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Abstract— Particle simulation has become a popular research
tool in many scientific and engineering fields. Analysis of particle
simulation data involves computing functions of all particle-to-
particle interactions. One such analytics, the spatial distance
histogram (SDH), is of vital importance to scientific discovery
from particle simulation data. Algorithms for efficiently S DH
processing in large-scale simulation have been proposed ina
couple of recent papers. These algorithms all adopt a recursive
tree-visiting strategy to process particle distances in the visited
tree nodes in batches, thus require less time as compared to
the brute-force approach where all pairwise distances haveto
be computed. The complexity of such algorithms have not been
thoroughly studied. In this paper, we present an analysis ofsuch
algorithms based on a geometric modeling approach. The main
technique is to transform the analysis of particle counts into
a problem of quantifying the area of regions where particle
distances can be processed in batches by the algorithm. From
the analysis, we conclude that the number of particle distances
that are left to be processed decreases exponentially with more
levels of the tree visited. This leads to a time complexity lower
than the quadratic time needed for the brute-force algorithm.
Our model is also general in that it works for a wide range of
space partitioning options in building the tree.

I. I NTRODUCTION

The development of advanced experimental devices and
computer simulations have given rise to explosive rendering of
data in almost all scientific fields. As a result, scientific data
management has gained much momentum in research within
the database community in recent years. In addition to the
challenges of data storage/retrieval imposed by the gigantic
volume of scientific data, we also face the issue of designing
efficient algorithms for data querying and analysis. Scien-
tific data analysis often require computation of mathematical
(statistical) functions whose complexity goes beyond simple
aggregates, which are the only analytics supported by modern
DBMSs. In this paper, we are interested in the processing of
one type of such queries againstparticle simulation data. With
applications in various science [1], [2], [3] and engineering [4]
fields, particle simulation (PS) is a type of computer simulation
that treats system components (e.g., atoms, molecules, stars,
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galaxies) as classical entities (i.e., particles) that interact via
empirical forces. In PS, one query called theSpatial Distance
Histogram (SDH)is of vital importance.

The SDH problem can be formally stated as: given the coor-
dinates ofN particles in a metric space, draw a histogram that
represents the distribution of the pairwise distances between
the N points. The histogram has a single parameterl, which
is the total number of buckets. Since the dataset is always
generated from a simulated system with fixed dimensions, the
maximum distance between any two pointsLmax is also fixed.
The width of the buckets (i.e., histogram resolution)p = Lmax

l
is often used as the parameter of the query instead. In other
words, SDH asks for the counts of pairwise distances that fall
into ranges[0, p), [p, 2p), · · · , [lp−p, lp), repsectively. SDH is
needed for computing many critical high-level analytics such
as pressure, energy, [1] and structure factor [5] in the simulated
systems.

While a naive way to compute SDH takesO(N2) time,
more efficient algorithms have been developed [6], [7]. The
main idea of this type of algorithm is to derive the histogram
by studying the distance between clusters of points instead
of those between two individual points. Although different
implementations exist in [6] and [7], both can be abstracted
into a recursive tree-based algorithm described in SectionII.

This paper presents the complexity analysis of the above
algorithm. An important contribution of this paper is the model
we develop to accomplish such analysis. The main idea is
to transform the number of particles into geometric regions
whose area can be represented by closed-form formulae, which
make rigorous analysis possible. In addition to the complexity
analysis of the exact SDH algorithm, our model also builds the
foundation for an approximate algorithm with time complexity
depending only on a controlled error bound [6]. The latter
provides a more practical solution to process SDH in very
large simulation datasets.

II. T HE ALGORITHM

The algorithm first divides the simulated space into a grid,
each cell of which records the number of particles in it. We call
such a grid adensity mapand density maps with different cell
sizes have to be maintained. For this, the algorithm is named



Procedure RESOLVETWOCELLS (A, B)
1 if A andB are resolvable
2 addn1n2 to the corresponding bucket
3 else if A andB are not leaf nodes
4 for each childa of A

5 for each childb of B

6 RESOLVETWOCELLS (a, b)
7 else
8 compute all pairwise distances betweenA andB

and add each pair to corresponding bucket

Fig. 1. Procedure ResolveTwoCells - core of the DM-SDH algorithm.

density map-based SDH (DM-SDH) algorithm. In practice, we
organize all particle coordinates into a point region Quad-tree
[8] with each node representing a cell (square for 2D data
and cube for 3D) in the simulated space. Particle counts of
each cell are cached in the corresponding tree node. The total
number of levels of the tree is determined in a way such that,
on average, there are a small numberβ of particles in each leaf
node. The process of tree construction can be accomplished
in O(N) time.

The focal point of this algorithm is a procedure named
RESOLVETWOCELLS (Fig. 1). To resolve two cellsA andB

(with particle countn1 andn2, respectively), we first read the
coordinates of the two cells and compute the range of distances
between any pair of points, one fromA and one fromB. Note
that this distance range can be computed in constant time. If
this range is contained in the range of a histogram bucketi,
we sayA andB are resolvableand theyresolve intobucket
i. In this case, we simply increment the count of bucketi by
n1n2. If the two cells are not resolvable, we recursively make
attempts to resolve all their children. In case we have reached
the lowest level of the tree, we have to calculate all distances
of the particles in the unresolved cells.

The algorithm starts from a certain level of the tree where
the diagonal of the cells is no greater thanp (otherwise we
cannot resolve anything). We denote this level as density
map DMa. First, all intra-cell pairwise distances can be put
into the first bucket (with range[0, p)). In the next step,
RESOLVETWOCELLS is called for all pairs of cells onDMa.

In the remainder of this paper, we first give a detailed
introduction to our geometric model in Section III. In this
model, we focus on a simple scenario where the data is of
2D. In building the tree, space partitioning in a node is done
by dividing each dimension into two equal sized segments
(i.e., regular Quad tree for 2D and Oct tree for 3D). We will
then extend our analysis to more generalized conditions on
space partitioning and 3D data (Section IV). The complexity
analysis based on the model is presented in Section V. We
conclude the paper by Section VI.

III. M ODELING NUMBER OF RESOLVABLE PARTICLES

An essential problem our analysis needs to answer is: given
a cell A on the first density mapDMa, how many particles
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Fig. 2. Boundaries of bucket 1 and bucket 2 regions of cellA, with the
bucket widthp being exactly

√

2δ. Here we show arcŝQ1Q2, Ĉ1C2, and
D̂1D2, all of which are centered at point O.

are contained by those resolvable cells related toA as we
visit more and more levels of density maps? Although this has
something to do with the spatial distribution of the particles,
we start by analyzinghow much area are covered by the
resolvable cellsto simplify the process. To achieve this, we
first need to define a theoretical region in which a particle can
have distance (to a point inA) that falls into a specific bucket
i. We call this region thebucketi region of cell A.

A. Basics of the model

In Fig. 2, a cell A is drawn with four corner points
O, O1, O2, and O3. The side length ofA is exactly δ =
p√
2
. The bucket 1 region ofA is bounded by a curve

connected by pointsC1 to C8. This region is drawn as follows:
C1C2, C3C4, C5C6, and C7C8 are all arcs of 90 degrees
centered at the four corners of cellA and their radii are
p; C2C3, C4C5, C6C7, and C8C1 are line segments. Note
that this is a theoretical “maximum” region where a point
can resolve with any point inA. It is easy to see that the
area of this region isπp2 + 4pδ + δ2. Let us continue to
consider distances that fall into the second bucket (i.e., [p,
2p) ). Again, the bucket 2 region ofA is of similar shape
to the bucket 1 region except the radii of the arcs are2p, as
drawn in Fig. 2 with a curve connected by pointsD1 to D8.
However, points that are too close toA can only resolve into
bucket 1 since their distances to any point inA will always
be smaller thanp. These points are contained in a region as
follows: on each corner point ofA, we draw an arc with radius
p on the opposite corner (i.e., arcsQQ1, Q1Q2, Q2Q3, and
Q3Q4). Therefore, the bucket 2 region should not include this



g(i) =

{
(2π + 4

√
2 + 1)δ2 i = 1[

2πi2 + 4
√

2i − (i − 1)2
(
8 arctan

√
8(i − 1)2 − 1 − 2π

)
+
√

8(i − 1)2 − 1
]
δ2 i > 1

(1)

inner region (denoted as regionB hereafter). A more detailed
illustration of regionB is shown in Fig. 3.

The area of the bucket 2 region isπ(2p)2+8pδ less the area
of regionB, which consists of eight identical smaller regions
such aŝQ1O2D and cellA itself (Fig. 3). To get the area of
Q̂1O2D, we first need to know the magnitude of the angle
∠Q1OO2, which can be computed by

∠Q1OO2 = ∠Q1OE − ∠COE

= arctan
Q1E
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4
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δ
2

)2
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Thus, the area of sector̂Q1O2O is 1
2p2

∠Q1OO2. The area of

regionQ̂1O2D can be obtained by the area of this sector less
the area of trianglesO2DC andQ1CO as follows:

S
Q̂1O2D

= S
Q̂1O2O

− S△O2DC − S△Q1CO

=
1

2
p2
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and we haveπ(2p)2 + 8pδ − 8S
Q̂1O2D

− SA as the area of
the bucket 2 region.

The approach to obtain the area of bucketi (i > 2) regions
is the same as above. For the area of the region formed by the
outer boundary, we only need to consider that the arcs in Fig.
3 are of radiiip. The development of a general formula for the
area of regionB is trickier. Our efforts lead to the following
formula to quantify the area of the bucketi region:

g(i) =

{
πp2 + 4pδ + δ2 i = 1

π(ip)2 + 4ipδ − [8A(i) + B(i)δ2] i ≥ 2

Q1
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Fig. 3. An illustration on how to compute the area of regionB (i.e.,
QQ1Q2Q3 formed by four arcs in Fig. 2). Here we only show arcQ1O2,
which is a half of one of the arcsQ1Q2.

whereB(i) = [2(i − 1) − 1]2 − 1 and

A(i) =
1

2
[(i − 1)p]2
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Since we havep =
√

2δ, the above equation becomes Eq.
(1) shown on top of this page.

B. Coverable regions

Eq. (1) gives the area of a theoretical region that contains all
particles that could possibly resolve into a given bucket with a
point in cellA. Now let us study how much of this region can
be resolved in our algorithm under different levels of density
maps. We call the region that consists of all resolvable cells
the coverable region.

1) Case 1: the first bucket:Let us start our discussions on
the situation of bucket 1. In Fig. 4, we show the coverable
regions of three different density map levels:m = 1, m = 2,
andm = 3, as represented by blue-colored lines and denoted
as A

′ in all subgraphs. Form = 1, the resolvable cells are
only those surroundingA. All other cells, even those entirely
contained by the bucket 1 region, do not resolve with any level
1 subcell ofA. As we increasem, the regionA′ grows in area,
with its boundary approaching that of the bucket 1 region. To
represent the area ofA′, we need to develop a continuous line
to approximate its boundary. One critical observation hereis:
the furtherest cells inA′ are those that can resolve with cells
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Fig. 4. Actual (solid blue line) and approximated (dotted blue line) coverable regions for bucket 1 under: a.m = 1; b. m = 2; and c.m = 3. Outer solid
black lines represent the theoretical bucket 1 region. All arrowed line segments are drawn from the centers to the corresponding arcs with radiusp.

on the outer rim ofA. For example, the cell cornered at point
D resolves with the cell cornered at point C inA. If we draw
a 90-degree arc centered at C, the arc goes through D and
all cells on the northwestern corner ofA′ are bounded by
this arc. To approximate the boundary ofA

′, we can draw
such an arc at all four corners of the graph and connect them
with line segments (e.g., EF connecting the northwestern and
northeastern arcs centered at point G in Fig. 4b), as shown
by the blue dotted line. Obviously, this line approaches the
theoretical boundary asm increases because the center of the
arcs (e.g., point C) move further to the corner points ofA

as the cells become smaller. Note this line gives rise to an
optimistic approximation ofA′. In a moment, we will show
that this overestimation will not harm our analysis on the
running time of DM-SDH. The area of the coverable region
for bucket 1 at levelm can be expressed as

SA′ = πp2 + 4p

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)2

(2)

where the first itemπp2 is the area of the four 90-degree
sectors centered at point C, the second item is the area of the
four rectangles (e.g., EFGC in Fig. 4b) connecting the four
sectors. We also need to add the area of the small square
(with side CG in Fig. 4b) within cellA, which is given by
the last item.

2) Case 2: the second bucket and beyond:The cases of
buckets beyond the first one are more complicated. First of
all, the outer boundary of the bucketi (i ≥ 2) regions can
be approximated using the same techniques we introduced for
bucket 1 (Section III-B.1). Therefore, we can use the following
generalized form of Eq. (2) to quantify the area of the region
formed by the outer boundaries only.

Sout(i) = π(ip)2 + 4ip

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)2

(3)

However, we also need to disregard the cells that lie in
the inner boundary (e.g., those within or near regionB).
To quantify the area of the region contained by the inner

boundary, we need to consider the cases ofm = 1 andm > 1
separately.

Bucket 3 boundaries

A

C

Bucket 2 boundaries

O

Fig. 5. Inner boundaries of the coverable regions of buckets2 and 3 under
m = 1. All arrowed line segments are of length2p.

Let us first study the case ofm = 1. Fig. 5 shows examples
with m = 1 with respect to the second and the third bucket.
It is easy to see that any cell that contains a segment of the
theoretical regionB boundary will not resolve into bucketi
because they can only resolve into bucketi− 1. Furthermore,
there are more cells that resolve into neither bucketi− 1 nor
bucketi. Here our task is to find a boundary to separate those
m = 1 cells that can resolve into bucketi with any subcell in
A and those that cannot. Such boundaries for buckets 2 and
3 are shown in Fig. 5 as solid blue lines. The boundary can
be generated as follows: on each quadrant (e.g., northwest)
of cell A, we draw an arc (dotted blue line) centered at the
corner point C of the furthest (e.g., southeast) subcell ofA

with radius(i− 1)p. Any cell that contains a segment of this
arc cannot resolve into bucketi (because they are too close to
A) but the cells beyond this line can. Therefore, we can also
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Fig. 6. Inner boundaries of the coverable regions of buckets2 and 3 underm = 2 andm = 3. All arrowed line segments are of length2p.

use these arcs to approximate the zigzagged real boundaries.
Let us denote the region bounded by this approximate curve
as regionB′. For m = 1, the arcs on all four quadrants share
the same centerC therefore they form a circle as regionB′.
The radii of the circles are exactly(i− 1)p for bucketi. Note
that this, again, could give rise to an optimistic approximation
of the area of coverable regions. Therefore, the area of the
coverable region form = 1 and i ≥ 2 is:

SA′ = π(ip)2 − π[(i − 1)p]2 (4)

where the first item is the area of the region formed by the
approximated outer boundary, which is given as a special case
of Eq. (3) for m = 1 and happens to be a circle; and the
second item is that of the region formed by the approximated
inner boundary (i.e., regionB′).

For the case ofm > 1, we can use the same technique
described for the case ofm = 1 to generate the curves to
form regionB

′. However, these curves are no longer a series
of circles. In Fig. 6, we can find such curves for buckets
2 and 3 underm values of 2 and 3. As the four arcs on
different quadrants no longer share the same center, the region
B

′ boundaries (dotted blue lines) are of similar shapes to the
theoretical regionB boundaries (solid black lines). From the
graphs, it is easy to see that the approximated curve fits the
actual boundary better asm increases. Here we skip the formal
proof as it is straightforward. Furthermore, it also converges
to the regionB boundary whenm gets bigger. This is because
the centers of the two arcs (with the same radii), points C and
O, become closer and closer when the cell size decreases (as
a result of the increase ofm).

The area of regionB′ can be computed in the same way
as that of regionB, with the help of an illustration in Fig. 7.
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Fig. 7. An illustration on how to compute the area of region formed by four
arcs in Fig. 6. Here we only show half of one of the arcs.

First, we get the magnitude of angleBCD by

∠BCD = ∠DCE − ∠FCE

= arctan
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4

From now on, let us defineθ as a function ofm for the
convenience in further discussions:

θm =
1

2
− 1

2m
.

The area of the sector̂BDC is 1
2 [(i−1)p]2∠BCD, and the
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area of the region̂BDGF is

SdBDGF
= SdBDC
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Finally, we get the area of the coverable region fori ≥
2, m > 1 as

SA′ = Sout(i) − 8SdBDGF − SA

= π(ip)2 + 4ip

(
δ − 2δ
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]
(6)

In summary, let us denote the area of the coverable region
A

′ for bucket i under differentm values asf(i, m). By
combining and simplifying Equations (2), (4), and (6) with
p =

√
2δ, we get Eq. (5) shown on top of this page, in which

γm =
√

2(i − 1)2 − θ2
m.

C. Covering factor

In this section, we give a quantitative analysis on the
relationship betweenf(i, m) and the area of the theoretical
regiong(i) for all buckets. For that purpose, given any density
map level m, we define thecovering factor c(m) as the
ratio of the total area of the coverable regions to that of the
theoretical bucketi regions for all i. However, the quantity
that is more related to our analysis is thenon-covering factor
α(m) = 1 − c(m). Specifically, we have

α(m) =

∑l
i=1[g(i) − f(i, m)]
∑l

i=1 g(i)
(7)

The quantityα(m) is important in that it can directly tell
how many cell pairs are resolvable on a given density map
level (as the total number of cell pairs is always known for
each level). Before investigating the features ofα(m), let us
define two relevant quantities, the total area of bucket regions
for all bucketsG, and that of all coverable regionsF . Being
summations over all buckets ofg(i) andf(i, m), they can be

expressed as functions of the total bucket numberl. We also
remove the common factorδ2 from both Eq. (1) and Eq. (5)
for the convenience of displaying equations. First, we have

G(l) =

∑l
i=1 g(i)

δ2

= 1 +
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(
2πi2 + 4
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2
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3
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(i − 1)2 (8 arctanσi − 2π) − σi

]
(8)

where σi =
√

8(i − 1)2 − 1. The area of total coverable
regions is considered in two cases. Form = 1, we get

F (l, 1) =

∑l
i=1 f(i, 1)

δ2

= 2π + 2π

l∑

i=2

(2i − 1) = 2πl2 (9)

and form > 1, we have the following formula:
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With the above definitions, we develop the most important
result in our analysis in the following lemma.

Lemma 1:For any given standard SDH query with bucket
width p, let DMa be the first density map the DM-SDH
algorithm starts running, andα(m) be the non-covering factor
of a density map that liesm levels belowDMa (i.e., map
DMa+m). We have

lim
p→0

α(m + 1)

α(m)
=

1

2
.



Proof: From Eq. (7), we easily get

α(m + 1)

α(m)
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G(l) − F (l, m)

Plugging Eq. (8), Eq. (9), and Eq. (10) into the above formula,
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in which θm =
1

2
− 1

2m
andθm+1 =

1

2
− 1

2m+1
.

The case ofp → 0 is equivalent tol → ∞. Despite their
formidable length and complexity,A(m) andB(m) have the
following feature

lim
l→∞

A(m)

B(m)
=

1

2
(13)

and this concludes the proof. More details on derivation of Eq.
(13) can be found in Appendix I.

Lemma 1 is important in that it shows the number of non-
resolvable cell pairs decreases exponentially (by half) when
more levels of the tree are visited. In RESOLVETWOCELLS,
if a cell pair is not resolved, we have to make 16 recursive calls
to the same routine for the 4 children of each cell. Lemma 1
says that we can expect16 × 0.5 = 8 pairs of the children
to be resolvable. This greatly eases our analysis of the time
complexity of DM-SDH (Section V).

While shown in the form of a limit under largel (i.e., small
p), Lemma 1 also works well under smalll values. This can
be effectively verified by numerical results due to the closed
form of Eq. (11) and Eq. (12). From the results shown in Table
I, we can easily see that the ratio ofα(m+1) to α(m) quickly
converges even whenl is very small.

(a) Outer boundary of the bucket 1 region.

(b) Inner boundary of the bucket 2 region.

Fig. 8. Geometric structure of the bucket 1/2 regions for 3D data.

IV. EXTENSIONS

A. 3D analysis

The strategies used to achieve the above analysis can be
extended to 3D data. The outer and inner boundaries of bucket
i regions are illustrated in Fig. 8. The analysis should be based
on the volume of relevant regions surrounding a cubeA with
side lengthδ. The bucket 1 region (Fig.8(a)) ofA consists of
the following components: 1) quarter cylinders (green) with
lengthδ and radiusp =

√
3δ; 2) one-eighth of a sphere (red)

with radiusp; 3) cuboids (white) with dimensionsδ, δ, and
p; and 4) cubeA itself (not shown). There are eight pieces of
each of the first two items and six pieces of item 3. The inner
boundary (regionB) of the bucket 2 region (Fig. 8(b)) consists
of eight identical portions of a spherical surface centeredat the
opposite corner ofA with radiusp. Note that the projection of
these regions on 2D are exactly those found in Fig. 2. Again,
the shape of the region does not change with respect to bucket
numberi - we only need to changep to ip.

The volume of the bucketi region can thus be expressed as

g(i) =





4

3
πp3 + 6pδ2 + 3πp2δ + δ3, i = 1

4

3
π(ip)3 + 6ipδ2 + 3π(ip)2δ + δ3 − v(i, p, δ), i > 1



TABLE I

VALUES OFα(m + 1)/α(m) OF 2D DATA UNDER DIFFERENT VALUES OFm AND l. COMPUTED WITH MATHEMATICA 6.0. PRECISION UP TO THE6TH

DIGIT AFTER DECIMAL POINT.

Map Total Number of Histogram Buckets (l)
levels 2 4 8 16 32 64 128 256
m=1 0.508709 0.501837 0.50037 0.50007 0.500012 0.500002 0.5 0.5
m=2 0.503786 0.500685 0.500103 0.500009 0.499998 0.4999990.499999 0.5
m=3 0. 501749 0.500282 0.500031 0.499998 0.499997 0.4999990.5 0.5
m=4 0. 500838 0.500126 0.50001 0.499997 0.499998 0.499999 0.5 0.5
m=5 0. 50041 0.500059 0.500004 0.499998 0.499999 0.5 0.5 0.5
m=6 0.500203 0.500029 0.500002 0.499999 0.499999 0.5 0.5 0.5
m=7 0.500101 0.500014 0.500001 0.499999 0.5 0.5 0.5 0.5
m=8 0.50005 0.500007 0.5 0.5 0.5 0.5 0.5 0.5
m=9 0.500012 0.500003 0.5 0.5 0.5 0.5 0.5 0.5
m=10 0.500025 0.500002 0.5 0.5 0.5 0.5 0.5 0.5

TABLE II

VALUES OFα(m + 1)/α(m) OF 3D DATA UNDER DIFFERENT VALUES OFm AND l. COMPUTED WITH MATHEMATICA 6.0. PRECISION UP TO THE6TH

DIGIT AFTER DECIMAL POINT.

Map Total Number of Histogram Buckets (l)
levels 2 4 8 16 32 64 128 256
m=1 0.531078 0.509177 0.502381 0.500598 0.50015 0.500038 0.50001 0.500002
m=2 0.514551 0.504128 0.50102 0.500247 0.50006 0.500013 0.500004 0.5
m=3 0.505114 0.500774 0.500051 0.499987 0.499991 0.5015510.499996 0.500004
m=4 0.498119 0.497695 0.499076 0.499717 0.499931 0.4984280.5 0.5
m=5 0.490039 0.49337 0.496703 0.499313 0.499811 0.499966 0.5 0.499983
m=6 0.47651 0.485541 0.49586 0.498521 0.499586 0.499897 0.499931 0.499897
m=7 0.448987 0.469814 0.48972 0.497032 0.499241 0.499793 0.499931 0.500138
m=8 0.38559 0.435172 0.478726 0.494029 0.49848 0.499448 0.499862 0.5

where the first four items in both cases represent the volumes
of the four components listed above andv(i, p, δ) is that for
the region formed by half of a spherical surface in Fig. 8(b).
With p =

√
3δ, the above equation becomes

g(i) =

{(
4
√

3π + 6
√

3 + 9π + 1
)
δ3 i = 1[

4
√

3πi3 + 6
√

3i + 9πi2 + 1 − v(i, p)
]
δ3 i > 1

wherev(i, p, δ) = 16VB and

VB =

∫ ∫

B

dxdy

∫ √
p2−x2−y2

δ/2

dz

=

∫ ∫

B

(√
p2 − x2 − y2 − δ

2

)
dxdy

=

∫ π

4

a

dθ

∫ c

b

(√
p2 − r2 − δ

2

)
rdr

=

∫ π

4

a

[
−1

3
(p2 − r2)

3

2 − δ

4
r2

] ∣∣∣∣∣

c

b

dθ

=

∫ π

4

a

[
− δ3

24
+

1

3
(p2 − b2)

3

2 − δ

4
c2 +

1

16

δ3

(sin θ)2

]
dθ

wherea = arctan
δ
2√

p2 − 2
(

δ
2

)2 , c =

√
p2 −

(
δ
2

)2
, andb =

δ

2 sin θ
.

We continue to develop formulae for the coverable regions
f(i, m) and non-covering factorα(m) as we do in Section III-
B and Section III-C. These formulae can be found in Appendix
II. The complexity of such formulae1 hinders an analytical
conclusion on the convergence ofα(m+1)/α(m) towards1

2 .
Fortunately, we are able to compute the numerical values of
α(m + 1)/α(m) under a wide range of inputs. These results
(listed in Table II) clearly show that it does converge to1

2 .

B. General tiling factor

We use a regular tiling [9] approach to partition the space
in building the trees, i.e., the subcells are of the same shape
(square/cube) as the parent cell. In the previous analysis,for
each node, we evenly cut each dimension by half, leading to2d

partitions (child nodes) on the next level. However, in general,
we could cut each dimension intos > 2 equal segments, giving
rise to sd equal-sized squares or cubes. In this section, we
study how this affects the value ofα(m).

First, the theoretical bucket regions given by Eq. (1) are not
affected. For the coverable regions, we incorporate the tiling
factor s into the same reasoning as what we utilize to obtain
Eq. (5). One exception here is the case ofm = 1, i ≥ 2:
the approximate coverable region does not form a series of
circles whens > 2, therefore Eq. (4) does not hold and this
case should be handled in the same way as the case ofm >

1We use Mathematica to solve the integration in Eq. (22) and itended up
an equation that occupies 120 pages!



f(i, m, s) =





[
2π + 4

√
2 + 1 − (8

√
2 + 4)

1

sm
+

4

s2m

]
δ2 i = 1, m ≥ 1





2πi2 + 4
√

2i − (8
√

2i + 4)
1

sm
+

4

s2m
− 8




(i − 1)2
(

arctan
γ′

m

θ′m
− π

4

)

−1

2
θ′m (γ′

m − θ′m)


+ 1





δ2 i > 1, m > 1

(14)

1, i ≥ 2. Skipping the details, we get an improved version

of Eq. (5) for s > 2 as Eq. (14), whereθ′m =
1

2
− 1

sm

and γ′
m =

√
2(i − 1)2 − θ′m

2. With Eq. (14) to describe the
coverable regions, we can easily generate new equations for
the covering factor as a function ofm and s. By studying
these functions, we get the following lemma.

Lemma 2:With a tiling factors (s ∈ R+), the non-covering
factors have the following property

lim
p→0

α(m + 1, s)

α(m, s)
=

1

s
.

Proof: See Apprendix III for details.

Lemma 2 is obviously a nicely-formatted extension of
Lemma 1. As Lemma 1, it is well supported by numerical
results even under smaller values ofl (details not shown in
this paper). In Section V, we will discuss the effects ofs on
the time complexity of DM-SDH.

V. T IME COMPLEXITY OF DM-SDH

In DM-SDH, time spent on the following two operations
is dominant: (i) attempts to resolve all pairs of visited nodes
(both nodes of the pair are always on the same level of the
tree); and (ii) pairwise distance calculation for particles in
the unresolved leaf nodes. With Lemma 2, we achieve the
following analysis of the time complexity of DM-SDH as a
function of the input sizeN .

Theorem 1:In DM-SDH, the time spent on resolving cells
is Θ

(
N

2d−1

d

)
whered ∈ {2, 3} is the number of dimensions

of the data.

Proof: We derive the complexity by studying how the
required time changes with the increase of system sizeN .
Since we keep the average number of particles in a leaf node
as a constantβ, one more level of tree will be built when
N increases tosdN . Thus, by denoting the time spent on
resolving cells asTc, we need to build a recurrence function
of time that relatesTc(s

dN) to Tc(N).
For given bucket widthp, the starting levelDMa is fixed in

DM-SDH. Assume there areI pairs of cells to be resolved on
DMa. On the next levelDMa+1, total number of cell pairs
becomesIs2d. According to Lemma 2, only ones-th of the
I pairs onDMa will not be resolved, leavingIs2d−1 pairs to
resolve onDMa+1. On levelDMa+2, this number becomes
Is2d−1 1

ss2d = Is2(2d−1). Therefore,Tc(N) can be expressed

as the summation of numbers of cell pairs to resolve in all
levels of the tree starting fromDMa:

Tc(N) = I + Is2d−1 + Is2(2d−1) + · · · + Isn(2d−1)

=
I
[
s(2d−1)(n+1) − 1

]

s2d−1 − 1
(15)

wheren is the total number of levels in the tree visited by the
algorithm. The value ofn increases by 1 whenN increases to
sdN . Therefore, by revisiting Eq. (15), we have the following
recurrence:

Tc(s
dN) =

I
[
s(2d−1)(n+2) − 1

]

s2d−1 − 1
= s2d−1Tc(N)−o(1) (16)

Based on the master theorem [10], the above recurrence gives

Tc(N) = Θ
(
N log

sd s2d−1)
= Θ

(
N

2d−1

d

)
.

Now let us investigate the time complexity for performing
operation (ii), i.e., pairwise distance calculation. We have
similar results as in Theorem 1.

Theorem 2:With reasonable spatial distribution of particles
in the simulated system, the time spent by DM-SDH on
calculating pairwise distances of particles in non-resolvable
leaf nodes isΘ

(
N

2d−1

d

)
.

Proof: As shown in the derivation of Eq. (16), there
are Isn(2d−1)pairs of leaf nodes to resolve, among which
Isn(2d−1) 1

s = Isn(2d−1)−1 will be unresolved and the pair-
wise distances of the particles in them need to be computed
one by one. When system size increases fromN to sdN , the
number of unresolved leaf node pairs (denoted asL) becomes
Is(n+1)(2d−1)−1. Thus, we get the following recurrence:

L(sdN) = s2d−1L(N),

which is essentially the same as Eq. (16) and we easily get

L(N) = Θ
(
N

2d−1

d

)
.

To prove Theorem 2, we need to transform the above results
into the number of distance calculations in the unresolved
leaf nodes. This extension is obviously true for uniformly
distributed particles, in which the expected number of particles
in a cell is proportional to the cell size. However, uniform
distribution is not necessary for Theorem 2 to be true.

Let us consider any pair of non-resolvable cellsA (with
particle counta) andB (with particle countb) on the leaf level
DMk of the tree. Note that we cannot saya = b (due to the
non-uniform data distribution), and we expect to haveTk = ab



distances to calculate for these two cells. When the system size
increases fromN to sdN , we build another level of density
mapDMk+1, in whichA andB are both divided intosd cells.
Let us denote the original number of particles in the subcells
as ai (i ∈ {1, 2, · · · , sd}) and bj (j ∈ {1, 2, · · · , sd}). We

immediately havea =
∑sd

i=1 ai and b =
∑sd

j=1 bj . WhenN

increases tosdN , ai andbj all get asd-fold increase and the
expected number of distance calculations becomes

Tk+1 =
∑

i,j

Pi,js
dais

dbj (17)

wherePi,j is a binary variable that tells whether subcellsi and
j are non-resolvable onDMk+1. Without any assumptions, we
only know that the average ofPi,j over all combinations ofi
andj is 1

s (Lemma 2). For Theorem 2 to be true, we need to

show thatTk+1 = s2d

s Tk = s2d−1ab.
We first show that, if the distribution of particles iscell-

wise uniformon density mapDMk, we can achieve the above
condition. Being cell-wise uniform means that the data are
uniformly distributed within each cell, i.e., we havea1 =
a2 = · · · = asd = a

sd and b1 = b2 = · · · = bsd = b
sd , which

easily leads toTk+1 = 1
s

∑
Pi,js

dasdb = s2d−1ab. Being
a weaker assumption than system-wise uniform distribution
(which also requiresa = b), the cell-wise uniform distribution
is a safe assumption in particle simulations - particles will
not be arbitrarily clustered due to the existence of bonds or
inter-particle forces [11], [12]. Note that we only need to
make this assumption in the leaf nodes. Cell-wise uniform is
also a popular assumption in current spatial-temporal database
studies [13]. In Section IV-F of [14], we further show that
Theorem 2 holds true under more types of spatial distributions
that are reasonable in simulation data. The above reasoningcan
be easily extended to 3D data and tiling factors > 2.

Putting Theorem 1 and Theorem 2 together, we conclude
that the time complexity of DM-SDH is Θ

(
N

2d−1

d

)
. We

have mentioned that our analysis is done based on an over-
estimation of the coverable regions on each density map, and
the estimation error decreases asm increases. Relate this to
Lemma 2, we have an underestimated non-covering factorα
on each level. Since the estimation is more accurate on larger
m, the real ratio ofα(m + 1) to α(m) can only be smaller
than the one given by Lemma 2. This means that the results
shown in both theorems become an upper bound. As a result,
complexity of the algorithm becomesO

(
N

2d−1

d

)
.

Note that the time complexity has nothing to do with the
tiling factor s. In practice, we prefer smallers values. Recall
that the first mapDMa should be the first level with cell size
δ ≤ p/

√
d. With a bushy tree as a result of larges value, the

cell size increases more dramatically and we could end up a
DMa with cell size way smaller thanp/

√
d, giving rise to

more cells to resolve (Eq. (15)).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we present analytical results related to the time
complexity of a Quad tree-based algorithm for computing the

spatial distance histogram of large scale spatial dataset.Being
the main building blocks of high-level analytics in particle sim-
ulations, such histograms are of great importance in domain-
specific hypothesis testing and scientific discovery. This paper
focuses on the methodology we adopt to accomplish the
analysis: we transform the problem into quantifying the area of
certain regions in space such that geometric modeling can be
used to generate rigorous results. Our analysis shows that the
recently proposed algorithm has complexityO(N

3

2 ) for 2D
data andO(N

5

3 ) for 3D data, which beat the quadratic brute-
force algorithm. We also show that the conclusion holds true
with reasonable assumptions made on the spatial distribution
of particles in the simulated system.

Immediate future work in this area involves space par-
titioning methods with cell shapes other than square (e.g.,
rectangles, triangles). Our conjecture here is that the choice of
shape will not affect the main results presented in this paper
(e.g., Lemma 2). Therefore, a generalized model is needed
to describe this phenomenon. One paradigm skipped by this
paper (due to space limitations) is the approximate algorithm
[6] derived from the DM-SDH algorithm. While experimental
results show very promising tradeoffs of running time and
query error, probabilistic models have to be developed to study
tight bounds of the error.
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APPENDIX I
THE DERIVATION OF EQ. (13)

We accomplish this proof by studying the difference betweenA(m)
B(m) and 1

2 . First, we see

A(m) − B(m)

2
=

l∑

i=2

√
2(i − 1)2 − 1

4
− 4

l∑

i=2

θm+1

√
2(i − 1)2 − θ2

m+1

+ 2

l∑

i=2

θm

√
2(i − 1)2 − θ2

m + 8

l∑

i=2

(i − 1)2 arctan

√
8(i − 1)2 − θ2

m+1

θm+1

− 4

l∑

i=2

(i − 1)2 arctan

√
8(i − 1)2 − θ2

m

θm
− 4

l∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (18)

When l → ∞, we have the results shown in (19).

l∑

i=2

√
2(i − 1)2 − 1

4
−→

l∑

i=2

√
2(i − 1)

l∑

i=2

θm+1

√
2(i − 1)2 − θ2

m+1 −→
l∑

i=2

θm+1

√
2(i − 1)

l∑

i=2

θm

√
2(i − 1)2 − θ2

m −→
l∑

i=2

θm

√
2(i − 1)

l∑

i=2

(i − 1)2 arctan

√
8(i − 1)2 − θ2

m+1

θm+1
−→

l∑

i=2

(i − 1)2 arctan2
√

2(i − 1)

l∑

i=2

(i − 1)2 arctan

√
8(i − 1)2 − θ2

m

θm
−→

l∑

i=2

(i − 1)2 arctan2
√

2(i − 1)

l∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 −→
l∑

i=2

(i − 1)2 arctan2
√

2(i − 1) (19)

Plugging the left-hand side of six formulae in (19) into Eq. (18), we getA(m) − B(m)
2 −→ 0 and thusA(m) −→ B(m)

2 .

APPENDIX II
RELEVANT QUANTITIES IN 3D ANALYSIS

These formulae are listed on the last page of this paper as Eq.(20) to Eq. (22).

VB′(m) =

∫ ∫

B′

dxdy

∫ q
p2−(x− δ

2m )2−(y− δ

2m )2
+ δ

2m

δ

2
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=
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 dxdy

=

∫ π
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c
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dφ
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∫ π
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3
+

1

3

(
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) 3

2 − δθm

2

[
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]
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δθm

2
b2

]
dφ (20)

Here we havea = arctan
δθm√

p2 − 2(δθm)2
, b =

δθm

sin φ
, andc =

√
p2 − (δθm)2.



The coverable region is

f(i, m) =





4

3
πp3 + 6p

(
δ − 2δ

2m

)2

+ 3πp2δ

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)3

n = 1, m ≥ 1

4

3
π(ip)3 − 4

3
π[(i − 1)p]3 n ≥ 2, m = 1

4

3
π(ip)3 + 6ip
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δ − 2δ
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+ 3π(ip)2δ

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)3

− v(i, m, p, δ) n ≥ 2, m > 1

Simplifying the above withp =
√

3δ, we get

f(i, m) =





[
4
√

3π + 6
√

3

(
1 − 2δ
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)2

+ 9π

(
1 − 2

2m

)
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(
1 − 2
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δ3 n = 1, m ≥ 1

[4
√
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3π(i − 1)3]δ3 n ≥ 2, m = 1[
4
√

3πi3 + 6
√

3i
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1 − 2δ
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+ 9πi2
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1 − 2

2m

)
+

(
1 − 2
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− v(i, m, p)

]
δ3 n ≥ 2, m > 1

wherev(i, m, p, δ) = 16VB′(m) andv(i, m, p, δ) = δ3v(i, m, p).
Continue with the same reasoning as in Section III-C, we have

G(l) =

∑l
i=1 g(i)

δ3
=
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i=1
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4
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3πi3 + 6
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3i + 9πi2 + 1
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− 16
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24
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) 3
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1

16
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 dφ (21)

whereq = arctan
1
2√

3(i − 1)2 − 2
(

1
2

)2 , and the following formulae for the accumulated volume for all coverable regionsF .
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3i3 − 4
√

3π(i − 1)3
]

= 4
√

3πl3 , m = 1

l∑

i=1

[
4
√

3πi3 + 6
√

3i

(
1 − 2

2m

)2

+ 9πi2
(

1 − 2

2m

)
+

(
1 − 2

2m

)3
]

−16

l∑

i=2

∫ π

4

s


−θ3

m

3
+

1

3

(
3 −

(
θm

sin φ

)2
) 3

2

− θm

2

(
3 − θ2

m

)
+

θm

2

(
θm

sin φ

)2

 dφ , m > 1

(22)

in which s = arctan
θm√

3(i − 1)2 − 2θ2
m

.



APPENDIX III
PROOF OFLEMMA 2

Proof: Proof is accomplished in a similar way to that of Lemma 1. While the total area of all bucket regions Eq. (8) is
still the same, Eq. (9) and Eq. (10) become the following equation for all m ≥ 1:

F (l, m, s) =

∑l
i=1 f(i, m, s)

δ2
(23)

=

l∑

i=1

[
π(ip)2 + 4ip

(
δ − 2δ

sm

)
+

(
δ − 2δ

sm

)2
]

−
l∑

i=2

(i − 1)2


8 arctan

√
2(i − 1)2 − θ′m

2

θ′m
2 − 2π


+ 4

l∑

i=2

[
θ′m

√
2(i − 1)2 − θ′m

2 − θ′m
2
]

,

which gives
α(m + 1, s)

α(m, s)
=

A(m, s)

B(m, s)
where

A(m, s) = 1 +
4
√

2(l + l2)

s1+m
− l

(
1 − 2

s1+m

)2

+ 4(l − 1)

(
1

2
− 1

s1+m

)2

(24)

−4
l∑

i=2

θ′m+1

√
2(i − 1)2 − θ′m+1

2 + 8
l∑

i=2

(i − 1)2 arctan

√
2(i − 1)2 − θ′m+1

2

θ′m+1

+

l∑

i=2

√
8(i − 1)2 − 1 − 8

l∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1

and

B(m, s) = 1 +
4
√

2(l + l2)

sm
− l

(
1 − 2

sm

)2

+ 4(l − 1)

(
1

2
− 1

sm

)2

(25)

−4

l∑

i=2

θ′m

√
2(i − 1)2 − θ′m

2 + 8

l∑

i=2

(i − 1)2 arctan

√
2(i − 1)2 − θ′m

2

θ′m

+

l∑

i=2

√
8(i − 1)2 − 1 − 8

l∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1

Following the reasoning in Appendix I, we compare the value of
A(m, s)

B(m, s)
to

1

s
. And we have

A(m, s)s − B(m, s) = (s − 1)

l∑

i=2

√
8(i − 1)2 − 1 − 8(1 − s)

l∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (26)

−4(1 − s)

l∑

i=2

θ′m+1

√
2(i − 1)2 − θ′m+1

2

+8(s − 1)
l∑

i=2

(i − 1)2 arctan

√
2(i − 1)2 − θ′m+1

2

θ′m+1

When l → ∞, we have the results shown in (27).

l∑

i=2

√
2(i − 1)2 − θ′m+1

2 −→ 1

2

l∑

i=2

√
8(i − 1)2 − 1

l∑

i=2

(i − 1)2 arctan

√
8(i − 1)2 − θ′m+1

2

θ′m+1
−→

l∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (27)

Plugging the left-hand side of the above two formulae in (27)into Eq. (26), we getsA(m, s) − B(m, s) −→ 0 and thus

A(m, s) −→ B(m, s)

s
.


