On the Complexity of Recursive Tree-Based
Algorithms for Computing Distance Histograms

Yi-Cheng Tu' and Shaoping Cheh

!Department of Computer Science and Engineering, UniweritSouth Florida
4202 E. Fowler Ave., ENB118, Tampa, FL 33620, U.S.A.
ytu@se. usf. edu

2Department of Mathematics, Wuhan University of Technology
122 Luosi Road, Wuhan, Hubei, 430070, P. R. China
chensp@hut . edu. cn

Abstract— Particle simulation has become a popular research galaxies) as classical entities (i.e., particles) thagrantt via
tool in many scientific and engineering fields. Analysis of paicle  empirical forces. In PS, one query called tBpatial Distance
simulation data involves computing functions of all partide-to- Histogram (SDH)is of vital importance.

particle interactions. One such analytics, the spatial dignce .

histogram (SDH), is of vital importance to scientific discoery _The SDH proplem can be fo_rmally stated as: given the coor-
from particle simulation data. Algorithms for efficienty SDH  dinates ofNV particles in a metric space, draw a histogram that
processing in large-scale simulation have been proposed ia represents the distribution of the pairwise distances betw
couple of recent papers. These algorithms all adopt a recuige  the NV points. The histogram has a single paramétavhich
tree-visiting strategy to process particle distances in ta visited s the total number of buckets. Since the dataset is always

tree nodes in batches, thus require less time as compared to . e . .
the brute-force approach where all pairwise distances haveo generated from a simulated system with fixed dimensions, the

be computed. The complexity of such algorithms have not been Maximum distance between any two poifts,. is also fixed.
thoroughly studied. In this paper, we present an analysis osuch The width of the buckets (i.e., histogram resolutipr} %

algorithms based on a geometric modeling approach. The main js often used as the parameter of the query instead. In other
technique is to transform the analysis of particle counts 0 \y4rds SDH asks for the counts of pairwise distances thht fal

a problem of quantifying the area of regions where particle . . .
distances can be processed in batches by the algorithm. From NtO ranges0, p), [p, 2p), - - - , [lp—p, Ip), repsectively. SDH is

the analysis, we conclude that the number of particle distaces needed for computing many critical high-level analyticsisu
that are left to be processed decreases exponentially withare as pressure, energy, [1] and structure factor [5] in the kitad
levels of the tree visited. This leads to a time complexity ver  gystems.
than the quadratic time needed for the brute-force algorithm. While a naive way to compute SDH tak@(NQ) time
Our model is also ge_neral_inbthfg_ it Wﬁrks for a wide range of more efficient algorithms have been developed [6], [7] ’The
space partitioning options in building the tree. e : : ' : L
main idea of this type of algorithm is to derive the histogram
|. INTRODUCTION by studying the distance between clusters of points instead
) _ of those between two individual points. Although different
The development of advanced experimental devices lementations exist in [6] and [7], both can be abstracted
computer simulations have given rise to explosive rengesin i 4 recursive tree-based algorithm described in Sedtion
data in almost all scientific fields. As a result, scientifitada ;g paper presents the complexity analysis of the above
management has gained much momentum in research withig,jthm. An important contribution of this paper is thedgb
the database community in recent years. In addition to g gevelop to accomplish such analysis. The main idea is
challenges of data storage/retrieval imposed by the digany, yansform the number of particles into geometric regions
volume of scientific data, we also face the issue of designigg,ose area can be represented by closed-form formulaehwhic
efficient algorithms for data querying and analysis. SCiefsaye rigorous analysis possible. In addition to the conifylex
tific data analysis often require computation of mathenaiticyp, 5y sis of the exact SDH algorithm, our model also builds th
(statistical) functions whose complexity goes beyond #Mpx,ndation for an approximate algorithm with time comptgxi
aggregates, which are the only analytics supported by mod@gnending only on a controlled error bound [6]. The latter

DBMSs. In this paper, we are interested in the processing gf, ijes a more practical solution to process SDH in very
one type of such queries agaimpsirticle simulation datawith large simulation datasets.

applications in various science [1], [2], [3] and enginegtf4]
fields, particle simulation (PS) is a type of computer sirtiata Il. THE ALGORITHM
that treats system components (e.g., atoms, molecules, sta The algorithm first divides the simulated space into a grid,
_ - _ each cell of which records the number of particles in it. Wé ca
S. Chen is currently a visiting professor in the Departmen€Computer

Science and Engineering at the University of South FlorldaR). His email S_UCh a grid alensity maF_&nd density _maps with d_iffere_m cell
at USF is: schenl1l@cse.usf.edu sizes have to be maintained. For this, the algorithm is named



Procedure RSOLVETWOCELLS (A, B)

1 if A andB are resolvable

2 addnins to the corresponding bucket

3 else if A andB are not leaf nodes

4 for each childa of A

5 for each childb of B

6 RESOLVETWOCELLS (a, b)

7 else

8 compute all pairwise distances betwetrand B
and add each pair to corresponding bucket

D6 D3

D7 D2

Fig. 1. Procedure ResolveTwoCells - core of the DM-SDH atgor.

density map-based SDH (DM-SDH) algorithm. In practice, we

organize all particle coordinates into a point region Qtrag-

[8] with each node representing a cell (square for 2D data

and cube for 3D) in the simulated space. Particle counts of

each cell are cached in the corresponding tree node. THhe tota

number of levels of the tree is determined in a way such that,

on average, there are a small numpBef particles in each leaf

node. The process of tree construction can be accomplisiféd 2. Boundaries of bucket 1 and bucket 2 regions of gellwith the

in O(N) time. bucket widthp bging exactly/26. Here' we show arc§)1Q2, C1C2, and
The focal point of this algorithm is a procedure nameff* P2 &l of which are centered at point O.

RESOLVETWOCELLS (Fig. 1). To resolve two cell&A andB

(with particle counth; andne, respectively), we first read the .

coordinates of the two cells and compute the range of dietan&'® contained by those resolvablg cells relateditas we

between any pair of points, one fra and one fronB. Note visit more and more levels of density maps? Although this has

that this distance range can be computed in constant time??lmeth'ng to do with the spatial distribution of the paet|

this range is contained in the range of a histogram bugketV€ Start by analyzinghow much area are covered by the

we sayA andB areresolvableand theyresolve intobucket ;_esolvab(lje cc(ejllsft_o sm;;ln‘y th_e pl)rocgss._To r?.c t;]leve th!siewe
i. In this case, we simply increment the count of buckby irst need to define a theoretical region in which a particle ca

nins. If the two cells are not resolvable, we recursively malJéaVe distanc_e (to a point in) th?t fa!ls into a specific bucket
attempts to resolve all their children. In case we have redcH- We call this region théucket: region of cell A.
the lowest level of the tree, we have to calculate all distanc .
of the patrticles in the unresolved cells. A. Basics of the model
The algorithm starts from a certain level of the tree where In Fig. 2, a cell A is drawn with four corner points
the diagonal of the cells is no greater thar{otherwise we O, 01,02, and Os. The side length ofA is exactlyd =
cannot resolve anything). We denote this level as densi . The bucket 1 region ofA is bounded by a curve
map DM,. First, all intra-cell pairwise distances can be putonnected by point€’; to Cg. This region is drawn as follows:
into the first bucket (with rangg0,p)). In the next step, C;Cy,C5C4,C5Cs, and C;Cs are all arcs of 90 degrees
RESOLVETWOCELLS is called for all pairs of cells o M,. centered at the four corners of ce and their radii are
In the remainder of this paper, we first give a detailegt C2C3,C4Cs5, CsC7, and CsC; are line segments. Note
introduction to our geometric model in Section Ill. In thighat this is a theoretical “maximum” region where a point
model, we focus on a simple scenario where the data is @fn resolve with any point ifA. It is easy to see that the
2D. In building the tree, space partitioning in a node is dorsgea of this region istp? + 4ps + §2. Let us continue to
by dividing each dimension into two equal sized segmentsnsider distances that fall into the second bucket (ig., [
(i.e., regular Quad tree for 2D and Oct tree for 3D). We wilkp) ). Again, the bucket 2 region oA is of similar shape
then extend our analysis to more generalized conditions tinthe bucket 1 region except the radii of the arcs Zyeas
space partitioning and 3D data (Section 1V). The complexiyrawn in Fig. 2 with a curve connected by poiris to Ds.
analysis based on the model is presented in Section V. Wewever, points that are too close £ can only resolve into
conclude the paper by Section VI. bucket 1 since their distances to any pointAnwill always
be smaller tharp. These points are contained in a region as
follows: on each corner point &, we draw an arc with radius
An essential problem our analysis needs to answer is: giveron the opposite corner (i.e., ar€3?1, Q1Q2, Q2Q3, and
a cell A on the first density ma@ M,, how many particles Q3Q,4). Therefore, the bucket 2 region should not include this

IIl. M ODELING NUMBER OF RESOLVABLE PARTICLES



o) = {(27r+4\/§+ 1)62 i=1 O
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inner region (denoted as regid@ hereafter). A more detailed Q1
illustration of regionB is shown in Fig. 3.

The area of the bucket 2 region7i$2p)? +8pé less the area 02
of regio@,\which consists of eight identical smaller regions D
s/uciasQlOgD and cell A itself (Fig. 3). To get the area of
102D, we first need to know the magnitude of the angle
/1004, which can be computed by

£Q,00, = /Q,0F - L/COE

= arctan
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Fig. 3.  An illustration on how to compute the area of regiBn (i.e.,
QQ1Q2Q3 formed by four arcs in Fig. 2). Here we only show &pg O2,
which is a half of one of the ara®1 Q2.
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Thus, the area of sect@lOgO is 5 L2/Q100,. The area of

regloanOgD can be obtained by the area of this sector lesghere B(i) = [2(i — 1) — 1]> — 1 and
the area of triangle®, DC' and Q;CO as follows: \/
(i —1)p]

[(i — 1)p]* |arctan -
S@D = 5@0 — Sa0,pc — SaQ.co
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Since we have = /26, the above equation becomes Eq.
(1) shown on top of this page.
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Eq. (1) gives the area of a theoretical region that contdins a
particles that could possibly resolve into a given buckeh\ai

2 point in cell A. Now let us study how much of this region can

_9 p2 — (é) be resolved in our algorithm under different levels of dgnsi

4 2 maps. We call the region that consists of all resolvablescell

the coverable region

and we haver(2p)? + 8pJ — 855 5;p — SA @s the area of 1) Case 1: the first buckettet us start our discussions on

the bucket 2 region. the situation of bucket 1. In Fig. 4, we show the coverable

The approach to obtain the area of buckét > 2) regions regions of three different density map levels:= 1, m = 2,
is the same as above. For the area of the region formed by @l = 3, as represented by blue-colored lines and denoted
outer boundary, we only need to consider that the arcs in FRp A’ in all subgraphs. Forn = 1, the resolvable cells are
3 are of radiiip. The development of a general formula for th@nly those surrounding\. All other cells, even those entirely
area of regiorB is trickier. Our efforts lead to the following contained by the bucket 1 region, do not resolve with anylleve
formula to quantify the area of the bucketegion: 1 subcell ofA. As we increasen, the regionA’ grows in area,
with its boundary approaching that of the bucket 1 region. To
) ) ) represent the area @', we need to develop a continuous line
(i) = mp~ +4pd + 0 i=1 to approximate its boundary. One critical observation higre
m(ip)? + 4ips — [8A(i) + B(i)?] i>2 the furtherest cells in\’ are those that can resolve with cells

N o
RS



Fig. 4. Actual (solid blue line) and approximated (dottedebline) coverable regions for bucket 1 underna= 1; b. m = 2; and c.m = 3. Outer solid
black lines represent the theoretical bucket 1 region. Athwed line segments are drawn from the centers to the qguneng arcs with radiug.

on the outer rim ofA. For example, the cell cornered at poinboundary, we need to consider the casesicf 1 andm > 1
D resolves with the cell cornered at point CAn If we draw separately.

a 90-degree arc centered at C, the arc goes through D and
all cells on the northwestern corner &’ are bounded by
this arc. To approximate the boundary Af, we can draw P A
such an arc at all four corners of the graph and connect th ’
with line segments (e.g., EF connecting the northwestedh 4
northeastern arcs centered at point G in Fig. 4b), as shown
by the blue dotted line. Obviously, this line approaches the

3
\
/

=)

theoretical boundary as increases because the center of the / : 3 \
arcs (e.g., point C) move further to the corner pointsAof ! ; = i
as the cells become smaller. Note this line gives rise to gn ; \ ! /

optimistic approximation ofA’. In a moment, we will show

that this overestimation will not harm our analysis on the Bucket 3 oundaligs | Bucket 2 boundanié
running time of DM-SDH. The area of the coverable region .
for bucket 1 at leveln can be expressed as N —
26 26\ i s e
Sar =mp? +4p (5—%>+<5—%) 2)

where the first Itemwp? Is the area of t.he fqur 90_deQreeF' . 5. Inner boundaries of the coverable regions of bucReasid 3 under

sectors centered at point C, the second item is the area of ,t,fi?e: 1. All arrowed line segments are of lengp.

four rectangles (e.g., EFGC in Fig. 4b) connecting the four

sectors. We also need to add the area of the small squarget us first study the case af = 1. Fig. 5 shows examples

(with side CG in Fig. 4b) within cellA, which is given by with m = 1 with respect to the second and the third bucket.

the last item. It is easy to see that any cell that contains a segment of the
2) Case 2: the second bucket and beyordie cases of theoretical regiolB boundary will not resolve into bucket

buckets beyond the first one are more complicated. First lndcause they can only resolve into bucketl. Furthermore,

all, the outer boundary of the bucket(i > 2) regions can there are more cells that resolve into neither bucketl nor

be approximated using the same techniques we introducedifacket:. Here our task is to find a boundary to separate those

bucket 1 (Section 11I-B.1). Therefore, we can use the follayv m = 1 cells that can resolve into bucketvith any subcell in

generalized form of Eqg. (2) to quantify the area of the regioA and those that cannot. Such boundaries for buckets 2 and

formed by the outer boundaries only. 3 are shown in Fig. 5 as solid blue lines. The boundary can

be generated as follows: on each quadrant (e.g., northwest)

2
Sout(i) = m(ip)? + 4ip (5 _ 2_5L> + <5 — 2_2> (3) of cell A, we draw an arc (dotted blue line) centered at the
2 2m corner point C of the furthest (e.g., southeast) subcelAof

However, we also need to disregard the cells that lie imith radius(i — 1)p. Any cell that contains a segment of this
the inner boundary (e.g., those within or near regi8h arc cannot resolve into buckétbecause they are too close to
To quantify the area of the region contained by the innex) but the cells beyond this line can. Therefore, we can also



N L= b L\ Bucket2boundaries

Fig. 6. Inner boundaries of the coverable regions of buckeasid 3 undern = 2 andm = 3. All arrowed line segments are of lengp.

use these arcs to approximate the zigzagged real boundaries
Let us denote the region bounded by this approximate curve
as regionB’. Form = 1, the arcs on all four quadrants share
the same centef’ therefore they form a circle as regidsy. B G
The radii of the circles are exactly — 1)p for bucketi. Note F
that this, again, could give rise to an optimistic approxiora

of the area of coverable regions. Therefore, the area of the

coverable region forn = 1 andi > 2 is:

Sar = m(ip)? — 7[(i — 1)p]? 4)

where the first item is the area of the region formed by the o

approximated outer boundary, which is given as a specia cas
of Eq. (3) form = 1 and happens to be a circle; and th&19. 7. Anillustration on how to compute the area of regionfed by four
. . h . ares in Fig. 6. Here we only show half of one of the arcs.

second item is that of the region formed by the approxmatec?
inner boundary (i.e., regioB’).

For the case ofrn > 1, we can use the same techniqugirst, we get the magnitude of angieC'D by
described for the case ofi = 1 to generate the curves to
form regionB’. However, these curves are no longer a series,pcop — /DCE — /FCE
of circles. In Fig. 6, we can find such curves for buckets DE =
2 and 3 undenn values of 2 and 3. As the four arcs on arCtanE—C T
different quadrants no longer share the same center, ti@nreg D)
B’ boundaries (dotted blue lines) are of similar shapes to the \/[(i _ 1)p]2 _ (§ _ i)
theoretical regiorB boundaries (solid black lines). From the
graphs, it is easy to see that the approximated curve fits the N g
actual boundary better as increases. Here we skip the formal 2
proof as it is straightforward. Furthermore, it also cogesr
to the regionB boundary whenn gets bigger. This is because
the centers of the two arcs (with the same radii), points C afi
O, become closer and closer when the cell size decreases (as 1 1
a result of the increase of). Om = 9 gm’

The area of regioB’ can be computed in the same way -
as that of regiorB, with the help of an illustration in Fig. 7. The area of the sectd8DC is $[(i —1)p]>?2BCD, and the

From now on, let us definé as a function ofm for the
anvenience in further discussions:



[27r+4\/§+1—(8\/§+4)2im+22im}52 i=1m>1
_ [2m(2i — 1)] 62 i>1,m=1
f(Zam): . 9 Ym ™ %)
1 4 (1—1) arctang— - —
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area of the regiod?bGF is

Separ= Sepc — SabpHC — SAFGH

1. 9 1 52

= 5li = 1p]*ZBCD — SEC(DE — HE) - — en -
1. VI —1)p2 —62602, =

= 5[(z —1)p)? [arctan 50, = Z} _
2
- gom [VIG= 1P = (00,)? = 66| - %

Finally, we get the area of the coverable region for
2,m>1as

Sar = Sout(i) = 8S5pap — Sa

2)e-2)
VIG—1Dp]? — 8202, 7

— 4[(i — 1)p)? [arctan 50, Z]

= n(ip)? + 4ip (5 —

+ 430, [v/[G = VPP = (00,)? — 601 (6)

In summary, let us denote the area of the coverable region
A’ for bucketi under differentm values asf(i,m). By
combining and simplifying Equations (2), (4), and (6) with

F(,1) =

expressed as functions of the total bucket nunib&¥e also
remove the common fact@? from both Eq. (1) and Eq. (5)
for the convenience of displaying equations. First, we have

22:1 g9(i)
52

l
1+3 (27m'2 n 4x/§)
l =1
— Z [(z — 1)2 (8arctano; — 27) — O—i}
j=2

(2

2
1+ gl (3\/§+3\/§l+77+2l27r)

1
- Z (i — 1)? (8arctano; — 27) — oil (8)
i=2

where o; = /8(i—1)2 —1. The area of total coverable

regions is considered in two cases. kor= 1, we get

p = /24, we get Eq. (5) shown on top of this page, in whicland form > 1, we have the following formula:

Ym = /2(i —1)2 — 62,.

C. Covering factor F(l,m) =
In this section, we give a quantitative analysis on the =

relationship betweerf (i, m) and the area of the theoretical

regiong(¢) for all buckets. For that purpose, given any density

map level m, we define thecovering factorc¢(m) as the

ratio of the total area of the coverable regions to that of the

theoretical bucket regions for alli. However, the quantity

that is more related to our analysis is then-covering factor

a(m) = 1 — ¢(m). Specifically, we have

Sy £, 1)
52
l
= 2r42r) (2i—1)=2rl? 9)
=2
_ Y flm)
52
92-2m _92=m 4 1 4 9\/9] — 25-™
+2V212 =25 gm + %l%
l A
_ 20 — 1)2 — 2
_ _ 1 2 m
8;(2 )“ arctan 0
l
+4Y 0m /20— 1)2— 02, (10)
=2

With the above definitions, we develop the most important
result in our analysis in the following lemma.

S lg(i) = fli,m)]

Zé:l g9(i)
The quantitya(m) is important in that it can directly tell ‘Lemma 1:For any given _standard 'SDH query with bucket
dth p, let DM, be the first density map the DM-SDH

how many cell pairs are resolvable on a given density m¥pcth - :
level (as the total number of cell pairs is always known fdt!gorithm starts running, ansl(in) be the non-covering factor
each level). Before investigating the featuresadfn), let us ©OF @ density map that lies levels below DM, (i.e., map

define two relevant quantities, the total area of bucketregi D Ma-+m). We have

for all bucketsG, and that of all coverable regiorts. Being

summations over all buckets gfi) and f (i, m), they can be

a(m) =

(1)

a(m+1) _1
a(m) 2

p—0



Proof: From Eq. (7), we easily get
am+1) GUI)—F(,m+1)

alm) — G()—F(,m)
Plugging Eq. (8), Eqg. (9), and Eq. (10) into the above formula
we eta m+l) _ Alm where
) T Blm)
3 l
— i _ i 2_5 2 i 1)2 —
A(m) = 50— g+ g1 )+ ) VBE—1)2 -1

=2

l
— A O[22 - 02,
=2

! ) \/8(1 —1)2—-02 (a) Outer boundary of the bucket 1 region.
,— 1
+ 82(2 )* arctan o
1=2 +
l
— 8 (i—1)*arctan/8(i —1)> — 1 (11)
i=2
and
4 4 28 !
B(m) = 5 4—m+2—m(z+12)+2 8(i—1)2—1
i=2
l
= 4) 020 —1)2— 02,
i=2
l -
8(1—1)2 — 02
+ 82(1 — 1)? arctan (i 7 ) n
=2 m (b) Inner boundary of the bucket 2 region.
l
_ 8 Z(Z _ 1)2 arctan 8(i — 1)2 1 (12) Fig. 8. Geometric structure of the bucket 1/2 regions for ZiEad
=2
1 1

. . 1 1
in which 8, = 9 om and 1 = 3 gmil IV. EXTENSIONS
The case ofp — 0 is equivalent tol — co. Despite their A. 3D analysis

formidable length and complexityl(m) and B(m) have the The strategies used to achieve the above anglysis can be
following feature extended to 3D data. The outer and inner boundaries of bucket
. A(m) 1 i regions are illustrated in Fig. 8. The analysis should bedas
}HEO B(m) 9 (13)  6n the volume of relevant regions surrounding a chbwiith
side lengthd. The bucket 1 region (Fig.8(a)) o€ consists of

and this concludes the proof. More details on derivationaf E . . ; .
(13) can be found in Appendix I. the following components: 1) quarter cylinders (green)wit

lengthé and radiugp = v/35; 2) one-eighth of a sphere (red)
Lemma 1 is important in that it shows the number of nomwith radiusp; 3) cuboids (white) with dimensiong, §, and

resolvable cell pairs decreases exponentially (by halfgmwhp; and 4) cubeA itself (not shown). There are eight pieces of

more levels of the tree are visited. IEROLVETWOCELLS, each of the first two items and six pieces of item 3. The inner

if a cell pair is not resolved, we have to make 16 recursivis caboundary (regiom) of the bucket 2 region (Fig. 8(b)) consists

to the same routine for the 4 children of each cell. Lemmadf eight identical portions of a spherical surface centatatie

says that we can expett x 0.5 = 8 pairs of the children opposite corner oA with radiusp. Note that the projection of

to be resolvable. This greatly eases our analysis of the tini@se regions on 2D are exactly those found in Fig. 2. Again,

complexity of DM-SDH (Section V). the shape of the region does not change with respect to bucket
While shown in the form of a limit under larde(i.e., small number:; - we only need to changge to ip.

p), Lemma 1 also works well under smallalues. This can  The volume of the bucketregion can thus be expressed as

be effectively verified by numerical results due to the atbse

form of Eq. (11) and Eq. (12). From the results shown in Table —7tp3 + 6pd? + 3mp?d + &3, i=1

|, we can easily see that the ratio@fim+1) to a(m) quickly 9(i) =

. 3 . 2 . 2 3 . .
converges even whehis very small. 37 (1p)” + 6ipd® + 3 (ip)°6 + 6% —v(i,p,8), > 1



TABLE |
VALUES OF a(m + 1)/ (m) OF 2D DATA UNDER DIFFERENT VALUES OFm AND [. COMPUTED WITH MATHEMATICA 6.0. FRECISION UP TO THEBTH
DIGIT AFTER DECIMAL POINT.

Map Total Number of Histogram Buckets (1)
levels 2 4 8 16 32 64 128 256
m=1  0.508709 0.501837  0.50037 0.50007 0.500012 0.500002 5 0. 0.5
m=2  0.503786 0.500685 0.500103 0.500009 0.499998 0.49999g99999 0.5
m=3 0.501749 0.500282 0.500031 0.499998 0.499997 0.4999990.5 0.5
m=4 0.500838 0.500126 0.50001 0.499997 0.499998 0.499999 5 0 0.5
m=5 0. 50041 0.500059 0.500004 0.499998 0.499999 0.5 0.5 0.5
m=6  0.500203 0.500029 0.500002 0.499999 0.499999 0.5 05 5 0.
m=7  0.500101 0.500014 0.500001 0.499999 0.5 0.5 0.5 0.5
m=8 0.50005  0.500007 0.5 0.5 0.5 0.5 0.5 0.5
m=9  0.500012 0.500003 0.5 0.5 0.5 0.5 0.5 0.5
m=10 0.500025 0.500002 0.5 0.5 0.5 0.5 0.5 0.5
TABLE Il

VALUES OF a(m + 1)/ (m) OF 3D DATA UNDER DIFFERENT VALUES OFm AND [. COMPUTED WITH MATHEMATICA 6.0. FRECISION UP TO THEBTH
DIGIT AFTER DECIMAL POINT.

Map Total Number of Histogram Buckets (I)

levels 2 4 8 16 32 64 128 256
m=1 0.531078 0.509177 0.502381 0.500598 0.50015 0.50003%00@L 0.500002
m=2 0.514551 0.504128 0.50102 0.500247 0.50006 0.50001500@04 0.5
m=3 0.505114 0.500774 0.500051 0.499987 0.499991 0.5015%2#99996 0.500004
m=4  0.498119 0.497695 0.499076 0.499717 0.499931 0.4984280.5 0.5
m=5 0.490039 0.49337 0.496703 0.499313 0.499811 0.499966 .5 0 0.499983
m=6 0.47651 0.485541 0.49586  0.498521 0.499586 0.49989499931 0.499897
m=7 0.448987 0.469814 0.48972 0.497032 0.499241 0.49979399@31 0.500138
m=8 0.38559  0.435172 0.478726 0.494029 0.49848 0.49944899862 0.5

where the first four items in both cases represent the volume&Ve continue to develop formulae for the coverable regions

of the four components listed above and, p, §) is that for

f(i,m) and non-covering factax(m) as we do in Section Ill-

the region formed by half of a spherical surface in Fig. 8(bB and Section IlI-C. These formulae can be found in Appendix

With p = /36, the above equation becomes

(i) = (4V3m +6v3 + 97 + 1) 6 i=1
| [4V3B7id + 6V3i + 972 + 1 —v(i,p)] 6 i>1

wherewv(i, p,d) = 16V and

/p2 —z2—y2
// da:dy/ dz
§/2

VB =
B
= //(\/p2—$2—y2—g)dflidy
B
= /4d9/ (\/pQ—TQ—g)TdT
a b
_ i 1o, 2g_§2 ’
= /a {g(p r7) 47" bd9
T8 1,, .8 6, 1 8
= / [‘ﬂw@ - _Zc+1_6(sin0)2}d9
[
whereaq = arctan %, c=14/p*— (%)2, andb =
} p?—2(3)

2sinf’

Il. The complexity of such formuldehinders an analytical
conclusion on the convergence®fm + 1)/a(m) towardss.
Fortunately, we are able to compute the numerical values of
a(m + 1)/a(m) under a wide range of inputs. These results
(listed in Table 11) clearly show that it does convergeito

B. General tiling factor

We use a regular tiling [9] approach to partition the space
in building the trees, i.e., the subcells are of the sameeshap
(square/cube) as the parent cell. In the previous analigsis,
each node, we evenly cut each dimension by half, leadifg to
partitions (child nodes) on the next level. However, in gahe
we could cut each dimension into> 2 equal segments, giving
rise to s equal-sized squares or cubes. In this section, we
study how this affects the value of(m).

First, the theoretical bucket regions given by Eq. (1) are no
affected. For the coverable regions, we incorporate thgtil
factor s into the same reasoning as what we utilize to obtain
Eq. (5). One exception here is the casemof= 1,7 > 2:
the approximate coverable region does not form a series of
circles whens > 2, therefore Eq. (4) does not hold and this
case should be handled in the same way as the case »f

1We use Mathematica to solve the integration in Eq. (22) amhited up
an equation that occupies 120 pages!
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27r+4\/§+1—(8\/§+4)7+—}52 i=1m>1
S

SQnL

/
fli,m,s) = 1 4 (i —1)2 (arctan Pmi — z)
2mi% + 4v/2i — (8V2i +4)— + —— — 8 . O 4) | 41382 i>1m>1
T ~ 50 (i = O1)
(14)

1,7 > 2. Skipping the details, we get an improved versioas the summation of numbers of cell pairs to resolve in all
of Eq. (5) fors > 2 as Eq. (14), wherd) — 1 1 Jlevels of the tree starting fromM,:
’ m 2 sm
TC(N) — I+182d71 +182(2d71) N +Isn(2d71)

andy/, = /2(i —1)2 — ¢ 2. With Eq. (14) to describe the
I[S(Qdfl)(nJrl) _ 1]

coverable regions, we can easily generate new equations for _ (15)
the covering factor as a function ef and s. By studying g2d-1 1

these functions, we get the following lemma. wheren is the total number of levels in the tree visited by the
algorithm. The value of increases by 1 whefV increases to
s?N. Therefore, by revisiting Eq. (15), we have the following

Lemma 2: With a tiling factors (s € R™), the non-covering
factors have the following property

recurrence:
am+1s) 1 I[S(Qd—l)(n+2) _ 1]
- 0 = d 2d—1
=0 a(m,s) s Te(s'N) = = = " 'Te(N) = o(1) (16)
Proof: See Apprendix IlI for details. m Based on the master theorem [10], the above recurrence gives
. g2d—1 2d—1
Lemma 2 is obviously a nicely-formatted extension of T.(N) = (N )=O(N"7).
Lemma 1. As Lemma 1, it is well supported by numerical -

results even under smaller values lofdetails not shown in
this paper). In Section V, we will discuss the effectssadn
the time complexity of DM-SDH.

Now let us investigate the time complexity for performing
operation (ii), i.e., pairwise distance calculation. Wevéda
similar results as in Theorem 1.

V. TIME COMPLEXITY OF DM-SDH Theorem 2:With reasonable spatial distribution of particles

In DM-SDH, time spent on the following two operationd’ the simulated system, the time spent by DM-SDH on

is dominant: (i) attempts to resolve all pairs of visited esd calculating _pa|rW|§£1d|stances of particles in non-resole

(both nodes of the pair are always on the same level of tf@f Nodes i (N ).

tree); and (ii) pairwise distance calculation for particlia Proof: As shown in the derivation of Eg. (16), there

the unresolved leaf nodes. With Lemma 2, we achieve thge [s"(2¢-Vpairs of leaf nodes to resolve, among which

following analysis of the time complexity of DM-SDH as a[sn@d*l)% = Js"(2d=1=1 Wil be unresolved and the pair-

function of the input sizeV. wise distances of the particles in them need to be computed
one by one. When system size increases fiéno s¢N, the

_ Theoggp’ll 1:In DM-SDH, the_ time spent on resqlving _ce"Snumber of unresolved leaf node pairs (denoted. pbecomes
is ©(N "7 ) whered € {2,3} is the number of dimensions ; (n+1)(2d-1)-1 Thus. we get the following recurrence:

of the data.

. . . L(s¢N) = s> 1L(N),
Proof: We derive the complexity by studying how the

required time changes with the increase of system aize Which is essentially the same as Eq. (16) and we easily get
Since we keep the average number of particles in a leaf node 2d—1
. . L(N)=O©(N"a).

as a constant, one more level of tree will be built when
N increases tos? N. Thus, by denoting the time spent oriTo prove Theorem 2, we need to transform the above results
resolving cells agl;,, we need to build a recurrence functiorinto the number of distance calculations in the unresolved
of time that relateg.(s?N) to T.(N). leaf nodes. This extension is obviously true for uniformly

For given bucket widtlp, the starting leveD M, is fixed in  distributed particles, in which the expected number ofiplag
DM-SDH. Assume there ark pairs of cells to be resolved onin a cell is proportional to the cell size. However, uniform
DM,. On the next levelDM,,, total number of cell pairs distribution is not necessary for Theorem 2 to be true.
becomesls2?. According to Lemma 2, only one-th of the Let us consider any pair of non-resolvable cells(with
I pairs onDM,, will not be resolved, leavings2?—! pairs to particle countz) andB (with particle cound) on the leaf level
resolve onDM, 1. On level DM, 2, this number becomes DM, of the tree. Note that we cannot say= b (due to the
[s?d=1142d — [42(2d=1) Therefore,T.(N) can be expressed non-uniform data distribution), and we expect to hde= ab




distances to calculate for these two cells. When the systaam sspatial distance histogram of large scale spatial datBs@g
increases fromV to s?N, we build another level of density the main building blocks of high-level analytics in particim-
mapDM;.1, in which 4 and3 are both divided inta? cells. ulations, such histograms are of great importance in domain
Let us denote the original number of particles in the subceBpecific hypothesis testing and scientific discovery. Tlaisgp

asa; (i € {1,2,---,s%}) andb; (j € {1,2,---,5%}). We focuses on the methodology we adopt to accomplish the
immediately haver = Zil a; andb = Z;; b;. When N analysis: we transform the problem into quar_wtifying theaaré
increases ta? N, a; andb; all get asi-fold increase and the Certain regions in space such that geometric modeling can be
expected number of distance calculations becomes used to generate rigorous results. Our analysisgshowshhatt
recently proposed algorithm has complexidf Nz) for 2D
Tht1 = Z P; ;s%a;s; (17) data andD(N#%) for 3D data, which beat the quadratic brute-
i, force algorithm. We also show that the conclusion holds true

whereP, ; is a binary variable that tells whether subcelind  With reasonable assumptions made on the spatial diswibuti
j are non-resolvable 0B M, ;. Without any assumptions, we ©f particles in the simulated system.

only know that the average @, ; over all combinations of ~_ Immediate future work in this area involves space par-
andj is 1 (Lemma 2). For Theorem 2 to be true, we need t#ioning methods with cell shapes other than square (e.g.,
show thatTj,1 = ﬁTk — 214 rectangles, triangles). Our conjecture here is that thecehaf

We first show that, if the distribution of particles &@ll- shape will not affect the main results presented in this pape

wise uniformon density map M}, we can achieve the above(e'g" Le'mma.2). Therefore, a generalize_d mod.el Is needgd

condition. Being cell-wise uniform means that the data af8 describe this phengmenpn. O'ne paradlgm.sklpped by. this

uniformly distributed within each cell, i.e., we havg — PaPer (due to space limitations) is the approximate algarit

Gy = = au — % andby = by — -~ = b.a — £ which [6] derived from the DM-SDH algorithm. While experimental
- - s T gd - - — Ysd T gd

easily leads tol).,; = %Zﬂ7jsdasdb — g2d-1gp Being results show very promising tradeoffs of running time and

a weaker assumption than system-wise uniform distributi(ﬁwﬁtryberrog prcf)tzﬁbmstlc models have to be developed.dyst
(which also requires = b), the cell-wise uniform distribution Ight bounds ot the error.
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APPENDIX |
THE DERIVATION OF EQ. (13)

We accomplish this proof by studying the difference betwgéﬁ& and % First, we see

1
A(m) — ;1/ (i —1)2 ———4Z9m+1\/22_1 m+1

\/8(2' —12-62,

+ QZOm\/Q(i —1)2-62,+ SZ(Z —1)%arctan
i=2 i=2

0m+1
l . !
— 12 _ g2
- 4;(2 —1)*arctan 8 9m) = — 4;(2 —1)*arctan /8(i — 1)2 — 1
When! — oo, we have the results shown in (19).
! T l
Z,/2(¢—1)2—Z — Z\/ﬁ(i—n
i=2 =2
! l
S Omiiy /20— 12 =0y — D OniaV2i - 1)
i=2 1=2
! !
S 0uV2i 126 — > 0,V2(i - 1)
i=2 1=2
! 8(1 —1)2 — 62, !
Z(z — 1)%arctan \/ B Z(z —1)%arctan 2v/2(i — 1)
i=2 Om-t1 i=2
! . l
12 _ g2
Z(z — 1)% arctan 8 7 ) no— Z(z —1)%arctan2v2(i — 1)
i=2 m i=2
! !
Z(z —1)%arctan/8(i —1)2 -1 — Z(z —1)%arctan 2v/2(i — 1)
i=2 i=2

Plugging the left-hand side of six formulae in (19) into E§8), we getA(m) — @

APPENDIXII
RELEVANT QUANTITIES IN 3D ANALYSIS

These formulae are listed on the last page of this paper ag2B)jto Eq. (22).

Vi (m) = //dxdy/\/p_m__l ()
//Wp—<x——> (o a) o
)

_ / [_M+%(p2_b2)3_597m[ 2_(59m)2}+7mb2] d

Here we have: = arctan 00 b= 5_9’" ,andc = /p? — (00,,)2.
p? —2(60.,)? sin ¢

— 0 and thusA(m) — =~

(18)

(19)

(20)



The coverable region is

4 20\ ? 25 26
Sm(ip)? — Sl(i — Dy’

2
gﬂ'(ip)g + 6ip (5 — j—i) + 3m(ip)2d (5 — ;—i) (5 — ;—i) —v(i,m,p,0)
Simplifying the above withp = /35, we get
26\* 2 2\°
4\/_7r+6\/_(1—7) +97r<1—%) - (1—2—m> 153
f(i,m) = [4\/—7rz —4/3r(i — 1)3]83
25\° 2 2\°
4/31i% + 6+/3i (1 - —m> + 9732 (1 — 2—m) + (1 — Q—m) —v(i,m,p)] 53

wherew(i, m, p, 6) =16V (m) andv(i,m,p,8) = §3v(i, m, p).
Continue with the same reasoning as in Section IlI-C, we have

27, lg

f(lvm) =

Gy = = (4\/§m’3 +6v/3i + 9mi® + 1)

=1

_162/ [__+;<3(i_1)2_(2511n¢>2>2 411

1
whereq = arctan 2

\/3(2' —1)2—-2(1)?
l
43 + Z {4\/51'3 — 43r(i — 1)3} = 4v/3r13

Om 0

‘162/ [__ 3 <3_ <sin¢)2>% rea e (5

Om
301 —1)2 — 262,

in which s = arctan

- ):

, and the following formulae for the accumulated volume fibrcaverable regiond.

n=1m2>1
n>2m=1

n>2m>1

n=1m2>1
n>2m=1

n>2m>1

1 1
16 (sin ¢)2] do (21)



APPENDIXIII
PROOF OFLEMMA 2

Proof: Proof is accomplished in a similar way to that of Lemma 1. While total area of all bucket regions Eq. (8) is
still the same, Eq. (9) and Eg. (10) become the following &équdor all m > 1:

l .
Fllm.s) = Zi=lbms) (23)
l 2
2 2
= Z [W(ip)Q + 4ip ((5— —5> + ((5 — —6) ]
! 2(i —1)2 — 01, !
_Z(i—l)Q [8arctan 2 — 27 —|—4Z [H;n 2(2’—1)2—0;712_9;”2} ,
1=2 m 1=2
. - am+1,s)  A(m,s)
which gives alms) ~ Blm,s) where
420 +17) 2 \? 1 1 \?
A(m, S) = ]. $1+m l ]. — 81+m + 4(l — 1) 5 — m (24)
! 20i—1)2 -0
—429m+1\/2(i—1)2 — 0,2 +8> (i—1)%arctan \/ 7 N
i=2 m+
l
+Z VB[ —1)2—1-8> (i—1)%arctan/8(i — 1)2 — 1
=2 =2
and
AV2(L+ 12 2\? 1 1Y\
B(m,s) = 1+%—1(1—5—m> +4(1—1)<§—8—m) (25)

l ! 2(i —1)2 — 01,

—4Y 0,020 —1)2 = 0,> +8) (i — 1)? arctan ( 9,)
=2 =2 m
l l

+> 0 V/B8(i—1)2—1-8) (i —1)%arctan /8(i — 1)2 — 1

=2 =2
A 1
m, s) to —. And we have

Following the reasoning in Appendix I, we compare the valfi .
B(m,s) s

! !
A(m,s)s — B(m,s) = (s—l)Z\/S(i—l)Q 8(1—s Z i —1)*arctan /8(i — 1)2 — 1 (26)
=2 =2

4(1—5 m+1\/22—1 —0, .7

! 2(i—1)2 -0,
+8(s—1) Z(z — 1)%arctan \/ 7 +1
i=2

m—+1

When! — oo, we have the results shown in (27).

l
1
§¢2<i—1>2—%+3 — VTP

! 8(i—1)2 -0, !
Z(’L — 1)? arctan \/ +1 — Z(z —1)%arctan/8(i — 1)2 — 1 (27)
i=2 0'mt1 i=2
Plugging the left-hand side of the above two formulae in (RI) Eq. (26), we getsA(m,s) — B(m,s) — 0 and thus
B(m, s)
—7, [

A
(m,5) — =



