
Using Control Theory for Self-Tuning Database Systems

A Position Paper

Yi-Cheng Tu† Gang Ding† Song Liu‡ Sunil Prabhakar† Bin Yao‡

†Department of Computer Sciences ‡School of Mechanical Engineering
Purdue University Purdue University

250 N. University St. 140 S. Intramural Drive
West Lafayette, Indiana, USA West Lafayette, Indiana, USA

{tuyc, dingg, sunil}@cs.purdue.edu {liu1, byao}@purdue.edu

ABSTRACT
Current studies on self-tuning databases tend to adapt a
static view of problems by focusing on long-term perfor-
mance. We argue that a more important issue is to maintain
transient performance in such systems due to the inevitable
fluctuations in workloads and environmental factors. We
propose the idea of using feedback control theory to deal
with such dynamics and maintain performance in self-tuning
databases. We discuss how relevant control-theoretical tech-
niques can be used to solve typical problems in this field.
One of the major difficulties in using formal methods to
study such problems is the lack of accurate analytical mod-
els for complex database systems. This can be partially
solved by system identification techniques. Concrete exam-
ples and preliminary results support our proposal. We also
identify the major challenges in applying control theory to
self-tuning database study.

1. INTRODUCTION
In the past decade, we have witnessed enthusiastic re-

search interests in self-managing database and information
systems that can automatically adjust their configuration
and behavior in order to meet performance requirements.
This is evident with the recent establishment of the IEEE
Computer Society Workshop on Self-Managing Database Sys-
tems1. Motivated by the increasing human costs in the
maintenance of database and information services, research
in this area seeks ways to automate the hardware deploy-
ment, physical database design, parameter configuration,
and resource management in such systems. The goal is to
achieve acceptable performance on the whole system level
without (or with limited) human intervention.

Challenges have to be met such that the self-managing

1http://db.uwaterloo.ca/tcde-smdb/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

systems [3] to be built are: 1) self-configuring: system com-
ponents can be installed, configured, and interconnected
with little human supervision; 2) self-optimizing, automatic
tuning of database knobs towards performance goals; 3) self-
healing: detection and correction of abnormal situations; 4)
self-protecting: defense against security attacks. In this pa-
per, we focus on self-optimizing (i.e., auto-tuning) problems.
According to Weikum et al. [17], problems in this category
can be described by the following statement:

workload × configuration (?) → performance ,

which means that we need to find the right settings for (mul-
tiple) system knobs given the features of incoming workload
such that performance metrics are satisfied. The following
are some sample problems in this category:

• Example 1.Maintenance of Multi-Class workload ser-
vice level agreements (SLA). Service providers usually
offer various levels of Quality-of-Service (QoS) guar-
antees (e.g., response time) to requests from different
groups of customers. Such guarantees are called ser-
vice level agreements. Fulfillment of the SLAs is ac-
complished by assigning different amount of system re-
sources to different request groups. For example, query
response time is negatively related to the amount of
memory buffer assigned to that query [18]. We need to
find a way to dynamically allocate memory to queries
such that the absolute or relative query response time
of different service groups are satisfied. The problem
can involve multiple classes of resources and multiple
QoS parameters [1];

• Example 2. Load shedding in data stream manage-
ment systems (DSMSs) [14]. In DSMSs, query pro-
cessing has to meet various QoS requirements. Among
them, processing delay, which is the duration of tuples’
staying in the DSMS, is the most critical one since the
value of query results decreases dramatically with in-
creased freshness of input data. The ability to remain
within a desired level of delay is significantly hampered
under situations of overloading, which are common in
data stream systems. When overloaded, DSMSs em-
ploy load shedding (i.e., discarding some data tuples)
in order to keep pace with the high rate of data ar-
rivals. In this problem, answers to the questions of
when, how much, and where to discard load are to be

provided. The problem is difficult because data stream
applications are extremely dynamic due to bursty data
arrivals and time-varying data processing costs;

• Example 3. Dynamic Data Placement. Data items
are placed on multiple hard disks. The main goal of
this problem is to find a data placement solution in
which the access load on each disk is approximately
the same [17]. We assume that the popularity (i.e.,
access rate) of each data item changes with time.

Such problems can hardly be solved by using rules of
thumbs and simply throwing in more hardware [17]. Current
studies tend to view these problems as static optimizations
with the workload parameters and performance metrics as
inputs [2]. This strategy works perfectly fine if we only need
to maintain a static view of the workload and performance
metrics. For example, if we only consider long-term per-
formance such as average query response time over a long
time, steady-state parameters (e.g., average query arrival
rate) of the workload would probably be sufficient to solve
the problem. However, we are rarely interested in long-term
performance in real-world information services. Instead, it
is generally required that the performance goals are always
met. Unfortunately, fluctuations do exist in workloads and
they can bring variations in system performance if we adapt
a static solution for the system configuration. Furthermore,
other internal/environmental factors may also cause varia-
tions of performance. Under this situation, we need to de-
velop means for the system to quickly adapt to the dynamics
in the workload, the database system, and the environment
where the system runs. In other words, we need to focus on
transient-state performance.

One way to address the above challenge is to treat the
problem as an online optimization [2] and solve it by incre-
mental algorithms. However, there is generally no guaran-
tees on the accuracy and convergence of such algorithms,
and some problems have no incremental solutions. Another
important question, which is either ignored or answered em-
pirically in current studies, is how often do we need to rerun
the optimization? Our observation is that people tend to fol-
low ad hoc strategies for individual problems in this field. It
would be desirable to have a common theoretical framework
under which a series of problems can be approached.

In this paper, we argue that control theory provides such
a foundation to approach the aforementioned problems in
self-tuning databases. Note that control theory is not a
single technique. Instead, it is the collection of a rich set
of mathematical tools for analyzing system dynamics and
designing mechanisms with guaranteed performance. We
discuss some of the core issues of using control techniques
in self-tuning databases. Currently, we have used control-
theoretical methods to solve the problem in Example 2 and
the effectiveness of the method is supported by both ana-
lytical and experimental results [14]. Therefore, we utilize
Example 2 to explain how control techniques can be applied
in self-tuning databases. Furthermore, we also identify crit-
ical challenges of applying control theory in this area.

Related Work. Control-theoretic approaches have been
used to solve various problems in the areas of networking
[10], real-time systems [12], and multimedia [11]. To the
best of our knowledge, our work on load shedding in DSMSs
[14] is the only such work in the area of database systems.
Weikum et al. [17, 2] propose the concept of feedback control

Controller
Actuator

(Load Shedder)

Plant
(DSMS)

Monitor

Disturbances

Target output
(yd)

error

Control signal
(u)

Output signal
(y)+ -

Figure 1: The feedback control loop (from [14]).

loop as a general principle for solving problems in self-tuning
databases. The loop consists of three phases: 1)observation:
monitoring performance metrics and workload parameters;
2) prediction: assessing the possible adjustments of system
knobs based on a mathematical model such that perfor-
mance requirements are satisfied; 3) reaction: implementing
the decision made by step 2). As we shall see, this strat-
egy, although with a similar name, is fundamentally different
from the control-theoretical solution we propose. Our solu-
tion uses formal synthetic methods to derive the dynamic
controller which can guarantee the system performance over
a wide range of systems and external disturbances.

2. CONTROL SYSTEM OVERVIEW
The term control generally refers to the manipulation of

particular feature(s) (i.e., output signal) of a plant by ad-
justing inputs into it. In this paper, we focus on feedback
control where output signals are taken into account in mak-
ing control decisions2. The main components of a feedback
control system form a feedback control loop (Fig. 1). The
runtime operations of this loop are performed periodically 3

as follows: a monitor measures the output signal of the plant,
which is the system to be controlled; The measurements are
sent to a controller, which compares the output signal with
a target value and maps the difference between them (i.e.,
control error) to a control signal; An actuator adjusts the
behavior of the plant according to the control signal. The
goal of the control operations is to overcome the effects of
system and environmental uncertainties named disturbances
such that the output signal tracks the target value.

For Example 2, components in the feedback loop can be
mapped to the following concrete components in DSMS. The
plant to be controlled is the query engine of the DSMS and
the actuator is the existing load shedding algorithm that
adjusts load injected into the plant. In addition, we have
a monitor that measures the output signal and a controller
to generate the control signal. The unpredictable arrival
patterns and processing costs of tuples are all treated as
disturbances. In this loop, the output signal y is the average
processing delay of all tuples arrived in a control period, and
the control signal u is the desirable incoming data rate.

We can easily see that the most critical part of the control
loop is the controller, which determines the quantity of the
control signal based on the control error. Control theory is
the mathematical foundation on how to design controllers
based on the dynamic features of the plant.

2Feedback control is also called closed-loop control due to the
existence of the feedback control loop. On the contrary, the con-
trol that does not use output in generating control signal is called
open-loop control. For problems of interest in this paper, we show
in [14] that open-loop control does not work.
3This period is called control period. We discuss how to choose
control period in Section 5.3.

3. SYSTEM MODELING
Rigorous control theory is built upon our understanding

of the dynamics of the system to be controlled. Derivation of
models that describe such dynamics is thus a critical step in
control engineering. Linear systems have been well-studied
in the control community. Generally, the dynamic behavior
of a single-input-single-output (SISO)4 linear time-invariant
(LTI) system can be modeled by a transfer function between
the input u and output y in frequency domain:

G(s) =
ansn−1 + an−1s

s−2 + · · · + a1

sn + bnsn−1 + bn−1ss−2 + · · · + b1
(1)

where the quantity n is called the order of the model. The
above transfer function only gives the relationship between
the input and output. All the underlying n system dynamics
x can be represented by a state-space model in time domain:

x = Ax + Bu
y = Cx + Du

(2)

where A, B, C, and D are model parameters. We can
easily find the corresponding transfer function from Eq.(2):
G(s) = C(sI − A)−1B + D. Given an accurate model, all
dynamics of the object can be analytically obtained, based
on which we can analyze important characteristics of the
output and states such as stability of the output, the ob-
servability, and controllability of each state5. But all the
analysis of the system depends on model accuracy. Depend-
ing on the available information about the system, there are
different ways to obtain the model.

When the physical meaning of the system is clearly known,
the model structure and all the parameters in it can be ac-
curately derived. However, for complex systems such as a
DBMS, the analytical model may be difficult, if not impos-
sible, to generate. Actually, lack of mathematical model
has been listed as the No.1 obstacle in building self-tuning
databases [17]. Fortunately, various system identification
techniques have been established to generate approximate
models that are useful in designing effective control loops.

For many systems such as databases, some of the parame-
ters in a = [a1, a2, · · · , an]T and b = [b1, b2, · · · , bn]T are un-
known, although they are fixed or only vary slowly. These
unknown parameters can be estimated based on the mea-
sured input u and output y. For example, we estimate a and
b by â and λ − b̂, respectively, where λ = [λ1, λ2, · · · , λn]T

is an auxiliary parameter vector. Quantities â and b̂ are
dynamically updated by an adaptation law such as

â = −
(ŷ − y)w

1 + wT w
,

where ŷ = [aT , bT]w and w is the auxiliary states generated
by λ, u, and y. It is proven that the estimation will con-
verge to the actual parameters a and b [13]. For low-order
systems, the constant parameters can often be identified by
experiments. For example, we can feed the real system with
a constant or sinusoidal input of different frequencies. By
comparing the measurements of the actual output with the

4Both input and output can also be of multiple dimensions.
5Stability means that bounded input can only gives rise to
bounded output. Controllability of a state means that the sate
can be controlled from any initial value to any final value within
finite time by only the inputs. Observability of a state means that,
for any possible sequence of state and control inputs, the current
state can be determined in finite time using only the outputs.

theoretical derivation of the output as a function of unknown
parameters and input frequency, the parameters can be de-
rived by some calculations. Even for a high-order system,
we can approximate it by a low-order model because the
impact of higher order dynamics on system performance is
often minor so that it can be ignored.

With careful choice of input data, system identification
methods can give surprisingly accurate models of complex
systems. In our work on load shedding in DSMSs, we derive
a model for the Borealis DSMS we use for experiments by
system identification. The runtime architecture of Borealis
consists of a number of query operators that form a data
flow network [14]. Each operator in the network i is char-
acterized by its CPU cost ci, and selectivity si. We define
quantity c as the average processing (CPU) of all tuples: it
is easy to see that c is a function of ci, si, ∀i. For now, we
treat c as a constant. We discuss how to deal with time-
varying c in Section 4. Due to the complex structure of the
operator network, it is hard to generate an analytical model
that describes the relationship between system input (tu-
ple arrival rate f) and output (average tuple delay y). To
study the dynamics of the Borealis system, we feed it with
synthetic data whose arrival rate follow step and sinusoidal
functions of time. By studying the responses of the Borealis
system to such inputs, we conclude that it can be described
by the following first-order linear model:

G(s) =
αc

s − 1
(3)

where α is a constant. We also verified this model with a rich
set of other inputs and the experimental results converge to
a fixed α value very fast. In our problem, controller design
becomes straightforward with this linear model.

4. CONTROLLER DESIGN
The model of a system only shows an open relationship

between the input u and output y. In order to have the
output follow a desired reference yd, we need to design a
controller that tells us how to change the input u. How to
change u depends on how good the output y is approaching
to yd, so the controlled input u should be a function of y and
yd. Depending on how much information about the system is
available, a wide variety of controller design methods exist.

When the dynamical linear model of the system is known,
there are several well-known methods to design the con-
troller with guaranteed performance. In addition to stabil-
ity, other important performance parameters related to our
problems include: 1) Steady-state error: the difference be-
tween output and the control target when system is at steady
state; 2) Convergence rate: shows how fast the system goes
back to steady state in response to disturbances; and 3) Sys-
tem damping: shows how smoothly the system converges to
steady state in response to disturbances. Smaller damping
means more oscillations during this process.

For example, given the transfer function G(s) in frequency
domain (Eq.(1)), the system dynamics all depend on the
roots of the denominator (poles) and the roots of the nu-
merator (zeros) of G(s). We can add more zeros or poles
to the controller (with transfer function C(s)). Then the
transfer function of the overall close-loop system is changed

to G(s)C(s)
1+G(s)C(s)

, whose zeros and poles can be adjusted by

the controller C(s) in order to have the output meet perfor-
mance requirements. The most commonly used controller

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 D
el

ay
 (

se
c)

Time (s)

CTRL
BASELINE

AURORA

Figure 2: Performance of different load shedding
methods.

only has one zero and one pole: C(s) = a s+c

s+b
, which in-

cludes three simple components: proportional, integral, and
derivative (PID). To achieve the desired performance goals,
we only need to adjust the three parameters a, b, and c using
mathematical tools such as root locus and bode plot [6].

With the model in Eq.(3), we designed a controller to
guide load shedding in the Borealis system based on pole
placement. In this design, we evaluated controller perfor-
mance by the speed and smoothness, or convergence rate
and damping, of control system’s responses to disturbances.
For example, we set convergence rate to three control peri-
ods and damping to zero in our design. This means that
the system, in response to dynamics, would converge to
1 − 1

e
≈ 63% of the desired value in 3 control periods and

to 98% in 12 periods, and no oscillations will occur. The
resulting controller is as follows:

u(k) =
1

cα
[b0e(k) + b1e(k − 1)] − au(k − 1). (4)

where b0, b1, a are controller parameters that can be analyt-
ically obtained, e(k), e(k − 1) are the control errors in the
present and previous control period, respectively.

Experimental results show effectiveness of the controller
(see [14] for more details). In Fig. 2, we compare the per-
formance of our control approach based on Eq.(4) (CTRL),
the current rule-of-thumb solution in Borealis (AURORA),
and a simple control solution without rigorous controller de-
sign (BASELINE). We feed the system with bursty data
streams with variable unit processing costs. We can easily
see that, the recorded system outputs (average tuple delay
within control period of one second) in CTRL are very close
to the target value of two seconds for most of the time. The
AURORA solution leads to a unstable system: tuples de-
lays increase unboundedly. Performance of the BASELINE
solution goes between the above two methods.

When the system model is only partly known, the un-
known part of the model should be dealt with during the
controller design. For example, when the unknown part
is additive Gaussian noise, the Linear Quadratic Gaussian
(LQG) controller can be calculated by solving an algebraic
equation and it can optimize the problem of minimizing the
error between output y and reference yd. When some param-
eters in the object model are unknown, the controller can
only be designed for the estimated model by identification.
Since the adaptive identification of the model introduces ex-
tra dynamics, the controller design is more complicated and
belongs to adaptive control theory. In Example 2, we model
the system by treating the average tuple processing cost c as
a constant. However, c is a time-varying factor in practice,

although we can safely assume it changes slower than the
data arrival rate. To solve this problem, we design an adap-
tive controller with two feedback control loops: the origi-
nal inner loop (Eq.(4)) and an outer loop that captures the
changes of c (thus denoted as c(k) for period k).

Adaptive control only considers the case when unknown
parameters are constant or are varying very slowly. When
there are unstructured noises which are varying fast, they
might make the whole adaptive system unstable even if such
noises are bounded. To solve this problem, robust control
theory has been actively studied. We briefly introduce sev-
eral typical robust control methods. The robust adaptive
control theory [7] is an extension of the existing adaptive
control theory. It takes the impact of unstructured uncer-
tainties into consideration by modifying the parameter up-
date law so that the stability of the overall system is still
guaranteed. The H-infinity control [5] is an optimal control
methods that optimizes the H-infinity norm of the transfer
function between the system performance index and the un-
structured noise. It reduces the impact of bounded noise
on the system performance to be arbitrarily small. The µ-
analysis theory [4] has been developed to further investigate
the detailed structure of the noise and its impact on the
system performance. The variable structure control theory
[9] takes another approach to increase the robustness of a
system. Instead of directly working on the uncertainties in
the system model, it forces the controller to switch between
some different structures. Which structure to select depen-
dents on the current system performance.

For Example 3, we are currently developing a state-space
model by taking the access rates of all disks as the states.
The output of the model is the same as states. We then de-
sign a controller based on the current measurement of states
so that the the access rate of every disk is approaching to
the same constant. The control input directs us to reallo-
cate data blocks. When the model is not accurate, adaptive
control or robust control methods can be used.

5. ISSUES
Although control theory provides a sound theoretical back-

ground for the aforementioned problems, its application in
self-tuning databases is by no means straightforward. The
inherent differences between database/information systems
and traditional control systems (i.e., mechanical, electrical,
chemical systems) bring additional challenges to the de-
sign of the control loop. This requires careful mathematical
study from a control theoretical viewpoint. In this section,
we discuss some of the challenges we identified.

5.1 Lack of real-time output measurement
Response time and processing delay are important per-

formance metrics in database systems (recall Examples 1
and 2 in Section 1). Accurate measurements of system out-
put in real-time is essential in traditional control system
design. Unfortunately, this requirement is not met in self-
tuning database problems where response time and process-
ing delays are the output signals. Under this situation, the
output measurement is not only delayed, but also delayed
by an unknown amount (the amount is the output itself!).
For instance, in Example 2, the output signal of our con-
troller should be the delay of tuples that have just entered
the system when we calculate u(k). However, at time k, we
can only measure the delay of those that entered the sys-

tem some time ago. This is a very interesting challenge to
control theory as it does not exist in conventional control
systems where the controlled signal can always be measured
when we need it.

One of the solutions for this problem is to use other met-
rics that are measurable and derive the output signal from
these metrics. Again, a model that maps the metric to the
real output signal is needed. This model is called a trans-
ducer in [6]. Due to modeling errors, it is inevitable that
the adaption of the transducer adds estimation errors to the
output signal. We need to make sure that it does not change
the characteristics of the controller such as its stability.

In the case of load shedding in DSMSs, we can easily
modify the Borealis system to accurately record the number
of outstanding data tuples q. This can be done by just
counting all the inflow/outflow tuples. We know that at any
time, c(k) values can be accurately estimated. Therefore,
instead of using a measurement of delay y as the feedback
signal, we use an estimation of y as follows:

ŷ(k) = qc(k) (5)

The intuition of the above equation is: because Borealis
utilizes a round robin policy to schedule the execution of
operators, the incoming tuples are expected to be processed
after the outstanding tuples. Naturally, Eq.(5) adds estima-
tion errors to the closed-loop. Fortunately, our controller is
still found to be robust [14].

The usage of transducers is almost always ad hoc. It is
interesting to see how this can be dealt with in a more sys-
tematic way. Integrating the delays into the model seems
to be a viable way to approach this problem and it is a
significant challenge to the control theory community.

5.2 Actuator design
In traditional control systems, the actuator can precisely

apply the control signal to the plant. For example, in the
cruise control system of automobiles, the amount of gaso-
line injected into the engine can be made very close to the
desirable value. However, in database systems, we are not
always sure that the control signal given by the controller
can be correctly generated by our actuator. In this section,
we discuss some scenarios with the above difficulty.

Sometimes the control signal is implemented as a mod-
ification of the original system input signal that is unpre-
dictable beforehand. In Example 2, given the desired data
flow rate u(k) obtained from the controller (i.e., control sig-
nal), the task of the load adaptor (actuator) is to cut the
incoming data stream (with rate f) such that the the ac-
tual number of tuples accepted into the system is close to
u(k). A straightforward way to implement the load shedder
is to cut load before the tuples enter the DSMS and treat
all input streams equally. For this purpose, we set a shed-
ding/filtering factor β (0 ≤ β ≤ 1) to all the data streams.
When Borealis receives a tuple, it flips an unfair coin with
head probability 1 − β. A tuple is admitted only when the
coin shows head. At the end of period k, β should be deter-
mined as follows:

β = 1 − [u(k)/f(k + 1)]. (6)

However, f(k + 1) is unknown when we calculate β. We use
its value in the current period f(k) as an estimation. This,
again, brings errors to the control signal. Fortunately, when
the convergence rate is higher than the changing frequency

of input f , the current controller can compensate for this
estimation error (Fig. 2). Note that we add one more zero to
the plant transfer function by replacing f(k + 1) with f(k),
we can design a slightly different controller with provable
stability (details skipped here).

Another source of errors for the control signal is caused
by the fact that the actuator is implemented as a combina-
tion of multiple knobs. For example, a more advanced load
shedder in Borealis can discard tuples from any operators in
the operator network. Given a control signal u(k), the load
shedder will choose the best places to discard load such that
the tuples lost are of lower importance to the query results
and the real load put on the system is close to u(k)c. The
problem here is that we are not sure how close the real load
is to the desirable value. From control theory point of view,
we can identify the relationship between a control input and
the load by a mathematical model, called observer. If the
output of the observer does not match the real load, the
difference between them is used to adjust the observer so
that the estimation error is reduced. The system identifica-
tion techniques mentioned in Section 3 can be employed to
adjust the observer.

In problems such as in Example 1 and 3, the system model
is continuous but the input is a discrete knob switching be-
tween multiple values. This controller design problem can be
handled by a variable structure control method, called slid-
ing mode control. Basically, we first define a sliding space
s, which is typically the difference between the actual out-
put and the desired output (e.g., the response time). Based
on an approximated model of the system, we can design a
discrete control input that force the sliding space s = 0. An
advantage of sliding mode control is that it is pretty robust
to noise due to inaccurate model or measurement.

5.3 Determination of the control period
The control (sampling) period is an important parame-

ter in digital control systems. An improperly selected sam-
pling period can deteriorate the performance of the closed-
loop. As we mentioned earlier, current work in self-tuning
databases consider the choice of control period as an em-
pirical practice. Although the right choice of control period
should always be reasoned case by case, there are certain
rules we can follow. For controlling database systems, we
consider the following issues in selecting the control period.

1. Nature of disturbances. In order to deal with distur-
bances, our control loop should be able to capture the mov-
ing trends of these disturbances. The basic guiding rule for
this is the Nyquist-Shannon sampling theorem [16]. A fun-
damental principle in the field of information theory, the
theorem states that: when sampling a signal, the sampling
frequency must be greater than twice the signal frequency
in order to reconstruct the original signal perfectly from the
sampled version. In Example 2, this means the control pe-
riod should be at most half of the width of the spikes in
input rate. In practice, a sampling frequency that is one
order of magnitude larger than the input signal frequency
is often used. Therefore, a high sampling frequency is pre-
ferred to capture the time-varying properties of the system
and input data.

2. Uncertainties in system signals. Computing systems
are inherently discrete. In our problems, we often use some
statistical measurements of continuous events occurring within
a control period as output signal and/or system parameter.

This requires special consideration in choosing the control
period. In our solution to Example 2, the output signal y(k)
and processing cost c(k) are defined as the corresponding
mean values of a series of tuples. Taking such expectations
can eliminate uncertainties brought by the heterogeneity of
individual tuples. A larger sampling period (low sampling
frequency) is preferred as more smoothing effects can be ex-
pected. For example, when tuple processing cost is in the
order of milliseconds, setting control period to a fraction
of one second level would give us tens to a few hundreds of
samples to approximate the real values of y(k) and c(k). For
higher sampling frequencies, we get fewer samples and may
encounter more significant measurement errors.

3. CPU processing capability. Another factor that in-
hibits the use of very high sampling rate is the cost of
controller itself. Unlike conventional control systems, the
database system does not have independent sensing mech-
anisms and control processor, i.e., all the feedback signals
as well as the control algorithms are conducted by the same
CPU as the database itself. Too high sampling frequency
would interfere with the normal processing of the database
and causes extra delays that are not included in the model.

In practice, the final choice of control period is the result
of a tradeoff among all the above factors.

5.4 Non-linear systems
Non-linear characteristics are common in database sys-

tems. When the model is nonlinear, there is no generic ap-
proach to analyze or identify the model. The most common
approach is to linearize the model part by part, and ana-
lyze or identify each linear part separately. For the worst
case when no internal information about the system is avail-
able, there are still several techniques to model the object.
For example, the input-output relationship can be approx-
imated by a set of rules provided by people familiar with
the system, and a rule is represented by a mapping from a
fuzzy input variable to a fuzzy output variable. An artificial
neural network model can also be employed to approximate
a nonlinear function. It has been proven that a well-tuned
fuzzy or neural network model can approximate any smooth
nonlinear function within any error bound [15].

There is no generic method to control non-linear systems,
either. Some nonlinear models can be completely linearized
[8] so that any linear control design methods can be applied.
But in general, the nonlinear controller design has to be
done case by case because each practical nonlinear model
can often be linearized in one way or another according to
its physical meanings. For the worst case when the object
model is regarded as a black box, intelligent control theory
can be used. The typical intelligent control method is based
on the fuzzy model of the object. Even when the fuzzy
model is not available, we can still design a rough fuzzy
controller based on the experience gained while manually
manipulating the system. Although fuzzy controller may
work as well as the human being, it is not able to achieve the
best performance by itself. It is expected to work together
with other classic control methods when at least part of the
system can be theoretically modeled.

6. CONCLUSIONS
In this paper, we propose the idea of using feedback con-

trol theory for problems in the field of self-tuning databases.
Via concrete examples and partially accomplished work, we

see that various control techniques can be used to model and
solve different problems in this field. We also noticed that
there are some major challenges in applying control theory
to problems in this field. Thus, we believe our explorations
can give rise to many opportunities to conduct synergistic
research between the database and control engineering com-
munities to extend our knowledge in both fields.

7. REFERENCES
[1] Kurt P. Brown, Manish Mehta, Michael J. Carey, and

Miron Livny. Towards automated performance tuning
for complex workloads. In VLDB, pages 72–84, 1994.

[2] S. Chadhuri and G. Weikum. Foundations of
Automated Database Tuning. In Procs. of ICDE,
pages 104–104, April 2006.

[3] Surajit Chaudhuri, Benôıt Dageville, and Guy M.
Lohman. Self-managing technology in database
management systems. In VLDB, page 1243, 2004.

[4] J. Doyle, A. Packard, and K. Zhou. Review of LFTs,
LMIs, and µ. In 30th IEEE Conference on Decision
and Control, pages 1227–1232, 1991.

[5] J. Doyle et al. State-Space Solution to Standard H-∞
and H-2 Control Problem. IEEE Trans. Automatic
Control, 34(8):831–847, 1989.

[6] J. L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.
Feedback Control of Computing Systems.
Wiley-Interscience, 2004.

[7] P. A. Ioannou and A. Datta. Robust Adaptive
Control: A Unified Approach. Procs. of IEEE,
79(12):1736–1768, 1991.

[8] A. Isidor. Nonlinear Control Systems. Springer-Verlag,
Berlin, 1989.

[9] Y. Itkis. Control Systems of Variable Structure. Wiley,
New York, 1976.

[10] S. Keshav. A Control-Theoretic Approach to Flow
Control. In Procs. of SIGCOMM, September 1991.

[11] B. Li and K. Nahrstedt. A Control-Based Middleware
Framework for Quality of Service Adaptations. IEEE
Journal of Selected Areas in Communications,
17(9):1632–1650, September 1999.

[12] C. Lu, J. Stankovic, G. Tao, and S. Han. Feedback
Control Real-Time Scheduling: Framework, Modeling,
and Algorithms. Journal of Real-Time Systems,
23(1/2):85–126, September 2002.

[13] S. Sastry and M. Bodson. Adaptive Control: Stability,
Convergence, and Robustness. Prentice Hall, 1989.

[14] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load
Shedding in Stream Databases: A Control-Based
Approach. In Procs. of VLDB, September 2006.

[15] L. X. Wang. Adaptive Fuzzy Systems and Control:
Design and Stability Analysis. Prentice Hall, NJ, 1994.

[16] W.D.Stanley. Digital Signal Processing. Reston
Publishing Co., 1975.

[17] G. Weikum, A. Moenkeberg, C. Hasse, and
P. Zabback. Self-Tuning Database Technology and
Information Services: from Wishful Thinking to
Viable Engineering. In Procs. of VLDB, pages 20–31,
August 2002.

[18] Philip S. Yu and Douglas W. Cornell. Buffer
management based on return on consumption in a
multi-query environment. VLDB J., 2(1):1–37, 1993.

