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Abstract

In this proposal, we argue that quality parameters such as delay and uncertainty are more important perfor-
mance metrics than processing time, which is the only concern in query optimization in traditional DBMS. We
explore specific problems on how to maintain quality in multimedia and stream databases, with a focus on the
latter. Data stream processing have attracted a great deal of attention from the database community. The continu-
ous feature of both data and queries in data stream management systems (DSMSs) place great demand on system
resources. However, queries can be processed with different levels of quality such as timeliness, reliability, and
uncertainty. In this proposal, we discuss the problem of how to maintain quality in query processing in DSMSs.
We focus on two types of quality metrics: general Quality-of-Service parameters that apply to all types of queries
and uncertainty parameter for probabilistic queries. A widely-used approach to maintain QoS (especially tuple
delays) in DSMS query processing is load shedding, i.e., dropping data. Current load shedding solutions utilize
simple, intuitive ideas in determining the time and amount of load to be discarded and do not work well in the
presence of system/environmental disturbances. We propose a solution based on feedback control theory with
significantly improved long-term performance. For probabilistic queries, an important optimization is to have the
least uncertainty in query results under resource contraints. We propose to approach this problem by exploiting
the temporal dependence in stream data.

I. INTRODUCTION

A majority of DBMS research has focused on efficient processing of queries. In these systems, the only
performance metric of interest is query procesing time. However, with the flourishment of new database ap-
plications such as multimedia and data streams, we realize that a number of new performance metrics are of
more importance than processing time. In this proposal, we call these metrics the quality in query processing.
Leaving quality as an application-level issue is not a choice because the optimizations needed to accomplish
quality maintenance for multiple queries can only be performed in the database engine. On the other hand, query
optimization functionalities in current DBMSs are ill-fitted for the maintenance of quality. Therefore, additional
modules need to be developed in the DBMS core to handle quality-related concerns.

Our work on quality management in databases was first motivated by the QoS requirements on query result
delivery in VDBMS - a multimedia DBMS developed in Purdue. In this system, users specify not only the query,
but the quality (e.g., resolution, frame rate) of the media objects (as query results) to be delivered. While quality
in this problem is actually the well-established quality-of-service (QoS) requirement in multimedia systems,
replying exclusviely on a QoS-provisioning OS or middleware is not enough. We proposed a quality-aware
multimedia DBMS that directly takes quality into account during query optimization. In this proposal, however,
we focus more on quality issues in data stream management.

Applications related to processing of data streams have attracted a great deal of attention from the database
community. With great social/economical interests, these applications flourish in a number of fields such as
environment monitoring, system diagnosis, financial analysis, and mobile services. Unlike traditional data that
are mostly static, stream data are produced continuously (e.g. from a sensor network) and are generally not
kept in storage after being processed. Furthermore, most queries against stream data are persistent queries
that output results whenever they are available. Thus, data stream processing brings great challenges to DBMS
design: it imposes a data-active, query-passive DBMS model instead of the data-passive, query-active model
for traditional DBMSs [1]. In recent years, a number of Data Stream Management Systems (DSMSs) have been
developed [1]–[4]. In traditional DBMS where static data and snapshot queries are the mainstream, we focus
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on efficient processing of queries and the query results are supposed to be the same no matter what query plan
is used. In stream data management, however, (continuous) queries can be processed with different levels of
timeliness, reliability, and uncertainty. We name these parameters the quality of query processing in DSMSs. In
this proposal, we focus on two types of quality metrics.

Similar to those in other real-time applications [5], the first class of quality parameters in DSMSs can be
applied to all types of queries. Important QoS parameters in DSMSs include: processing delay, data loss ratio,
sampling rate, etc. A salient feature of data stream management is the real-time constraints associated with query
processing. In many applications of DSMS, query results are required to be delivered before either a firm (e.g.
tracking of stock prices) or soft (e.g. network monitoring for intrusion detection) deadline. Therefore, processing
delay is the most critical quality in these applications.

The other class of quality parameters only applies to probabilistic queries. Most streaming data are inherently
uncertain or incomplete due to errors in data collection (e.g., sensor networks) and resource limitations (e.g.,
battery power in sensors). Therefore, it makes more sense to reason and query stream data in a probabilistic
manner. For example, a probabilistic range query returns a set of obejects as well as the probability that each
object falls into the specified range. The uncertainty involved in the query results becomes a quality metric as
users always prefer answers with high certainty. Previous study [6] has shown that the definition of uncertainty
depends on the type of probabilistic queries.

Our interests are on the maintainence of the above two classes of quality in data stream environments. The
difficulty of quality maintainence comes from two aspects: physical resource limitations and the time-variant
behaviour of data sources. In practice, a DSMS could accommodate hundreds or even thousands of streams
and quality requirements may easily be violated due to overloading. Even with careful query optimization and
admission control, the runtime fluctuations of application resource usage (e.g. bursty arrivals) may still cause
temporary congestion that interferes with real-time data processing. The target of our work is to answer the
question of “how to keep the best quality under limited resource”. Tradeoffs have to be performed between
critical and non-critical quality parameters and we are to find the best such tradeoffs. For example, to improve
processing delays, we can increase data loss rate by load shedding [7] or reduce the window size for windowed
operations [8]. For many cases, the problem can be formulated as an optimization whose solutions are not easy
to find efficiently. What further complicates the issue is that the inputs to the optimization change over time.

II. RELATED WORK

Research on QoS control was first motivated by the real-time requirements of multimedia applications. Most
of these efforts emphasize system and network level resource management, which is provided as a service of the
operating system [9] or a middleware [10]. The system maps QoS requirements of applications to resource use
(system QoS) and QoS control is accomplished by regulating resource allocation to individual applications.

Current efforts on DSMSs have addressed system architecture [3], [11], query processing [12], [13], query
optimization [14], and stream monitoring [15]. Relatively less attention has been paid to a unified framework
to support quality maintenance. An important issue related to quality control in DSMSs is the development of
scheduling policies of query operators. Two relevant efforts present scheduling algorithms that minimizes tuple
delays [16] and runtime memory consumption [17].

Load shedding has been extensively utilized to deal with overloading in DSMSs [7], [18], [19]. [18] discusses
load shedding strategies that minimize the loss of accuracy of aggregation queries. To increase accuracy of
arbitrary queries, a data triage approach that exploits synopses of the discarded data is proposed in [19]. Earlier
work on QoS-driven load shedding in the context of the Aurora [7] DSMS (now becoming a part of the Borealis
project [20]) is closely related to our study. In [7], three critical questions about load shedding are raised: when,
where, and how much to shed. With the goal of controlling system load on a desirable level, the Aurora load
shedder works well in an environment with stable or slow-changing data arrival rates. To some extent, our work
aims to provide better answers to the questions of when and how much to shed load under a highly dynamic
environment.

The application of control theory, which will be used in our study, is inspired by [21] and [22] that deal
with the problem of managing deadline misses in real-time systems. However, the system and metrics used in
[21] and [22] are totally different from ours. While our goal is to work directly on a real DSMS, both [21]
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and [22] evaluate their designs by simulations. Feedback control has also been used to assist QoS adaptation of
multimedia applications [23].

Probabilistic query processing in DSMSs is first mentioned in [6]. In this paper, type definitions and evaluation
algorithms are thoroughly discussed. Deshpande et al. [24], [25] proposes the usage of probabilistic models to
generate data acquisition plans for sensor networks with the goal of saving sensor battery power. In their work,
simple models (time-inviriant Guassian) are used and only snapshot queries are considered. In our study, we
plan to extend both aspects within the context of our problem. The value of forecasting models in times series
anlysis are being realized by the database community: in [26], predictions generated by Kalman filters are used to
process deterministic queries; In another paper [27], Brownian models are utilized for similar purposes. Indexing
techniques have also been benifited by forecasts obtained from the ARIMA model [28]. Works in close spirit to
our quality control scheme include [29], [30] where the problem of approximate data replication was considered.
In their solution, adaptive filters are set to data streams and a parametric algorithm to control the tradeoffs
between data consistency and system performance is developed. This strategy, however, is shown [25] to be less
efficient than simple methods that use statistical models.

III. CURRENT RESEARCH

A. QuaSAQ: Enabling QoS in Multimedia Databases

Our work on quality issues in DBMS was originally motivated by the problem of QoS support in multi-
media databases in the context of the VDBMS project.1 In this project [31], we envision users accessing the
multimedia databases via a simple user interface. In addition to specifying the multimedia items of interest,
the user specifies a set of desired quality parameter bounds. To accomplish such quality-aware media retrieval,
it is not enough to deploy a multimedia DBMS on top of a QoS-provisioning OS since the latter does not
handle QoS specification/mapping. Thus, we argue that QoS support has to be integrated into the DBMS.
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Fig. 1. Architecture of QuaSAQ prototype.

The key idea of our approach is to augment the
query evaluation and optimization modules of a
distributed database system (D-DBMS) to directly
take QoS into account. To incorporate QoS con-
trol into the database, user-level QoS parameters
are translated into application QoS and become an
augmented component of the query. For each raw
media object, a number of copies with different
application QoS parameters are generated offline by
transcoding and these copies are replicated on the
distributed servers. Based on the information of data
replication and possible QoS adaptation options
(e.g. frame dropping during playback), the query
processor generates various plans for each query
and evaluates them according to a predefined cost
model. The query evaluation/optimization module
also takes care of resource reservation to satisfy
low-level QoS. For this part, we propose the design
of a unified QoS-provisioning API and implemen-
tation modules, that enable negotiation and control
of the underlying system and network QoS APIs,

thereby providing a single entry-point to a multitude of QoS layers (system and network).
QuaSAQ is prototyped and evaluated as a part of the VDBMS system (Fig. 1). Experiments run on the

QuaSAQ prototype show significantly improved QoS and throughput in media query processing.

1http://www.cs.purdue.edu/vdbms



4

B. Quality-Aware Data Replication

This study was derived from the topic mentioned in Section III-A. In contrast to other database applications,
multimedia data can have a wide range of quality parameters such as spatial and temporal resolution, and
compression format. In a quality-aware multimedia database, users can request data with a specific quality
requirement due to the needs of their application, or the limitations of their resources. The database can support
multiple qualities by converting data from the original (high) quality to another (lower) quality to support a user’s
query, or pre-compute and store multiple quality replicas of data items. On-the-fly conversion of multimedia
data (such as video transcoding) is CPU intensive and can limit the level of concurrent access supported by the
database. Storing all possible replicas, on the other hand, requires unacceptable increases in storage requirements.
We show that the relative storage usage required to store all qualities is on the order of the number of such
qualities. With an overall storage constraints, the selection of multiple-quality replica becomes a problem.
Solutions to this problem can also be found useful in a number of other (database) problems, namely, materialized
view selection, cube computation, and selection of multi-quality chemical/biological data.

We study the problem under two different system models: Hard Quality, and Soft-Quality, and establish that
the problem is NP-hard in both cases. Under the soft quality model, users are willing to negotiate their quality
needs, as opposed to the hard quality system wherein users will only accept the exact quality requested. In the
hard-quality system, we focus on minimizing request reject rate due to unavailability of the requested quality
replica, or in other words, maximizing throughput. Via rigorous probabilistic analysis, we managed to reduce
the problem to a 0-1 Knapsack problem and we propose an efficient solution. According to this solution, we
only need to consider the access rate and size of each individual replica in selecting them while other features
such as playback time and transcoding costs can be safely ignored. For the soft quality system [32], an important
optimization goal is to minimize utility loss. The problem is found to be a variation of the famous k-median
problem. We propose two powerful greedy algorithms to solve this problem. Extensive simulations show that
our algorithm performs significantly better than other heuristics and finds near-optimal selection plans.

A unique feature of our study is that we also consider the dynamic replica selection problem where query
patterns are assumed to be non-static. By exploiting one interesting feature of our original solution, we develop
an elegant algorithm to handle changes of query patterns. While our static algorithm runs for cubic time, the
dynamic version runs on logarithmic time and acheives the same level of optimality in terms of the quality of
replicas selected.

C. Control-Based Load Shedding in DSMSs

1) Introduction: Load shedding is an important method to guarantee quality (especially tuple delays) in data
stream processing under overloading situations. In performing load shedding, we always have to answer the
following three questions: 1) When to shed load? 2) How much load to shed? and 3) Where (in the query network)
to shed load? Current load shedding algorithms, which can be annotated in Fig 2, uses rule of thumb in making
some of the critical decisions such as how much load to shed.

1 for every T time units
2 if measured load L is greater than

system capacity L0

3 do shedding load with amount L − L0

4 else allow L0 − L more load to come

Fig. 2. Generic load shedding algorithm

This simple algorithm works well when input load
changes infrequently. In other words, system input stays
in steady state for most of the time. However, this is
not the case in practice. Streaming data are intrinsically
dynamic with respect to the arrival patterns [33]. As
an example, Fig. 3 shows the traces of real TCP traffic
recorded from a cluster of web servers. Note the number
of packet arrivals per unit time fluctuates within the range
of [120, 450] and no obvious period can be observed. In
addition to bursty arrivals, some characteristics of DSMS
such as the per-tuple processing (CPU) cost also changes

over time. As a result, the algorithm shown in Fig. 2, which depends heavily on static estimates of system status,
could easily fail. This opens great opportunities for optimization towards an auto-configuring DSMS that smartly
adjusts quality levels of streams in response to fluctuations of system status and input rates.
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Our solution to the problem adapts techniques derived from the field of control theory. Specifically, we
transform the problem into a feedback control loop and design a feedback controller based on a dynamic model of
the raw DSMS system derived from experiments. Feedback (closed-loop) control is known to be an excellent tool
in maintaining runtime stability of systems under internal/environmental uncertainties such as modeling error,
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Fig. 3. Fluctuations in the arrival rate of real TCP traffic.

input, and output disburtances. On the contrary, the
algorithm shown in Fig. 2 is an example of open-
loop control and cannot handle the aforementioned
uncertainties. The main difference between closed-
loop and open-loop control methods is that the
control decisions are made taking current system
output (feedback) into consideration.

2) The feedback control loop: Figure 4 shows
the architecture of the proposed control-based load
shedding framework. The system to be controlled
(i.e, plant in control terms) is the DSMS. Plant
status is monitored periodically and output signals
are sent to the controller. We use the Deadline Miss

Ratio (M ), which is the fraction of tuples that miss their processing deadlines, as the output signal. The
fluctuations of data arrival rate and the inaccuracy in CPU cost estimation of operators are modeled as
disturbances to the system. A load shedder (actuator) drops tuples from the streams to reduce the total load
on the CPU. The percentage of tuples to drop is determined by the controller, while choosing the victim tuples
to drop depends on the load shedding algorithm we choose. In this study, we use the simplest load shedding
strategy: choosing victim tuples randomly.

DSMS
(Plant)

Load Shedding
algorithm
(Actuator)

Controller
Output Signal (M)Reference (Ms)

Stream Load
(S)

Control Signal (Ud)

Disturbances

Monitor

Input Signal
(U)

Fig. 4. The control-based load shedding framework.

The feedback control loop works as follows: a de-
sired deadline miss ratio Ms is specified by the sys-
tem administrator. The monitor measures the output
signal M at the end of every sampling period. The
controller compares M to Ms and generates the
control signal: the amount of load that needs to be
shed. For convenience, we define the control signal
(Ud) to be the percentage of load that needs to be
kept. In other words, 1 − Ud is the shedding factor.
The controller then sends the load change Ud to the
actuator. Clearly, the generation of input signal Ud

is the key point in this loop. We use a classical
Partial-Integral-Derivative (PID) controller in this

work. Please refer to [34] for more details on system model and controller design.
3) Results: In this work [34], we evaluate the idea by using a DSMS simulator, the core of which is an

operator scheduler adapting the Earliest Deadline First (EDF) policy. The EDF-based system has very simple
input/output model that eases our controller design.

We test the simulator with synthetic and real stream data and compare the performance of our feedback-
control-based method with that of an open-loop strategy (“static”) similar to the approach in Fig. 2. According
to Fig. 5, the control-based strategy performs better in reducing overshoots when compared with static shedding.
This is further supported by the deadline miss ratio measured: deadline miss events are abundant in static
shedding while very few are observed in control-based shedding. Control-based shedding shows less undershoot
than static shedding in both Fig 5a and Fig 5b.

4) Summary: This study shows the validity of using feedback control to guide load shedding in DSMSs
for the purpose of maintaining tuple delays. A common practice for DSMSs to overcome excessive incoming
requests, load shedding is a difficult problem due to the bursty data input and time-dependent tuple processing
cost. We use a feedback control loop to dynamically adjust load under such uncertainties. Compared to previous
work, the control-based approach leads to significantly better quality with less waste of resources. We evaluate
our idea by simulations. However, real challenges of sysem modeling and model-based controller design cannot
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Fig. 5. Performance of different load shedding strategies under different bursty traffic patterns. a. Synthetic traffic; b. real TCP traffic.

be properly addressed unless we work on a real-world DSMS.

D. Control-Based Load Shedding in Borealis

In Section III-C we presented the idea of using feedback control in making critical load shedding decisions and
evaluated the approach by simulations. However, such research will be convincing only when we work directly
on a real DSMS. Controlling real systems brings extra challenges to the design of feedback controller. In this
section, we enumerate these challenges and discuss our solutions. In this work, we define average tuple delay as
the control signal and use the Borealis stream manager [20] as our experimental system.

1) Modeling Borealis: The effectiveness of feedback control depends heavily on the acuracy of the system
model of the DSMS. Specifically, we need a dynamic model that describes the response (in the form of output
signal) of the system to various input signals. While such models are given beforehand in simulations, modeling
a real-world system is non-trivial. Fortunately, system identification techniques have been established by the
control engineering community. The basic idea is to model the plant as a difference equation with unknown
parameters. Then we can determine the order and parameters of the difference equation experimentally.

As to the Borealis system, which uses a Round-robin operator shceduler, we can start the modeling process
by a simple analysis. Let y(k) be the average delay of all tuples (i.e., output signal) that arrived during the k-th
controlling period. The Borealis system model is the following discrete function:

y(k) = q(k − 1) · c(k) = c(k)
∑

i<k

[

fin(i) − fout(i)
]

(1)

where c(k) is the expectation of per-tuple CPU cost, q(k − 1) is the number of tuples in the query network, and
fin(k) (or fout(k)) is number of packets that entered (or left) the DSMS during the k-th period. For now, we set
the cost factor c(k) to a constant c. The intuition behind the above model is: as the round-robin policy assigns
no priorities to jobs and the waiting queue of individual operators are FIFO, the tuples coming after period k

will not be processed until all outstanding tuples are processed. We experimentally verified the above model by
feeding the raw Borealis system with synthetic inputs and the results strongly supported the above model.

G(z)
y

C(z)

fout

_
yd

_

e u v+

Fig. 6. The control-based load shedding framework.

2) Controller design: With the Borealis system
model, we can use standard control theoretical tech-
niques to design our feedback controller. With the
first-order model shown in Eq. (1), we derive a basic
control loop as illustrated in Fig. 6, where yd is the
preset reference value for delay time, e = yd − y

is the error signal, and u represents the controller
output (with the same unit as fin). The meaning of u

is: the increase of the number of outstanding tuples
allowed in the next control period. Therefore, we denote v = u + fout as the desired data flow rate to the
database as fout tuples will leave the queue. C(z) is the controller transfer function and G(z) is the plant transfer
function. According to control theory (details skipped here), we have G(z) = cT

z−1 and C(z) = b0z+b1

c(z+a) where T

is the control period, b0, b1, and a are controller parameters.
From the DSMS point of view, the control goal is to let y (closely) track the target value yr. Although user

satisfaction is not affected when we have y < yr, it implies that more data is lost than what is necessary (under
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a overloading situation). Thus, we should set our design goal to fast convergence, meaning that the controlled
system is capable of bringing y back to the desired value yr very quickly when y deviates from yd in either
direction. Another parameter we consider is system damping, which measures how smooth system responses are
to disturbances. For this purpose, a controller design based on pole placement is desirable to achieve guaranteed
performance.2 We develop the following controller by setting the convergence rate to three control periods and
system damping to 1.0:

u(k) =
b0e(k) + b1e(k − 1)

cT
− au(k − 1) (2)

There are additional challenges in the control of DSMSs that are not addressed by standard control tech-
niques described above. One salient problem is the unavailability of real-time output measurement. Accurate
measurements of system output in real-time is essential in control system design. Unfortunately, in our system,
the output signal is the delay time, which means the output measurement is not only delayed, but it is delayed by
an unknown amount; We propose a solution to the problem based on the system model (Eq. 1): instead of using
a measurement of delay y as feedback signal, we use an estimation of y that is derived from q(k − 1) as follows:

ŷ(k) = q(k − 1)c(k) ≈ q(k − 1)c(k − 1) (3)

It is natural that Eq. (3) adds estimation errors to the closed-loop. We denote the estimation error as ỹ = y− ŷ.
Fortunately, our controller is still found to be robust by the following argument. When estimated output ŷ is used
as feedback signal, the output of the closed loop system is hence described by:

Y (z) =
C(z)G(z)

1 + C(z)G(z)
Yd(z) −

C(z)G(z)

1 + C(z)G(z)
Ỹ (z) (4)

The closed-loop system is still stable as long as ỹ is bounded, which is always true. The Yd term in Eq. (4)
shows that the output of the closed-loop system still tracks the target reference signal with designed damping
and convergence rate. However, the accuracy is compromised due to the introduction of estimation errors, as
represented by the Ỹ term in Eq. (4).

3) Determining control period: Our work described above answers the question of “how much load to shed”.
Obviously, we need to consider the questions of “when” and “where” within our framework of feedback-control-
based load shedding. Within the feedback control loop, the question of “when to shed load” can be answered
be determining the control period T . We follow two rules in selecting T for our control system: 1). Nyquist-
Shannon sampling theorem. As a fundamental rule in information theory, the theorem states that: when sampling
a signal, the sampling frequency must be greater than twice the bandwidth of the input signal in order to be able
to reconstruct the original signal from the sampled version. In our system, the sampling frequency should thus
be at least twice of the changing frequency of the disturbances c and fin. We expect the data input rate to be
very bursty therefore high sampling frequency is desirable; 2). Stochastic feature of output signal. Although the
CPU processing time for individual data tuple may be different, it is the average CPU processing time/delay time
within a sampling period that is of interest. Taking the average of the CPU processing time/delay time would
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Fig. 7. Data arrival rates in the experimental streams.

statistically eliminate some uncertainties. Lower sam-
pling frequency has more smoothing effect to eliminate
the uncertainties. As factors 1) and 2) have opposite
preferences on sampling frequency, our choice of T

should be a compromise between them.
4) Experimental Results: We implemented our

control-based load shedding framework inside the Bo-
realis system. We feed the system with synthetic bursty
data streams as shown in Fig. 7. As compared to the
simple algorithm (Fig. 8A), our approach (FB-CTRL)
achieves much better control on the processing de-

lay:most of the recorded y values are under the target value. For those rare occasions when y > yd, the errors

2System poles are the roots of the denominator polynomial of the closed-loop transfer function. The location of system poles can tell
how fast and smoothly the system responds to inputs therefore it is directly related to our design goal of fast convergence.
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Fig. 8. Performance of different load shedding algorithms.

are small. The simple method (OL-CTRL), on the other hand, generates much more delay violations and renders
the system unstable after the 200th second (i.e., y increases unboundedly). One thing to point out is: data loss
for both methods are approximately the same (1 to 0.985). Other situations unchanged, we make the average
processing cost c to change following a sinusoidal pattern. The results of this experiment are plotted in Fig. 8B.
Again, the delays recorded in the FB-CTRL method are under the target value with very few exceptions. For the
OL-CTRL method, the average delays seem to fluctuate sinusoidally, following the pattern of the changes of c.
Similar to Fig. 8A, data loss are almost the same in both methods.

Furthermore, our approach are found to be robust in that its performance is not affected by the pattern of
arrival rate variations, or the change of target value yd. Details can be found in [35].

IV. PLANNED RESEARCH

A. More control-based research

The studies presented in Sections III-C and III-D can be extended in the following directions.
1) Adaptive control: So far we have worked on a system whose internal mechanisms are fixed. However,

system model could evolve over time. For example, we ended up using the average processing cost c as a
parameter in our system model. Although experimental results show that the system works well even under
variable c (Fig.8B), we cannot prove the stability of the controller. A more convincing way to handle this would
be to use a second (outer) loop to capture the dynamics of the system model itself and send it as a feedback to
the current (inner) loop. By doing this, we can i) handle more dramatic variations of c; and ii) get better control
results in terms of fewer undershoots (i.e., the case of y < yd) which could translate into less data loss.

In addition to the parameters, the structure of system model could also change (e.g., a different operator
scheduler is deployed). Adaptive control will generally not work under this situation. The good news is that
this will not happen frequently. The solution would be to perform system identification and controller design
beforehand for all possible situations. Therefore, we could switch to a new controller at runtime knowing a new
scheduler is now in use.

2) Adaptation other than load shedding: We focused on load shedding throughout this paper. Other adaptation
strategies, however, are also very popular in dealing with overloading. Generally speaking, the goal of all
adaptation methods is to adjust the load that the system needs to process. However, this does not necessarily
mean our controller design is not affected if a different adaptation method is utilized. For example, in the case
of sampling rate reduction, we generally accomplish this by resetting the width of some adaptive filters on the
stream sources [36]. The relationship between the width of the adaptive filters and the resulting data sending
rate is generally not linear and hard to quantify. Therefore, this is the same as to add another source of input
disturbances. Things could get worse if we adjust load by changing the size of windowed joins. As it happens
inside the query network, our system model could be comprised. We need to investigate the behavior of our
system and decide if re-modeling is needed.

3) More Sophisticated Quality Model: In this paper, we adapted a very simple model for QoS: we set a target
only for the processing delay and data loss is basically regarded as the cost of achieving the main control goal
of maintaining delays. The control on data loss is done in a best-effort manner. A more palpable model would
involve setting targets for multiple QoS dimensions thus a single-in-multi-out system model has to be utilized.
Relating this to discussions in Section IV-A.1, we can also combine different adaptation strategies thus a even
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more complicated multi-in-multi-out model is needed. The complexity of such models could make a solution
following this path very difficult but it is worth further investigations.

B. Improving quality of probabilistic queries by forecasting models

1) Introduction: In a (naive) push-based DSMS, queries are answered deterministically: we always let all
the stream sources send their current values to the database and process the queries based on these updates.
This solution has two problems: 1) streams values are just discrete samples of the underlying environment.
Inherently, there are random errors involved in the sampling(measuring) of a physical world. Furthermore, as
there are inevitably some delays between the time when the value is collected and the time when it is processed
by the database system, there is no guarantee that we are dealing with fresh data. However, from the user’s point
of view, the only interesting thing is to get an idea of what’s happening at the time when the query is processed.
Therefore, it makes more sense to reason stream data probabilistically. 2) This solution requires updates from all
streams at all times. As a result, the system may not have enough resources for doing that. One salient example is
for sensor-based data sources: sensors have limited battery power, we cannot afford to let the sensors send updates
frequently. Same problem for the bandwidth of the network between the data stream source and the data base.
To remedy the above problems, probabilistic versions of the above queries are proposed [6]. For entity-based
queries, we now return a set of stream IDs as well as the probability that each ID satisfy the specified condition.
For value-based queries, we need to return a probability distribution function (PDF) instead of a single value.
As the answers to queries become fuzzy, we may not need updates from all streams to be sent to the DSMS
server. Instead, we can selectively acquire updates from individual stream sources. This is called pull-based or
data acquisition method.

Quality of Probabilistic Queries. Nobody likes uncertainties in the query results. They are used simply
because of the fuzzy data we got and the limited resources of our computing infrastructure. The quality of query
results is thus measured by how far the results are from their deterministic version. For example, if we return a
normal distribution as the result of a valued-based query, the smaller the variance of the distribution, the better
quality we achieved. Quality of entity-based queries is a little trickier. Let’s take the range query as example: if
we have a query result that says: stream 5 has probability 0.9 of being in the range of [a, b], we know stream 5 is
most likely within the range thus the quality of this result is good. On the other hand, if we have probability 0.1,
we know it is most likely out of the range and it is also of high quality. The worst thing is we have probability
0.5, which basically does not tell us much. It seems |p− 0.5| is a good measure of quality here. People have also
used differential entropy to quantify the uncertainty of a continuous random variable given its pdf.

2) Problem statement: We have n data streams, each can be viewed as a time series that generates a data item
(whose value is a real number) every δt time units (without loss of generality, assume δt=1). Let y

j
i be the value

of stream j (j = 1, 2, . . . , n) at time i (i = 1, 2, . . . ,m) with m the most current time. So y
j
m is the current value

of stream j. Due to the constraints of the memory, the whole history of the data stream y
j
i may not be stored.

Hence, it is assumed that at current time m, only y
j
i for i ≥ i0 is retrievable from the memory. The query result

qi is a function of yi = [y1
i , . . . , y

n
i ], denoting this by

qi = f(yi).

The problem is an optimization, which can be expressed in the following two flavors:

PROBLEM 1. Due to system constraints, suppose the system can only update at most c data streams at the
time one step forward (i.e., future time m + 1). But the system is allowed to selectively choose streams to
report their updates. What is the best way to select the c streams? The value c can be either a fixed constant
or a variable;
PROBLEM 2. Let R denote the risk (or the discrepancy of the reported query and the actual solution) of a
query. We are allowed to update as few data streams as possible for the immediate update of data values as
long as R is smaller than a user-specified threshold, say Q. How many data streams to update? Which ones
should we update?

3) A sketch of possible solution: The future value of a stream, y
j
i for i > m, is determined by the underlying

physical system and since it is by definition unknown until it arrives, we can view it as being random. The
statistics community has extensively studied time series data and proposed various models to predict future
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values of such series. We propose to use prediction generated from these models to guide data acquisition in
DSMSs.

If ŷ
j
i denote a predictor of y

j
i , let ŷi = [ŷ1

i , . . . , ŷ
n
i ] be the predictor vector of yi, then one would naturally use

q̂i = f(ŷi) as the predictor or estimator of qi, a candidate of R is the mean square error of q̂i:

Ri(q̂i, qi) = E(q̂i − qi)
2 (5)

where E is the expected value with respect to the probability distribution of the random variable qi. Then the
above two problems can be formally stated as

PROBLEM 1. b = arg mina∈A Rm+1(q̂m+1, qm+1) where A is the set of all possible selection of c streams

among n streams, which has obviously

(

n

c

)

elements.

PROBLEM 2. b = arg mina∈A Rm+1(q̂m+1, qm+1), such that Rm+1 ≤ T where A is the set containing all
possible subset of n streams.

Theoretically, the goal is to solve the above two minimization problems. But Rm+1(q̂m+1, qm+1) involves un-
known quantity qm+1, it is necessary to use a operational surrogate target function which mimics Rm+1(q̂m+1, qm+1).
This necessitates a practical tool which provides a good predictor ŷ

j
m+1, i.e. one-step ahead predictor, based on

statistical time series model. The solution to the minimization problem must be obtained within the sampling
time interval, so that a decision on how to allocate the resource be made on time. A computationally efficient
minimization algorithm is thus necessary. The algorithm must be able to update the solution in a sequential or
recursive fashion once the new data enter the system.

There are a number of technical problems we need to address to make the idea work. (i) given the forecasting
distributions of all n streams, how to (efficiently) process various types of queries; (ii) how do we judge the
relative importance of each forecasting result and choose the ones that will give the most benefit to the quality of
query processing; (iii) the computation of probabilistic queries may be CPU intensive. For continuous queries,
is it possible to evaluate the queries incrementally? We are developing solutions to all these challenges.

4) Optimization in multi-query DSMS: Many studies in resource management in DSMSs focus on single-
query optimization. That is, we assume that there is only one query running in the system and find solutions for
different query types one by one. Although it is reasonable to approach the problem by making such simplified
assumption, we may find that very little can be learned by studying single-query systems. The reason for this
is: as different queries (even queries with the same type) have different data acquisition plan (e.g., solutions
to PROBLEM 1 and PROBLEM 2 in Section IV-B.2), we may end up acquiring updates from most, if not all,
streams. Under this situation, the pull-based method shows no advantage over the push-based solution 3. It is
important to find solutions for PROBLEM 1 mentioned in Section IV-B.2 under multiple queries. One possible
solution is as follows: we change the definition of R given by Eq. (5), which is query-dependent, to something
that is query-independent. For example, we can have

Ri(ŷ, y) =
∑

j

E(ŷj
i − y

j
i ).

By minimizing Ri with this definition, we are basically minimizing the errors in our estimation of the stream
values. The intuition behind this solution is: quality of queries is positively related to the accuracy of data.

V. OTHER WORKS

A. Performance analysis of peer-to-peer media streaming systems

Recent research efforts have demonstrated the great potential of building cost-effective media streaming
systems on top of peer-to-peer (P2P) networks. A P2P media streaming architecture can reach a large streaming
capacity that is difficult to achieve in conventional server-based streaming services. Hybrid streaming systems
that combine the use of dedicated streaming servers and P2P networks were proposed to build on the advantages
of both paradigms. However, the dynamics of such systems and the impact of various factors on system behavior
are not totally clear. In this study [37], [38], we present an analytical framework to quantitatively study the

3Actually, it is even worse due to the overheads for keeping stream states and computing predictions.
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features of a hybrid media streaming model. Based on this framework, we derive an equation to describe
the capacity growth of a single-file streaming system. We then extend the analysis to multi-file scenarios by
solving an optimization problem. We also show how the system achieves optimal allocation of server bandwidth
among different media objects. The unpredictable departure/failure of peers is a critical factor that affects
the performance of P2P systems. We utilize the concept of peer lifespan to model peer failures. The original
capacity growth equation is enhanced with coefficients generated from peer lifespans that follow an exponential
distribution. We also propose a failure model under arbitrarily distributed peer lifespan. Results from large-scale
simulations support our analysis.

B. Change Point Estimation of Bar Code Signals

Bar code is widely used in various businesses as a primary technique for production identification. In practice,
bar code detection and reconstruction are prone to errors. Existing methods for bar code signal reconstruction is
based on either the local approach or the regularization approach with total variation penalty. We formulate the
problem explicitly in terms of change points of the 0-1 step function [39], [40]. The bar code is then reconstructed
by solving the nonlinear least squares problem subject to linear inequality constraints, with starting values
provided by the local extremes of the derivative of the convolved signal from discrete noisy data. Simulation
results show a considerable improvement of the quality of the bar code signal using the proposed hybrid approach
over the local approach.

C. Processing entity-based queries with non-value error tolerance in DSMSs

In this work [41], we study the problem of applying adaptive filters for approximate query processing in a
distributed stream environment. We propose filter bound assignment protocols with the objective of reducing
communication cost. Most previous works focus on value-based queries (e.g., average) with numerical error tol-
erance. In this study, we cover entity-based queries (e.g., nearest neighbor) with non-value-based error tolerance.
We investigate different non-value- based error tolerance definitions and discuss how they are applied to two
classes of entity-based queries: non-rank-based and rank-based queries. Extensive experiments show that our
protocols achieve significant savings in both communication overhead and server computation.

D. VDBMS - a multimedia DBMS

Real-world video-based applications require database technology that is capable of storing digital video in the
form of video databases and providing content-based video search and retrieval. Methods for handling traditional
data storage, query, search, retrieval, and presentation cannot be extended to provide this functionality. The
VDBMS research initiative [42]–[44] is motivated by the requirements of video-based applications to search and
retrieve portions of video data based on content and by the need for testbed facilities to facilitate research in
the area of video database management. Our fundamental concept is to provide a full range of functionality for
video as a well-defined abstract database data type, with its own description, parameters, and applicable methods.
Research problems that are addressed by VDBMS to support the handling of video data include MPEG7 standard
multimedia content representation, algorithms for image-based shot detection, image processing techniques
for extracting low-level visual features, a high-dimensional indexing technique to access the high-dimensional
feature vectors extracted by image preprocessing, multimedia query processing and optimization, new query
operators, real-time stream management, a search-based buffer management policy, and an access control model
for selective, content-based access to streaming video. VDBMS also provides an environment for testing the
correctness and scope of new video processing techniques, measuring the performance of algorithms in a stan-
dardized way, and comparing the performance of different implementations of an algorithm or component.
The ultimate goal of the VDBMS project is a flexible, extensible framework that can be used by the research
community for developing, testing, and benchmarking video database technologies.
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