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Problem Definition

f(t) representing bar code is a 0-1 step func-

tion for t ∈ T = [0,1].

Want to recover f(t) given the samples

yi = y(ti), i = 1, . . . , M, of the continuous-time

observation

y(t) = α · G ? f(t) + ε(t), t ∈ T = [0,1]

where α > 0 is the unknown amplitude,

the ε(t) is the additive unobservable noise pro-

cess

G ? f(t) =
∫
T

G(t − x)f(x)dx,

G(t) =
1

σ0

√
2π

exp(− t2

2σ2
0

),

σ0 > 0: the unknown standard deviation which

increases as the scanner moves away from the

bar code.
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Since σ0 > 0 unknown, this problem differs

slightly from standard restoration problems of

image processing in that the convolution kernel

contains unknown quantities.

The problem closer to the blind deconvolution

problems.
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Previous work

• local approach: finding local minima and
maxima in the derivative of

s(t) = α · G ? f(t),

• global approach: regularization methods
for ill-posed inverse problems such as to-

tal variation based restoration.
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Shortcomings of these approach:

• Local approach:
(1) Locating local extrema of s′(t) is sen-
sitive to noise.

(2) these local extrema are difficult to re-

late to the true change points of f(t) due

to ‘convolution distortion’.

• Regularization:
How to choose the regularization parame-

ter?

Computational extensive.
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Our Approach

A hybrid of local and global approach.

Fully utilize the information about

f(t): a 0-1 step function.

A nonlinear least squares solution to the change

points of f(t), α and σ0 with the constraints

of the ordered change points.

The local approach is used to provide the start-

ing values for the global minimization problem.
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Change Point Estimation

Assuming the total number of bars of f(t) is

the known integer K.

ξ2j−1 and ξ2j: the beginning and ending loca-

tion of the jth bar for j = 1, . . . , K of the bar

code function f(t).

f(t) = I(ξ2j−1 < t ≤ ξ2j), t ∈ T, j = 1, . . . , K.

where

0 < ξ1 < ξ2 < . . . < ξ2K−1 < ξ2K < 1

are the ordered change points.

The goal of bar code reconstruction:

to recover the change points

ξ = (ξ1, ξ2, . . . , ξ2K−1, ξ2K)
T

from the observed data y = (y1, . . . , yM)
T at

t = (t1, . . . , tM)
T , without any knowledge of α

and σ0.
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s(t) = α

∫
T

G(t−x)f(x)dx = α
K∑

j=1

∫ ξ2j

ξ2j−1

G(t−x)dx.

Let

ri = si − yi = α
K∑

j=1

∫ ξ2j

ξ2j−1

G(t − x)dx − yi

be the ith residual, r = (r1, . . . , rM)
T the resid-

ual vector and

h(ξ, α, σ0) =
1

2

M∑
i=1

r2i =
1

2
rT r

the residual sums of squares. We seek the least

squares solution of ξ, α and σ0. That is to find

ξ̂, α̂ and σ̂0 which minimizes the merit function

h(ξ, α, σ0) subject to the required conditions.
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More explicitly, the constrained nonlinear least

squares problem is

minξ,α,σ0
h(ξ, α, σ0) (1)

such that

0 < ξ1 < ξ2 < . . . < ξ2K−1 < ξ2K < 1,

σ0 ≥ 0, α > 0.

These constraints are simply linear inequality

constraints

A[ξT , σ0, α]T < u

with a sparse matrix A.
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The recast of the bar code reconstruction into

a constrained nonlinear least squares problem

enables us to utilize the existing techniques for

solving nonlinear least square problem subject

to linear inequality constraints in the statistical

and numerical analysis literature.
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The Fletcher-Xu hybrid Gauss-Newton and BFGS

method for nonlinear least squares problem are

super linearly convergent. This method along

with other five methods for constrained non-

linear least squares problems is implemented in

the clsSolve solver of the TOMLAB 4.7 opti-

mization environment.

The Jacobian matrix of r is easily obtainable

analytically.
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Initial Estimation

The success of the (2K+2) dimensional global

minimization problem heavily depends on good

starting values. Our numerical experiments

indicated that simple starting values such as

equally spaced grids on T for ξ did not give

satisfactory solutions.

The local extremas of the s′(t) are close to ξ

The initial estimation of ξ is the following prob-

lem: given the noisy discrete observations of

s(t):

yi = s(ti) + εi, i = 1, . . . , M,

finding the local extremas of s′(t).
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The above is the Nonparametric regression prob-

lem.

Estimating s(ti) first by ŝ(ti), then using ŝ′(t)
to estimate s′(t).

In our simulation, we use wavelet thresholding

method to estimate s(ti) first, then estimate

s′(ti) based on ŝ(ti) using a first derivative fil-

ter.

The initial σ0 is estimated by propositions sug-

gested by Joseph and Pavlidis.

The initial value of α is simply the ordinary

least squares estimate given the initial values

of ξ and σ0 .
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Numerical Experiments

Estimation of s(ti) is carried out by the soft

Wavelet thresholding technique implemented

in the Wavelet Toolbox in MATLAB.

The thresholds are chosen by a heuristic vari-

ant of the Stein’s Unbiased Risk Estimate with

multiplicative threshold rescaling using a single

estimation of level noise based on the finest

level wavelet coefficients.

The wavelet filter used is db6: the Daubechies

wavelet with 6 vanishing moments.

The first derivative filter for estimating s′(ti)
from ŝ(ti) is used.
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Conclusion

A nonlinear least squares estimation for change

points of bar code signals is proposed. The lo-

cal information contained in the derivative of

the convolved signal is used to provide start-

ing values for the global optimization solution.

This hybrid approach uses all available infor-

mation for parameter estimation to the full ex-

tent. If extra information such as the knowl-

edge of the width of the thinnest or thickest

black and white strips is available, they can

be easily incorporated into the linear inequality

constraints.
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Currently, the value K of number of bars is

assumed to be known in advance. A future re-

search effort is to estimate the bar code with-

out this assumption. Then model selection

methods are needed for this situation.
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