
Control-Based Load Shedding in Data Stream Management Systems

Yi-Cheng Tu and Sunil Prabhakar
Department of Computer Sciences, Purdue University

1 Introduction
Data stream management has attracted much enthusiasm

from the database community in recent years. A very im-
portant characteristic of data stream management systems
(DSMSs) is that both data arrival and query processing are
continuous. As a result, the system needs to handle a large
number of streams and queries concurrently. This brings
the problem of maintaining Quality-of-Service (QoS) (i.e.,
parameters describing timeliness, reliability, and precision)
in query processing and data refreshing. Important QoS pa-
rameters include: processing delay, data loss, and sampling
rate, etc. Many applications of DSMS place strong real-
time constraints on query processing. Hard (e.g., in stock
price analysis) or soft (e.g., in network monitoring) dead-
lines are normally set and the value of query results drops
dramatically if these deadlines are missed. However, de-
lays in data processing in DSMSs are difficult to control
due to resource sharing of multiple streams/queries and un-
predictable pattern of resource consumption of these enti-
ties. System overloading, which inevitably degrades QoS,
is very common in such environments.

Load shedding techniques have been exploited to over-
come system overloading [6, 1]. The idea is to decrease the
input load by discarding data tuples from the query engine.
Essentially, it targets at maintaining critical QoS (e.g., pro-
cessing delay) with the price of less critical ones (e.g., data
loss). The specific problem we are interested in is: how
can we control processing delays to be under an appropriate
level with as little data loss as possible? Current DSMSs
employ simple heuristic methods in attempt to solve this
problem. For example, Fig. 1 shows the load shedding al-
gorithm utilized in Aurora [6] and STREAM [1] DSMSs.

1 for every T time units

2 if incoming load L is greater than

the system processing capacity L0

3 do shedding load with amount L − L0

4 else allow L0 − L more load to come

Figure 1. Generic load shedding algorithm

The intuition behind the above algorithm is: to control
processing delays, we need and only need to make sure that
the input load to DSMS is smaller than its processing ca-
pacity. The above algorithm works well when input load
changes infrequently. However, this is generally not the
case in practice. Streaming data are intrinsically dynamic

L0

Lt4 - Lt3

L0

La

Lb

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

A B

Figure 2. Two different cases of load arrivals.

with respect to the arrival patterns [5, 7]: input load may
fluctuate within a wide range. Among others, we show two
examples where the current method (Fig.1) will fail to main-
tain processing delay properly.

Example 1. As a very typical situation in streams, the
incoming data rate may keep increasing in a lasting pe-
riod of time (Fig. 2A). At any time ti, we sense the load
Lti

is higher than L0 and decide to shed load with amount
Lti

− L0 in the next period. The problem is: the incoming
load in the next period Lti+1

is greater than Lti
thus we are

not discarding enough load and the number of outstanding
data tuples q increases. If this keeps happening, processing
delays of tuples can increase unboundedly.

Example 2. Note that system would normally tolerate
tuple delays to a certain level (denoted as yr). When the
incoming data rate changes from a stable small value La to
a higher value Lb that is slightly greater than L0, the algo-
rithm will discard data with amount of Lb − L0 (Fig. 2B).
However, more data should be allowed to enter the DSMS
because the queue is empty (i.e., q = 0) before the change.
In this case, although the delay time is smaller than the tar-
get value yr, the extra data loss is unnecessary.

The above examples are just two of many cases that any
simple and intuitive load shedding algorithm cannot handle.
Things are more complicated when we consider the fact that
the per-tuple processing cost also changes over time. An-
other thing missing from Fig. 1 is how to set the monitoring
period T . Therefore, we need a systematic solution to ad-
just quality levels of streams in response to fluctuations of
system status and input rates.

Related Work. Very little attention has been paid to the
development of a unified framework to support quality of
service in DSMSs. In [1], load shedding strategies that min-
imize the loss of accuracy of aggregation queries in DSMS
are discussed. Closely related to our work is the QoS-
driven load shedding introduced in the context of the Au-

1

rora project [6]. In Aurora, three basic questions are raised
for load shedding in DSMSs: when, how much, and where
to discard load. The Aurora work focuses more on the last
question. In order to decide where in the query network
load should be discarded, a load shedding roadmap (LSRM)
is constructed. The LSRM generates a list of possible shed-
ding plans and sorts them by their expected returns on CPU
cost to utility loss ratio. Simple heuristics are used to deter-
mine the time and amount of load shedding (recall Fig. 1).
To some extent, our work aims to provide a better answer to
the first two questions (i.e., when and how much) in a sys-
tematic way. We have presented the basic approaches and
some simulation results in a short paper [7].

2 Overview of Our Approach
We follow a push-based data stream query processing

model, similar to those of STREAM [10] and Aurora [4].
As in [6], we assume CPU power is the bottlenecking re-
source. We allow the system administrator(s) to specify a
(either fixed or time-varying) target delay yr. Given a mon-
itoring period T 1, the goal is to make the average delay y of
all tuples arriving within each period remain under yr, with
as little data loss as possible. In case of overloading, we per-
form load shedding by discarding tuples from the waiting
queues in the network of operators. The specific problems
we need to solve are the time to shed load and the amount
of load to be discarded. We assume i) data arrival rate (de-
noted as fi) fluctuates all the time and it is impossible to
predict it; and ii) average processing (CPU) cost (denoted
as c) of tuples also changes over time.

2.1 A Solution Based on Feedback Control
We view quality adaptation under the DSMS setup as a

control problem. Generally, the term control refers to the
operations to manipulate some outputs of a system by ad-
justing the inputs to it. Here the output is the average tuple
delay y, and input is the incoming load fi to the DSMS. As
we’ve mentioned (Fig. 2), the failure of the simple solution
is due to its being unaware of the system status (i.e., the
current value of y and q). We remedy this by using feed-
back control techniques: we use the current output signal
(feedback) in making decisions for the next period of time.
Feedback control is used in many areas of engineering to
deal with systems subject to unpredictable disturbances.

Why feedback control? Denote the nominal model of the
controlled system as a (i.e., a transfer function in the dia-
gram in Fig. 3). The goal of adding a controller to the pic-
ture is to make the system output y track the target value
yr. Thus, the best thing one can do is to design a con-
troller with transfer function 1/a because we would then
have y = yr

1

a
a = yr

2, i.e., the output is exactly the target

1We will talk about the choice of T later.
2All control-related analysis is performed in the z-domain [9] where

convolution in the diagram becomes a multiplication.

�������
�

�� �	

����

�

���

�� �	

���������� �	
���

���������� �	
���

��
�

�

Figure 3. Open-loop (A) and feedback (B) con-
trol systems.

value. However, real-world dynamic systems are always
affected by input and output uncertainties (i.e., di and do,
respectively) named disturbances, and system modeling er-
rors dm. Considering these, the actual output becomes

y = yr + yr

1

a
dm + (a + dm)di + do. (1)

Clearly, the control suffers from poor accuracy due to the
existence of di, do, and dm, and there is no easy way to
reduce their effects. On the other hand, if we use y as a
feedback and send the difference between yd and y (i.e.,
control error) as input to the controller (Fig. 3B), the value
of y in the next round becomes

y =
K(a + dm)yr

1 + K(a + dm)
+

(a + dm)di

1 + K(a + dm)
+

do

1 + K(a + dm)

where K is the feedback controller designed based on the
system model. Now we see that, if the controller is set to
be large enough, i.e., K(a + dm) >> 1, y is approximately
y ≈ yr+

1

K
di+

1

K
do and the effects of di, do, and dm can be

reduced by a factor of K. Due to the existence of a complete
loop in the control diagram (Fig. 3B), feedback control is
also called closed-loop control while the control in Fig. 3A
is called open-loop control. Note that the algorithm shown
in Fig. 1 is open-loop in nature.

Closed-loop in our problem. Taking the advantages of
feedback control in dealing with environmental/internal dy-
namics, we propose to build a load shedding framework
based on a feedback control loop. Specifically, we design
a concrete control loop model (Fig. 4) from the preceding
conceptual model (Fig. 3B). The controlled system is the
query engine of the DSMS. Periodically, we do the follow-
ing: first, the output signal y - average delay of tuples in
each period - is looped back. The control error (e = yr −y)
is sent to the controller. Then the controller generates the
control signal u (based on e) and send it to the load shed-
der. The latter will decide where in the query network to
shed/add load such that the total input load to the query en-
gine equals u. Note that the controller is the only new com-
ponent to be built (on top of current DSMSs). The fluctua-
tions in the arrival of input data and the variable processing

Controller Load
Shedder DSMS

Disturbance

yr e u y

-

Figure 4. The closed-loop load shedding
framework.

cost c are treated as disturbances. The quantity u is essen-
tially our answer to the question of how much load to shed.

It is easy to see that the critical part of the control loop is
the controller. Feedback control theory provides a series of
mathematical tools to analyze and tune the controller so that
guaranteed performance can be achieved. We use the open-
source Borealis [3] DSMS (whose query engine is derived
from Aurora) as our experimental platform.

2.2 Issues
The following technical issues/challenges have to be ad-

dressed in order to make the idea work.
Modeling Borealis. Specifically, we need a dynamic

model that describes the response of the system to input
signals. Since models based completely on rigorous analy-
sis are very difficult to derive in studying complex systems
such as a DSMS, we use system identification [9] techniques
to generate the model. The basic idea is to initially model
the plant as a difference equation with unknown parame-
ters. Then we can determine the order and parameters of
the difference equation experimentally. Generally, we can
start from some knowledge of the model and then go back
and forth between experiments and hypotheses thus a more
refined model is built each time.

Controller design. As we’ve mentioned, the control goal
is to let y closely track the target value yr. Although user
satisfaction is not affected when we have y < yr, it im-
plies that more data is lost than what is necessary (under
a overloading situation). Thus, we should set our design
goal to fast convergence, meaning that the controlled sys-
tem is capable of bringing y back to the desired value yr

very quickly when y deviates from yd in either direction.
For this purpose, a controller design based on pole place-
ment is desirable to achieve guaranteed performance3.

Determining control period. This essentially answers the
question of ‘when’ to shed load. Most likely, we need to
find a tradeoff between the following two rules in select-
ing T : i) Sampling theorem. In order to manage the dis-
turbances, we need to effectively capture the moving trends
of those disturbances. According to information theory, a
higher sampling frequency (i.e., shorter period) is preferred;
ii) Stochastic feature of system signals. We take both the

3System poles are the roots of the denominator polynomial of the
closed-loop transfer function. The location of system poles can tell how
fast and smoothly the system responds to inputs therefore it is directly re-
lated to our design goal of fast convergence.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

A
rr

iv
al

 R
at

e
(t

up
le

s/
s)

Time (s)

Figure 5. Arrival rates of experimental data.

signals y and c as expectations of those for a series of tu-
ples. Therefore, control period cannot be too short. Other-
wise, the y and c signals we measure will subject to errors
due to the lack of enough samples.

2.3 Contributions
1. We propose the idea of using feedback control tech-

niques to provide quantitative guidance to load shedding in
data stream systems. This approach, as compared to current
(open-loop) methods, is more effective in maintaining QoS
under dynamic inputs and internal factors;

2. We develop a system model that describes system re-
sponses to incoming data inputs. Based on this model, we
design a feedback controller via well-established techniques
in control theory. The controller dynamically determines
what amount of load should be discarded/admitted; and

3. We implement and evaluate our control-based load
shedding framework in a real DSMS - the Borealis data
stream manager. Unlike previous works that only experi-
mented on simulators [8], our work on Borealis provides
better understanding of how control theoretical techniques
can be applied in a real software system.

3 Preliminary Results
By extensive analysis and experiments, we develop the

following model for the Borealis system (in the z-domain):

G(z) = c · T/(z − 1). (2)

Setting the convergence rate to three control periods, we
develop the following feedback controller.

u(k) =
0.4e(k)− 0.31e(k − 1)

cT
+ 0.8u(k − 1) (3)

where u(k), e(k) are control signal and control error of the
current control period and u(k−1), e(k−1) are their coun-
terparts in the previous period. Note that we treat c as a
constant at this moment and leave it as future work to han-
dle time-variant c. Due to space limitations, we skip the
details about the derivation of the above equations.

Experiments. We implemented our control-based load
shedding framework in Borealis. We test both the origi-
nal and controller-enhanced Borealis systems with synthetic
and real streaming data. The synthetic data are generated
such that the arrival rate follows a Pareto distribution to sim-
ulate various levels of burstiness. A sample data stream is

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 D
el

ay
 (

se
c)

Time (s)

A. Fixed processing cost
FB-CTRL
OL-CTRL

target

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 D
el

ay
 (

se
c)

Time (s)

B. Variable processing cost
FB-CTRL
OL-CTRL

target

Figure 6. Performance of different load shed-
ding algorithms.

shown in Fig. 5. First we test both systems with a query
network with a constant average processing cost. As we
can see from Fig. 6A, our approach (FB-CTRL) achieves
much better control of average delay: most of the recorded
y values are under the target value of two seconds. For those
rare occasions when y > yr, the errors are small. The sim-
ple method (OL-CTRL), on the other hand, generates much
more delay violations and renders the system unstable af-
ter the 200th second (i.e., y increases unboundedly). One
thing to point out is: data loss for both methods are approx-
imately the same (1 to 0.985). Other situations unchanged,
we also make the average processing cost c to change in a
sinusoidal pattern. Again, the delays recorded (Fig. 6B) in
the FB-CTRL method are under the target value with very
few exceptions. For the OL-CTRL method, the average de-
lays seem to fluctuate sinusoidally, following the pattern of
the changes of c. Similar to the previous experiment, data
losses are almost the same in both methods.

4 Future Work
In addition to the tasks listed in Section 2.2, this study

can be extended in the following directions.
Adaptive control. So far we have worked on a system

whose internal mechanisms are fixed. However, system
model could evolve over time. For example, we ended up
using the average processing cost c as a parameter in our
system model. Although experimental results show that the
system works well even under variable c (Fig.6B), we can-
not prove the stability of the controller. A more convincing
way to handle this would be to use a second (outer) loop to
capture the dynamics of the system model itself and send
it as a feedback to the current (inner) loop. By doing this,
we can i) handle more dramatic variations of c, ii) get better
control results in terms of fewer undershoots (i.e., the case
of y < yd) which could lead to less data loss.

Adaptation other than load shedding. Adaptation strate-
gies other than load shedding are also very popular in deal-
ing with overloading. Generally speaking, the goal of all
adaptation methods is to adjust the load that the system
needs to process. For example, in the case of sampling
rate reduction, we generally accomplish this by resetting
the width of some adaptive filters on the stream sources [2].
The relationship between the width of the adaptive filters
and the resulting data sending rate is generally not linear
and hard to quantify. We need to investigate the behavior of
our system and decide if re-modeling is needed.

More Sophisticated Quality Model. In this paper, we set
a target only for the processing delay and data loss is basi-
cally regarded as the cost of achieving the main control goal
of maintaining delays. The control on data loss is done in a
best-effort manner. A more palpable model would involve
setting targets for multiple QoS dimensions thus a single-in-
multi-out system model has to be utilized. The complexity
of such models could make a solution following this path
very difficult but it is worth further investigations.

5 Conclusions
In this paper, we study the problem of quality adaptation

in data stream systems from a new angle. Our approach
takes advantage of proven techniques from the field of feed-
back control theory. Compared to current solutions, our ap-
proach is designed to maintain tuple delays more effectively
under dynamic incoming load and variable data processing
costs. We have implemented our design in the Borealis data
stream manager and experimental results support our expec-
tations on the performance of our solution.

References
[1] B. Babcock et al. Load Shedding for Aggregation Queries

over Data Streams. In Procs. of ICDE 2004.
[2] C. Olston et al. Adaptive Filters for Continuous Queries over

Distributed Data Streams. In Procs. of ACM SIGMOD 2003.
[3] D. Abadi et al. The Design of the Borealis Stream Process-

ing Engine. In Procs. of CIDR 2005.
[4] D. Carney et al. Monitoring Streams - A New Class of Data

Management Applications. In Procs. of VLDB 2002.
[5] M. Zhang et al. Data Mining Meets Performance Evaluation:

Fast Algorithms for Modeling Bursty Traffic. In Procs. of
ICDE 2002.

[6] N. Tatbul et al. Load Shedding in a Data Stream Manager.
In Procs. of VLDB 2003.

[7] Y.-C. Tu et al. Control-based Quality Adaptation in Data
Stream Management Systems. In Procs. of DEXA 2005.

[8] K.-D. Kang et al. Managing Deadline Miss Ratio and Sen-
sor Data Freshness in Real-Time Databases. IEEE TKDE,
16(10):1200–1216, October 2004.

[9] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feed-
back Control of Dynamic Systems. Prentice Hall, 2002.

[10] T. S. Group. STREAM: The Stanford Stream Data Manager.
IEEE Data Engineering Bulletin, 26(1):19–26, March 2003.

