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Abstract. In contrast to alpha-numerical data, multimedia data can
have a wide range of quality parameters such as spatial and tempo-
ral resolution, and compression format. Users can request data with a
specific quality requirement due to the needs of their applications, or
the limitations of their resources. On-the-fly conversion of multimedia
data (such as video transcoding) is very CPU intensive and can limit the
level of concurrent access supported by the database. Storing all possible
replicas, on the other hand, requires unacceptable increases in storage re-
quirements. Although replication has been well studied, to the best of our
knowledge, the problem of multiple-quality replication has not been ad-
dressed. In this paper we address the problem of multiple-quality replica
selection subject to an overall storage constraint.

We establish that the problem is NP-hard and provide heuristic solu-
tions under a soft quality system model where users are willing to nego-
tiate their quality needs. An important optimization goal under such a
model is to minimize utility loss. We propose a powerful greedy algorithm
to solve this optimization problem. Extensive simulations show that our
algorithm finds near-optimal solutions. The algorithm is flexible in that
it can be extended to deal with replica selection for multiple media ob-
jects and changes of query pattern. We also discuss an extended version
of the algorithm with potentially better performance.

1 Introduction

Quality is an essential property for multimedia databases. In contrast to other
database applications, multimedia data can have a wide range of quality pa-
rameters. Users can request data with specific quality requirements due to the
needs of their applications, or the limitations of their resources. Quality-aware
multimedia systems [IJ2[3] allow users to specify the quality of the media to be
delivered. The quality parameters of interest also differ by the type of media
that we deal with. For digital videos, which we use as example throughout this
paper, the quality parameters include resolution, frame rate, color depth, audio
quality, compression format, security level, and so on [4]. For example, a video
editor may request a video at very high resolution when editing it on a high-
powered workstation, but request the video at low resolution and frame rate
when viewing it using a PDA.

Generally, there are two approaches to satisfy user quality specifications: (i)
dynamic adaptation: store only the highest resolution copy, and convert it to
the quality format requested by the user as needed at run-time; or (ii) static
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adaptation: pre-compute each different quality that can be requested and store
them on disk. When a user query is received, the appropriate copy is retrieved
from disk and sent to the user. Dynamic adaptation suffers from a very high CPU
overhead for transcoding from one quality to another [56]. Therefore, real-time
adaptation is difficult in a multi-user environment. Static adaptation attempts to
solve the problem of high CPU cost by storing precoded multiple quality copies
of the original media on disk. By this, the heavy demand on CPU power at
runtime is alleviated. We trade disk space for runtime CPU cycles, which is a
cost-effective trade-off since disks are relatively cheap.

However, storage costs for static adaptation could be extremely high. This
is because users vary widely in their quality needs and resource availability [5].
This leads to a large number of quality-specific copies of the same media con-
tent that need to be stored on disk. From a service provider’s point of view,
the storage requirements for static adaptation should not grow unboundedly as
storage, although cheap, is not free. This is especially true for commercial media
databases that must provide high reliability of disk resources. Our analysis [7]
shows that the extra disk space needed to accommodate all possible qualities is
O(nd) times of the original copy where n is the number of quality levels in one
quality dimension and d is the number of quality dimensions. Therefore, it is
infeasible to store all possible quality copies. On the other hand, the strategy of
selecting few copies based on the bandwidth of user devices (T1, DSL, dial-up
...), as many media services do nowadays, ignores the diversity of user’s quality
needs. In this paper, we study the problem of quality selection under storage
constraints for the purpose of satisfying user quality requirements.

We view the selection of media copies for storage as a data replication prob-
lem. Traditional data replication focuses on placement of copies of data in various
nodes in a distributed environment [§]. Quality-aware replication deals with data
placement in a metric space of quality values (termed as quality space). In the
traditional replication scheme, data are replicated as exact or segmental copies
of the original while the replicas in our problem are multiple quality copies gen-
erated via offline transcoding. In this paper, we assume user behavior can be
described by a soft quality model where users are willing to negotiate when the
original quality required is not available. Under this situation, users may ac-
cept a different quality with a decrease of satisfaction with the service. Our data
replication algorithms are designed to achieve the highest user satisfaction under
fixed resource (storage) capacities. Quality selection under a hard quality model
where users have rigid quality requirements is discussed in our technical report
[7]. There are two major contributions of this paper:

1. We formulate the replica selection problem as an optimization with the goal
of maximizing user satisfaction. We propose a fast greedy algorithm with
comparable performance to commercial optimizers. An improvement to the
greedy algorithm is also discussed.

2. We extend the above algorithm to handle the situation of dynamic replica-
tion where changes of query pattern are expected. Our solution is fast and
achieves the same level of optimality as the original algorithm.
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2 Related Work

Quality adaptation in media delivery in response to heterogeneous client re-
quests has attracted a lot of attention [2J6]. However, quality selection in static
adaptation is not well addressed. A closely related work is [5] where quality selec-
tion (under storage constraint) is performed to achieve the smallest transcoding
costs. In [9], the problem of optimal materialized view selection is studied. Both
[5] and [9] address different data selection problems from ours. Furthermore, nei-
ther considers quality selection in response to dynamic changes of query pattern.

Efforts to build quality-aware media systems include [2J6J3/1]. In our previous
work [I], we extend the query generation/optimization module of a multimedia
DBMS to handle quality of queries as a core DBMS functionality. In [4], speci-
fication of quality parameters in multimedia databases is discussed. The tradi-
tional data replication problem has been studied extensively in the context of
web [TO/TT], distributed databases [8], and multimedia systems [12J13]. The web
caching and replication problem aims at higher availability of data and load bal-
ancing at the web servers. Similar goals are set for data replication in multimedia
systems. What differs from web caching is that disk space and I/O bandwidth are
the major concerns in multimedia systems. A number of algorithms are proposed
to achieve high acceptance rate and resource utilization by balancing the use of
different resources [I3JT14]. Unlike web and multimedia data, database contents
are accessed by both read and write operations. This leads to high requirements
for data consistency, which often conflict with data availability. Another impor-
tant issue is dynamic data replication. As access rates to individual data items
are likely to change, we need to make our replication strategy adapt to changes
quickly and accurately to achieve optimal long-term performance. Wolfson et al.
[15] introduced an algorithm that changes the location of replicas in response to
changes of read-write patterns of data items.

3 System Model and Problem Statement

We assume that the database consists of a collection of servers that host the
media content and service user queries. Servers have limited storage space S.
For now, we consider only one media object and in Section [] we extend our
discussions to a system with V' media objects. User requests identify (via a
query) an object to be retrieved as well as the desired quality requirements
on d quality dimensions. Each quality can thus be modeled as a point in a d-
dimensional quality space. The domain of a quality parameter consists of finite
number of values and we denote the total number of quality points as m. Each
possible quality &k is modeled by fr and s where fj represents the query rate
for this version of the media and si is the byte size of this replica.

Utility is frequently used to quantify user satisfaction on a service [16] and
is thus the primary optimization goal in quality-critical applications [17]. Utility
functions serve the purpose of mapping quality to utility. For a request to a
quality A, if A is replicated, the server retrieve that replica to serve the request
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and no utility is lost. Otherwise, the request is served by the closest replica B
to A, and utility loss increases with the distance between A and B. Note that
providing a higher quality than needed does cause utility loss because the client
device may not have enough resources to handle it [7]. Techniques for generating
utility functions can be found in [16].

Our problem is to pick a set L of replicas from the quality space that gives
the largest total utility over time, which can be expressed as U = Zje] fiu(g, L)
where J is the set of all quality points and u(j, L) is the utility with which quality
Jj is served by the closest replica in L. We set u(j, L) to be an decreasing function
(within the range of [0, 1]) of the distance between j and its nearest neighbor in
L (see [7] for more details) and we have u(j, L) = 1.0 if j € L. We weight the
utility by the request rate f; and the weighted utility is termed as utility rate.
We name our problem the fized-storage replica selection (FSRS) problem and it
can be formulated as the following integer program:

maximize > ;>0 5 fiu(d, k)Y, (1)
subject to > res Xusk < S, (2)
ZkeJ Yir =1, (3)

Yjr < Xk, (4)

ij € {0’ 1}7 (5)

X, €{0,1}. (6)

where u(7j, k) is the utility value when a request to point k is served by a replica
in j, X} is a binary variable representing whether £ is replicated, Y} tells if j
should be served by k. Equation (2]) shows the storage constraint while Equations
@) and (@) mean that all requests from k should be served by one and only one
replica. Here f;, si, and S are inputs and Xy, for all £ € J is the solution.

A close match to FSRS is the so-called p-median problem with the same
problem statements except Equation (@) becomes > X, = p, meaning only
p (p < |J|) points are to be selected. As the p-median problem is NP-hard [18],
it is easy to see that FSRS is also NP-hard [7].

4 Replica Selection Algorithms

In dealing with the FSRS problem, we can use a benefit/cost model to analyze
the value of a replica k: the cost is obviously the storage s, the benefit is the gain
of utility rate by selecting k. A good heuristic would select the set of replicas with
the highest benefit/cost ratios [7]. However, the benefit of one replica depends on
the selection of other replicas. We propose an algorithm (Fig[Il) that takes greedy
guesses on such benefits. The main idea is to aggressively select replicas one by
one. The first replica is assigned to a point k that yields the largest AU/ sy
value as if only one replica is to be placed. We use AUy /sy to denote the utility
density of replica k where AUy, is the marginal utility rate gained by replicating
k. The following replicas are determined in the same way, i.e. the n-th replica
maximizes AU, /s, based on the n — 1 replicas that are already selected.
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Algorithm GREEDY ADDREPLICA (s, P’)
Inputs: fi, sk, S 1 ¢+ NULL, Vipaz < 0
Output: a set of selected replicas, P | |2 for each quality point k do

3 ifk ¢ P and s < s
1 8«8 P—0 k<0 4 U+—0
2 while k # NULL do 5 for each quality point j
3 k < ADDREPLICA(s', P) 6 U« U + MaxUTIL(j, k, P')
4 s — s —sp 7 if U/sk > Vinaa
5 append k to P 8 Vinaz < U/ sk
6 return P 9 1—k

10 return ¢

Fig. 1. The Greedy algorithm

Algorithm Greedy (Fig[ll) terminates when no more replicas can be added due
to storage constraints. New replicas are selected via subroutine ADDREPLICA by
trying all m points in the quality space to look for the one that yields the largest
utility density. Note subroutine MAXUTIL (line 6 of ADDREPLICA) gives the
utility from j to its mearest replica in P’ + k, which can be done in constant
time. As ADDREPLICA runs for O(mQ) time, the time complexity for Greedy is
O(I m2) where I is the total number of replicas selected.

The Iterative Greedy Algorithm. This algorithm attempts to improve the perfor-
mance of Greedy. We notice that at each step of Greedy, some local optimization
is achieved: the (n+1)-th replica chosen is the best given the first n replicas. The
problem is: we do not know if the first n replicas are good choices. However, we
believe the (n+1)-th replica added is more ‘reliable’ than its predecessors because
more global information (existence of other selected replicas) is leveraged in its
selection. Based on this conjecture, we develop the Iterative Greedy algorithm
that iteratively improves the ‘correctness’ of the replicas chosen. Specifically, we
repeatedly get rid of the most ‘unreliable’ selected replica and choose a new one.
The operations in Iterative Greedy are shown in Fig[2l All replicas selected by
Greedy are stored in a FIFO queue P’. In each iteration, we dequeue P’ and
find one replica (again, by ADDREPLICA) based on the remaining replicas. The
newly identified replica is then added to the tail of P’. We record the set of
replicas with the largest utility rate as the final output (P). The only problem
here is how to set the number of iterations I. Since the primary goal of Iterative
Greedy is to reconsider the selection of the first few ‘unreliable’ replicas, we can
set I to be the number of replicas selected by Greedy. The time complexity of
Iterative Greedy is thus O(I m2), which is the same as that of Greedy.

Handling Multiple Media Objects. With very few modifications, both Greedy
and [terative Greedy algorithms can handle multiple media objects. The idea
is to view the collection of V' physical media as replicas of one virtual media.
The different content in the physical media can be modeled as a new quality
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Algorithm ITERATIVEGREEDY

1 Unaz < 07 P «— @

2 fori—O0tol

s do k/H d(/equeue P’ Fig.2. The Iterative greedy algo-
;l ZS:XD—J;_P;QPI;PLICA(S’ P rithm. Output: P. Inpluts: P -a
6 append [ to P' and 1;p date s’ set of replicas selected, s’ - available
7 U « total utility rate of P’ storage after P’ is replicated.

8 if Upaz < U then

9 do Uz — U

10 copy P’ to P

dimension called content. A special feature of content is its lack of adaptability.
For example, any replica of the movie Matriz cannot be used to serve a request
to the movie Shrek. Assume the quality spaces of all physical media have m
points, the FSRS problem with V' media can thus be solved by simply running
the Greedy algorithm for the virtual media with Vm points. Knowing that there
is no utility gain between two replicas with different content, we only need to
run the second loop (line 5) in ADDREPLICA for those with the same content.
Thus, the time complexity of GREEDY is O(IVmQ) rather than O(IVQmQ).

5 Dynamic Data Replication

In previous sections we deal with the problem of static replication, in which access
rates of all qualities do not change over time. In this section, we discuss quality-
aware data replication in an environment where access patterns change. A good
dynamic replication algorithm needs to meet two requirements: quick response
to changes and optimality of results. Dynamic replication in soft quality systems
is a very challenging task. The difficulty comes from the fact that the access rate
change of a single point could have cascading effects on the choices of many (if not
all) replicas. We may have to rerun the static algorithms (e.g. Greedy) in response
to such changes but these algorithms are too slow to make online decisions. In
this section, we assume that runtime changes of access pattern only exist at the
media object level. In other words, the relative popularities of different quality
points for the same media object do not change. This assumption is found to
be reasonable in many systems [I2JT3]. We understand that a solution for more
general situation is also meaningful and we leave it as future work.

Let us first investigate how algorithm GREEDY selects replicas. The history
of total utility rate gained and storage spent on each selected replica can be
represented as a series of points in a 2D graph. We call the lines that connect
these points in the order of their being selected a Replication Roadmap (RR).
Fig [3] shows two examples of RRs plotted with the same scale. We can see
that all replication roadmaps are convex. This is because: the slope of the line
connecting any two consecutive points (e.g. r1 and r2 in Fig[BlA) represents the
ratio of AU,9 to s,2. As Greedy always chooses a replica with the largest AU/s
value, the slopes of the line segments along the RR are thus non-increasing.
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In dynamic replication, replicas need to be re-selected with respect to the
new query rate of a media object. Suppose the query rate f; of a media object
i increases by a factor ¢ (§ > 0). What happens now is that we may consider
assigning extra storage to ¢ as it reaches a position to use storage more profitably
than before. As storage is limited, the extra chunk should come from another
media object whose slope in the last piece of RR is small. Take Fig Bl as an
example. Suppose we have fully extended RRs: all future replicas are precom-
puted (empty dots in Fig[3)) and we call the last real replica the frontier of the
RR. It buys us more utility to advance A’s frontier (take storage) and move
backwards on B’s RR (give up storage). The beauty of this scheme is: we never
need to pick up points far into or over the frontier to make storage exchanges.
The convexity of RRs tells us that the frontier is always the most efficient point
to acquire/release storage. Based on this idea, we design an online algorithm
named SOFTDYNAREP for dynamic replication (see [7] for pseudocode).

The algorithm consists of two phases: the Preprocess Phase and Online Phase.
In the first phase, we need to extend each RR formed by Greedy or Iterative
Greedy by adding all m replicas. For all RRs, we put the immediate predecessor
of the frontier in a list called blist and its immediate successor in a list called
flist. Both lists are sorted by the slopes of the segments stored. The Preprocess
phase runs at O(Vmg) time and it only needs to be executed once. The Online
Phase is triggered once a change in query rate to an object 7 is detected. The
idea is to iteratively take storage from the tail of blist and add that to the
head of flist (we call this operation storage exchange) until a new equilibrium is
reached. The running time of this phase is O(Ie log V) where I, is the number
of storage exchanges (obviously, I, = O(m)). We claim that the online phase
of SOFTDYNAREP achieves the same quality in the selected replicas as that by
rerunning Greedy. A rigorous proof can be found in [7].

6 Experiments

We study the behavior of the proposed algorithms by extensive simulations. Due
to space limitations, we only present the most important results. We use traces of
270 MPEG-1 videos extracted from a real video databasd] as experimental data.
We simulate a 3D quality space with various number (100-500) of replicas. The
sy values for all replicas are generated from empirical equations [7]. As real-world

! http://www.cs.purdue.edu/vdbms
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traffic traces for quality-aware systems are not available, we test various synthetic
access patterns (i.e., fj values) in our simulations. We run our experiments on
a Sun Workstation with a UltraSparc 1.2GHz CPU.

A. absolute utility rate B. relative U to optimal
3600

Fig. 4. Optimality of

e . .
5200 =S Sse5 —— N —— replica selection al-
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Performance of Replica Selection Algorithms. We evaluate the performance of
Greedy and Iterative Greedy algorithms in terms of optimality (FigH) and run-
ning time (Fig Bl). In this experiment, we set f to 3600 requests/hour so the
utility rate is bounded by 3600/hr. We compare our algorithms with three oth-
ers: 1. the CPLEX mathematical programming packagdd; 2. a random algorithm;
3. a local algorithm that places replicas in the most frequently accessed areas
in the quality space. CPLEX is a widely-used software for solving various op-
timization problems and is well-known for its efficiency. We tune CPLEX such
that the results obtained are within a 0.01% gap to the optimal solution.

From FigHlA, it is clear that our algorithms always find solutions that are very
close to the optimal. More details can be found in Fig B where the relative U
values obtained by our algorithms to those by CPLEX are plotted. Utility rates
of solutions found by Greedy are only about 3% smaller than the optimal values.
The Iterative Greedy cuts the gap by at least half in all cases: the solutions it finds
always achieve more than 99% of the optimal utility rate. For both algorithms,
the performance is insensitive to the number of quality points. Nor is it affected
by access patterns or storage constraints. We tested different access patterns
(e.g. Zipf, 20-80, and uniform) and S values (60-300GB) and obtained similar
results (data not plotted here). The solutions given by random and local are far
from optimal. The fact that the local algorithm performs even worse than the
random algorithm shows that it is dangerous to consider only local or regional
information in solving a combinatorial problem.

The running time of the above experiments are shown on a logarithmic scale
in Figure[fl CPLEX is the slowest algorithm in all cases. This is what we expected
as its target is the global optimal solution. Actually, we could only run CPLEX
for the five smaller cases due to its long running time. Both Greedy and Iterative
Greedy are 2-4 orders of magnitude faster than CPLEX. It takes them about 200
seconds to solve the selection of 30 videos in a quality space with 500 points.

2 version 8.0.1, http://www.cplex.com
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Performance of dynamic replication algorithm. We also test our dynamic repli-
cation algorithm under the soft quality model for its optimality and speed. We
simulate a system for a period of time during which events of query rate changes
of media objects are randomly generated. We allow the query rate of videos to
increase up to 20 times and to decrease down to 1/10 of the original rate. We
first compare the total utility rate of the selected replicas between the online
phase of SOFTDYNAREP and Greedy. For all events, the replicas selected by
SOFTDYNAREP get utility rates that are consistently within 99.5% of that by
rerunning the Greedy algorithm (Fig[@A). In this experiment of 270 videos and
a 20 x 20 quality space, the running time of SOFTDYNAREP for each event is
on the order of 10™# seconds while GREEDY needs to run about half a hour to
solve the same problems. The main reason for SOFTDYNAREP’s efficiency is the
small number of storage exchanges. In Fig 6B, we record such numbers for each
execution of SOFTDYNAREP and very few of these readings exceed 15.

A. Relative Utility Rate B. Number of exchanges
T T 25 T T T
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Fig. 6. Performance of SOFTDYNAREP

7 Conclusions

In this paper, we study the problem of selecting quality-specific replicas of media
data. This problem is generally ignored in multimedia database research due
to the oversimplified assumption that storage space is always abundant. We
provide solutions to the problem under a soft quality model where users’ quality
needs are negotiable. We propose a greedy algorithm to solve the optimal replica
selection problem heuristically. Experiments show that the total utility rates of
the solutions found by our algorithm are over 97% of those of the optimal. An
advanced version of this algorithm further increases that to 99%. A derived
online algorithm provides an elegant solution to an important subproblem of
dynamic data replication. While the greedy algorithm takes cubic time, the low
time complexity of the online algorithm makes our solution scalable.
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