
1

Responses to Reviewers’ Comments

We really appreciate the efforts made by the review-

ers to help us improve this paper. The insightful com-

ments and questions raised by the reviewers gave us a

chance to look more deeply into the problems we are

trying to tackle. Understanding that the main concerns
are concentrated on the performance of DT-SDH un-

der skewed datasets, we dedicated most of our efforts

to improving our reasoning and writing related to this

problem in preparing an updated draft of this paper.
In the following text, we first describe in general the

changes made in the new draft, and then respond to

individual comments.

G1. We reorganized and enhanced our elaborations about

skewed datasets, focusing on Section 6.1.3. The main

information we are trying to convey is: 1) tight clus-
ters can change the running time and even the time

complexity of the algorithm; 2) in most cases tight

clusters have positive impact by decreasing the run-

ning time; and 3) the clusters have to be placed in
a certain way to have a negative impact on the run-

ning time. We will have more discussions on this in

our responses to individual comments;

G2. We performed additional experiments to verify our

claims made in item G1 (also to respond to review-
ers’ requests). For such experiments, we generate

input data with different levels of “skewness” using

high-order Zipf and mixed Gaussian models. The

results show that data skewness generally improves
running time of the algorithm. Such results can be

found in Section 7.4.

G3. Various editorial efforts were made to improve the

readability of the whole paper. We also removed the

section about approximate algorithms (previously
Section 7) since we believe it serves more like a mo-

tivation of this analytical work and thus is not worth

a length coverage. The excessive length of the paper

is another concern.

—————————————————————

0.1 Reviewer 1

R1-1. Now, I cannot believe that this would fix the

skewness problem. Consider a quadtree, where there are
n 2D points. Suppose at every level, three of the leaf

nodes just contain one point each while the fourth leaf

node contains n − 3 points. Such a quadtree will be

of O(n) depth. Even worse, suppose there are β + 1
points so tightly clumped up (called ”tight clumps”) to-

gether such that every subdivision creates three empty

leaf nodes and one leaf node containing all the β + 1

points, in which case the depth of the quadtree can be

very large.

Response: First we admit that our description about

the tree height H was not very clear and we apolo-

gize for the confusion. In this draft, we have fixed it

by using Eq. (1) to define it explicitly. Note that H is
of O(log N) and is not related to data distribution. A

path from the root to any leaf node will have at most

H depth. Even in the special case presented by the re-

viewer, the tree height will never reach O(N). Instead,
space partition will stop after H levels - this means

that, in the aforementioned case, there will be one node

with O(N) points and many nodes that are empty or

nearly empty. The empty nodes are easily ignored by

our algorithm and will thus decrease the running time.
Considering the trimmed empty nodes, we admit that

it is not rigorous to say the tree is “balanced”. How-

ever, we believe the performance of the algorithm will

not suffer from such imbalance. We will elaborate more
in our responses to comment R1-2.

Now, I don’t quite understand what the authors mean

by “the average number of points in the leaf nodes is no

smaller than a predefined threshold β”. I think what the
authors are saying is that they stop subdividing when

the ”average” number of points averaged across all the

leaf nodes in a level is ”no smaller” (should be smaller,

no?) than β.

Response: For the purpose of setting a cap of the tree

height, we want each leaf node, on average, to contain
at least β points. Therefore, it is correct to say “no

smaller than” here. Setting this threshold to a fixed β

is essential in that we know when N increases to sdN ,

the height of the tree increases by 1.

R1-2. In that case, you can have a case that one leaf

node contains O(n) points and others are largely empty?
How does this affect the algorithm?

Response: Indeed, one node can have O(N) points.
We depicted this scenario in Fig. 1 in the next page,

in which the filled square A represents the node where

most of the data points are located, and the rest of

the points are distributed sporadically out of A. In this
case, the point-to-point distances can be divided into

two categories: (1) distances for which two points are

both in A (named internal distance); and (2) distances

between one point in A and one out of A (named exter-
nal distance). We can easily see that a majority of the

distances are internal. Running DT-SDH to process

the above dataset, we have the following observations:

(1) As compared to a uniform dataset, we can quickly

reach the level of density map where A is located

2

Buc
ke

t 1
 n

on
−c

ov
er

ab
le

 re
gi

on

A

B

C

A

D

Buc
ke

t 2
 n

on
−c

ov
er

ab
le

 re
gi

on

Fig. 1 An extreme case of skewed 2D dataset. The partial annuli (i.e., rings) represent non-coverable regions after visiting the lowest
level tree nodes. The left figure shows the situation of a dataset with size N and the right figure when the data size increases to 4N .
Only one corner of the simulation space is illustrated.

to resolve cell pairs. This is because most of the

nodes are empty and thus skipped by DT-SDH,

thus decreasing the number of type (i) operations

mentioned in Section 3.1;

(2) The internal distances can be resolved into bucket
[0, p) in one shot; and

(3) As compared to a uniform dataset, it is possible

that more time will be spent to resolve cell pairs

to handle the external distances. However, to make
a bad case out of this, we have to put most points

out of A into the non-coverable regions (e.g., partial

rings in Fig. 1). For example, clusters B, C, and D

in the right graph of Fig. 1 are non-resolvable with

A. Otherwise, the number of non-resolved external
distances will follow Theorem 3.

From the above observations, we can see that the afore-

mentioned dataset makes a particularly “good” case for
our algorithm. Here we want to emphasize observation

(3), which shows that it takes some extra efforts and

bizarre data placement to create a “bad” case.

In summary, the impact of tight clusters is two-fold:

first, they tend to decrease the running time according

to observations (1) and (2); on the other hand, if clus-

ters are placed properly, the running time can be elon-
gated (observation (3)). Only when the latter impact

overshadows the benefits caused by the former one, we

have a “bad” case for which the running time (or even

time complexity) can increase. In fact, our experimen-
tal results in Section 7.4 show that the benefits of tight

clusters dominate in most of the cases. Among the tens

of skewed data patterns we tested, only one turned out

to be a “bad” distribution.

Against observation (1), one might argue that, if the

clumps are of sizes larger than p, the internal distances

cannot be immediately resolved into the first bucket of

SDH. We also did some research on this scenario and

have the following findings. The distribution of the in-

ternal distances within a closed region (e.g., a clump of

points) has one single peak, as shown in Fig. 13 (middle
graph) of the paper. Depending on the size and shape

of the clump, the peak can appear anywhere from 0 to

the maximum distance within the clump. According to

the discussions related to Fig. 13, the performance of
DT-SDH degrades only when the peak of the density

function is close to the boundary of two buckets. Let us

call the above observation (4). Similar to observation

(3), it shows that only clumps with specific features

render a “bad” case for DT-SDH.

R1-3. Now, it seems to be the “rare counter example to

Theorem 3” is related to the skewness in the tree I refer

above. The authors refer to the case when the points
are clumped up near bucket (histogram) boundaries, the

number of unresolvable distances becomes large. This

is understandable but here I don’t agree with the way

the authors have portrayed the problem. The authors

seem to portray that the worse case only happens when if
clumping happens at specific places. I think the problem

is more common than that. I think clumping of points,

if happens, is sufficient for the worse case to happen.

Here is my reasoning for it.

Say, we have a dataset with lots of clumps. I think

that regardless of the position of these clumps, there

would always be several cell pairs that would have to

subdivide several times before they become ”resolvable”.
In other words, my hypothesis is that the algorithm

would not perform well if the dataset has several tight

clumps. Why is my reasoning wrong here?

3

Response: We hope by our responses to comment R1-

2 with the example illustrated in Fig. 1 in the previous

page, the reviewers are convinced that clumping by itself

does not necessarily cause trouble to our algorithm.

Although we believe the existence of clumps is not

the sufficient condition of a “bad” case, we do agree
with the reviewer that the “bad” cases are more com-

mon than we previously described. In fact, we never

meant to give the impression that the pattern given by

Fig. 14 in the previous draft is the only example one
can find for a “bad” pattern. We have modified Section

6.1.3 and Fig. 14 (Fig. 15 in the new draft) accordingly.

As to the second paragraph of this comment, we

are not absolutely sure what the reviewer meant by

“regardless of the position of these clumps, there would
always be several cell pairs that would have to subdivide

several times before they become resolvable”. As we

have pointed out before, the cell “resolvability” is not

related to data distribution (therefore the existence of

clumps). We speculate this was caused by the confusion
about how the height of the quad-tree is set. We hope

our responses to R1-1 have cleared the doubts.

R1-4. Let us look at Figure 16. Now, the authors say

that Zipf distribution is skewed data. Can the authors

explain how/why the “density map level” of Zipf data is

identical to the “uniform” distributed data? Moreover,

the resolved number of distances also look the same.

If there is skewness in the data where is it being

manifested? All the plots for uniform distribution looks

similar to Zipf distribution. How about running experi-

ments on datasets where there are several tight clumps?

Response: Both uniform and Zipf datasets have the

same number of density map levels because the latter

is only related to N , not to the data distribution. See
our responses to comment R1-1 for more details. The

resolved number of distances are similar because: 1) in

both experiments, the rates of distance consumption

are indeed close to 0.5 as m grows, showing the effects
of the Zipf distribution in the particular experimental

setup are minimal; 2) differences do exist in the abso-

lute values of consumed distances of the uniform and

skewed datasets, but they are concealed by the loga-

rithmic scale of the y axle in Fig. 16.

The Zipf distribution we used in Fig. 16-18 was of
order 1.0 - we believe such a dataset is by all means

“skewed”. For the impact of datasets that are extremely

skewed (i.e., Zipf with order 2 - 4, mixed Gaussian with

small standard deviations), please see our new experi-
mental results and relevant discussions in Section 7.4.

Such datasets essentially consist of a very small number

of clumps that are extremely “tight”.

R1-5. “We can easily argue that there is no depen-

dency between these two processes therefore the latter

will not favor any particular type of cell pairs (e.g.,

those with higher chance to be resolved, or not to be

resolved).”

I agree with the ”no dependency” clause that the

authors use here, but argue that while the authors have
done a superb job understanding the first aspect of the

problem, they do a poor job with the second part (i.e.,

how point distribution affects running time). The point

distribution in a cell decides how much of additional

effort has to be expended to make the cell resolvable.

Response: In this statement, we meant to discuss the

effects of regular data distribution. For example, if we

say the data follows a Zipf or 80/20 distribution, then
it generally will not cause any trouble to DT-SDH. In

order to create a “bad” case for DT-SDH, we have to

put more conditions such as “a Zipf distribution where

the distance between two clusters is exactly ip”. The

idea expressed in this statement is elaborated in Section
6.1.3 and in our responses to comments R1-2 and R1-

3. In the new draft, this statement was rephrased to

reflect our thoughts.

The last sentence of this comment is not correct. We

should say “The point distribution in a cell decides how

much of additional effort has to be expended to process

all the distances related to the cell.” Again, we suspect
this was caused by the confusion about the tree height

H and hope we have resolved that issue.

—————————————————————

0.2 Reviewer 3

R3-1. I am not fully convinced that the analysis can be

applied to non-uniform data. E.g., when you increase N

to sdN , the distribution of points within the new four

cells (a1-a4 in Fig 12) should resemble the distribu-

tion of cells among the sibling of the current cell in
the dataset with N points. Therefore, either you are ef-

fectively making the assumption of global uniformity or

the number of points in ai will not be the same.

Response: Please see our responses to R1-1 and R1-2

as well as the newly added analytical and experimental

results for the performance of DT-SDH under skewed

datasets.

The concept of cell-wise uniform is clearly stated in

Section 6.1. It only requires all ai be the same and all

bi be the same, but ai = bi is not required. The latter
has to be true for global uniform distribution. As an

example of cell-wise uniform, we can imagine a simula-

tion space that is divided into two and only two cells A

and B. If we assume A and B are uniform but with dif-

ferent data densities, the data distribution is cell-wise

uniform. In studying the time complexity of DT-SDH,

we ask the question: when both A and B get a 4-fold

increase in their data intensities, how does the running
time of the algorithm change? Here, the new cells a1

- a4 only need to follow the data distribution of their

parent, and this for sure generates a data that is not

globally uniform. The case suggested by the reviewer
to follow distribution in the siblings of their parent is

not what we meant by “cell-wise uniform”. We believe

the scenario suggested by reviewer 1 is an example of

such dataset with recursive patterns, and we have dis-

cussed the impact of that data pattern in our responses
to comments R1-1 and R1-2.

R3-2. I think one of the worst case for your argument

(interestingly probably not for your algorithm) is that

most data lines on the x-axis while the rest of the data

sparsely distributed uniformly in the space. I conjecture

that the runtime could be close to N log N?

Response: We’d appreciate more elaborations on this

case. Just by looking at the specified data distribution,

we are not as optimistic as the reviewer who sees a
N log N running time of the algorithm.

R3-3. I think it will be more safe to state sth like: The-

orem 3 can be true under XYZ assumption.

Response: We agree with the reviewer that safe state-
ments should be made. Actually, Theorem 3 itself was

presented in an even more conservative way by only

saying it works under system-wise uniform distribution.

We tend to keep it that way.

R3-4. Your analysis effectively assumes the cell A is

located in the center of the dataset, hence there is no
need to consider the effect of boundaries. It is possible

that your analysis will be less accurate when number

of dim is high as more points will be located around

boundaries.

Response: Yes, in our analysis, we implicitly assumed

that cell A is not on the edge of the simulation space.

However, we do not see that as a major flaw in our

maths as we believe the errors it brings will be mini-
mal. Recall that the non-coverable regions are modeled

as rings (in 2D). Theorem 2 tells us that α(m) is propor-

tionally related to the “width” or “thickness” of such

rings. Therefore, the situation of having partial rings
due to A’s locating on the boundary of the simulation

space will not change much. We could probably study

the magnitude of such errors in an analytical way but

that will make the paper too bulky while generating

very little extra value.

R3-5. Sec 8: It is desirable to provide more details

on how zipf dataset is generated and how real datasets
are duplicated. It is also desirable to use more skewed

dataset, e.g., mixed Guassian

Response: We have added more details about data

generation in Section 7.1. We have also performed ex-

periments using high-order Zipf and mixed Gaussian

distributions, and the results are reported in Section
7.4.

R3-6. curves in the figures are hard to distinguish when

printed out.

Response: We have increased the weight of all lines in

the figures to make them more readable.

1

Noname manuscript No.
(will be inserted by the editor)

Performance Analysis of A Dual-Tree Algorithm for
Computing Spatial Distance Histograms

Shaoping Chen · Yi-Cheng Tu · Yuni Xia

Received: date / Accepted: date

Abstract Many scientific and engineering fields pro-
duce large volume of spatiotemporal data. The storage,

retrieval, and analysis of such data impose great chal-

lenges to database systems design. Analysis of scientific

spatiotemporal data often involves computing functions
of all point-to-point interactions. One such analytics,

the spatial distance histogram (SDH), is of vital impor-

tance to scientific discovery. Recently, algorithms for ef-

ficient SDH processing in large-scale scientific databases

have been proposed. These algorithms adopt a recur-
sive tree-traversing strategy to process point-to-point

distances in the visited tree nodes in batches, thus re-

quire less time as compared to the brute-force approach

where all pairwise distances have to be computed. De-
spite the promising experimental results, the complex-

ity of such algorithms has not been thoroughly studied.

In this paper, we present an analysis of such algorithms

based on a geometric modeling approach. The main

technique is to transform the analysis of point counts

Shaoping Chen
Department of Mathematics, Wuhan University of Technology,
122 Luosi Road, Wuhan, Hubei, 430070, P. R. China
Tel. : +86-27-8765-1213 E-mail: chensp@whut.edu.cn
Work was done when Chen was a visiting professor at the
University of South Florida.

Yi-Cheng Tu
Department of Computer Science and Engineering , The Univer-
sity of South Florida, 4202 E. Fowler Ave., ENB118, Tampa, FL
33620, U.S.A.
Tel.: +1-813-974-2114, Fax: +1-813-974-5456, E-mail:
ytu@cse.usf.edu
Corresponding author.

Yuni Xia
Computer and Information Science Department, Indiana Uni-
versity - Purdue University Indianapolis, 723 W. Michigan St,
SL280, Indianapolis, IN 46202, U.S.A.
Tel. : +1-317-274-9738, Fax: +1-317-274-9742, E-mail:
yxia@cs.iupui.edu

into a problem of quantifying the area of regions where
pairwise distances can be processed in batches by the al-

gorithm. From the analysis, we conclude that the num-

ber of pairwise distances that are left to be processed

decreases exponentially with more levels of the tree vis-
ited. This leads to the proof of a time complexity lower

than the quadratic time needed for a brute-force algo-

rithm, and builds the foundation for a constant-time

approximate algorithm. Our model is also general in

that it works for a wide range of point spatial distribu-
tions, histogram types, and space partitioning options

in building the tree.

Keywords scientific databases · correlation function ·
quad tree · spatial distance histogram

1 Introduction

The development of advanced experimental devices and

computer simulations have given rise to explosive ren-
dering of data in almost all scientific fields. As a re-

sult, scientific data management has gained much mo-

mentum in the database research community. Recent

years have witnessed increasing interest in developing
database systems for the management of scientific data

[11,33,19,23,15,13,39,40]. While taking advantage of

the optimized I/O and querying power of relational

DBMSs, such systems still fall short of algorithms and

strategies to satisfy the special needs of scientific appli-
cations, which are very different from traditional database

applications in their data types and query patterns. In

this paper, we are interested in query processing against

scientific spatiotemporal data. Such data are very pop-
ular in various scientific [14,2,31] and engineering [22]

fields where natural systems (e.g., cells, galaxies) are of-

ten studied by computer simulations performed on the

2

Fig. 1 A simulated hydrated dipalmitoylphosphatidylcholine bi-
layer system. We can see two layers of hydrophilic head groups
(with higher atom density) connected to hydrophobic tails (lower
atom density) are surrounded by water molecules (red dots) that
are almost uniformly distributed in space.

level of basic system components (e.g., atoms, stars). By

nature, such applications generate very large datasets.
For example, molecular simulations often deal with sys-

tems with up to millions of atoms (Fig. 1). As a case of

extreme, the Virgo consortium recently accomplished a

simulation that consists of 10 billion stars [30].

Apart from the challenges of data storage/retrieval

imposed by the gigantic volume of scientific data, we

also face the issue of designing efficient algorithms for

data querying and analysis. Scientific data analysis of-

ten require computation of mathematical (statistical)
functions [17,11] whose complexity goes beyond simple

aggregates, which are the only analytics supported by

modern DBMSs. Many complex analytics in scientific

applications are found to be hierarchical in that they
are often defined on top of a small number of low-level

analytics as building blocks. Therefore, it is desirable

to have built-in support for efficient processing of such

low-level analytics in the DBMS. One salient example

of such analytics is the n-body correlation functions (n-
BCF). Generally, an n-BCF is a statistical measure of

all the n-point subsets of the whole dataset. In a dataset

with N data points, an n-BCF requires O(Nn) time to

compute in a brute-force way.

One type of 2-BCF query called the Spatial Distance

Histogram (SDH) is of vital importance in computa-

tional sciences and thus the focus of this paper. The

SDH problem can be formally stated as follows.

Given the coordinates of N particles in a (2D or 3D)
metric space, draw a histogram that represents the

distribution of the pairwise distances between the N

points.

The histogram has a single parameter l, which is

the total number of buckets. Since the dataset is al-

ways generated from a system with fixed dimensions,

the maximum distance between any two points Lmax

is also fixed. We often deal with standard SDHs whose
buckets are of the same width. The width of the buck-

ets (i.e., histogram resolution) p = Lmax/l is often

used as the parameter of the query instead. In other

words, SDH asks for the counts of pairwise distances
that fall into ranges [0, p), [p, 2p), · · · , [(l − 1)p, lp], re-

spectively. Basically, SDH is a discrete representation

of a continuous 2-BCF called Radial Distribution Func-

tions (RDF) [4,31]. The latter is required for the com-

putation of many critical high-level analytics such as
pressure, energy, [14] and structure factor [12]. With-

out RDF, meaningful analysis of the physical/chemical

features of the studied natural system is not possible.

While a naive way to compute SDH takes O(N2)

time, more efficient algorithms have been proposed in

our previous work [38] and in the data mining commu-

nity [16,25]. As summarized in Section 2.3, the main
idea of this type of algorithms is to derive the histogram

by studying the distances between two clusters of parti-

cles instead of those between two individual points. The

clusters are represented by nodes in a space-partitioning

tree structure. Although different implementations ex-
ist in [16,25] and [38], such an approach can be ab-

stracted into a recursive tree-based algorithm described

in Section 3. Since the recursion always happens be-

tween two disjoint subtrees, these algorithms are called
dual-tree algorithms [16]. While experimental results

support the efficiency of such algorithms, their com-

plexity has not been thoroughly studied. In this paper,

we present an analytical model to accomplish quantita-

tive analysis of the performance of this algorithm. The
main technique is to transform the analysis of particle

counts into a problem of quantifying the area of inter-

esting geometric regions. Our analysis not only leads

to a rigorous proof of the algorithm’s time complexity,
but also builds the foundation for approximate algo-

rithms [38,16]. With time complexity that depends only

on a controlled error bound, such algorithms are the

only practical solutions to SDH computation in large

datasets. Although we focus on a specific 2-body cor-
relation function, the dual-tree algorithm can be easily

extended to handle higher order correlation functions

[25]. Furthermore, the significance of this work is not

limited to scientific databases: the dual-tree algorithm
is also used to process a series of queries useful in data

mining, such as batch k-nearest neighbor, outliner de-

tection, kernel density estimation, and k-means [16].

3

Paper organization This paper is organized as fol-

lows: in Section 2, we summarize the contributions of

this paper via comparison to related work; in Section 3,

we sketch the dual-tree algorithm; we present our basic

analytical model in Section 4 and two important exten-
sions of the model in Section 5; we show an analysis of

the time complexity of the dual-tree algorithm in Sec-

tion 6; we report experimental results in Section 7, and

conclude our paper in Section 8.

2 Related Work and Our Contributions

2.1 Scientific Data Management

The scientific community has been in a transition from

developing ad hoc data processing systems based on

flat files to utilizing modern database technology for

data management tasks. There is a large number of
scientific databases built on top of existing relational

DBMSs. Well known examples include: the GenBank1

database provides public access to about 80 million gene

sequences; the Sloan Digital Sky Survey [33] enables
public access to more than 100 attributes of 200 mil-

lion objects in the sky; the QBISM project [3] delivers

a prototype of querying and visualizing 3D medical im-

ages; and the Stanford Microarray Database2 is a portal

for storing and querying gene expression data.

However, scientific data are different from traditional

data in that: (1) the volume of scientific data can be

orders of magnitude larger; (2) data are often multidi-

mensional and continuous; and (3) queries against sci-
entific data are more complex. While the basic database

system architecture can still be adapted, the above dif-

ferences bring significant challenges to DBMS design.

To meet such challenges, the database community has

taken two different paths. The first one is to address
domain-specific data management issues by modifying

particular modules of existing relational DBMSs. There

is a series of work dedicated to various aspects such as

I/O scheduling [24], query processing [9,28] and data
provenance management [10]. Another thrust is to build

a general-purpose platform from scratch to support a

wide range of scientific applications [32,21,6]. The work

presented in this paper falls into the first category by

emphasizing efficient processing of a special yet highly
useful analytical query.

1 http://www.ncbi.nlm.nih.gov/Genbank
2 http://smd.stanford.edu/

2.2 Computation of Force/Potential Fields

The SDH/RDF problem is often confused with another

group of problems — the computation of force/potential

fields in scientific simulations. Specifically, the physi-
cal properties of a system component (represented as a

point in space) is determined by the force applied to it

by all other points in the system. Therefore, to compute

the force applied to all points, O
(

N2
)

time is required.
Since the force/potential can be expressed as an empiri-

cal integration formula, much efforts have been devoted

to efficient force computation from a numerical analysis

viewpoint. Most of the research in this field are derived

from two lines of work: the Barnes-Hut algorithm [5]
that requires O

(

N log N
)

time, and the fast multi-pole

algorithm [18] with linear time complexity. These meth-

ods utilize unique features of the force (e.g., symmetry

and fast degradation with distance) to bound the com-
putational errors. However, they provide little insights

to the SDH problem as the latter lacks such features.

Another method based on well-separated pair de-
composition (WSPD) was proposed by Callahan and

Kosaraju [7]. The WSPD is a series of pairs of sub-

sets of the data points. Each pair of subsets Pi and

Pj are well-separated: the distance between the small-
est balls (with radius r) covering the particles in Pi

and Pj is at least sr where s is a system-level param-

eter. Following the algorithm in [7] that also utilizes a

space-partitioning data structure called fair-split tree,

the WSPD can be built in O(N log N) time and there
are only O(N) such pairs of subsets that cover all pairs

of particles. As a result, the force fields can be computed

in O(N) time, given the WSPD. It may look intuitive

that a WSPD can also be used to compute SDH: for
each subset pair, their point-to-point distances fall into

the range [rs, rs + 4r]; by carefully choosing s and r,

we can fit this range into relevant buckets of the his-

togram. However, the pitfall here is: s is a configurable
parameter of the WSPD construction algorithm while

r is not — it can be any value in each pair of subsets. If

we enforce a specific value for r, the O
(

N) performance

guarantee is lost. Therefore, it does not provide a short-

cut to efficient SDH processing to use the WSPD. In
summary, the difficulty of the SDH problem is to put

distances into buckets with clearly defined boundaries

(Section 6.1) while the WSPD can only be manipulated

to work with fuzzy ranges.

2.3 Algorithms for Efficient SDH Computation

Despite the importance of SDH, efficient SDH process-

ing has not been intensively studied. Popular simulation

4

data analysis softwares such as GROMACS [20] still fol-

low the brute-force way to compute SDH. In [34] and

[35], the SDH is processed by dividing the simulation

space into bins and treating each bin as a single entity

and run quadratic algorithms on these bins. Such an
approximate solution, while reducing the computation

time, can obvious yield uncontrollable errors. One ap-

proach to get the exact SDH is to issue a series of range

queries (i.e., one for each bucket) for each data point,
taking advantage of the kd-trees for range queries. This

method, so called the single-tree algorithm, was ex-

tended to the dual-tree algorithm where the kd-trees

are still used [16]. In our previous work [38], we utilized

the Quad/Oct-tree to divide the simulation space into
equally-sized cells and used it explicitly for SDH pro-

cessing. The main idea behind the dual-tree algorithm

is to process clusters of particles to take advantage of

the non-zero width of the SDH bucket. The name “dual-
tree” comes from the fact that it always works on a pair

of such clusters (i.e., subtrees) while the single-tree al-

gorithm on one data point and one subtree. Note that

the kd-tree is equivalent to a Quad-tree if we assume the

particles are uniformly distributed in space. However, it
turns out the use of Quad-tree is critical to achieve rig-

orous analysis. In addition to convincing experimental

results, both work reported results of some asymptoti-

cal analysis. However, the results in [16] come with no
technical details at all while our earlier paper [38] only

sketched the main analytical results.

2.4 Contributions of This Work

This paper significantly extends [38] by introducing the
models behind the analytical results. In summary, this

paper makes the following contributions.

1. We present details of an analytical model based on a

geometric modeling approach. Such content are not

found in any previous work;

2. The results in [16] and [38] are strictly based on the
assumption that particles follow a uniform spatial

distribution in space. This assumption is obviously

unreasonable in real simulation environments. We

relax this assumption in our analysis;

3. We present an extended model for performance anal-
ysis in 3D space; and

4. We extend the analysis to arbitrary space partition-

ing parameters (i.e., node degree) in building the

spatial tree.
5. We also show the dual-tree algorithm has the same

time complexity in processing SDHs with variable

bucket width.

3 The Dual-Tree Algorithm

In this section, we present the main idea of the dual-tree

SDH algorithm (DT-SDH). DT-SDH is an abstraction

of both methods presented in [16] and [38]. With the
assumption of uniform particle distribution, the kd-tree

in [16] is equivalent to a region Quad-tree, which is

explicitly used in [38] and also the abstracted DT-SDH

algorithm.

Procedure ResolveTwoTrees (A, B)
1 if A and B are resolvable
2 add nanb to the corresponding bucket
3 elseif A and B are not leaf nodes
4 for each child a of A
5 for each child b of B
6 ResolveTwoTrees (a, b)
7 else
8 compute all point-to-point distances between A and B

and add each pair to the corresponding bucket

Fig. 2 Procedure ResolveTwoTrees - core of the DT-SDH algo-
rithm.

The algorithm first divides the simulated space into

a grid, each cell of which records the number of data
points in it. We call such a grid a density map and

density maps with different cell sizes have to be main-

tained. We therefore organize all point coordinates into

a point region Quad-tree [27] with each node represent-
ing a cell (square for 2D data and cube for 3D) in space.

Point counts of each cell are cached in the correspond-

ing tree node. Those with zero point count are removed

from the tree. The height of the tree (denoted as H)

is determined in a way such that the average number
of points in all possible leaf nodes is no smaller than a

predefined threshold β. To be specific, we have

H =

⌈

log2d

N

β

⌉

(1)

where d is the number of dimensions and 2d is essen-

tially the maximal degree of tree nodes.

The focal point of this algorithm is a procedure

named ResolveTwoTrees (Fig. 2). To resolve two

cells A and B (with total particle counts na and nb, re-

spectively), we first read the coordinates of the two cells

and compute the range of distances between any pair
of points, one from A and one from B. Note that, given

the coordinates of the two cells, this distance range can

be computed in constant time (Fig. 3). If this range is

contained in the range of a histogram bucket i, we say
A and B are resolvable and they resolve into bucket i.

In this case, we simply increment the count of bucket i

by nanb (line 2). If the two cells are not resolvable, we

5

A

B

B

B

Fig. 3 Three scenarios in computing the minimum and maxi-
mum distance between two cells A and B, with solid (dotted)
line representing minimum (maximum) distance in each case.

recursively resolve all pairs of their child nodes (line 6).

It is easy to see that, no matter how small the cells are
in a density map, non-resolvable cell pairs always exist.

Therefore, when we reach the lowest level of the tree,

we have to calculate all distances of the particles in the

unresolved cells (line 8).

In practice, β is set to be around 2d. The intuition
behind that is, when a pair of non-resolvable cells con-

tains less than 16 (64 for 3D) distances (i.e., roughly 4

points in each cell), it does not help to further divide

them. The process of tree construction can be accom-

plished in O(N log N) time.

The algorithm starts from a certain level of the tree

where the diagonal of the cells is no greater than the

bucket width p. We denote this level as density map

DM0. In other words, we require

δ ≤ p√
d

(2)

where δ is the side length of the cells in DM0 and d

is the number of dimensions in the data. Note that no

cells can be resolved if the above inequality does not

hold true. The dual-tree algorithm runs as: first, all

intra-cell particle-to-particle distances on DM0 can be
put into the first bucket [0, p), as p is larger than the

cell diagonal; second, ResolveTwoTrees is executed

for all pairs of non-empty cells on DM0.

3.1 Basic Ideas in Analyzing DT-SDH

The running time of DT-SDH is consumed by the fol-

lowing two types of operations:

(i) checking if two cells are resolvable (i.e., line 1 in

ResolveTwoTrees); and

(ii) distance calculation for data points in cell pairs that
are non-resolvable even on the finest density map

(i.e., line 8 in ResolveTwoTrees).

As compared to the brute-force algorithm, we perform

type (i) operations in hope of handling multiple dis-

Table 1 Notations and definitions.

Symbol Definition

N total number of particles in data
l total number of histogram buckets
p width of histogram buckets
m an index of the density map (level on the Quad-

tree)
i an index on histogram buckets
δ side length of the cells on DM0

α(m) non-covering factor on level DMm

S the area of some region
s tiling factor
d number of dimensions in data (up to 3)

tances in one shot such that the number of type (ii) op-

erations is minimized. Given a histogram bucket width
p, we start from a density map DM0 with c cells. Thus,

there are O(c2) type (i) operations to be performed on

level DM0. On the next map DM1, there are 4×4 = 16

times of cell pairs to resolve. However, some of the cells
in DM1 do not need to be considered as their parents

are resolved on DM0. From this, we can easily see that

the running time has something to do with p since it

determines the number of cells in DM0. However, in

analyzing the time complexity of DT-SDH, we are in-
terested in how the running time increases as the total

number of points N increases, as p is a fixed query pa-

rameter. Qualitatively, as N increases, the height of the

quad-tree also increases (due to a fixed β), giving rise
to a higher percentage of resolvable cell pairs on the leaf

level. On the other hand, the total number of cell pairs

also increases (quadratically). An essential question our

analysis needs to answer is: given a cell A on DM0, how

many pairs of points are contained by those resolvable
cells related to A as we visit more and more levels of

density maps? Although this apparently has something

to do with the spatial distribution of the points, our

main idea is to first analyze how much area are cov-
ered by the resolvable cells to simplify the process, and

then discuss the effects of particle spatial distribution

on this basic analysis. In the following section, we use

a geometric modeling approach to quantify the area of

resolvable cells of interest. Some of the symbols used
throughout this paper are listed in Table 1.

4 Main Analytical Results

4.1 Overview of Our Approach

Given any cell A on density map DM0, our analysis first

quantifies the area of a theoretical region containing all
particles that can possibly resolve into the ith bucket

with any particle in A. We call this region the bucket i

region of cell A and denote it as Ai. In a 2D example

6

Table 2 Values of α(m + 1)/α(m) in 2D space under different values of m and l. Computed with Mathematica 6.0 based on the
formulae generated in Section 4.4. Precision up to the 6th digit after decimal point.

Map Total Number of Histogram Buckets (l)
levels 2 4 8 16 32 64 256

m=1 0.508709 0.501837 0.50037 0.50007 0.500012 0.500002 0.5
m=2 0.503786 0.500685 0.500103 0.500009 0.499998 0.499999 0.5
m=3 0. 501749 0.500282 0.500031 0.499998 0.499997 0.499999 0.5
m=4 0. 500838 0.500126 0.50001 0.499997 0.499998 0.499999 0.5
m=5 0. 50041 0.500059 0.500004 0.499998 0.499999 0.5 0.5
m=6 0.500203 0.500029 0.500002 0.499999 0.499999 0.5 0.5

m=7 0.500101 0.500014 0.500001 0.499999 0.5 0.5 0.5
m=8 0.50005 0.500007 0.5 0.5 0.5 0.5 0.5
m=9 0.500012 0.500003 0.5 0.5 0.5 0.5 0.5
m=10 0.500025 0.500002 0.5 0.5 0.5 0.5 0.5

A

O

O1O2

O3

Q

Q1

Q2

Q3

C1

C3

D1

C2

C4C5

C6

C7

C8

D2

D3

D4D5

D6

D7

D8

Fig. 4 Boundaries of bucket 1 and bucket 2 regions of cell A,
with the bucket width p being exactly

√
2δ. Here we show arcs

Q̂1Q2, Ĉ1C2, and D̂1D2, all of which are centered at point O.

illustrated in Fig. 4, a cell A is drawn with four corner
points O, O1, O2, and O3, and A1 is bounded by curves

and line segments connected by points C1 through C8.

In our analysis, we consider the boundary situation of

formula (2): the side length of cell A is set to be exactly
δ = p√

2
. As we can easily see later, the case of δ < p√

2
will not change the analytical results. Technical details

on the quantification of the area of Ai is presented in

Section 4.2.

The cells that are resolvable into bucket i with any

subcells in A also form a region. We call such region

the coverable region and denote it as A′
i
. Due to the

shape of subcells, the boundary of such regions shows a
zigzag pattern, as represented by solid blue lines in Fig.

6. When DT-SDH visits more levels of the tree, the res-

olution of the density map increases, and the boundary

of region A′
i
approaches that of Ai. The quantification

of the coverable regions’ area is discussed in Section 4.3.
With the above results, we then study the area of

coverable regions over all buckets and how the density

map resolution affects it. Specifically, we define the ratio

of
∑

i A
′
i
to

∑

i Ai as the covering factor. This is a criti-

cal quantity in our analysis as it tells how much area are
“covered” by resolved cells. Obviously, the covering fac-

tor increases when we visit more levels of density map.

Of special interest to our analysis is the non-covering

factor, which represents the percentage of area that is
not resolvable. The details about covering factor can be

found in Section 4.4. A very important feature of the

non-covering factor can be summarized in the following

theorem.

Theorem 1 Let DM0 be the first density map the DT-

SDH algorithm starts running, and α(m) be the per-

centage of pairs of cells that are not resolvable on the

density map that lies m levels below DM0 (i.e., map
DMm). We have

lim
p→0

α(m + 1)

α(m)
=

1

2
.

Proof The proof is developed in the remainder of this

section starting from subsection 4.2.

While shown in the form of a limit under large l
(i.e., small p), Theorem 1 also works well under small

l values. This can be effectively verified by numerical

results obtained from the closed-form formulae we de-

rive (Eq. (9) and Eq. (10)) to accomplish the proof. In

Table 2, we can easily see that the ratio of α(m + 1) to
α(m) quickly converges even when l is very small.

Theorem 1 is important in that it shows the num-

ber of non-resolvable cell pairs decreases exponentially

(by half) when more levels of the tree are visited. In
ResolveTwoTrees, if a cell pair is not resolved, we

have to make 16 recursive calls to the same routine for

the 4 children of each cell. Theorem 1 says that we can

7

g(i) =

8
<
:

(2π + 4
√

2 + 1)δ2 i = 1»
2πi2 + 4

√
2i − (i − 1)2

`
8 arctan

p
8(i − 1)2 − 1 − 2π

´
+

p
8(i − 1)2 − 1

–
δ2 i > 1

(3)

expect 16 × 0.5 = 8 pairs of the child nodes to be re-

solvable. For these resolved cell pairs, there is no need

to further explore the pair of subtrees rooted by them.
This greatly eases our analysis of the time complexity

of DT-SDH (Section 6).3 Now let us consider a formal

proof of Theorem 1.

4.2 Maximal bucket region

As mentioned earlier, the bucket 1 region for cell A

in Fig. 4 is connected by C1 through C8. Specifically,
C1C2, C3C4, C5C6, and C7C8 are all 90-degree arcs cen-

tered at the four corners of cell A and their radii are

of the same value p; C2C3, C4C5, C6C7, and C8C1 are

line segments. It is easy to see that the area of this
region is πp2 + 4pδ + δ2. Let us continue to consider

distances that fall into the second bucket (i.e., [p, 2p)

). Again, the bucket 2 region of A is of similar shape

to the bucket 1 region except the radii of the arcs are

2p, as drawn in Fig. 4 with a curve connected by points
D1, D2, . . . , D8. However, points that are too close to

A can only resolve into bucket 1 since their distances

to any point in A will always be smaller than p. These

points are contained in a region as follows: on each cor-
ner point of A, we draw an arc with radius p on the op-

posite corner (i.e., arcs QQ1, Q1Q2, Q2Q3, and Q3Q).

Therefore, the bucket 2 region should not include this

inner region (denoted as region B hereafter, see Fig. 5
for a magnified illustration).

The area of the bucket 2 region is π(2p)2 + 8pδ less

the area of region B, which consists of eight identical

smaller regions such as Q̂1O2D (Fig. 5) and cell A it-

self. To get the area of Q̂1O2D, we first compute the
magnitude of the angle ∠Q1OO2 as follows.

∠Q1OO2 = ∠Q1OE − ∠COE = arctan
Q1E

EO
− π

4

= arctan

√

p2 −
(

δ
2

)2

δ

2

− π

4

Thus, the area of sector Q̂1O2O is 1
2p2

∠Q1OO2. The

area of region Q̂1O2D can be obtained by the area of

3 The techniques to derive Theorem 1 are important. However,
readers can get a big picture of this work by browsing Theorem
2 (a more general form of Theorem 1) in Section 5.2 and then
moving to Section 6.

Q1

C

O

D

E

O2

Fig. 5 A magnification of region B (i.e., QQ1Q2Q3 formed by
four arcs in Fig. 4). Here we only show arc Q1O2, which is a half
of arc Q1Q2.

this sector less the area of triangles O2DC and Q1CO

as follows:

S
Q̂1O2D

= S
Q̂1O2O

− S△O2DC − S△Q1CO

=
1

2
p2

[

arctan
2

√

p2 −
(

δ
2

)2

δ
− π

4

]

− δ

4

√

p2 −
(

δ

2

)2

and we have π(2p)2 + 8pδ − 8S
Q̂1O2D

− SA as the area

of the bucket 2 region.

The approach to obtain the area of bucket i (i > 2)

regions is the same as that for bucket 2. For the area of

the region formed by the outer boundary, we only need

to consider that the arcs in Fig. 5 are of radii ip. Along
with the fact p =

√
2δ, our efforts lead to a general

formula to quantify the area of the bucket i region in

Eq. (3) shown on top of this page.

4.3 Coverable regions

The are two different scenarios to consider in deriving

the area of coverable regions.

4.3.1 Case 1: the first bucket

Let us start our discussions on the situation of bucket
1. In Fig. 6, we show the coverable regions of three dif-

ferent density map levels: m = 1, m = 2, and m = 3, as

represented by blue-colored lines and denoted as A′ in

8

a

C

 D

A’

A

b

A’
D

FE

G

A

C

A’

A
C

D

c

Fig. 6 Actual (solid blue line) and approximated (dotted blue
line) coverable regions for bucket 1 under: a. m = 1; b. m = 2;
and c. m = 3. Outer solid black lines represent the theoretical

bucket 1 region. All arrowed line segments are drawn from the
centers to the corresponding arcs with radius p.

all subgraphs. Recall that, for two cells to be resolvable
into bucket i, the minimum and maximum distance be-

tween them should both fall into range [(i−1)p, ip). For

m = 1, the resolvable cells are only those surrounding

A. All other cells, even those entirely contained by the
bucket 1 region, do not resolve with any level 1 sub-

cell of A. As we increase m, the region A′ grows in

area, with its boundary approaching that of the bucket

1 region. To represent the area of A′, the technique we

adopt is to develop a continuous line to approximate its

boundary. This technique will be used throughout our

analysis. One critical observation here is: the further-

est cells in A′ are those that can resolve with cells on
the outer rim of A. For example, the cell cornered at

point D resolves with the cell cornered at point C in A.

If we draw a 90-degree arc centered at C, the arc goes

through D and all cells on the northwestern corner of
A′ are bounded by this arc. To approximate the bound-

ary of A′, we can draw such an arc at all four corners

of the graph and connect them with line segments (e.g.,

EF connecting the northwestern and northeastern arcs

centered at point G in Fig. 6b), as shown by the blue
dotted line. Obviously, this line approaches the theoret-

ical boundary as m increases because the center of the

arcs (e.g., point C) move further to the corner points of

A as the cells become smaller. Note that this line gives
rise to an optimistic approximation of A′. In Section 6,

we will show that this overestimation will not harm our

analysis on the time complexity of DT-SDH. The area

of the coverable region for bucket 1 at level m can thus

be expressed as

SA′ = πp2 + 4p

(

δ − 2δ

2m

)

+

(

δ − 2δ

2m

)2

(4)

where the first item πp2 is the area of the four 90-degree

sectors centered at point C, the second item is the area

of the four rectangles (e.g., EFGC in Fig. 6b) connect-
ing the four sectors, and the last item is the area of the

smaller square (e.g., the one with side CG in Fig. 6b)

within cell A.

4.3.2 Case 2: the second bucket and beyond

The cases of buckets beyond the first one are more com-

plicated. First of all, the outer boundary of the bucket

i (i ≥ 2) regions can be approximated using the same

techniques we introduced for bucket 1 (Section 4.3.1).
To be specific, we can use the following generalized form

of Eq. (4) to quantify the area of the region formed by

the outer boundaries only.

Sout(i) = π(ip)2 + 4ip

(

δ − 2δ

2m

)

+

(

δ − 2δ

2m

)2

(5)

However, we also need to disregard the cells that lie in
the inner boundary (e.g., those within or near region

B). This has to be considered in two distinct cases:

m = 1 and m > 1.

Let us first study the case of m = 1. Fig. 7 shows
examples with m = 1 with respect to the second and the

third bucket. It is easy to see that any cell that contains

a segment of the theoretical region B boundary will not

9

Bucket 3 boundaries

A

C

Bucket 2 boundaries

O

Fig. 7 Inner boundaries of the coverable regions of buckets 2
and 3 under m = 1. All arrowed line segments are of length 2p.

resolve into bucket i because they can only resolve into

bucket i − 1. Furthermore, there are more cells that

resolve into neither bucket i− 1 nor bucket i. Here our

task is to find a boundary to separate those m = 1 cells

that can resolve into bucket i with any subcell in A and
those that cannot. Such boundaries for buckets 2 and

3 are shown in Fig. 7 as solid blue lines. The boundary

can be generated as follows: on each quadrant (e.g.,

northwest) of cell A, we draw an arc (dotted blue line)
centered at the corner point C of the furthest (e.g.,

southeast) subcell of A with radius (i − 1)p. Any cell

that contains a segment of this arc cannot resolve into

bucket i (because they are too close to A) but the cells
beyond this line can. Therefore, we can also use these

arcs to approximate the zigzagged real boundaries. Let

us denote the region bounded by this approximate curve

as region B′. For m = 1, the arcs on all four quadrants

share the same center C therefore they form a circle as
region B′. The radii of the circles are exactly (i − 1)p

for bucket i. Note that this, again, could give rise to

an optimistic approximation of the area of coverable

regions. Therefore, the area of the coverable region for
m = 1 and i ≥ 2 is:

SA′ = π(ip)2 − π[(i − 1)p]2 (6)

where the first item is the area of the region formed by

the approximated outer boundary, which is given as a

special case of Eq. (5) for m = 1 and happens to be a

circle; and the second item is that of the region formed
by the approximated inner boundary (i.e., region B′).

For the case of m > 1, we can use the same tech-

nique described for the case of m = 1 to generate the
curves to form region B′. However, these curves are no

longer a series of circles. In Fig. 8, we can find such

curves for buckets 2 and 3 under m values of 2 and 3.

O

Bucket 2 boundaries

Bucket 3 boundaries

A

C

a. m = 2

b. m = 3

Bucket 2 boundaries

A

O

C

Bucket 3 boundaries

Fig. 8 Inner boundaries of the coverable regions of buckets 2
and 3 under m = 2 and m = 3. All arrowed line segments are of
length 2p.

As the four arcs on different quadrants no longer share

the same center, the region B′ boundaries (dotted blue

lines) are of similar shapes to the theoretical region B

boundaries (solid black lines). From the graphs, it is

easy to see that the approximated curve fits the actual
boundary better as m increases. Here we skip the for-

mal proof as it is straightforward. Furthermore, it also

converges to the region B boundary when m gets big-

ger. This is because the centers of the two arcs (with the
same radii), points C and O, become closer and closer

when the cell size decreases (as m increases).

The area of region B′ (Fig. 9) can be computed in

the same way as that of region B. Following that, the
area of coverable region for m > 1 can be derived. The

details of such results can be found in Appendix A. We

define θ as a function of m for the convenience in further

10

f(i, m) =

8
>>>><
>>>>:

»
2π + 4

√
2 + 1 − (8

√
2 + 4)

1

2m
+

4

22m

–
δ2 i = 1, m ≥ 1

ˆ
2π(2i − 1)

˜
δ2 i > 1, m = 1

2πi2 + 4
√

2i − (8
√

2i + 4)
1

2m
+

4

22m
− 8

»
(i − 1)2

„
arctan

γm

θm
− π

4

«
− 1

2
θm (γm − θm)

–
+ 1

ff
δ2 i > 1, m > 1

(7)

H

O

C

B

D

E

F
G

Fig. 9 An illustration on how to compute the area of region
formed by four arcs in Fig. 8. Here we only show half of one of
the arcs.

discussions:

θm =
1

2
− 1

2m
.

Let us denote the area of the coverable region A′

for bucket i under different m values as f(i, m). By

combining and simplifying Equations (4), (6), and the

results in Appendix A with p =
√

2δ, we get Eq. (7) ,

in which γm =
√

2(i − 1)2 − θ2
m.

4.4 Covering factor and derivation of Theorem 1

In this section, we give a quantitative analysis on the

relationship between f(i, m) and the area of the the-
oretical region g(i) for all buckets. For that purpose,

given any density map level m, we define the covering

factor c(m) as the ratio of the total area of the cover-

able regions to that of the theoretical bucket i regions

over all i. Relate this to Theorem 1, the more interest-
ing quantity is the non-covering factor :

α(m) = 1 − c(m) =

∑l
i=1[g(i) − f(i, m)]

∑l
i=1 g(i)

(8)

With Eq. (8) and the results we have in Sections

4.2 and 4.3, we are now ready to prove Theorem 1.

Recall that we defined θm =
1

2
− 1

2m
and θm+1 =

1

2
−

1

2m+1
. Plugging Eq. (3) and Eq. (7) into Eq. (8), we

get
α(m + 1)

α(m)
=

A(m)

B(m)
where

A(m) =
2

2m
− 1

4m
+

2
3

2

2m
(l + l2) +

l
∑

i=2

√

8(i − 1)2 − 1

− 4

l
∑

i=2

θm+1

√

2(i − 1)2 − θ2
m+1

+ 8

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m+1

θm+1

− 8

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (9)

and

B(m) =
4

2m
− 4

4m
+

2
5

2

2m
(l + l2) +

l
∑

i=2

√

8(i − 1)2 − 1

− 4

l
∑

i=2

θm

√

2(i − 1)2 − θ2
m

+ 8

l
∑

i=2

(i − 1)2 arctan

√

8(i − 1)2 − θ2
m

θm

− 8

l
∑

i=2

(i − 1)2 arctan
√

8(i − 1)2 − 1 (10)

The case of p → 0 is equivalent to l → ∞. De-

spite their formidable length and complexity, A(m) and
B(m) are found to bear the following feature

lim
l→∞

A(m)

B(m)
=

1

2
(11)

and this concludes the proof of Theorem 1. More details

on derivation of Eq. (11) can be found in Appendix C.

5 Extensions

5.1 3D analysis

The strategies used to accomplish the analysis in Sec-

tion 4 can be extended to 3D data. The outer and inner

boundaries of bucket i regions are illustrated in Fig. 10.

The analysis should be based on the volume of relevant
regions surrounding a cube A with side length δ. The

bucket 1 region (Fig.10(a)) of A consists of the follow-

ing components:

11

Table 3 Values of α(m + 1)/α(m) in 3D space under different values of m and l. Computed with Mathematica 6.0 based on formulae
in Appendix B. Precision up to the 6th digit after decimal point.

Map Total Number of Histogram Buckets (l)
levels 2 4 8 16 32 64 256

m=1 0.531078 0.509177 0.502381 0.500598 0.50015 0.500038 0.500002
m=2 0.514551 0.504128 0.50102 0.500247 0.50006 0.500013 0.5
m=3 0.505114 0.500774 0.500051 0.499987 0.499991 0.501551 0.500004
m=4 0.498119 0.497695 0.499076 0.499717 0.499931 0.498428 0.5
m=5 0.490039 0.49337 0.496703 0.499313 0.499811 0.499966 0.499983
m=6 0.47651 0.485541 0.49586 0.498521 0.499586 0.499897 0.499897

m=7 0.448987 0.469814 0.48972 0.497032 0.499241 0.499793 0.500138
m=8 0.38559 0.435172 0.478726 0.494029 0.49848 0.499448 0.5

(1) quarter cylinders (green) with length δ and radius

p =
√

3δ;
(2) one-eighth of a sphere (red) with radius p;

(3) cuboids (white) with dimensions δ, δ, and p; and

(4) cube A itself, which is not shown in Fig. 10(a), but

can be seen in Fig. 10(b).

There are eight pieces of each of the first two items and

six pieces of item (3). The inner boundary (region B) of
the bucket 2 region (Fig. 10(b)) consists of eight identi-

cal portions of a spherical surface centered at the oppo-

site corner of A with radius p. Note that the projection

of these regions on 2D are exactly those found in Fig.

4. Again, the shape of the region does not change with
respect to bucket number i – we only need to change

the radius from p to ip. The volume of the bucket i

region can thus be expressed as

g(i) =



















4

3
πp3 + 6pδ2 + 3πp2δ + δ3, i = 1

4

3
π(ip)3 + 6ipδ2 + 3π(ip)2δ + δ3

−v(i, p, δ), i > 1

where the first four items in both cases represent the

volume of the four components listed above and v(i, p, δ)

is that for the region formed by half of a spherical sur-

face in Fig. 10(b). With p =
√

3δ, the above equation
becomes

g(i) =

{

(

4
√

3π + 6
√

3 + 9π + 1
)

δ3 i = 1
[

4
√

3πi3 + 6
√

3i + 9πi2 + 1 − v(i, p)
]

δ3 i > 1

where v(i, p) = 16VB and VB is the volume of region B

(see Appendix B for details).

We continue to develop formulae for the coverable
regions f(i, m) and non-covering factor α(m) as we do

in Section 4.3 and Section 4.4. These formulae can be

found in Appendix II of our technical report [37]. The

complexity of such formulae hinders an analytical con-
clusion on the convergence of α(m + 1)/α(m) towards
1
2 . Fortunately, we are able to compute the numerical

values of α(m + 1)/α(m) under a wide range of inputs.

(a) Outer boundary of the bucket 1 region.

(b) Inner boundary of the bucket 2 region.

Fig. 10 Geometric structures of the bucket 1 and bucket 2 re-
gions for 3D data.

These results (listed in Table 3) clearly show that it

indeed converges to 1
2 . This technique can be extended

to higher dimensions and we conjecture that Theorem 1

still holds true. However, since the real simulation data

has up to three dimensions, our analysis stops at 3D.

12

f(i, m, s) =

8
>><
>>:

»
2π + 4

√
2 + 1 − (8

√
2 + 4)

1

sm
+

4

s2m

–
δ2 i = 1, m ≥ 1


2πi2 + 4

√
2i − (8

√
2i + 4)

1

sm
+

4

s2m
− 8

»
(i − 1)2

„
arctan

γ′
m

θ′m
− π

4

«
− 1

2
θ′m (γ′

m − θ′m)

–
+ 1

ff
δ2 i > 1, m > 1

(12)

5.2 General Tiling Approach in Space Partitioning

In DT-SDH, the Quad-tree is built using a regular tiling

[29] approach to partition the space, i.e., the subcells

are of the same shape as the parent cell. In the previous
analysis, for each node, we evenly cut each dimension by

half, leading to 2d partitions (child nodes) on the next

level. However, in general, we could cut each dimension

into s > 2 equal segments, giving rise to sd equal-sized

squares or cubes as in Fig. 11. In this section, we study
how this affects the value of α(m).

s = 3 s = 4s = 2

Fig. 11 Partitions of a 2D cell under different tiling factors.

First, the bucket i regions given by Eq. (3) are not

affected. For the coverable regions, we incorporate the

tiling factor s into the same reasoning as what we utilize
to obtain Eq. (7). One exception here is the case of m =

1, i ≥ 2: the approximate coverable region does not form

a series of circles when s > 2, therefore Eq. (6) does not

hold and this case should be handled in the same way

as the case of m > 1, i ≥ 2. Skipping the details, we get
an improved version of Eq. (7) for s > 2 as Eq. (12),

where θ′m =
1

2
− 1

sm
and γ′

m =
√

2(i − 1)2 − θ′m
2.

With Eq. (12) to describe the coverable regions, we
can easily generate new equations for the covering fac-

tor as a function of m and s. By studying these func-

tions, we get the following theorem.

Theorem 2 With a tiling factor s (s ∈ Z+), the non-

covering factors have the following property

lim
l→∞

α(m + 1)

α(m)
=

1

s
.

Proof The techniques to achieve this proof are very sim-

ilar to those for Theorem 1. See Appendix D for the
details.

Theorem 2 is obviously a nicely-formatted extension

of Theorem 1. Like Theorem 1, it is well supported by

numerical results even under smaller values of l (details

not shown in this paper). In Section 6, we will discuss

the effects of s on the time complexity of DT-SDH.

6 Time Complexity of DT-SDH

With Theorem 2, we achieve the following analysis of

the time complexity of DT-SDH as a function of the

input size N .

Theorem 3 If the data points are uniformly distributed
in space, the time complexity of DT-SDH under a gen-

eral tiling factor s is Θ
(

N
2d−1

d

)

where d ∈ {2, 3} is the

number of dimensions of the data.

Proof We derive the complexity of the algorithms by

studying how the required time changes with the in-

crease of system size N . Since the average number of
particles in the leaf nodes is a constant β, one more

level of tree will be built when N increases to sdN .

Therefore, we need to build a recurrence function that

relates the running time under system size sdN to that
under N .

We first study the time spent on operation (i) (i.e.,

resolving the cell pairs). We denote this time as Tc. For
a given bucket width p, the starting level DM0 is fixed

in DT-SDH. Assume there are I pairs of cells to be re-

solved on DM0, the total number of cell pairs becomes

Is2d on the next level DM1. According to Theorem 2,

only one s-th of the I pairs on DM0 will not be resolved,
leaving Is2d−1 pairs to resolve on DM1. On level DM2,

this number becomes Is2d−1 1
s
s2d = Is2(2d−1), and so

on. Therefore, Tc(N) can be expressed as the summa-

tion of numbers of cell pairs to resolve in all levels of
the tree starting from DM0:

Tc(N) = I + Is2d−1 + Is2(2d−1) + · · · + Isn(2d−1)

=
I
[

s(2d−1)(n+1) − 1
]

s2d−1 − 1
(13)

where n is the total number of levels in the tree visited
by the algorithm. The value of n increases by 1 when

N increases to sdN . Therefore, by revisiting Eq. (13),

we have the following recurrence:

Tc(s
dN) =

I
[

s(2d−1)(n+2) − 1
]

s2d−1 − 1
= s2d−1Tc(N) − o(1)

(14)

13

Based on the master theorem [8], the above recurrence

gives

Tc(N) = Θ
(

N log
sd s2d−1)

= Θ
(

N
2d−1

d

)

.

Note that the above conclusion about operation (i)

has nothing to do with the data distribution.

Now let us investigate the time complexity for per-
forming operation (ii), i.e., pairwise distance calcula-

tion. Interestingly, we have similar results as in Eq. (14).

As shown in the derivation of Eq. (14), there are

Isn(2d−1) pairs of leaf nodes to resolve, among which

Isn(2d−1) 1
s

= Isn(2d−1)−1 will be unresolved and the

pairwise distances of the particles in them need to be
computed one by one. When system size increases from

N to sdN , the number of unresolved leaf node pairs

(denoted as L) becomes Is(n+1)(2d−1)−1. Thus, we get

the following recurrence:

L(sdN) = s2d−1L(N),

which is essentially the same as Eq. (14) and we easily

get

L(N) = Θ
(

N
2d−1

d

)

(15)

Note that L(N) is the number of non-resolvable cell

pairs. Due to the assumption of uniformly distributed

data, the number of point-to-point distances in these

cells also follows Eq. (15). In Section 6.1, we will show
that this claim still holds true when the uniform as-

sumption is relaxed.

Putting the above results about operations (i) and

(ii) together, we conclude that the time complexity

of DT-SDH is Θ
(

N
2d−1

d

)

.

We have mentioned that our analysis is done based
on an overestimation of the coverable regions on each

density map, and the estimation error decreases as m

increases. Relate this to Theorem 2, we have an un-

derestimated non-covering factor α on each level. Since
the estimation is more accurate on larger m, the real

ratio of α(m + 1) to α(m) can only be smaller than the

one given by Theorem 2, making 1
s

an upper bound.

As a result, the complexity of the DT-SDH algorithm

becomes O
(

N
2d−1

d

)

.

Note that the time complexity has nothing to do
with the tiling factor s. In practice, we prefer smaller

s values. Recall that the first map DM0 should be the

first level with cell size δ ≤ p/
√

d. With a bushy tree

as a result of large s value, the cell size decreases more
dramatically and we could end up a DM0 with cell size

way smaller than p/
√

d, giving rise to more cells to re-

solve (Eq. (13)).

6.1 Effects of Spatial Distribution of Data Points

To prove Theorem 3, we need to transform Eq. (15)

into one that describes the number of distance calcu-

lations in the unresolved leaf nodes. This is obviously

true for uniformly distributed data, in which the ex-
pected number of points in a cell is proportional to the

cell size. However, in this subsection, we will show that

Theorem 3 can be true even if we relax the as-

sumption of uniformly distributed data points.

b4

A B

a1 a2

a3 a4

b1 b2

b3

Fig. 12 Two non-resolvable leaf cells are divided into four sub-
cells when data size increases by a factor of sd.

Let us consider any pair of non-resolvable cells A
(with point count a) and B (with point count b) on

the leaf level DMk of the tree. Note that we cannot

say a = b (due to the non-uniform data distribution),

and we expect to have Tk = ab distances to compute
between these two cells. When the system size increases

from N to sdN , we build another level of density map

DMk+1, in which A and B are both divided into sd

cells. Fig. 12 shows an example for s = 2 and d =

2. Let us denote the original number of data points
in the subcells as ai (i ∈ {1, 2, · · · , sd}) and bj (j ∈
{1, 2, · · · , sd}). In other words, we have a =

∑sd

i=1 ai

and b =
∑sd

j=1 bj. When N increases to sdN , ai and bj

all get a sd-fold increase and the expected number of

distance calculations becomes

Tk+1 =
∑

i,j

Pi,js
dais

dbj (16)

where Pi,j is a binary variable that tells whether sub-

cells i and j are non-resolvable on DMk+1. Without
any assumptions, we only know that the average of Pi,j

over all combinations of i and j is 1
s

(Theorem 2). For

Theorem 3 to be true, we need to show that

Tk+1 ≤ s2d

s
Tk = s2d−1ab (17)

6.1.1 Effects of a common point distribution

We first show that, if the distribution of data points is

cell-wise uniform on density map DMk, we can satisfy

the condition specified in formula (17). Being cell-wise

14

c d ip e f c d ip e fc d ip e f

Fig. 13 Three cases of distribution of distances around the edge
of buckets i and i+1, with the solid curves representing portions
of the density function of the distances; [c, d] and [e, f] are exam-
ples of distance ranges of resolvable subcells. Those of the non-
resolvable subcells are not shown. Line segments are not drawn
on scale. For example, ip does not have to be the middle point of
[c, f] in practice.

uniform means that the data are uniformly distributed

within each cell, i.e., we have

a1 = a2 = · · · = asd =
a

sd

and

b1 = b2 = · · · = bsd =
b

sd
,

which easily leads to

Tk+1 =
1

s

∑

Pi,js
dasdb = s2d−1ab.

Being a less constrained assumption than system-wise

uniform distribution (which also requires a = b), the

cell-wise uniform distribution is a safe assumption in
many scientific domains. This is because components of

natural systems are generally not compressed arbitrar-

ily to form high-density clusters due to the existence of

chemical bonds or inter-particle forces [1,26]. As a re-
sult, data points tend to spread out “evenly”, at least in

a localized area. The water molecules is a good example

of this. Note that we only need to make the assumption

of cell-wise uniformity in the leaf nodes to make The-

orem 3 true. In fact, we often found uniform regions
on high-level tree nodes. For example, by studying the

dataset illustrated in Fig. 1, we found that atoms are

uniformly distributed in 61 out of 64 of the nodes on

level 3 of the quad tree. Cell-wise uniformity is also a
popular observation in many traditional spatiotemporal

database applications [36].

6.1.2 More general conditions

A more general discussion on the necessary conditions

of Theorem 3 would be helpful in identifying the limi-
tations of DT-SDH. We believe that skewed point dis-

tributions will affect the correctness of Theorem 3 only

in rare cases. Intuitively, a skewed point distribution

can give rise to a skewed distance distribution. Revis-

iting Fig. 12 and Eq. (16), we can easily see that Tk+1

is basically a sum of s2daibj weighted by the binary

variable Pi,j , which has an average of 1
s

according to

Theorem 2. Therefore, the condition for Theorem 3 to
hold true is that there is no positive correlation between

the occurrence of Pi,j = 0 and large values of aibj. In

other words, as long as the peaks in the data distribu-

tion do not always co-exist with the non-resolvable cell
pairs, Theorem 3 will not be harmed. We know Pi,j is

determined solely by the geometry of the cells and p.

If we model the data placement as a regular stochas-

tic process (e.g., Zipf, mixed Gaussian, . . .) , the lack

of correlation between Pi,j and data distribution (on
which the values of ai, bj depend) can be easily justi-

fied. An adversary can certainly generate cases to beat

DT-SDH by adding more constraints to the data dis-

tribution. We will discuss that in Section 6.1.3.

Another way to describe the above condition is, as

shown in the middle graph of Fig. 13, we cannot have
high density of distances centering around (most or all

of the) the bucket boundaries. Suppose two cells (e.g.,

A and B in Fig. 12) have a distance range [c, f], which

overlaps with buckets i and i + 1. With one more level

of density map built, their subcell pairs could gener-
ate resolvable distance ranges such as [c, d] and [e, f]

(because they do not contain ip – the boundary of the

two buckets). It also generates non-resolvable distance

ranges that contain ip. If the distribution of distances
has high density around ip, most of the area under the

density curve will fall into the non-resolvable ranges.

On the contrary, if the density curve around ip is not a

sharp peak (e.g., left graph in Fig. 13), we could have

roughly equal amount of area under the resolvable and
non-resolvable ranges. Or, in another extreme case (e.g.,

right graph of Fig. 13) where the density is very low

around ip, most of the distances will be in the resolv-

able ranges.

Interestingly, there are easy remedies to the situa-

tion shown in the middle graph of Fig. 12. We can

(1) compute another SDH by moving the boundaries of

all buckets to the left (or right) by p
2 , or

(2) decrease the bucket width to γp where 0 < γ < 1.0

and 1
γ

is not an integer.

By both methods, we can generate a histogram that

shows all the trends in the distance distribution (ex-

actly what we need in a SDH) yet most of the distance

calculations are avoided. In the second case, the SDH
generated is of an even higher resolution. The techni-

cal details of designing such algorithms are beyond the

scope of this paper.

15

Buc
ke

t 2
 n

on
−c

ov
er

ab
le

 re
gi

on

A
B

Buc
ke

t 1
 n

on
−c

ov
er

ab
le

 re
gi

on

Fig. 14 A cell with a large number of data points in 2D space
and its first two non-coverable regions (one the lowest level of
the . The cell is denoted as cell A and non-coverable regions are
presented by annuli (rings). Only one quarter of the regions are
plotted.

6.1.3 Counterexamples to Theorem 3

In this subsection, we discuss data distribution patterns

that serve as adversaries against DT-SDH. We have

mentioned that Theorem 3 still holds true under cell-

wise uniform distribution. Therefore, an adversary case
would obviously involve tightly clustered data points.

However, such clusters by themselves do not necessarily

increase the time complexity of DT-SDH. To do that,

additional conditions have to be satisfied.

Fig. 14 illustrates a high-density cluster A in 2D
space. To study the impact of cluster A on Theorem 3,

we have to consider the location of data points out of A.

If the other data points spread out in the whole space,

Theorem 3 would still be true as this is roughly the
scenario of cell-wise uniform distribution. Therefore, it

requires a large number of particles to be located in the

non-coverable regions of A to make a “bad” case for

DT-SDH. There can be two scenarios: 1) the other data

points spread out in the non-coverable regions of A; 2)
there are high-density clusters (e.g., B in Fig. 14) within

the non-coverable regions. One thing to point out is:

for the above scenarios to be effective adversaries, the

points out of A must reside in a very narrow band. This
is because the non-coverable regions shrink as the cells

on the leaf nodes of the quad-tree get smaller (due to

the increase of N , as shown by Theorem 1).

ip

p p p p

ip ip

ip

ip

ip

ip

Fig. 15 Several patterns of particle spatial distribution that
lead to large number of non-resolvable distances near the bucket
boundaries. Each ball represents a cluster of particles. Line seg-
ments are not drawn to scale.

From the above discussions, we have shown the fol-
lowing two conditions of data distribution are required

for constructing an adversary input for DT-SDH.

(1) high-density data clusters must exist;

(2) at least one pair of such clusters are in each others’

non-coverable regions.

Some examples of such datasets are shown in Fig. 15,

in which a large number of particles are in high-density
clusters, and the distances between pairs of clusters

equal to ip where i is a positive integer. In an extreme

case (top graph in Fig. 15) where the distance between

any pair of clusters is ip, the particles are organized in a

linear pattern. Fortunately, real scientific data will not
likely follow such data distributions because the parti-

cles in nature tend to spread out in space (instead of

forming clumps with a particular distance from each

other). Again, all cases mentioned here can be easily
handled by the remedies introduced in Section 6.1.2.

6.2 SDH with Variable Bucket Width

So far, we have studied the performance of DT-SDH

in computing a standard SDH in which all buckets are

of the same width p. In this subsection, we extend our

analysis to the processing of SDHs with variable bucket
width. We denote pi as the ending point of bucket i, i.e.,

bucket i covers the range [pi−1, pi). Due to the variable

bucket width, the results in Section 4 cannot be di-

rectly adopted to accomplish the analysis. Instead, we

consider a variation of the DT-SDH algorithm (which
we call DT-SDH’) to compute the non-standard SDH

and derive its time complexity. We then prove that the

running time of DT-SDH is equivalent to that of DT-

SDH’.
For a SDH with l buckets of variable size, DT-SDH’

computes it in l − 1 steps. In the ith step, we run DT-

SDH to compute a SDH with only two buckets that

16

are separated by pi (i.e., the two buckets are [0, pi) and

[pi, Lmax]). It is easy to see that the SDH of interest

can be obtained from all such two-bucket SDHs. The

only thing to point out is that, in each step of running

DT-SDH, we choose the DM0 based on the width of
the smaller bucket (recall Eq. (2)).

Theorem 4 The time complexity of running DT-SDH’

for computing a non-standard SDH that divides the dis-

tance domain into two buckets is O
(

N
2d−1

d l
)

where d ∈
{2, 3}.

Proof The DT-SDH’ runs DT-SDH for a total of l−1

times, each time it computes a two-bucket SDH. To

prove the theorem, it is sufficient to show that the time

complexity of DT-SDH on computing any two-bucket
SDH is O

(

N
2d−1

d

)

– same as that for DT-SDH to com-

puter a standard SDH. Without loss of generality, we

denote the smaller one of the two bucket width as q

and that of the other bucket as r = Lmax − q. We can

still use the techniques shown in Section 4 to analyze
this, except we only need to consider two buckets [0, q)

and [q, Lmax]. For the two buckets, we can then gener-

ate the area of the bucket regions g(1) and g(2), and

that for the coverable regions f(1, m) and f(2, m). The
formulae for the above area can be found in Appendix

E. We then get the non-covering factor as

α(m) =
g(1) + g(2) − f(1, m) − f(2, m)

g(1) + g(2)

And the covering factor has the following feature

α(m + 1)

α(m)
≤ 1

2
.

The above is similar to Theorem 1 and we easily con-

clude the proof by following the path we took to prove

Theorem 3.

The following theorem gives the time complexity of

DT-SDH on computing a non-standard SDH.

Theorem 5 The time complexity of running DT-SDH

for computing a SDH with variable bucket width is also

O
(

N
2d−1

d l
)

where d ∈ {2, 3}.

Proof We achieve the proof by comparing the number
of operations in the DT-SDH to that in DT-SDH’.

Specifically, we have the following observations:

(1) type (ii) operations: if a pair of points fall into a
pair of non-resolvable leaf cells in DT-SDH, they

are also in the same non-resolvable leaf cells in DT-

SDH’;

(2) type (i) operations: for any pair of cells, if they are
visited by DT-SDH for an attempt to resolve them,

they are also visited by DT-SDH for the same pur-

pose.

The above two facts show that the time spent by DT-

SDH is no more than that by DT-SDH’ to process the

same dataset, and this concludes the proof.

7 Empirical Evaluations

7.1 Experimental Setup

We have implemented the DT-SDH algorithms using

the C programming language and tested it with syn-

thetic and real datasets. The experiments were run in

an Apple Mac Pro workstation with two dual-core In-
tel Xeon 2.66GHz CPUs, and 8GB of physical memory.

The operating system was OS X 10.5 Leopard.

The datasets used in our experiments include three

groups of synthetic ones and data from real simulations.

Among the synthetic data groups, one was generated

following a uniform distribution of data points, one fol-
lowing a Zipf distribution with various orders, and one

from a mixed-Gaussian distribution. All point coordi-

nates in the synthetic datasets are rendered in a 3D

cube whose side length is 25,000 units. For the Zipf-
based datasets, we divided the entire data space into

a large number of small blocks (i.e., cubes with side

length 5 to 50) and each small cube was assigned a

random rank. Given two cubes with ranks i and j, the

expected number of data points are of ratio jα : iα

where α ≥ 1.0 is the order of the Zipf distribution.

The well-known fact is that, even with order 1.0, a Zipf

distribution brings high level of skewness in the data.

We also generated test data using the mixed Gaussian
model. Specifically, the data points are rendered from

3 – 5 normal distributions with a fixed standard devi-

ation and means randomly chosen within a 2D simula-

tion space. Each normal distribution carries the same

weight, and we assume there is no correlation among the
two dimensions. We used a series of C libraries provided

by the randlib 4 package to generate relevant random

numbers.

The other dataset is generated from a real molec-

ular dynamics study to simulate a bilayer membrane
lipid system in NaCl and KCl solutions, as illustrated

in Fig. 1. The original dataset records the coordinates

of 286,000 atoms over 10,000 time instances (data in

each time step is called a frame). In order to make the

experiments comparable to those using synthetic data,
we randomly choose and duplicate atoms in this dataset

to reach different dataset sizes N . Specifically, we com-

bine the data from consecutive frames to create datasets

with size greater than 286,000.

4 http://randlib.sourceforge.net/

17

104

106

108

1010

1012

1014

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 R

es
ol

ve
d

D
is

ta
nc

es

Density Map Level

a. Uniformly distributed 2D data

N=0.1M
N=0.4M
N=1.6M
N=3.2M
N=6.4M

y = c(1/2)x 104

106

108

1010

1012

1014

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 R

es
ol

ve
d

D
is

ta
nc

es

Density Map Level

b. Zipf-distributed 2D data

N=0.1M
N=0.4M
N=1.6M
N=3.2M
N=6.4M

y = c(1/2)x 104

106

108

1010

1012

1014

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 R

es
ol

ve
d

D
is

ta
nc

es

Density Map Level

c. Real 2D data

N=0.1M
N=0.4M
N=1.6M
N=3.2M
N=6.4M

y = c(1/2)x

104

106

108

1010

1012

1014

 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 R

es
ol

ve
d

D
is

ta
nc

es

Density Map Level

d. Uniformly distributed 3D data

N=0.2M
N=0.8M
N=3.2M
N=6.4M

N=12.8M
y = c(1/2)x 104

106

108

1010

1012

1014

 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 R

es
ol

ve
d

D
is

ta
nc

es

Density Map Level

e. Zipf-distributed 3D data

N=0.2M
N=0.8M
N=3.2M
N=6.4M

N=12.8M
y = c(1/2)x 104

106

108

1010

1012

1014

 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 R

es
ol

ve
d

D
is

ta
nc

es

Density Map Level

f. Real 3D data

N=0.2M
N=0.8M
N=3.2M
N=6.4M

N=12.8M
y = c(1/2)x

Fig. 16 Number of distances resolved on different levels of the tree.

All experiments were run under a series of N values

ranging from 100,000 to 25,600,000. In the following

text, we report the results of three lines of experiments.

7.2 Model Verification

The objective of this set of experiments is to evalu-
ate the correctness of our basic analytical model, which

gives Theorem 1 as the foundation of complexity anal-

ysis. Instead of verifying the values of α(m + 1)/α(m)

listed in Tables 2 and 3, we focus on the number of

distances in the non-resolvable cells under different m
values to study how data distribution (especially the

skewed ones) affects the effectiveness of our model. Ide-

ally, the number of unresolved distances should follow

the same pattern as described in Theorem 1 - it should
decrease by half every time m increases by 1.

Fig. 16 shows the absolute number of resolved dis-
tances (plotted on a logarithmic scale) achieved. Each

line represents one experiment on a dataset of a partic-

ular size. For all experiments, we can see that the line

starts from a small value and then reaches the highest

value on the following level. The first value in each line

reflects those distances resolved on DM0 - it is small
because it only contains those intra-cell distances that

resolve into bucket 1. Starting from DM1, the values

drop at a rate that is close to 1
2 – this trend can be

easily seen by comparing the slopes of the data lines

to that of a standard function y = c
(

1
2

)x
. One thing

to point out is: the slopes of some of the data lines in

Fig.16 (e.g., the top lines in all 3D experiments) are

even slightly smaller than the standard curve. This is

a positive result which indicates that the distances are
consumed in a higher rate than what we expect from

our model. To better interpret the experimental results,

we need to see from an opposite angle by showing how

many distances are left unresolved on each level.

For the same experiments, Fig. 17 plots the per-

centage of unresolved distances on a logarithmic scale.

Again, each line starts by the reading of DM0 and we
draw a standard line with slope − 1

2 to indicate the ex-

pected trend given by Theorem 1. It is easy to see that

the distances are resolved at a rate close to 1
2 . The only

18

10-2

10-1

100

101

 3 4 5 6 7 8 9 10 11 12

N
on

-c
ov

er
in

g
fa

ct
or

Density Map Level

a. Uniformly distributed 2D data

N=0.1M
N=0.4M
N=1.6M
N=3.2M
N=6.4M

y = 0.8369(1/2)x-3

10-2

10-1

100

101

 3 4 5 6 7 8 9 10 11 12

N
on

-c
ov

er
in

g
fa

ct
or

Density Map Level

b. Zipf-distributed 2D data

N=0.1M
N=0.4M
N=1.6M
N=3.2M
N=6.4M

y = 0.84(1/2)x-3

10-2

10-1

100

101

 3 4 5 6 7 8 9 10 11 12

N
on

-c
ov

er
in

g
fa

ct
or

Density Map Level

c. Real 2D data

N=0.1M
N=0.4M
N=1.6M
N=3.2M
N=6.4M

y = 0.92(1/2)x-3

10-2

10-1

100

101

 2 3 4 5 6 7 8

N
on

-c
ov

er
in

g
fa

ct
or

Density Map Level

d. Uniformly distributed 3D data

N=0.2M
N=0.8M
N=3.2M
N=6.4M

N=12.8M
y = 0.8433(1/2)x-3

10-2

10-1

100

101

 2 3 4 5 6 7 8

N
on

-c
ov

er
in

g
fa

ct
or

Density Map Level

e. Zipf-distributed 3D data

N=0.2M
N=0.8M
N=3.2M
N=6.4M

N=12.8M
y = 0.8151(1/2)x-3

10-2

10-1

100

101

 2 3 4 5 6 7 8

N
on

-c
ov

er
in

g
fa

ct
or

Density Map Level

f. Real 3D data

N=0.2M
N=0.8M
N=3.2M
N=6.4M

N=12.8M
y = 0.8419(1/2)x-3

Fig. 17 Non-covering factors upon visiting different levels of the tree. Here the factor is calculated as the ratio of number of unresolved
distances to total number of distances after visiting m levels in the tree.

exceptions appear in the real 3D simulation data exper-

iment (Fig. 17f) where the number of distances decrease

at a slightly slower rate on the middle levels. But the fi-
nal values all ended up below the standard line. Clearly,

this is in conformity with Theorem 1, which says half

of the uncovered area will be covered by going one level

down the tree. In fact, a majority of the plotted values

are below the corresponding standard lines, supporting
our claim that Theorem 1 is actually a lower bound

of the expected performance. The important informa-

tion here is that the number of resolved distances shows

the same trend for all datasets, indicating the robust-
ness of our model. The skewed Zipf point distribution

does not at all cause degraded performance. In fact, we

found that, among the three datasets, it always took

the least amount of time for DT-SDH to process

the Zipf dataset. Here we hold the discussions on the
effects of data skewness on running time till Section 7.4

where the results of more skewed datasets (Zipf, mixed-

Gaussian) will be reported.

7.3 Efficiency of DT-SDH

The main purpose of this experiment is to verify the
time complexity of DT-SDH. In Fig. 18, the running

time of our algorithm are plotted against the size of

2D experimental datasets. Fig. 18a shows the results of

uniformly distributed data and Fig. 18b for those fol-
lowing the Zipf distribution, and Fig. 18c for the real

simulation data. Both the running time and data size

are plotted on logarithmic scales therefore the slopes of

the lines reflect the time complexity of the algorithms.

For comparisons, we draw an identical dotted line in
each graph with a slope of 1.5. Each point in the graphs

shows the result of one single run of DT-SDH as the

long running time under large N prohibits having mul-

tiple runs. However, we did run multiple experiments
with different random seeds for the cases of smaller N

and observed very little variances in running time.

The brute-force approach (‘Dist’) always shows an

exact quadratic running time (i.e., the slope of the line

is 2). The other lines (with spots) represent experiments

19

100

101

102

103

104

105

106

107

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

a. Uniformly distributed data

l=4
l=16
l=64

l=256
Dist

T = O(N1.5) 100

101

102

103

104

105

106

107

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

b. Zipf-distributed data

l=4
l=16
l=64

l=256
Dist

T = O(N1.5) 100

101

102

103

104

105

106

107

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

c. Real data

l=4
l=16
l=64

l=256
Dist

T = O(N1.5)

Fig. 18 Running time of the DT-SDH algorithm with 2D data.

100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

a. Uniform distributed data

l=2
l=4

l=16
l=64
Dist

T = O(N5/3)
100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

b. Zipf-distributed data

l=2
l=4

l=16
l=64
Dist

T = O(N5/3)
100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

c. Real data

l=2
l=4

l=16
l=64
Dist

T = O(N5/3)

Fig. 19 Running time of the DT-SDH algorithm with 3D data.

using our algorithm under different bucket numbers l.

Clearly, the running time of our algorithm grows less
dramatically - they all have a slope of about 1.5. When

bucket size decreases, it takes more time to run our al-

gorithm, although the time complexity is still Θ(N1.5).

The cases of large bucket numbers (‘l = 256’) are worth

some attention: the running time is similar to that of
the brute-force approach when N is small. As N in-

creases, the slope of the line changes to around 1.5.

The reason for this is: when N is small, we have a tree

with very few levels; when the query comes with a very
small bucket size p, we end up starting DT-SDH from

the leaf level of the tree and have to essentially calculate

most or all distances. However, the same query will get

the chance to resolve more cells when the tree becomes

taller, as a result of larger N . Again, the actual running
time for the skewed dataset is always shorter than that

for the uniform dataset with the same size. This can

be seen by the relative positions of colored lines to the
‘T = O(N1.5)’ line. The results of the real dataset are

almost the same as those for the uniform data.

We have similar results for 3D data (Fig. 19): the
corresponding lines for DT-SDH have slopes that are

very close to 5
3 , confirming our asymptotic analysis.

Again, the cases for large l values are worth more dis-

cussions. For ‘l = 64’, the running time grows quadrat-

ically till N becomes fairly large (1,600,000) and then
the slope of the line changes to 5

3 . One thing to notice is

that the slope of the last segment of ‘l = 64’ in Fig. 19b

is almost 2. This does not mean the time complexity

is going back to quadratic. In fact, it has something to
do with the zigzag pattern of running time change in

the Zipf data: for three consecutive doubling N values

(i.e., a 8-fold increase), the running time increases by

20

10-2

100

102

104

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

Uniform
Z1.0
Z2.0
Z3.0
Z4.0

(a) Results of block size 50.

10-2

100

102

104

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

Uniform
Z1.0
Z2.0
Z3.0
Z4.0

(b) Results of block size 5.

Fig. 20 Running time of DT-SDH with Zipf input data under different orders. Both left and right graphs are plotted on the exact
same scale for easy comparisons.

2, 4, and 4 times, which still gives a 2 × 4 × 4 = 32

fold increase in total running time (instead of a 64-fold
increase in a quadratic algorithm).

7.4 Effects of Skewed Data Distribution

To further test the effects of skewed datasets on the

performance of DT-SDH, we run 2D experiments us-

ing data generated from Zipf distribution of different

orders and the mixed Gaussian distributions with differ-

ent standard deviations (SD). By increasing the order of
Zipf or the SD of the mixed Gaussian, we are supposed

to generate more skewed datasets as more points will

be concentrated on small regions. In these experiments,

we computed a histogram with bucket width 4419.0. 5

Four random seeds were used to generate data of dif-

ferent sizes ranging from 100000 to 25600000. Thus, for

a particular N (under one Zipf order) we tested the

algorithm with four datasets.

The results of the Zipf datasets are shown in Fig. 20,

in which both data size and running time are plotted
on logarithmic scales. The same experiments were run

under two block sizes (50 and 5), representing two levels

of “tightness” of the clusters in the data. We plot the

running time of each run of DT-SDH as a dot. By
comparing the Zipf data to the uniform, we can easily

see that, at most of the time, the time spent to compute

SDH in a Zipf dataset is less than that for the uniform

5 This is exactly the diagonal of cells on the 4th level of the
tree. We chose a relatively large p to save the total experimental
time. We believe it is sufficient to show the trends.

dataset. The only exceptions are for datasets generated

from a particular random seed under Zipf order 2.0 and
block size 50 (Fig. 20(a)). We will scrutinize those cases

later. When the Zipf order increases from 1.0 to 4.0, we

can observe two trends:

(1) the running time decreases. In some cases of Zipf
order 4.0, we can see a decrease of up to 4 orders of

magnitude; and

(2) the variances of the running time among the four

random datasets (under the same N) increase.

The first observation directly shows that data skewness

has positive effects on the efficiency of DT-SDH. The

large variances for the high-order Zipf cases indicate

that the position of clusters plays a role in determin-

ing running time, given the fact that all four runs used
data with the exact same “skewness”. We also used the

Gnuplot function-fitting tools to derive functions that

describe the relationship between N and the running

time for all Zipf orders. Specifically, we fit the dots into
functions of the form T = aN b + c and such functions

are drawn in the same color as that of their correspond-

ing dots in Fig. 20. The positions of such lines in Fig. 20

show the above trends clearly. In Fig. 20(a), the func-

tion of Zipf order 1.0 (e.g., ‘Z1.0’) has a similar slope
(i.e, 1.42) to that of the uniform data (e.g., 1.5) while

the slopes of higher-order Zipf datasets are in the range

of (1.27, 1.28). This shows that the time complexity of

DT-SDH tends to decrease when more skewed data
are input. One thing to point out is: non-linear func-

tion fitting is not exact science and the details of the

function-fitting methods used by Gnuplot are not re-

21

vealed. Therefore, the parameter b in the fitted func-

tions (i.e., slopes of the lines) can only be regarded as

an indication of the algorithm’s time complexity.

By decreasing the block size of the Zipf distribution,

we will generate more “skewed ” data. As a result (see
Fig. 20(b)), we recorded shorter running times for al-

most all experimental runs as compared to those with

block size 50. This can be easily captured by comparing

the locations of corresponding dots and fitted functions
in Fig. 20(b) and Fig. 20(a). While the line slopes are

still in the neighborhood of 1.28 for Zipf data with or-

ders 2.0, 3.0, and 4.0, the a parameters of the fitted

functions are of much smaller values than in Fig, 20(a).

In the case of Zipf with orders 3.0 and 4.0, a difference
of more than one order of magnitude can be observed.

Fig. 21 shows the running time with the mixed-

Gaussian data. The results are very similar to those

of the Zipf data. When the SD decreases, the skew-

ness of data also increases, and the running time de-
creases accordingly. In the extreme case of SD = 50,

most datasets are processed within a fraction of a sec-

ond (it went as low as 10−5 seconds). The variance of

the running time caused by the four runs of each ex-
periment also increases as SD becomes smaller. The fit-

ted functions of all mixed-Gaussian experiments have

slopes in the range of [1.22, 1.30], which is still signifi-

cantly smaller than the 1.5 of the uniform data results.
The data related to Fig. 21(a) were generated from a

mixture of three Gaussian distributions while those in

Fig. 21(b) mixture of five. The general trend is that the

running time of experiments with the same parameters

N and SD increases in Fig. 21(b). Clearly, as the num-
ber of high-density data cluster increases (since each

each Gaussian gives rise to one cluster), the data be-

comes less skewed, and running time increases. In this

set of experiments, we have seen no cases in which the
mixed-Gaussian data required longer time to process

than the corresponding uniform data. We believe the

above results are another set of evidence that shows

the benefits of skewed datasets increase as the data be-

comes more skewed.

In summary, our experiments show that DT-SDH is

generally more efficient in processing skewed data. The

more skewed the data is, the shorter the processing time

is. In an extreme case in Fig. 20(b), it takes only a frac-

tion of a second to process a dataset with 25.6 million
points. The only “bad” cases (Fig. 20(a)) are caused

by one random seed in generating Zipf data with order

2.0. By looking deeply into the actual data distribution

in such cases, we found that there are 4 large clusters
(ranked 3, 6, 7, and 8) fall into the non-coverable re-

gions of the rank 1 cluster. As a result, distances are

resolved in a lower rate than in the uniform data. On

contrary to that, distances are consumed quickly in all

other skewed datasets - we even observed several cases

(for Zipf order 4.0) in which 100% of the distances are

resolved. In addition to the absolute running time, we

also believe the time complexity of DT-SDH can be
lower than what expect from Theorem 3 when the in-

put data is very skewed.

8 Conclusions and Future Work

In this paper, we present analytical results related to

the time complexity of a Quad tree-based algorithm for
computing many statistical measures of large-scale spa-

tial data. The spatial distance histogram is one salient

example of such measures. Being the main building

blocks of high-level analytics in a wide range of com-

putational science fields, such histograms are of great
importance in domain-specific hypothesis testing and

scientific discovery. This paper focuses on the method-

ology we adopt to accomplish the analysis: we trans-

form the problem into quantifying the area of certain
regions in space such that geometric modeling can be

used to generate rigorous results. Our analysis shows

that the algorithm has complexity O(N
3

2) for 2D data

and O(N
5

3) for 3D data. To the best of our knowledge,

this is the best result so far in the computation of exact
SDH. We also show that the conclusion holds true un-

der a wide range of spatial distributions of data points

in the dataset, improving on previous conjectures that

only consider uniformly distributed data.

Immediate future work in this area involves more ex-

plorations on the approximate algorithm. While experi-

mental results show very promising tradeoffs of running
time and query error, probabilistic models have to be

developed to study tight bounds of the error. Based on

such models, more efficient and accurate heuristics for

distributing distances into overlapping buckets can be

designed. Eventually, the extension of our methodology
to the computation of higher order n-body correlation

functions will depend on our explorations on the lower-

order functions. Another direction is to compute the

SDH in consecutive frames efficiently by taking advan-
tage of the temporal locality of data points.

Acknowledgements The project described was supported by
Award Number R01GM086707 from the National Institute Of
General Medical Sciences (NIGMS) at the National Institutes
of Health (NIH). The content is solely the responsibility of the
authors and does not necessarily represent the official views of
NIGMS or NIH.

The authors would also like to thank Dr. Sagar Pandit in
the Department of Physics at the University of South Florida for
discussions on general particle simulation problems.

22

10-6

10-4

10-2

100

102

104

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

Uniform
SD=400.0
SD=200.0
SD=100.0

SD=50.0

(a) Results of data with three clusters.

10-6

10-4

10-2

100

102

104

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

Uniform
SD=400.0
SD=200.0
SD=100.0

SD=50.0

(b) Results of data with five clusters.

Fig. 21 Running time of DT-SDH with mixed-Gaussian data under different standard deviations. Both left and right graphs are
plotted on the exact same scale for easy comparisons.

References

1. M. Allen. Introduction to Molecular Dynamics Simulation.
John von Neumann Institute of Computing, NIC Seris, vol.
23, 2003.

2. M. P. Allen and D. J. Tildesley. Computer Simulations of
Liquids. Clarendon Press, Oxford, 1987.

3. M. Arya, W. F. Cody, C. Faloutsos, J. Richardson, and
A. Toya. QBISM: Extending a DBMS to Support 3D Medical
Images. In ICDE, pages 314–325, 1994.

4. M. Bamdad, S. Alavi, B. Najafi, and E. Keshavarzi. A new
expression for radial distribution function and infinite shear
modulus of lennard-jones fluids. Chem. Phys., 325:554–562,
2006.

5. J. Barnes and P. Hut. A Hierarchical O(N log N) Force-
Calculation Algorithm. Nature, 324(4):446–449, 1986.

6. P. G. Brown. Overview of scidb: large scale array storage,
processing and analysis. In SIGMOD Conference, pages 963–
968, 2010.

7. P. B. Callahan and S. R. Kosaraju. A decomposition of
multidimensional point sets with applications to k-nearest-
neighbors and n-body potential fields. Journal of ACM,

42(1):67–90, 1995.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, pages 73–75. MIT Press and
McGraw-Hill, second edition, 2001.

9. I. Csabai, M. Trencseni, L. Dobos, P. Jozsa, G. Herczegh,
N. Purger, T. Budavari, and A. S. Szalay. Spatial Indexing of
Large Multidimensional Databases. In Proceedings of the 3rd
Biennial Conference on Innovative Data Systems Resarch
(CIDR), pages 207–218, 2007.

10. M. Y. Eltabakh, M. Ouzzani, and W. G. Aref. BDBMS -
A Database Management System for Biological Data. In
Proceedings of the 3rd Biennial Conference on Innovative
Data Systems Resarch (CIDR), pages 196–206, 2007.

11. M. Feig, M. Abdullah, L. Johnsson, and B. M. Pettitt. Large
Scale Distributed Data Repository: Design of a Molecular
Dynamics Trajectory Database. Future Generation Com-
puter Systems, 16(1):101–110, January 1999.

12. A. Filipponi. The radial distribution function probed by
X–ray absorption spectroscopy. J. Phys.: Condens. Matter,
6:8415–8427, 1994.

13. G. Finocchiaro, T. Wang, R. Hoffmann, A. Gonzalez, and
R. Wade. DSMM: a Database of Simulated Molecular Mo-
tions. Nucleic Acids Research, 31(1):456–457, 2003.

14. D. Frenkel and B. Smit. Understanding Molecular Simula-
tion: From Algorithm to Applications, volume 1 of Compu-
tational Science Series. Academic Press, 2002.

15. D. Gawlick, D. Lenkov, A. Yalamanchi, and L. Chernobrod.
Applications for expression data in relational database sys-
tem. In ICDE, pages 609–620, 2004.

16. A. G. Gray and A. W. Moore. N-body problems in statisti-
cal learning. In Advances in Neural Information Processing
Systems (NIPS), pages 521–527. MIT Press, 2000.

17. J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay, D. DeWitt,
and G. Heber. Scientific Data Management in the Coming

Decade. SIGMOD Record, 34(4):34–41, December 2005.
18. L. Greengard and V. Rokhlin. A Fast Algorithm for Par-

ticle Simulations . Journal of Computational Physics,
135(12):280–292, 1987.

19. G. Heber and J. Gray. Supporting Finite Element Analysis
with a Relational Database Backend. Part I:: There is Life
Beyond Files. Technical Report MSR-TR-2005-49, Microsoft
Research, 2005.

20. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. GRO-
MACS 4: Algorithms for Highly Efficient, Load-Balanced,
and Scalable Molecular Simulation. Journal of Chemical
Theory and Computation, 4(3):435–447, March 2008.

21. B. Howe, D. Maier, and L. Bright. Smoothing the ROI Curve
for Scientific Data Management Applications. In CIDR,
pages 185–195, 2007.

22. S. Klasky, B. Ludaescher, and M. Parashar. The Center for
Plasma Edge Simulation Workflow Requirements. In EEE
Workshop on Workflow and Data Flow for Scientific Appli-
cations (SciFlow’06), pages 73–73, 1991.

23. L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, M. Ozsoyoglu,
G. Schaeffer, M. Tasan, and W. Xu. Pathways database sys-
tem: an integrated system for biological pathways. Bioinfor-
matics, 19(8):930–937, August 2003.

23

24. X. Ma, M. Winslett, J. Norris, X. Jiao, and R. Fiedler. Go-
diva: Lightweight data management for scientific visualiza-
tion applications. In ICDE, pages 732–744, 2004.

25. A. W. Moore, A. J. Connolly, C. Genovese, A. Gray,
L. Grone, N. K. II, R. C. Nichol, J. Schneider, A. S. Szalay,
I. Szapudi, and L. Wasserman. Mining the Sky, volume 2001
of ESO Astrophysics Symposia, chapter Fast Algorithms and
Efficient Statistics: N-Point Correlation Functions, pages 71–
82. Srpinger/Heidelberg, February 2006.

26. A. Omeltchenko, T. J. Campbell, R. K. Kalia, X. Liu,
A. Nakano, and P. Vashishta. Scalable I/O of Large-Scale
Molecular Dynamics Simulations: A Data-Compression Algo-
rithm. Computer Physics Communications, 131:78–85, 2000.

27. J. A. Orenstein. Multidimensional Tries used for Associative
Searching. Information Processing Letters, 14(4):150–157,
1982.

28. J. M. Patel. The Role of Declarative Querying in Bioinfor-
matics. OMICS: A Journal of Integrative Biology, 7(1):89–
91, 2003.

29. H. Samet. The quadtree and related hierarchical data struc-
tures. ACM Comput. Surv., 16(2):187–260, 1984.

30. V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk,

N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton,
J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, and F. Pearce. Simulations of the For-
mation, Evolution and Clustering of Galaxies and Quasars.
Nature, 435:629–636, June 2005.

31. J. L. Stark and F. Murtagh. Astronomical Image and Data
Analysis. Springer, 2002.

32. M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The End of an Architectural
Era (It’s Time for a Complete Rewrite). In VLDB, pages
1150–1160, 2007.

33. A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik,
J. Raddick, C. Stoughton, and J. vandenBerg. The SDSS
Skyserver: Public Access to the Sloan Digital Sky Server
Data. In Proceedings of International Conference on Man-
agement of Data (SIGMOD), pages 570–581, 2002.

34. I. Szapudi. A New Method for Calculating Counts in Cells.
The Astrophysical Journal, 493(1):39–51, 1998.

35. I. Szapudi, S. Colombi, and F. Bernardeau. Cosmic Statis-
tics of Statistics. Monthly Notes of the Royal Astronomical
Society, 310(2):428–444, 1999.

36. Y. Tao, J. Sun, and D. Papadias. Analysis of predic-
tive spatio-temporal queries. ACM Trans. Database Syst.,
28(4):295–336, 2003.

37. Y.-C. Tu, S. Chen, and S. Pandit. Computing
Spatial Distance Histograms Efficiently in Scien-
tific Databases. Technical Report CSE/08-103,
http://www.cse.usf.edu/˜ytu/pub/tr/pdh.pdf, Depart-
ment of Computer Science and Engineering, University of

South Florida, 2008.

38. Y.-C. Tu, S. Chen, and S. Pandit. Computing Distance His-
tograms Efficiently in Scientific Databases. In Proceedings
of International Conference on Data Engineering (ICDE),
pages 796–807, March 2009.

39. C. Türker, F. Akal, D. Joho, and R. Schlapbach. B-fabric:
An open source life sciences data management system. In
SSDBM, pages 185–190, 2009.

40. W. Xu, S. Ozer, and R. R. Gutell. Covariant Evolutionary
Event Analysis for Base Interaction Prediction Using a Rela-
tional Database Management System for RNA. In SSDBM,
pages 200–216, 2009.

Appendix

A The area of coverable region for m > 1 and

i ≥ 2

First, we get the magnitude of angle BCD by

∠BCD = ∠DCE − ∠FCE = arctan
DE

EC
− π

4

= arctan

r
[(i − 1)p]2 −

“
δ
2
− δ

2m

”2

δ
2
− δ

2m

− π

4

The area of the sector dBDC is 1
2
[(i − 1)p]2∠BCD, and the

area of the region dBDGF is

S dBDGF
= S dBDC

− S△DHC − S△F GH

=
1

2
[(i − 1)p]2∠BCD − 1

2
EC(DE − HE) − δ2

8

=
1

2
[(i − 1)p]2

"
arctan

p
[(i − 1)p]2 − δ2θ2

m

δθm
− π

4

#

− δ

2
θm

»q
[(i − 1)p]2 − (δθm)2 − δθm

–
− δ2

8

Finally, we get the area of the coverable region for i ≥ 2, m >
1 as

SA′ = Sout(i) − 8S dBDGF
− SA

= π(ip)2 + 4ip

„
δ − 2δ

2m

«
+

„
δ − 2δ

2m

«2

− 4[(i − 1)p]2

"
arctan

p
[(i − 1)p]2 − δ2θ2

m

δθm
− π

4

#

+ 4δθm

»q
[(i − 1)p]2 − (δθm)2 − δθm

–
(18)

B Volume of region B in 3D case

VB =

Z Z

B

dxdy

Z √
p2−x2−y2

δ/2
dz

=

Z Z

B

„p
p2 − x2 − y2 − δ

2

«
dxdy

=

Z π

4

a
dθ

Z c

b

„p
p2 − r2 − δ

2

«
rdr

=

Z π

4

a

»
−1

3
(p2 − r2)

3

2 − δ

4
r2

– ˛̨
˛̨
˛

c

b

dθ

=

Z π

4

a

»
− δ3

24
+

1

3
(p2 − b2)

3

2 − δ

4
c2 +

1

16

δ3

(sin θ)2

–
dθ

, in which a = arctan
δ
2r

p2 − 2
“

δ
2

”2
, c =

r
p2 −

“
δ
2

”2
, and

b =
δ

2 sin θ
.

24

C The Derivation of Eq. (11)

We accomplish this proof by studying the difference between
A(m)
B(m)

and 1
2
. First, we see

A(m) − B(m)

2
= 8

lX

i=2

(i − 1)2 arctan

q
8(i − 1)2 − θ2

m+1

θm+1
− 4

lX

i=2

θm+1

q
2(i − 1)2 − θ2

m+1 + 2
lX

i=2

θm

q
2(i − 1)2 − θ2

m

+
lX

i=2

r
2(i − 1)2 − 1

4
− 4

lX

i=2

(i − 1)2 arctan

p
8(i − 1)2 − θ2

m

θm
− 4

lX

i=2

(i − 1)2 arctan
q

8(i − 1)2 − 1 (19)

When l → ∞, we have the following approximations:

lX

i=2

r
2(i − 1)2 − 1

4
−→

lX

i=2

√
2(i − 1),

lX

i=2

θm+1

q
2(i − 1)2 − θ2

m+1 −→
lX

i=2

θm+1

√
2(i − 1)

lX

i=2

θm

q
2(i − 1)2 − θ2

m −→
lX

i=2

θm

√
2(i − 1),

lX

i=2

(i − 1)2 arctan

q
8(i − 1)2 − θ2

m+1

θm+1
−→

lX

i=2

(i − 1)2 arctan 2
√

2(i − 1)

lX

i=2

(i − 1)2 arctan

p
8(i − 1)2 − θ2

m

θm
−→

lX

i=2

(i − 1)2 arctan 2
√

2(i − 1)

lX

i=2

(i − 1)2 arctan
q

8(i − 1)2 − 1 −→
lX

i=2

(i − 1)2 arctan 2
√

2(i − 1) (20)

Plugging the left-hand side of six formulae in (20) into Eq. (19), we get A(m) − B(m)
2

−→ 0 and thus A(m) −→ B(m)
2

.

D Proof of Theorem 2

Proof Proof is accomplished in a similar way to that of Theorem 1. We have
α(m + 1, s)

α(m, s)
=

A(m, s)

B(m, s)
where

A(m, s) = 1 +
4
√

2(l + l2)

s1+m
− l

„
1 − 2

s1+m

«2

+ 4(l − 1)

„
1

2
− 1

s1+m

«2

− 4
lX

i=2

θ′m+1

q
2(i − 1)2 − θ′m+1

2

+ 8
lX

i=2

(i − 1)2 arctan

q
2(i − 1)2 − θ′m+1

2

θ′m+1

+
lX

i=2

q
8(i − 1)2 − 1 − 8

lX

i=2

(i − 1)2 arctan
q

8(i − 1)2 − 1 , (21)

and

B(m, s) = 1 +
4
√

2(l + l2)

sm
− l

„
1 − 2

sm

«2

+ 4(l − 1)

„
1

2
− 1

sm

«2

− 4
lX

i=2

θ′m

q
2(i − 1)2 − θ′m

2

+ 8
lX

i=2

(i − 1)2 arctan

q
2(i − 1)2 − θ′m

2

θ′m
+

lX

i=2

q
8(i − 1)2 − 1 − 8

lX

i=2

(i − 1)2 arctan
q

8(i − 1)2 − 1 (22)

As in Appendix C, by comparing the value of
A(m, s)

B(m, s)
to

1

s
, we get

A(m, s)s − B(m, s) = (s − 1)
lX

i=2

q
8(i − 1)2 − 1 − 8(1 − s)

lX

i=2

(i − 1)2 arctan
q

8(i − 1)2 − 1

− 4(1 − s)

lX

i=2

θ′m+1

q
2(i − 1)2 − θ′m+1

2 + 8(s − 1)

lX

i=2

(i − 1)2 arctan

q
2(i − 1)2 − θ′m+1

2

θ′m+1

(23)

When l → ∞, we have the following approximations.

lX

i=2

q
2(i − 1)2 − θ′m+1

2 −→ 1

2

lX

i=2

q
8(i − 1)2 − 1 ,

lX

i=2

(i − 1)2 arctan

q
8(i − 1)2 − θ′m+1

2

θ′m+1
−→

lX

i=2

(i − 1)2 arctan
q

8(i − 1)2 − 1 (24)

Plugging the left-hand side of the above two formulae into Eq. (23), we get sA(m, s) − B(m, s) −→ 0 and this concludes the proof.

25

E Quantities Related to Theorem 4

For easy presentation, we denote x = r/δ. The maximal bucket region for the first bucket is

g(1) = πq2 + 4qδ + δ2

and that for the second bucket is

g(2) =


π(

√
2 + x)2 + 4(

√
2 + x) + 1 − 8

»„
arctan

√
7 − π

4

«
− 1

8
(
√

7 − 1)

– ff
δ2

The coverable region for bucket 1 is

f(1, m) =

»
2π + 4

√
2

„
1 − 2

2m

«
− 4

2m
+

4

22m
+ 1

–
δ2

and that for bucket 2 is

f(2, m) =

(
π(

√
2 + x)2 + 4(

√
2 + x)

„
1 − 2

2m

«
− 4

2m
+

4

22m
+ 1 − 8

"
arctan

p
2 − θ2

m

θm
− π

4

#
− 1

2

»q
2 − θ2

m − θm

–
θm

ff)
δ2

Therefore, we have
α(m+1)

α(m)
=

A(m)
B(m)

where

A(m) = 4(2
√

2 + x)
2

2m+1
+

8

2m+1
− 8

22m+2
+

√
7 − 1 − 8 arctan

√
7 + 8 arctan

q
2 − θ2

m+1

θm+1
− 4

hq
2 − θ2

m+1 − θm+1

i
θm+1

and

B(m) = 4(2
√

2 + x)
2

2m
+

8

2m
− 8

22m
+

√
7 − 1 − 8 arctan

√
7 + 8 arctan

p
2 − θ2

m

θm
− 4

»q
2 − θ2

m − θm

–
θm

In a straightforward way, the above can give rise to the following.

A(m) ≤ 1

2
B(m)

