the fitted functions (i.e., slopes 1162

of the lines) can only be regarded as an indication of the 1163

algorithm’s time complexity. 1164

By decreasing the block size of the Zipf distribution, we 1165

will generate more “skewed” data. As a result (see Fig. 20b), 1166

we recorded shorter running times for almost all experimental 1167

runs when compared to those with block size 50. This can be 1168

easily captured by comparing the locations of corresponding 1169
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Fig. 21 Running time of

DT- SDH with mixed-Gaussian

data under different standard

deviations. Both left and right

graphs are plotted on the exact

same scale for easy comparisons

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
5

10
6

10
7

R
u

n
n

in
g

 t
im

e 
(s

ec
)

Total number of atoms

Uniform
SD=400.0
SD=200.0
SD=100.0

SD=50.0

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
5

10
6

10
7

R
u

n
n

in
g

 t
im

e 
(s

ec
)

Total number of atoms

Uniform
SD=400.0
SD=200.0
SD=100.0

SD=50.0

ba

dots and fitted functions in Fig. 20b and a. While the line1170

slopes are still in the neighborhood of 1.28 for Zipf data with1171

orders 2.0, 3.0, and 4.0, the a parameters of the fitted func-1172

tions are of much smaller values than in Fig. 20a. In the case1173

of Zipf with orders 3.0 and 4.0, a difference of more than one1174

order of magnitude can be observed. Again, the slope of the1175

Zipf 1.0 line (1.496) is close to that of uniform, confirming1176

the results shown previously in Fig. 18.1177

Figure 21 shows the running time with the mixed-Gauss-1178

ian data. The results are very similar to those in Fig. 20. When1179

the SD decreases, the skewness of data increases, and the run-1180

ning time also decreases. In the extreme case of SD = 50,1181

most datasets are processed within a fraction of a second (it1182

went as low as 10−5 s). The variance of the running time1183

among the four runs of each experiment also increases as SD1184

becomes smaller. The fitted functions of all mixed-Gaussian1185

experiments have slopes in the range of [1.22, 1.30], which1186

is again significantly smaller than the 1.5 of the uniform1187

data results. The data related to Fig. 21a were generated1188

from a mixture of three Gaussian distributions while those1189

in Fig. 21b mixture of five. The general trend is that the run-1190

ning time of experiments with the same parameters N and1191

SD increases in Fig. 21b. Clearly, as the number of high-den-1192

sity data cluster increases (since each Gaussian gives rise to1193

one cluster), the data become less skewed, and running time1194

increases. In this set of experiments, we have seen no cases1195

in which the mixed-Gaussian data required longer time to1196

process than the corresponding uniform data. We believe the1197

above results are another set of evidence that shows the ben-1198

efits of skewed datasets increase as the data becomes more1199

skewed.1200

In summary, our experiments show that DT- SDH is gen-1201

erally more efficient in processing skewed data. The more1202

skewed the data is, the shorter the processing time is. In an1203

extreme case in Fig. 20b, it takes only a fraction of a sec-1204

ond to process a dataset with 25.6 million points! In addition1205

to the absolute running time, we also believe the time com- 1206

plexity of DT- SDH can be lower than what we expect from 1207

Theorem 3 when the input data are very skewed. 1208

The only “bad” cases (as shown in Fig. 20a) are caused 1209

by one random seed in generating Zipf data with order 2.0. 1210

By looking deeply into the actual data distributions in such 1211

cases, we found that there are 4 large clusters (ranked 3, 6, 1212

7, and 8) falling into the non-coverable regions of the rank 1213

1 cluster. As a result, distances are resolved in a lower rate 1214

than in the uniform data. On contrary to that, distances are 1215

consumed quickly in all other skewed datasets - we even 1216

observed several cases (for Zipf order 4.0) in which 100% of 1217

the distances are resolved. For the above inputs with exces- 1218

sively long processing time, we tested the remedy (2) intro- 1219

duced in Sect. 6.1.2 by computing a SDH with bucket width 1220

9/10 of the original one. The results are very promising—the 1221

running time is reduced by up to three orders of magnitude 1222

(data not plotted). 1223

8 Conclusions and future work 1224

In this paper, we present analytical results related to the time 1225

complexity of a Quad-tree-based algorithm for computing 1226

many statistical measures of large-scale spatial data. The spa- 1227

tial distance histogram is one salient example of such mea- 1228

sures. Being the main building blocks of high-level analytics 1229

in a wide range of computational science fields, such histo- 1230

grams are of great importance in domain-specific hypothesis 1231

testing and scientific discovery. This paper focuses on the 1232

methodology we adopt to accomplish the analysis: we trans- 1233

form the problem into quantifying the area of certain regions 1234

in space such that geometric modeling can be used to gen- 1235

erate rigorous results. Our analysis shows that the algorithm 1236

has complexity O(N
3
2 ) for 2D data and O(N

5
3 ) for 3D data. 1237
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To the best of our knowledge, this is the best result so far in1238

the computation of exact SDH. We also show that the conclu-1239

sion holds true under a wide range of spatial distributions of1240

data points in the dataset, improving on previous conjectures1241

that only consider uniformly distributed data.1242

Immediate future work in this area involves more explora-1243

tions on the approximate algorithm, which is the main direc-1244

tion for developing practical fast solutions for SDH. While1245

experimental results show very promising tradeoffs of run-1246

ning time and query error, probabilistic models have to be1247

developed to study tight bounds of the error. Based on such1248

models, more efficient and accurate heuristics for distributing1249

distances into overlapping buckets can be designed. Eventu-1250

ally, the extension of our methodology to the computation of1251

higher-order n-body correlation functions will depend on our1252

explorations on the lower-order functions. Another direction1253

is to compute the SDH in consecutive frames efficiently by1254

taking advantage of the temporal locality of data points.1255
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Appendix1264

A The area of coverable region for m > 1 and i ≥ 21265

First, we get the magnitude of angle BC D by1266

� BC D = � DC E − � FC E = arctan
DE

EC
−

π

4
1267

= arctan

√

[(i − 1)p]2 −
(

δ
2

− δ
2m

)2

δ
2

− δ
2m

−
π

4
1268

The area of the sector B̂ DC is 1
2
[(i − 1)p]2 � BC D, and1269

the area of the region B̂ DG F is1270

Ŝ
B DG F

= Ŝ
B DC

− S△DHC − S△FG H1271

=
1

2
[(i − 1)p]2 � BC D −

1

2
EC(DE − H E) −

δ2

8
1272

=
1

2
[(i − 1)p]2

[

arctan

√

[(i − 1)p]2 − δ2θ2
m

δθm

−
π

4

]

1273

−
δ

2
θm

[
√

[(i − 1)p]2 − (δθm)2 − δθm

]

−
δ2

8
1274

Finally, we get the area of the coverable region for 1275

i ≥ 2, m > 1 as 1276

SA′ = Sout (i) − 8Ŝ
B DG F

− SA 1277

= π(i p)2 + 4i p

(

δ −
2δ

2m

)

+
(

δ −
2δ

2m

)2

1278

− 4[(i − 1)p]2

[

arctan

√

[(i − 1)p]2 − δ2θ2
m

δθm

−
π

4

]

1279

+ 4δθm

[
√

[(i − 1)p]2 − (δθm)2 − δθm

]

(18) 1280

B Volume of region B in 3D case 1281

VB =
∫ ∫

B

dxdy

√
p2−x2−y2
∫

δ/2

dz 1282

=
∫ ∫

B

(
√

p2 − x2 − y2 −
δ

2

)

dxdy 1283

=

π
4

∫

a

dθ

c
∫

b

(
√

p2 − r2 −
δ

2

)

rdr 1284

=

π
4

∫

a

[

−
1

3
(p2 − r2)

3
2 −

δ

4
r2

] ∣

∣

∣

∣

c

b

dθ 1285

=

π
4

∫

a

[

−
δ3

24
+

1

3

(

p2 − b2
) 3

2 −
δ

4
c2 +

1

16

δ3

(sin θ)2

]

dθ, 1286

in which a = arctan
δ
2

√

p2−2
(

δ
2

)2
, c =

√

p2 −
(

δ
2

)2
, and 1287

b = δ
2 sin θ

. 1288

C The derivation of Eq. (11) 1289

We accomplish this proof by studying the difference between 1290

A(m)
B(m)

and 1
2

. First, we see 1291

A(m) −
B(m)

2
=8

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m+1

θm+1
1292

−4

l
∑

i=2

θm+1

√

2(i − 1)2 − θ2
m+1 1293

+2

l
∑

i=2

θm

√

2(i − 1)2 − θ2
m +

l
∑

i=2

√

2(i − 1)2 −
1

4
1294
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−4

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m

θm

1295

−4

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (19)1296

When l → ∞, we have the following approximations:1297

l
∑

i=2

√

2(i − 1)2 −
1

4
−→

l
∑

i=2

√
2(i − 1),1298

l
∑

i=2

θm+1

√

2(i − 1)2 − θ2
m+1 −→

l
∑

i=2

θm+1

√
2(i − 1)1299

l
∑

i=2

θm

√

2(i − 1)2 − θ2
m −→

l
∑

i=2

θm

√
2(i − 1),1300

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m+1

θm+1
1301

−→
l

∑

i=2

(i − 1)2 arctan 2
√

2(i − 1)1302

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m

θm

1303

−→
l

∑

i=2

(i − 1)2 arctan 2
√

2(i − 1)1304

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 11305

−→
l

∑

i=2

(i − 1)2 arctan 2
√

2(i − 1) (20)1306

Plugging the left-hand side of six formulae in (20)1307

into Eq. (19), we get A(m) − B(m)
2

−→ 0 and thus1308

A(m) −→ B(m)
2

.1309

D Proof of Theorem 21310

Proof Proof is accomplished in a similar way to that of The-1311

orem 1. We have α(m+1,s)
α(m,s)

= A(m,s)
B(m,s)

where1312

A(m, s) = 1 +
4
√

2(l + l2)

s1+m
− l

(

1 −
2

s1+m

)2

1313

+4(l − 1)

(

1

2
−

1

s1+m

)2

1314

−4

l
∑

i=2

θ ′
m+1

√

2(i − 1)2 − θ ′
m+1

2
1315

+ 8

l
∑

i=2

(i − 1)2 arctan

√

2(i − 1)2 − θ ′
m+1

2

θ ′
m+1

1316

+
l

∑

i=2

√

8(i − 1)2 − 1 1317

−8

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 , (21) 1318

and 1319

B(m, s) = 1 +
4
√

2(l + l2)

sm
− l

(

1 −
2

sm

)2

1320

+4(l − 1)

(

1

2
−

1

sm

)2

1321

−4

l
∑

i=2

θ ′
m

√

2(i − 1)2 − θ ′
m

2
1322

+ 8

l
∑

i=2

(i − 1)2 arctan

√

2(i − 1)2 − θ ′
m

2

θ ′
m

1323

+
l

∑

i=2

√

8(i − 1)2 − 1 1324

−8

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (22) 1325

As in Appendix C, by comparing the value of A(m,s)
B(m,s)

to 1
s
, 1326

we get 1327

A(m, s)s − B(m, s) = (s − 1)

l
∑

i=2

√

8(i − 1)2 − 1 1328

−8(1 − s)

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 1329

− 4(1 − s)

l
∑

i=2

θ ′
m+1

√

2(i − 1)2 − θ ′
m+1

2
1330

+8(s − 1)

l
∑

i=2

(i − 1)2 arctan

√

2(i − 1)2 − θ ′
m+1

2

θ ′
m+1

(23) 1331

When l → ∞, we have the following approximations. 1332

l
∑

i=2

√

2(i − 1)2 − θ ′
m+1

2 −→
1

2

l
∑

i=2

√

8(i − 1)2 − 1 , 1333

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ ′
m+1

2

θ ′
m+1

1334

−→
l

∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (24) 1335
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Plugging the left-hand side of the above two formulae into1336

Eq. (23), we get s A(m, s) − B(m, s) −→ 0 and this con-1337

cludes the proof.1338

E Quantities related to Theorem 41339

For easy presentation, we denote x = r/δ. The maximal1340

bucket region for the first bucket is1341

g(1) = πq2 + 4qδ + δ2
1342

and that for the second bucket is1343

g(2) =
{

π(
√

2 + x)2 + 4(
√

2 + x) + 11344

−8

[

(

arctan
√

7 −
π

4

)

−
1

8
(
√

7 − 1)

]}

δ2
1345

The coverable region for bucket 1 is1346

f (1, m) =
[

2π + 4
√

2

(

1 −
2

2m

)

−
4

2m
+

4

22m
+ 1

]

δ2
1347

and that for bucket 2 is1348

f (2, m)=

⎧

⎨

⎩

π(
√

2+x)2+4(
√

2+x)

(

1−
2

2m

)

−
4

2m
+

4

22m
+11349

−8

⎧

⎨

⎩

⎡

⎣arctan

√

2 − θ2
m

θm
−

π

4

⎤

⎦ −
1

2

[
√

2 − θ2
m − θm

]

θm

⎫

⎬

⎭

⎫

⎬

⎭

δ2
1350

Therefore, we have α(m+1)
α(m)

= A(m)
B(m)

where1351

A(m) = 4(2
√

2 + x)
2

2m+1
+

8

2m+1
−

8

22m+2
+

√
7 − 11352

−8 arctan
√

7 + 8 arctan

√

2 − θ2
m+1

θm+1
1353

−4

[

√

2 − θ2
m+1 − θm+1

]

θm+11354

and1355

B(m) = 4(2
√

2 + x)
2

2m
+

8

2m
−

8

22m
1356

+
√

7 − 1 − 8 arctan
√

71357

+8 arctan

√

2 − θ2
m

θm

− 4

[

√

2 − θ2
m − θm

]

θm1358

In a straightforward way, the above can give rise to the fol-1359

lowing.1360

A(m) ≤
1

2
B(m)1361
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