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ABSTRACT

Recent research efforts have demonstrated the promising potential of building cost-effective media streaming
systems on top of peer-to-peer (P2P) networks. A P2P media streaming architecture can reach large size and
streaming capacity that are difficult to achieve in conventional server-based streaming services. Hybrid streaming
systems that combine the use of dedicated streaming servers and P2P networks were proposed to build on the
advantages of both paradigms. However, the dynamics of such systems and the impact of various factors on
system behaviors are not totally clear. In this paper, we present an analytical framework to quantitatively study
the features of a hybrid media streaming model. Based on this framework, we derive an equation to describe the
capacity growth of a single-file streaming system. We then extend the analysis to multi-file scenarios by solving
an optimization problem. We also show that the system model achieves optimal allocation of server bandwidth
among different media objects. The unpredictable departure/failure of peers is a critical factor that affects
performance of P2P systems. To model peer failures in our system, we propose the concept of peer lifespan. The
original equation is enhanced with coefficients generated from the distribution of peer lifespan. Results from
large-scale simulations support our analysis.

Keywords: Peer-to-peer networks, Content Distribution Networks, hybrid system, media streaming, mathe-
matical analysis

1. INTRODUCTION

Multimedia streaming over the Internet has become a reality with the development of efficient media compression
methods, high-throughput storage systems and broadband networking technology. Attractive applications such
as entertainment video-on-demand, digital library, and on-line news service built on top of real-time media
streaming service are now available for the public. However, there are still many challenges towards building
cost-effective, robust and scalable multimedia streaming systems® due to the high bandwidth, loss and delay
requirements for media streaming.

A majority of media streaming architectures follows a server/client design. The server deployed by service
providers acts as the streaming entity and clients controlled by the service users as passive receivers of media
streams. In a large streaming system where user requests arrive at a high rate, the server has to support a large
number of concurrent streaming sessions, each of which has its own bandwidth and QoS requirements. Thus,
the total capacity of the system is limited to the out-bound bandwidth of the server. Multiple servers or proxies
can be deployed on the edge of the Internet to increase total system capacity. In this design, media content are
replicated on these proxies and clients receive streaming data from the closest proxy. There are two advantages
of using proxies: user requests are handled by all proxies with a combined capacity greater than the single-server
architecture; increased QoS (latency, loss) in streaming due to the shortened packet delivery path. Such systems
are sometimes called Content Distribution Networks (CDNs).?

The cost of maintaining a CDN is extremely high considering the massive CPU power, storage space and
output bandwidth each CDN server possesses. More servers have to be deployed with the increase of popularity
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of the service. One approach to solve the above problem is motivated by the emerging concept of peer-to-peer
(P2P) computing.®>® In a P2P system, there is no centralized entity controlling the behaviors of each peer.
Instead, each peer contributes its share of resources and cooperates with other peers following some predefined
rules for communication and synchronization. In the context of media streaming, a well-organized community of
clients can significantly lower the service load of CDN servers by taking over some of the streaming tasks. The
basic idea is to let clients that have acquired a media object act as streaming servers for subsequent requests
to that media. One of the nice features of P2P streaming systems is that its total capacity grows when the
content it manages becomes more popular.® This is the most important difference between peer-to-peer and
the server/client strategies. To some extent, a P2P architecture can be viewed as an extreme case of CDN: data
are replicated on a large number of client nodes.

Hybrid media streaming systems that combine centralized servers and peer-to-peer networks have been pro-
posed.”® As compared to a P2P-only architecture, the hybrid streaming system can disseminate media content
faster and respond more quickly to requests. In media streaming systems, the bottle-necking resource is found
to be the bandwidth.” Some of the less bandwidth-consuming operations such as directory management and
searching are better processed in a centralized server for efficiency reasons. Furthermore, due to their robustness,
servers also serve as great backup resource providers even when the P2P network has enough capacity. Peers
are heterogeneous in the duration of their commitment to the community'®: each peer could leave or fail at any
time. How to minimize the effects of this come-and-go behavior is a research topic that has attracted a lot of
attention. Our previous work!! shows that the use of servers effectively enhanced the system’s ability to recover
from in-session peer failures.

The focus of this research is to study the features of a media streaming architecture by mathematical modeling.
We are primarily interested in the pattern of capacity growth in the streaming model and the effects of various
factors on the growth. Conclusions drawn from such analysis can improve our understanding of system dynamics
of the proposed streaming architecture and provide guidelines for the design and realization of media delivery
services based on the hybrid architecture. In this paper, we first propose a generic media streaming model that
utilizes both a CDN and P2P network. The model differs from those found in Xu et al.” and Hefeeda et al.® in
a number of ways such that it applies to more general environments but the complexity of quantitative analysis
becomes lower. Based on this model and a discrete-time analysis approach, an exponential growth equation for
the system capacity is derived. The same equation also gives the threshold time when the P2P network takes
over all the streaming load. We extend the results from a single-file system to a multi-file system by transforming
the analysis into an optimization problem. It is also shown that our streaming architecture achieves near-optimal
performance in terms of the time needed for a complete load hand-over from servers to peers. Finally, the factor
of peer failures is introduced into the mathematical model. We propose a new approach to model failures by
associating a ‘lifespan’ value to each peer. To our knowledge, this is by far the most sophisticated and complete
work on mathematical analysis of P2P multimedia systems. We also evaluate several performance metrics by
simulation, the results of which confirm the validity of the quantitative analysis.

The major contributions of this paper are: 1. Based on a generic hybrid media streaming model, we derive
an equation to describe the system capacity growth. 2. We accomplish a quantitative analysis on performance
of hybrid streaming systems with multiple media objects. 3. We prove the optimality of our streaming archi-
tecture in terms of server bandwidth allocation and server-peer transition time. 4. As an enhancement to the
above equation, we use peer lifespan to study the effects of peer failures and obtain exact solutions for system
performance under such effects.

This paper continues with Section 2 by introducing the streaming model. Section 3 is dedicated to system
analysis of the proposed model. Section 4 presents the experimental results based on extensive simulations.
Section 5 summarizes additional related work. We conclude the paper with Section 6.

2. THE HYBRID STREAMING MODEL

Our analysis is based on the media streaming infrastructure shown in Figure 1. The model is similar to the
hybrid structure proposed in Xu et al.” and Hefeeda et al.® with some modifications. The main entities of the
system are:
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Figure 1. The architecture of the hybrid streaming system.

. Directory Server. The role of the directory server is to maintain peer/media information. It is also
responsible for processing the user queries.

. Server*. It holds a copy of all media files and is responsible for streaming when the requested media
cannot be serviced through the P2P network. Each server has a fixed bandwidth contribution. We assume
a zero downtime for the servers.

. Peer (client). The set of user machines participating in the streaming system. The peer asking for a
media object is called requesting peer and those that have acquired any media object(s) are called qualified
peers. Upon joining the system, each peer announces its maximum bandwidth and storage contribution.
We assume honesty of peers in the contribution of their reported resources. In our model, the peers will
admit any requests forwarded to it when it has available bandwidth. We do not specify the maximum
number of streaming sessions a peer can support. The reason is: most peers have limited bandwidth
contribution'® and can only support less than one session in practice. Peers can be divided into a number
of classes by their bandwidth contribution.

. Media content. The target resource a client requests. We can view it in the form of media files. To
simplify analysis, we assume they are all Constant Bit Rate (CBR) media streams.

2.1. System Operations

When a peer requests a media object, it first sends out a query to the directory server (step 1 in Fig 1). The
latter searches its local database for peers that have the media and returns a list of possible supplying peers to
the requesting peer (step 2 in Fig 1). When no supplying peers are available, CDN servers are chosen. If CDN
servers are also busy, the request is rejected. The requesting peer chooses from the list of supplying peers a subset
that satisfies the bandwidth and QoS requirements and streaming starts (step 3 in Fig 1). When the streaming
is successful, the requesting peer becomes a qualified peer of that media object. More details of the system model
can be found in our previous work.'!

3. MATHEMATICAL ANALYSIS
3.1. Assumptions

The system analysis is performed in a top-down manner: we start from a simple model with assumptions on the
factors we are interested in and then enhance the equation derived from the simple model by loosening these
assumptions. In the initial analysis, we make the following assumptions:

1. The system contains only one media file. In Section 3.4 the analysis is extended to a multi-file system, in
which all media files are of the same streaming length (time) and bit rate .
*In this paper, the terms ‘streaming server’, ‘CDN server’ and ‘server’ are used interchangeably.
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Figure 2. The bandwidth usage of the CDN servers in the hybrid system.

2. The bottleneck link for a streaming session can only be the upload link of the data sender (CDN server or
supplying peer).

3. Each participating peer has infinite storage contribution. We will see in later sections that only minimal
storage is actually needed from each peer.

Peers never fail. A model taking peer failure into account is addressed in Section 3.6.
5. Requests are uniformly distributed among the peer population.

3.2. Metrics and Notations for Analysis

Peer number and peer bandwidth are direct measures of system capacity. Our analysis is performed focusing on
the change of these two metrics. Figure 2 illustrates the use of server bandwidth in a hybrid streaming system.
Initially all server bandwidth is free. Servers become fully loaded after a short initial stage due to massive
demand. The system has to reject some requests until the servers generate enough loyal qualified peers. After
that, the servers are increasingly alleviated from streaming tasks until the system reaches a stage where only
peers are needed for streaming (Peer-only stage). It is important to find the time when the servers’ streaming
load starts to decrease monotonically. This time point is called server-peer transition time (denoted as ko).
Another metric for system capacity is the reject rate. The instantaneous reject rate decreases as system capacity
increases and reaches 0 at ko. The reject rate at any time «x is defined as the ratio of total number of rejected
requests to the total number of requests within the time interval [x — dz, z]. Suppose the mapping from time to
reject rate results in a differential function f(x), the instantaneous reject rate is simply given by f’(x).

Symbols used in the analysis are listed below:

|| Symbol | Definition || Symbol | Definition ||
L Length of one streaming session k Discrete time index, each with length L
N Total server bandwidth M Total peer population
n Number of peer classes Di Percentage of peers in the i—th class
A Request rate to the system C; Bandwidth contribution per peer of ¢—th class
ko Server-Peer transition time P(k) Number of usable peers at time period k
F Total number of media files b Bandwidth required to stream a file

3.3. Capacity Growth of Single File System

We first focus on a system with only one media file. The expansion of our streaming system resembles the
population growth of a biological species. The latter is generally studied by the number of offspring produced in
generation(s). The same idea may be applied to our system analysis since the requesting peers can be regarded
as the offspring of supplying peers and/or servers. This discrete-time analysis approach was used in Xu et al.”



and our analysis will follow this strategy. Starting from the end of the initial stage, the number of qualified peers
produced between two consecutive generations k and k + 1 can be expressed as:

PUﬂ—Fl)—P(k)z%—i—P(k)Zpiﬁ 0 <k < ko. (1)

The two items on the right side of equation (1) are the number of new peers generated by the servers and qualified
peers, respectively. For the convenience of analysis, we denote « as the average peer bandwidth contribution
(ie. =3I, pic;). Equation (1) can be rewritten as P(k + 1) + & = (P(k) + &)(1 4+ 2).

Solving the above geometric progression with P(0) = 0, we get

N [
P(k) == ((1+ 2" -1). (2)
We name the item ¢ in above equations as Capacity Growth Factor of the system. The total system capacity at
time k is N + aP(k) = N(1+ ¢)¥, for k < ko. From the previous discussion we know that the instantaneous
reject rate will be zero at time kg, which also means the total system capacity (bandwidth) is no less than that
required to service all the requests generated. The total bandwidth needed to satisfy all requests in L time units
is ALb. Therefore, we have the following equation to solve ko: N (14 %)ko = ALb. By our assumption, N, a, A\, L, b
are constants, therefore we get kg

) _ Ly lgn ®)

fo =loga+s) (T e+ 3)
From equation (2), we may also claim that P(kg) = %(% — 1) peers are needed in addition to the servers so
that no requests will be rejected.
The above analysis shows an exponential growth model of system capacity. Similar results were found in Xu et
al.” We improved their analysis by giving an exact solution for the server-peer transition time, which has not
been accomplished by any previous work, to the best of our knowledge.

3.4. Multi-file System

We cannot directly use equation (1) to study the dynamics of a multi-file system because it is not clear how
the capacity growth is affected by the introduction of more media objects. Intuitively, the rate of increase of
the total number of qualified peers will be smaller in a multi-file system than in a single-file system given the
same request rate. This is because peers holding multiple files will be counted multiple times in P(k). To
make the analysis of a multi-file system feasible, we propose a modified media streaming model that brings
some additional features. Our analysis shows that, as a result of the modification, the media streaming system
has optimal server-peer transition time. We will then prove that the original model without this modification
achieves the same performance statistically.

Suppose the modification is to divide the whole system into F' virtual subsystems, each of which deals with
only one file. Each individual subsystem is assigned a fixed share of bandwidth Ny out of the total server
bandwidth N and receives requests at rate Ay. Immediately, we have

F

F
D> Ny=N,and > Ap=A (4)
f=1

f=1

The whole system can then be viewed as F' independent subsystems sharing the total server bandwidth N, i.e. a
peer that has accessed file f will not request any other files and remains a qualified peer of subsystem f forever.
In other words, frequency-sharing multiplexing of the streaming channels provided by the servers is performed.
The independence among file-specific dynamics is the major factor that distinguishes the modified model from
the original one. In Section 3.5 we will show that the interactions among file-specific proliferation in our original
model are negligible under reasonable assumptions.



It is easy to see that the proliferation of each subsystem’s capacity follows equation (1) with N replaced by
Ny and A by Ay. Therefore, the server-peer transition time for any single-file subsystem (ko,¢) can be obtained
from equation (3) as the following:

kO,f _ lg(/\lbe) glng' (5)
g1+ %)

Optimal system-level transition time. Equation (5) shows that the server-peer transition time in each subsys-
tem depends only on the bandwidth allocation (Ny) and the per-file request rate (A\y). Now we need to derive
the system-level server-peer transition time ko from those of the subsystems. Different allocations of the server
bandwidth may lead to different server-peer transition time. We first concentrate on the one(s) that gives the
optimal value. The problem of finding such allocation(s) can be formally stated as: for each media file f, how
much server bandwidth is to be assigned (Ny) given the request rate of that file (Af) such that the system-
level transition time (ko) is minimized. One important observation is that the system-level transition time is
the maximum value among those of all subsystems. The reason for this is that the whole system reaches the
transition point only when all one-file subsystems reach their own transition points. The problem can be further
interpreted as an optimization subject to constraints represented by equations (4) and (5), with object function

ko = mi ko f. 6
0 mln1?;?g)(F 0,f (6)
The solution for the above problem is obtained when all kg ; are the same, i.e. kg = kg1 = ko2 = --- = ko,F.
F . F )
Applying equation (5) to above, we get A}V—le = )‘fv—gb == ’\]ffﬁb = Zziil)\;vfb =ZIb ijfl Mo LTb)‘. Hence for
any file f, the optimal choice of Ny is
Ar
Ny = —N, f=12---F. (7)

A

In other words, for all single-file subsystems, the share of the server bandwidth /V; assigned has to be proportional

to the request rate of that file to achieve optimal Server-Peer transition on the system level. Now, it is easy to

derive kq:

lg(ALb) —1g N
lg(1+ %)

Note the above equation is the same as equation (3). From equation (8) we can also get the number of qualified
peers for subsystem f at time kq:

ko = (8)

Ny ArLb ) ALh Ny

Pr(ko) =
(ko) a Ny « «

f=12---F, (9)

which is independent of M, and the same for fixed Ny, Ay.

Optimality of original system model. The above result is important since it shows that the modified model
is optimal in terms of server-peer transition time when the bandwidth allocation follows Eq (7). However, it is
impossible to predict the request rate in practice. According to our system model, requests come at random
and are admitted or rejected based on the current bandwidth availability. We call this statistical multiplexing
of server channels. This makes Ny a random variable instead of a constant. We have the following theorem to
show that statistical multiplexing is approximately optimal.

THEOREM 3.1 (STATISTICAL MULTIPLEXING OF SERVER BANDWIDTH). In a hybrid streaming system with
total server bandwidth N and homogeneous streaming bitrate b and duration L for all media files, if the requests
to any file f are uniformly distributed in the system waiting queue with rate Ay, then the expected consumption
of server bandwidth for file f is )‘—;N.

Proof: The server can handle % requests concurrently. By the assumption that requests are uniformly dis-
tributed in the request queue with rate Ay for file f, the number of outstanding streaming sessions for f follows
a binomial distribution B(N/b, Af/\). Therefore, N follows the distribution b B(N/b, A;/)), which is a dilation
of a binomial distribution, and E[Ny] = b%)‘Tf = )‘TfN, which is the same as Eq (7). O



From Theorem 3.1, we can see that since E[Ny] gets the optimized bandwidth, the server-peer transition
time for the statistical multiplexing system will approximately achieve the optimum value in Eq (8).

More rigorously, we can use standard statistical tools to estimate ko for the statistical multiplexing case.
Assume the distribution of the request is uniform among the peers, and the per-file streaming bandwidth is b,
then the amount of bandwidth allocated to subsystem f is b B(N/b, A;/A), its variance is

9 oIN Ay Af bN Ay Af
o U W WL
Since N is relatively large, we could have used the F—distribution to make an estimation. However, the estimates
from F'—distribution may not be as tight as the following analysis using confidence intervals.

If the random variable N falls into an interval, say, Ny € (E[Ny] — 0.050, E[N;] + 0.050), we have

A lg(A s Lb)—lg( > N—0.050
Ny > E[N¢] —0.050 = 5EN — 0.050, then from Eq (5), we get ko < s )lga(Jr*%) )

bound of k¢ taking the variance of randomly distributed N into consideration and is good only for relatively large

. This gives an upper

bj\gAf . When bj\i\Af is small (< 10, for example), any small deviation will be out of the 95% percent confidence
interval and the analysis fails.

3.5. Dependence Among Subsystems

In previous analysis, we made an assumption on the running independence of different subsystems. However,
interactions exist among these virtual subsystems in the original model. As described earlier, the problem comes
from those peers that access more than one media objects. In computing the server-peer transition time, we
focus on the growth of system capacity in terms of bandwidth. Every time a peer obtains a certain media file
from the CDN servers or supplying peers, it will be included as a qualified peer in the virtual system related
to that file. This is equivalent to counting the same peer multiple times on the whole-system level. Given the
complexity of the situation, we are unable to quantify the interactions among virtual systems, but we can give
a loose (upper) bound of the level of such interactions via analysis. The following shows that kg is only slightly
larger than that given by equation (3).

We assume that, at any time, the per-client probability of requesting any file f is the same as for all members
in the peer community. That is to say, any request to file f comes uniformly from all M potential clients, there
is no such tendency that a peer already holding file f; has a better chance to ask for file fs.

Let us go back to the analysis of multi-file system, reconsider the growing equation for peer number in Eq
(1), and take the peer-wise interactions into account, we claim:

Prk+1) = Pr(k) + s (L + Pr D), 0<h <o (10)

where By, £(0 < B, r < 1) is an coefficient for the “valid” proliferation of the subsystem, or the percentage of the
peers holding only file f during time interval [k, k + 1]. We denote these peers valid peers to file f. If a peer
holds other media object(s) when it gets file f, it is called a invalid peer to f.

Suppose at time k, Pf(k) is the number of valid peers. By the assumption of uniform distribution of requests,

the probability of getting a request from a peer that holds a copy of another file g is less than P'JT(k). Since g
could be any of the F' — 1 media files other than f, the total probability of having an invalid peer is bounded by
Vet = Zg 2f P"]\(f), which includes the portion of peers that should not be counted into the contributors of the

subsystem accordingly. So the probability of the newly-generated peers containing only file fis 1— ) oy P"]\(f) .

At any time up to time ko, Eq (9) gives the upper bound for the number of valid peers in subsystem g, we have

P
MLb AN [ AfLb ALb N
P, (k) < : — 1)< ==
Z o )_Z a a < N >_ a a’
g#f g=1

which is independent of M. Thus, vz ¢ < ’\LAZ;N . Now if the pool size is large enough, i.e. the request rate

is small compared to M, we have B 5 > 1 — )‘L]\Z;N ~1l Let 8 =1-— )‘L]\Z;N ~ 1, from Eq (10), we have

Pr(k+1) > Pr(k) + ﬁ(% + Py (k)$). Following the same procedures as in derivation of Eq (8) and (9), we get

Py(k) > % ((1 + 2Bk _ 1), therefore kg < %.




3.6. Failure Model

P2P systems are intrinsically dynamic. In this section, we study the effects of peer failure on the capacity growth
of our media streaming system. In our model, each qualified peer is associated with a real number capturing
the uptime of this peer. We call this the lifespan of the peer. We can use a random variable X to represent
peer lifespan. We may also assume, within each unit streaming period, the number of surviving qualified peers
is proportional to that at the beginning of the streaming period with a ratio (survival rate) v < 1. For any
streaming period k, the survival rate v peers can be interpreted as a conditional probability (assuming peers fail
independently):

y=Pr{X>T+L|X>T} (11)

where T is the starting time of the streaming period. Generally, it is difficult to obtain v from Eq (11) when
the peer lifespan follows an arbitrary statistical distribution. The reason is that the above probability for any
individual peer depends on its age T' (or, in other words, v is related to the number of generation k). We denote
the survival probability of a peer with age 7 (in number of generations) as ;. If we consider all living peers at
streaming period k as a whole, v is determined by the age structure of all P(k) peers. If we use a k-dimensional
vector to represent the age structure and a k-column vector for the age-specific survival rates, we have

"
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where x; is the ratio of number of peers that are ¢ generations old to P(k).
The above formula brings additional complexity to our analysis. Fortunately, it is reasonable to assume that
the lifespan of peers follows an exponential distribution.'® As a result, we can use formula (11) to calculate
a uniform ~ value for all k. Since exponential distribution is memoryless, the probability for any peer to live

longer than T + ¢ time units (¢ is an arbitrary time period) given it is alive at time 7' is e ~**, where 1/s is the
average lifespan of all peers. Apply this to Eq (11), we have v = e~ 1%,

With a fixed survival rate -y, system analysis can be extended with the consideration of peer failures. At the
beginning of period k + 1, the inherited qualified peers from period k is 7P(k). Consider this case for the single
file system, then Eq (1) becomes

N S
P(k+1) = P(k)y+ L=+ Py pi s 0<k<ho. (12)
i=1

All items on the right side of above equation have coefficient v because we assume a client peer may also fail
during a streaming session. Rewriting the equation, get P(k + 1) + % = (P(k)+ %)”y(l + &), where 0 is the
new Capacity Growth Factor and 6 =~(1+ §) — 1 # 0, then Eq (2) and Eq (3) become

yN a AN A1+ 2k -1
Pt =55 (M0 D =1) = 5 T T (13)
b

~—

and
lg (Pge (3 - 1) + 1)
ko = -
lgy(1+ %)

respectively. We can see Eq (2) and Eq (3) are special cases of Eq (13) and Eq (14) when we take v = 1.
Since v < 1, from Eq (14), we have

3

1g(b(7—1)+va ALb b(l—v)) 1g(b<v—1>+va.u)

oy AN T T oy oy AN
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After having Eq (14), we can follow the same analysis as in Section 3.4 to derive the upper bound for multi-file

F . F )
system without interaction and get A}V—fb = AJ"’V—ib =...= )‘]fzﬁb = Zzi:; ’\;VLP =L Zfifl A LTb)‘, i.e. we have the
i=1 2
optimal choice of Ny as
Ay
N,»:TfN, f=1,2---F (15)

which is the same as in Eq (7). Thus, we have the same equation as Eq (14) for the system-level transition time
of a multi-file system with peer failures.
Once we have the above equations, the other results in Section 3.4 and 3.5 can be derived.

4. EXPERIMENTAL RESULTS
4.1. System Parameters

We studied the dynamics of the proposed hybrid media streaming system by simulation. Unless specified oth-
erwise, the example system contains a pool of 200,000 peers (M = 200000) and 100 media objects (F = 100).
The playback bitrate for all video objects is b = 800K bps and length is one hour (L = 3600, basic time unit
is second). Bandwidth contribution of peers is: 5% of the peers with 800Kbps, 10% with 400Kbps, 55% with
200Kbps, and 30% with 100Kbps, which translates into an «/b value of 0.275. System receives requests at a rate
(M) of 1 request per second. Total server bandwidth is 480Mbps. This is roughly the bandwidth of 10 T3 lines
and covers 600 concurrent streaming sessions in our case.
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Figure 3. Performance of a typical hybrid media streaming system. a. Bandwidth usage of CDN servers; b. Number of
qualified peers; c. System reject rate; d. Peer capacity.

4.2. System Dynamics

In Figure 3, various metrics of the system described above are plotted. The two graphs on the left column
(Figure 3a and 3c) are bandwidth usage of servers and system reject rate, respectively. The server bandwidth
use curve shown here has similar shape to the one proposed in Figure 2. The short initial stage was followed by a
period lasting over 11 hours when peers and CDN servers coexist as streaming data senders. After 11.94 hours,
all the media delivery tasks were taken over by the peers and the server bandwidth consumption becomes 0. As
expected, CDN bandwidth used at the first part of the CDN+Peer stage is close to the highest possible value
(480Mbps). Starting from the 8th hour, the CDN bandwidth usage goes down. On the other hand, the reject
rate of system requests (Figure 3c) keeps decreasing during the CDN+Peer stage till it reaches zero at 8.06 hours.
The time for zero-rejection is very close to the time when the streaming load on the servers started to decrease.
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Figure 4. System performance under different capacity growth factors. a. Bandwidth use of CDN servers; b. Smoothed
system reject rate.

Therefore, the kg value from this simulation setup is 8. Note the Instantaneous Reject Rate mentioned in Section
3 cannot be obtained from experiments. The data plotted in Figure 3c is an approximation by calculating the
reject rate within a time window with a certain width. The window size we used for the simulation shown in
Figure 3 was 8000 seconds. Smaller window sizes yielded less smooth curves (graphs not shown). No matter
what window size we used, the same ko value was observed.

The growth of system capacity is illustrated by the change of total number of qualified peers (Figure 3b) and
the bandwidth contribution from these peers (Figure 3d). Both peer number and peer bandwidth show geometric
growth at the first 8 hours and linear growth afterwards, as expected. This is because the CDN servers and
qualified peers are fully-loaded only before ky. From Fig 3d we can also see that the deviation of the in-use peer
bandwidth from total peer bandwidth increases monotonically. At about the 10th hour, the peer bandwidth use
reaches a stable stage.

4.3. Effects of Peer Bandwidth Contribution and Request Rate

The effects of the system capacity growth factor (%) and request rate (\) on performance were also investigated.
Figure 4 shows the CDN bandwidth use and reject rate under different choices of o while all other parameters
remained unchanged. The legend in Figure 4 indicates the capacity growth factor of individual simulations. A
four-fold increase of capacity growth factor (from 0.125 to 0.5) significantly shortened the CDN-Peer transition
time from 17 hours to 5 hours. This means that ko is almost linearly related to the capacity growth factor %

T
This is consistent with the analytical results given by Eq (3): since ¢ is close to 0, we can consider
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Figure 5. System performance under different request rate. a. Bandwidth use of CDN servers; b. Smoothed system
reject rate.

A similar set of experiments were designed to study the impact of system request rate (A) on kg. The results
for three request rates, 0.5, 1, and 2 requests per second, are shown in Figure 5. The value of ky observed
increases as the request rate increases. However, the change of kg due to the change request rate is less dramatic
than that caused by the change of the capacity growth factor. When the request rate increases 20 times to 10



Table 1. Theoretical and experimental values of ko under different scenarios.

Parameter ko
a/b | A(regs/s) | Calculated value (h) | Observed value (h)
0.125 1 0.17+15.2 16.94
0.275 1 0.17+7.38 8.06
0.5 1 0.17+4.41 5.27
0.275 10 0.02+16.8 17.27
0.275 2 0.08410.23 11.11
0.275 0.5 0.34+4.52 5.27

requests/second, a ko of 17.27 hours was obtained. The effects of streaming length (L) and bitrate (b) are similar
to those of request rate (data not shown).

To verify the validity of our analytical model, k¢ values obtained from simulation experiments were compared
with theoretical values (Table 1). The first item of the theoretical values shown in the table indicates the length
of the initial stage while the second item the value calculated using Eq (3). The observed values are only slightly
higher than relevant theoretical values. Considering the kg given by Eq (3) should be an integer number of time
intervals with length L, the difference between theoretical value and simulation result is trivial for most cases.

Notice the total number of media files (F) is 100 for all the simulated systems. Therefore, our conclusion
that the same equation can be applied to both single-file and multi-file systems is confirmed by our experiments.
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Figure 6. System performance under different number of media files. a. Smoothed system reject rate; b. Number of
qualified peers.

4.4. Performance Affected by Number of Media Objects

As specified in the system analysis, the theoretical value of the server-peer transition time kg in a multi-file
environment is the same for a system with only one video file. However, ko will be greater than the ideal value
in a real-world situation. Figure 6 shows how the system performs under different media pool size.

The simulations in Figure 6 were run under four different values of F. The curves for experiments with total
file number 1 and 100 are almost identical. The performance of a system conformed to the analytical results
until the total file number goes beyond 120. After that, the transition time increases (Fig 6a).

As discussed in Section 3, two factors could account for the long transition time in a multi-file system: peers
that acquired multiple files and lack of synchronization in the growth of per-file capacity. The effects of the
first factor were investigated in the same set of experiments by recording the storage usage of qualified peers
periodically. In Table 2, the number of qualified peers at transition time is listed by their storage consumption.
For example, there were 12209 peers holding 1 media file (valid peer) and 54 holding 2 files for the simulation
with 250 files. The values in the last column (/) are the ratios of the number of valid peers to all qualified peers.
These ratios can be viewed as the lower bound of §i  in Eq (10). According to Table 2, all 5 values are close
enough to 1 so that the effects of the first factor mentioned above on kg are very small. Another conclusion we



Table 2. Storage usage of peers at transition time.

# of media files stored
Experiment | ko (h) 1 [ 2 [3] 4 Ié]
F=1 8 10319 | 0 | O 0 1.000
F =50 8 11844 | 33 | O 0 0.997
F =100 8 10245 | 23 | 0 0 0.998
F =250 9 12209 | 54 | 0 0 0.991
F =500 11 16694 | 158 | 1 0 0.981
F =1000 13 19260 | 324 | 1 0 0.967
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Figure 7. Effects of peer failure on system dynamics. a. Smoothed system reject rate; b. Total number of qualified
peers.

may draw from Table 2 is that the space contribution of peers can be made minimal without affecting system
performance.

Now it is clear that the second factor accounts for the degraded performance. According to Section 3.4, when

F is big, b]\i\)‘f is small and ko deviates from theoretical value. In other words, the average number of sessions

allocated to each file (%) cannot be too small. From the above experiments, % has to be at least 5 for the

system to get near-optimal transition time.

4.5. Negative Effects of Peer Failures

The introduction of finite peer lifespans significantly reduced the speed of system proliferation (Fig 7). We
experimented on three simulation systems with different average peer lifespan (8, 6 and 4 hours). In all tested
systems, peer lifespan is exponentially distributed. A system with no peer failures (infinite peer lifespan) was
used as control. As the average lifespan of peers increases, the reject rate drops more dramatically (Fig 7a) and
the system converges to server-peer transition faster. For the system with average lifespan of 4 hours, the peers
fail too early to serve other peers so it never reaches the transition point. We also plotted the capacity growth
of all systems (Fig 7b). The system with longer average peer lifespan grows faster than those with shorter peer
life. For the case of 4 hours, the system never reaches the required number of qualified peer to service all coming
requests. For the systems simulated, the calculated threshold value of survival rate v to guarantee positive
capacity growth is 0.7843, which also means the peers should have an average lifespan of at least 4.12 hours.
This explains why the capacity of the system with average lifespan of 4 hours does not grow.

5. RELATED WORK

A good review on Internet video streaming can be found in Wu et al.! The key research areas of video streaming
are identified and methodologies were discussed. Research on P2P computing was greatly motivated by the
success of Gnutellal and Napsterf. The general philosophy and current research efforts of P2P computing are
introduced in Milojicic et al.? and Crowcroft et al.> Pastry,® Chord,'? and CAN'? are the most popular P2P

Thttp://www.gnutella.com
thttp://www.napster.com



searching /routing protocols. P2P storage applications built on top of these protocols include PAST,'* CFS!5
and OceanStore.'6

In the context of peer-to-peer media streaming, both the CoopNet project? and the ZIGZAG prototype'”
explore the way to deliver media streams to many clients under the situation of flash crowd. Both projects con-
centrate on how to efficiently maintain a multicast tree in an environment where user behavior is unpredictable.
CoopNet utilizes the method of Multiple Description Coding (MDC) to deal with the in-session leave/failure of
streaming peers. Our system model differs from these efforts in the sense that we are focusing on the delivery of
on-demand media instead of live media. Commercial content delivery services such as Allcast? and C-Star¥ are
close in spirit to P2P media streaming.

Research on hybrid media streaming architecture” that combines CDN and P2P networks is directly related
to our work. In some sense, our research is performed as an extension to the analysis presented in Xu et al.” In
this paper, we present an improved analytical framework that leads to quantitative conclusions on the growth
of both single-file and multi-file systems. We also study the impact of peer failures on the performance of our
media streaming architecture. A similar P2P streaming architecture can be found in Hefeeda et al,® '8 in which
efficient algorithms for dissemination of media content and economical analysis of P2P streaming service are
presented. They show that, with small initial investment and the use of incentives, a large-scale and profitable
media streaming service can be built. In our previous work,!! we proposed a failure-resistant protocol called
Redundant Multi-Channel Streaming Protocol (RMCSP). The major concern of this protocol is to deal with
in-session peer failures by replacing the failed supplying peer(s) by the server(s).

In another work by Xu et al,® an algorithm that assigns media segments to different supplying peers and
an admission protocol for requests are introduced. Another research project by Nguyen and Zakhor!'? is more
closely related to our research in the aspect of streaming protocol design. In their work, an RTP-like protocol
with the features of rate control and packet synchronization was developed. The use of incentives and coupons
in P2P services are discussed in Horne et al.2® and Golle et al.?!

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the capacity of the hybrid streaming system grows exponentially. From
quantitative analysis and simulation, we found that the server-peer transition time kg is most sensitive to the
Capacity Growth Factor ¢. Within a boundary, the same equation can be used to describe the behaviors of
single-file and multi-file systems. When there are too many files, system performance can be deteriorated and
the extent of such performance degradation was analyzed. Our analytical framework was also used to study the
effects of peer failures on the capacity growth. We found that peer failures negatively affect system capacity by

decreasing the Capacity Growth Factor.

Future work involves extension of our analysis to capture more general scenarios of system operations. For
example, various statistical distributions of peer lifespan. Strategies to increase Capacity Growth Factor and
peer commitment duration are also worth in-depth research. While discounts, incentives, or coupons can be
awarded to peers based on their contribution, efficient accountability is needed. Other possible research topics
include refinement of streaming protocols, QoS management of media, security and integrity issues.
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