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Molecular Simulations (MS)

Large scale biological structures are
represented using all the individual atoms.

Data is stored in single or multiple

trajectory databases containing time {}Q
frames. bd
Each frame is a sequential list of atoms j;ié
with their positions, velocities, perhaps PP
forces, masses, and types. » 1
Dataset is very large: millions of atoms, Ml:ﬁ

tens of thousands of frames.

Similar methodology in other sciences:

astronomy, material science, civil
engineering




Querying a MS Database

* Mainstream queries: analytical
queries (beyond linear aggregates)

* The m-body correlation functions
are very popular

o Requires O(N™) computational time
(N is the number of atoms)

* Of special importance is the Radial
Distribution Function (RDF)

O Often computed as a spatial distance

histogram (SDH) . _
. 2\ as Figure 1. A simulated hydrated
© 2_b0dy function - O(N ) time dipalmitoylphosphatidylcholine

needed for a brute force algorithm bilayer system.




Problem Statement

Given coordinates of N points, draw a histogram of all
pairwise distances - total distance counts will be N(N-1)/2

We focus on the standard SDH, in which

o domain of distance [0, L, ]

o Buckets are of the same width: [0,p), [p, 2p), ...

o Query has one single parameter: bucket width p of the
histogram, or total number of buckets /= L__ /p

« Popular simulation packages
such as GROMACS? all adopt
the brute force way of
computing SDH

* Can we beat O(N?)?




Our Approach

 Main idea: avoid the calculation of pairwise distances

* Observation: two groups of points can be processed
in one shot (i.e., resolved) if the range of all inter-
group distances falls into a histogram bucket

Histogram[i] +=
N — \ e G PSS

bucket i




The DM-SDH algorithm

* Organize all data into a Quad-tree (2D data) or Oct-
tree (3D data).

* (Cache the atoms counts of each tree node
* Try resolving all pairs of nodes on a tree level M,

O If not resolvable, recursively resolve all pairs of children
nodes
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Complexity analysis of DM-SDH algorithm

* Based on a geometric modeling approach
 The main result:

1. a(m) is the percentage of
pairs of nodes that are NOT
am+1) 1 resolvable on level m of the
a(m) 2 quad(oct)tree.
2. We managed to derive a
closed-form for a(m)

The above result gives the following analysis

Theorem 1: When the particles are reasonably distributed,
* the time complexity of DM-SDH is O(N(2d-1)/2d),

O(N*) for 2D data and O(N*-%67) for 3D data
Only in rare cases is the data not reasonably distributed



Approximate Answers

* O(N'%%7) not good enough for large N?

e QOur solution: approximate algorithms based on our
analytical model
— Time: Stop before we reach the leaf nodes

— Approximation: for irresolvable nodes, distribute the
distance counts into the overlapping buckets heuristically

— Correctness: consult the table we generate from the model
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Figure 5. Running time of DM-SDH vs. brute-force Figure 6. Running time of DM-SDH vs. brute-force
algorithm under different 2D data. algorithm under different 3D data.



a. time for heuristic 2 b. heuristic 1 c. heuristic 2 d. heuristic 3
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Figure 5. Running time (a) and correctness (b-d) of the approximate algorithm

Summary

e Distance histogram is an important query in simulation
databases

 We propose an algorithm based on a quad-tree-based data
structure

 Qur algorithm outperforms the brute-force approach

* We develop an approximate algorithm with guaranteed
error bound and very low time complexity



