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Abstract

Particle simulation has become an important research toohany scientific and engineering
fields. Data generated by such simulations impose greateciggls to database storage and query
processing. One of the queries against particle simuladima, the spatial distance histogram (SDH)
query, is the building block of many high-level analyticadarequires quadratic time to compute using
a straightforward algorithm. Previous work has develog&dient algorithms that compute exact SDHs
with time complexityO (N %) for two-dimensional data, an@(N %) for three-dimensional data. While
beating the naive solution, such algorithms are still n@cpical in processing SDH queries against
large-scale simulation data. In this paper, we take a diffepath to tackle this problem by focusing
on approximate algorithms with provable error bounds. W&t firesent a solution derived from the
aforementioned exact SDH algorithm, and this solution haming time that is unrelated to the input
size N. While an error bound can be easily identified, experimergallts show that the accuracy
of such an algorithm is significantly higher than what is giv®y such a (loose) bound. To study the
difference between the experimental results and the tliearbound, we develop a mathematical model
to analyze the mechanism that leads to errors in the basioxippate algorithm. Our model provides
insights on how the algorithm can be improved to achievedrigitcuracy and efficiency. Such insights
give rise to a new approximate algorithm with improved tiaoelracy tradeoff. Experimental results

confirm our analysis well.

Index Terms

molecular simulation, particle simulation, spatial dista histogram, radial distribution functions,

quad-tree, scientific databases

I. INTRODUCTION

Many scientific fields have undergone a transition to datafmtation intensive science, as the
result of automated experimental equipments and computeraions. In recent years, much
progress has been made in building data management todéblsufor processing scientific
data [1]-[5]. Scientific data imposes great challenges & dbsign of database management
systems that are traditionally optimized toward handlingibess applications. First, scientific
data often come in large volumes, this requires us to retthalstorage, retrieval, and replication
techniques in current DBMSs. Second, user accesses totiicielatabases are focused on
complex high-level analytics and reasoning that go beydntple aggregate queries. While

many types of domain-specific analytical queries are seescientific databases, the DBMS
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should support efficient processing of those that are fretfppesed as building blocks for more

complex analysis. However, many of such basic analyticakiga need super-linear processing
time if handled in a straightforward way, as in current stfendatabases. In this paper, we
report our efforts to design efficient algorithms for a tygegoery that are extremely important

in the analysis oparticle simulation data.

Particle simulations are computer simulations in which blasic components (e.g., atoms,
stars, etc.) of large systems (e.g., molecules, galaxies) are treated as classical entities
that interact for certain duration under postulated erogiriforces. For example, molecular
simulations (MS) explore relationship between molecukaucsure, movement and function.
These techniques are primarily applicable in modeling ahglex chemical and biological
systems that are beyond the scope of theoretical models.dd®é&come an important research
tool in material sciences [6], astrophysics [7], biomebsmences, and biophysics [8], motivated
by a wide range of applications. In astrophysics, the N—isiohulations are predominantly used
to describe large scale celestial structure formation[l8]}- Similar to MS in applicability and
simulation techniques, the N-body simulation comes witanelarger scales in terms of total
number of particles simulated.

Results of particle simulations form large datasets ofiglarconfigurations. Typically, these
configurations store information about the particle tyghsjr coordinates and velocities - the
same type of data we have seen in spatial-temporal datali@3e¥Vvhile snapshots of configura-
tions are interesting, quantitative structural analy$istr-atomic structures are the mainstream
tasks in data analysis. This requires the calculation dissizal properties or functions of particle
coordinates [9]. Of special interest to scientists aredltpsantities that require coordinates of two
particles simultaneously. In their brute force form thesarities requireD(N?) computations
for N particles [8]. In this paper, we focus on one such analytigedry: theSpatial Distance
Histogram (SDH) query, which asks for a histogram of the distances of allspadrparticles in

the simulated system.

A. Problem statement

The SDH problem can be defined as follows: given the coordmaf N points in space, we
are to compute the counts of point-to-point distances thlairfto a series of ranges in theR

domain:(rg, 1), [r1,72), [r2,73), - -, [r1—1, 7). A rangelr;,r;+1) in such series is calledlaucket
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and the span of the range, ; — r; is called thewidth of the bucket. In this paper, we focus our
discussions on the case stfandard SDH queriewhere all buckets have the same wigtland

ro = 0, which gives the following series of bucket$: p), [p,2p),---,[({ — 1)p, Ip]. Generally,
the boundary of the last buckét is set to be the maximum distance of any pair of points in
the dataset. Although almost all scientific data analyslg megquire the computation of standard
SDH queries, our solutions can be easily extended to hamstiegnams with non-uniform bucket
width and/or arbitrary values of, andr;.! The SDH is basically a series of non-negative integers
h = (hi, ha, -+, ) whereh; (0 <i <) is the number of pairs of points whose distances are
within the bucket](i — 1)p, ip).

B. Motivation

The SDH is a fundamental tool in the validation and analy$ipasticle simulation data. It
serves as the main building block of a series of critical djtias to describe a physical system.
Specifically, SDH is a direct estimation of a continuousistiafal distribution function called
radial distribution functiongdRDF) [7], [9], [13]. The RDF is defined as

g(r) Nir)

= prmy (@D)
where N(r) is the expected number of atoms in the shell betweemnd r + 4 around any
particle, p is the average density of particles in the whole system, andjr is the volume
of the shell. Since SDH directly provides the value f¥(r), the RDF can be viewed as a
normalized SDH.

The RDF is of great importance in computation of thermodyisaquantities about the

simulated system. Some of the important quantities likal tptessure,

2
p=pkT — %pQ / drr*u'(r)g(r, p, T)
and energy

3 P 2
=3 + T dr 4mrsu(r)g(r, p, T)

B
NET

The only complication of non-uniform bucket width is thatyen a distance value, we ne@l( log l) time to locate the

bucket instead of constant time for equal bucket width.
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cannot be calculated without(r). For mono—atomic systems, the RDF can also be directly
related to the structure factor of the system [14], via

Sk)=1+ 4—? 0°° (g(r) — 1) rsin(kr) dr.

We skip the definitions of all notations in the above formulae the purpose is to show the
importance of SDH in particle simulations. To compute SDHuistraightforward way, we have
to calculate distances between all pairs of particles andhgudistances into bins with a user-
specified width, as done in state-of-the-art simulatioradatalysis software packages [7], [15].
MS or N-body techniques generally consist of large numbgagticles. For example, the Virgo
consortium has accomplished a simulation containing libbiparticles to study the formation
of galaxies and quasars [16]. MS systems also hold up toamdliof atoms. This kind of scale
prohibits the analysis of large datasets following the éyforce approach. From a database
viewpoint, it would be desirable to make SDH a basic quenetwith the support of scalable
algorithms.

Previous work [17], [18] have addressed this problem by kd@eg algorithms that compute
exact SDHs with time complexity lower than quadratic. Theinridea is to organize the data
in a space-partitioning tree and process pairs of tree notdsad of pairs of particles (thus
saving processing time). The tree structure used inclufizee in [17] and region quad/oct-
tree in our previous work [18], which also proved that theetiopomplexity of such algorithms
is O(N%l) whered € {2,3} is the number of dimensions in the data space. While beating
the naive solution in performance, such algorithms’ rugriime for large datasets can still be
undesirably long. On the other hand, a SDH with some boundex ean satisfy the needs
of users. In fact, there are cases where even a coarse SDHyredtly help the fine-tuning
of simulation programs [9]. Generally speaking, the maintisadion to process SDHSs is to
study the statistical distribution of point-to-point distes in the simulated system [9]. Since
a histogram by itself is an approximation of the underlyinstribution ¢g(r) (Equation 1), an
inaccurate histogram generated from a given dataset \lilllbgt useful in a statistical sense.
Therefore, in this paper, we focus on approximate algothvith very high performance and
deliver query results with low error rates. In addition tqpesmental results, we also evaluate
the performance/accuracy tradeoffs provided by the preghasgorithms in an analytical way. In

short, the running time of our proposed algorithm is onhatedl to the accuracy that needs to
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be achieved. In practice, our algorithm achieves excelpentormance/accuracy tradeoff — the

error rates in query results are very small even when theimgriime is reasonably short.

C. Roadmap of the paper

We continue this paper by a survey of related work and a ligsiusfcontributions in Section
II; we introduce the technical background on which our agpnate algorithm is built in Section
lll; we describe the details of a basic approximate algarifnd relevant empirical evaluation
in Section 1V; then we dedicate Section VI to mathematicallysis of the key mechanisms in
our basic algorithm; the results and suggestions of ouryinal work is used to develop a new
algorithm with improved performance and we introduce analweate that algorithm in Section

VII; finally, we conclude this paper by Section VIII.

II. RELATED WORK AND OUR CONTRIBUTIONS

The scientific community has gradually moved from procegsange data files towards us-
ing database systems for the storage, retrieval, and asalydarge-scale scientific data [2],
[19]. Conventional (relational) database systems aregdedi and optimized toward data and
applications from the business world. In recent years, thelthse community has invested
much efforts into constructing database systems that atabsel for handling scientific data.
For example, the BDBMS project [3] handles annotation arygmance of biological sequence
data; and the PeriScope [5] project is aimed at efficientgssing of declarative queries against
biological sequences. In addition to that, there are alepgmsals of new DBMS architectures for
scientific data management [20]-[22]. The main challengek @ossible solutions of scientific
data management are discussed in [1].

Traditionally, molecular simulation data are stored irgtafiles and queries are implemented
in standalone programs, as represented by popular simfatialytics packages [15]. Recent
efforts have been dedicated to building simulation dataagament systems on top of relational
databases, as represented by the BioSimGrid [4] and SimBBpi®@jects developed for molec-
ular simulations. However, such systems are still in shbetfficient query processing strategies.
To the best of our knowledge, the computation of SDH in sudtwswe packages is done in a

brute-force way, which require® (N?) time.
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In particle simulations, the computation of (gravitatibekectrostatic) force is of similar flavor
to the SDH problem. Specifically, the force (or potentialjie sum of all pairwise interactions
in the system, thus require8(/N?) steps to compute. The simulation community has adopted
approximate solutions represented by the Barnes-Hut ighigoithat runs onO(N log N) time
[24] and the Multi-pole algorithm [25] with linear runningre. Although all above algorithms
use a tree-like data structure to hold the data, they prolide insights on how to solve the
SDH problem. The main reason is that these strategies takntdje of two features of force:
1) for any pairwise interaction, its contribution to thederdecreases dramatically when patrticle
distance increases; 2) the effects of symmetric interast@ancel out. However, neither features
are applicable to SDH computation, in which every pairwrgeraction counts and all are equally
important. Another method for force computation is basedveti-separated pair decomposition
(WSPD) [26] and was found to be equivalent to the the Barnasdtgorithm. A WSPD is a
collection of pairs of subsets of the data such that all pwfoint distances are covered by
such pairs. The pairs of subsets are also well-separatelaintiie smallest distance between
the smallest balls covering the subsets (with radiuss at leastsr wheres is a user-defined
parameter. Although relevant by intuition, the WSPD does produce fast solution for SDH
computation.

Although SDH is an important analytics, there is not muchbetation on efficient SDH
algorithms. An earlier work from the data mining community/] opened the direction of
processing SDHs by space-partitioning trees. The core iglda process all the particles in
a tree node as one single entity to take advantage of the eronfmicket widthp. By this,
processing time is saved by avoiding computation of paictparticle distances. Our earlier
paper [18] proposed a similar algorithm as well as rigorowghmmatical analysis (which is
not found in [17]) of the algorithm’s time complexity. Spically, in [18], we propose a novel
algorithm (nameddDM-SDH) to compute SDH based on a data structure catledsity map
which can be easily implemented by augmenting a Quad-trédexinOn contrary to that, the
data structure adapted in [17] is the kd-tree. Our mathealasinalysis [27] has shown that
the algorithm runs o®(N'2) for two-dimensional data an@(N3) for three-dimensional data,
respectively. The technical details of such an algorithrh lp@ introduced in Section lIl.

This paper significantly extends our earlier work [18] byuUsing on the approximate algo-

rithms for SDH processing. In particular, we claim the faliog contributions via this work:
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1. We present an approximate SDH processing strategy trdgriged from the basic exact
algorithm, and this approximate algorithm has constaneticomplexity and a provable
error bound;

2. We develop a mathematical model to analyze the effectsrof eompensation that led to
high accuracy of our algorithm; and

3. We propose an improved approximate algorithm based omnthghts obtained from the

above analytical results.

I1l. PRELIMINARIES

In this section, we introduce the algorithm we developed1i@] [to compute exact SDHs.
Techniques and analysis related to this algorithm are tkis lfar the approximate algorithm we
focus on in this paper. In Table I, we list the notations thrat@sed throughout this paper. Note

that symbols defined and referenced in a local context ardistet! here.

TABLE |

SYMBOLS AND NOTATIONS.

Symbol | Definition

P width of histogram buckets

l total number of histogram buckets

h the histogram with elements; (0 < i <1)
N total number of particles in data

i an index symbol for any series

DM; | the I-th level density map

d number of dimensions of data
€ error bound for the approximate algorithm
H total level of density maps, i.e., tree height

A. Overview of the Density Map-based SDBIM-SDH) Algorithm

To beat theO(NQ) time needed by the naive solution, we need to avoid the caatipatof
all particle-to-particle distances. An important obséom here is: a histogram bucket always

has a non-zero width. Given a pair of points, their bucket membership could bemeihed
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if we only know a range that the distance belongs to and tmgeas contained in a histogram
bucket. The central idea of our approach is a conceptual slaiature calledlensity mapFor

a 3D space, a density map is essentially a 3D grid that dividesimulated space into cubes
of equal volumes. For a 2D space, it consists of squares dlexige. From now on, we use
2D data and grids to elaborate our ideas unless specifieavwosiee Note that extending our
discussions to 3D data/space would be straightforwardvémyecell of the grid, we record the
number of particles that are located in the space reprasdmtehat cell as well as the four
coordinates that determine the exact boundary of the caelbate. The reciprocal of the cell size
in a density map is called thesolutionof the density map. In order to process SDH, we build
a series of density maps with different resolutions. We nigthe array of density maps in a
way such that the resolution of a density map is always daubke compared to the previous
one in the series. Consequently, any cell in a density maprided into exactly four (eight for
a 3D space) disjoint cells in the next density map. A naturay w0 organize the density maps
is to connect all cells in a point region (PR) Quad-tree [28].

The pseudocode of the DM-SDH algorithm can be found in Fig:He core of the algorithm
is a procedure namedEROLVETWOCELLS, which is given as inputs a pair of cell®; and
M, on the same density map. INEROLVETWOCELLS, we first compute the minimum and
maximum distances between any particle frah and any one from\/, (line 1). Obviously,
this can be accomplished in constant time given the cornerdamates of two cells stored in
the density map. When the minimum and maximum distancesdagtw/; and M, fall into the
same histogram buckeét we say these two cells aresolvableon this density map, and they
resolveinto bucketi. If this happens, the histogram is updated (lines 2 - 5) byeimenting the
count of the specific buckétby n,n, wheren,, n, are the particle counts in cellg/; and M,
respectively. If the two cells do not resolve on the curresnisity map, we move to a density
map with higher (doubled) resolution and repeat the prevgiap. However, on this new density
map, we try resolving all four partitions a¥/; with all those of M, (lines 12 - 16). In other
words, there arel x 4 = 16 recursive calls to RSOLVETWOCELLS if M; and M, are not
resolvable on the current density map. In another scendrerenl/; and M, are not resolvable
yet no more density maps are available, we have to calcliatdistances of all particles in the
non-resolvable cells (lines 6 - 11). The DM-SDH algorithrarts at the first density map M,

whose cell diagonal length is smaller than the histogrankdéuwidth p (line 2). It is easy to
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Algorithm DM-SDH
Inputs: all data points, density maps built beforehand, and buckethvy

Output: an array of counth

1 initialize all elements irh to O

2 find the first density ma@ M, whose cells have diagonal length< p
3 for all cells in DM,

4 do n <— number of particles in the cell

5 ho < ho + 3n(n —1)

6 for any two cellsi; and M, in DM,

7 do RESOLVETWOCELLS (M;, M)

8

return h

Procedure RSOLVETWOCELLS (M7, Ms)

0 check ifM; and M, are resolvable

1 if M; and M, are resolvable

2 then i < index of the bucket\/; and M, resolve into
3 n, < number of particles in/;

4 no < number of particles inV/,

5 h; «— h; + nino

6 else if M; and M, are on the last density map (i.e., leaf level of the quadrtree
7 for each particle A inM;

8 for each particle B inV/,

9 do f < distance between A and B

10 1 < the bucketf falls into

11 h; — h; +1

12 else

13 DM’ — next density map with higher resolution
14 for each partitionM; of M; on DM’

15 for each partition)} of M, on DM’

16 do RESOLVETWOCELLS (M, M)

Fig. 1. The density-map-based SDH algorithm.
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see that no pairs of cells are resolvable in density mapsnegblution lower than that ab)/,.
Within each cell onD M, we are sure that any intra-cell point-to-point distancensller than
p thus all such distances are counted into the first bucket raitige [0, p) (lines 3 - 5). The
algorithm proceeds by resolving inter-cell distances,(icalling RESOLVETWOCELLS) for all
pairs of cells inDM, (lines 6 - 7).

Clearly, by only considering atom counts in the density mafisc(i.e., quad tree nodes),
we are able to process multiple point-to-point distancesvéen two cells in one shot. This
translates into significant performance improvements tiverbrute-force approach.

In DM-SDH, we assume there are a series of density maps kefitréhand in the form of
a quad-tree. An important implementation detail that igvaht to our approximate algorithm
design is the height of the quad tree (i.e., the number ofiemsip levels). Recall that DM-SDH
saves time by resolving cells such that we need not to caktit@ point-to-point distances one
by one. However, when the total point counts in a cell de@gathe time we save by resolving
that cell also decreases. Imagine a cell with only 4 or feefof 3D data/space) data points,
it does not give us any benefit in processing SDH to furthetitmar this cell on the next level:
the cost of resolving the partitions could be higher thareatly retrieving the particles and
calculating distances (lines 7 - 11 ireROLVETWOCELLS). Based on this observation, the total

level of density mapd7 is set to be

H = ’710g2d %—‘ +1 (2)

whered is the number of dimensiong? is the degree of the nodes in the tree (4/8 for 2D/3D
data) andg is the average number of particles we desire in each leaf.odaractice, we set
[ to be slightly greater than 4 in 2D (8 for 3D data) since the GRSt of resolving two cells

is higher than computing the distance between two points.

B. Performance Analysis &M-SDH

We have accomplished a rigorous analysis of the performahd@M-SDH and derived its
time complexity. The analysis focuses on the quantity of bemof point-to-point distances
that can be covered in resolved cells. We generate closed-formulae for such quantities
via a geometric modeling approach therefore rigorous aislyf the time complexity becomes
possible. While the technical details of the analytical elaare complex and can be found in a
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recent article [27], it is necessary to sketch the most ingmbr(and also most relevant) analytical

results here for the purpose of laying out a foundation ferghoposed approximate algorithm.

Theorem 1:For any given standard SDH query with bucket wigthlet DM, be the first
density map where the DM-SDH algorithm starts running, arteh) be the ratio of non-
resolvable pairs of cells on a density map that hesevels belowD M, (i.e., mapDM,.,,) to

the total number of cell pairs on that density map. We have

. am+1) 1
lim ————- = —.
p—0  a(m) 2

Proof: See Section 4 of [27]. [ |

What Theorem 1 tells us is: the chance that any pair of celisisesolvable decreases by half
with the density map level increases by one. In other wortsafpair of non-resolvable cells on
DM; wherej > o, among the 16 pairs of subcells on the next level, we exjt@&t% = 8 pairs
to be resolvable. Our analysis also shows that Theorem 1 migtveorks well for largel (i.e.,
smallerp, and more meaningful in simulation data analysis), but gisickly converges even
when [ is reasonably small Furthermore, the above result is also true30r data (see Section
5.1 of [27]). The importance of Theorem 1 is in that it shows tlumber of pairs of cells that
do not resolve declines exponentially when the algorithsitvimore levels of the density map.
This is critical in studying the time complexity of DM-SDH.

Given a SDH query with parameter the starting leveD ), is fixed in DM-SDH. Suppose
there arel non-resolvable pairs of cells o M,. On the next levelDM, , total number of
cell pairs becomeg22?. According to Theorem 1, half of them will be resolved, leayionly
12%4=1 pairs unresolved. On levéD )M, ,, the number of non-resolvable pairs of cells becomes

122d7122d

= [22(4=1) Thus, the number of calls to resolve cells made by DM-SDH is
][2(2d—1)(n+1) _ 1}
22d—1 —1 (3)

According to Eqg. (2)one more level of density map will be built when data size ina@ases

T(N) = I(1+ 2271 422470 4.y gn(@d=1)y =

from N to 2¢N. This gives the following recurrence
1[2(2d—1)(n+2) _ 1}
22d—1 _

T.(2'N) = = 2*"IT(N) = o(1) (4)

which derives

2d—1

T.(N) = O(N©&02"") = O(N "),
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Given Theorem 1, it is easy to find that the number of distaircdse non-resolvable cells also
follows the same recurrence as shown in Eq. (4) (see Sectm%7]). By that, we conclude
the time complexity of the DM-SDH algorithm '@(NLJI).

IV. THE APPROXIMATE DENSITY MAP-BASED SDH ALGORITHM

In this section, we introduce a modified SDH algorithm to giueh approximate results to
gain better performance in return. Our solution targetsaat tnust-have features of a decent
approximate algorithm :1) provable and controllable elyounds such that the users can have
an idea on how close the results are to the fact; and 2) asaysiosts to reach (below) a given
error bound, which guides desired performance/corresttresleoffs.

In the DM-SDH algorithm, we have to : 1) keep resolving cellswe reach the lowest
level of the tree; 2) calculate point-to-point distancesewtwe cannot resolve two cells on
the leaf level of the tree. Our idea for approximate SDH psso®) is:stop at a certain tree
level and totally skip all distance calculations if we arereswhat the number of distances in
the unvisited cell pairs fall below some error toleranceeitold We name the new algorithm
as ADM-SDH (that stands for Approximate Density Map-bas&H}p and it can be easily
implemented by modifying the DM-SDH algorithm. In partiayl we stop the recursive calls
to RESOLVETWOCELLS afterm levels. The critical problem, however, is how to determine t
value of m given a user-specified error tolerance boundh this paper, we use the following
metric to quantify the errors

L X lhi—
Ei hi
where for any bucket, h; is the accurate count and the count given by the approximate
algorithm.

For any given density mapM,.,, and total number of buckets our analytical model
(Theorem 1) gives the percentage of non-resolvable cetkpdin). Furthermore, due to the
existence of a closed-form formula (see Section 4.4 of [2¥()n) can be efficiently computed.
We list some values of — «(m), the percentage aksolvablecell pairs, in Table Il. Given a
user-specified error bound we can find the appropriate levels of density maps to visihsu
that the unvisited cell pairs only contain less théwg;l) distances. For example, for a SDH

guery with 128 buckets and error boundeof 3%, we getm = 5 by consulting the table. This
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TABLE Il

EXPECTED PERCENTAGE OF PAIRS OF CELLS THAT CAN BE RESOLVED UNIR DIFFERENT LEVELS OF DENSITY MAPS AND

TOTAL NUMBER OF HISTOGRAM BUCKETS COMPUTED WITH MATHEMATICA 6.0.

Map Total Number of Buckets

levels 2 8 32 128 256
50.6565 52.5131 52.6167 52.6225 52.6227
74.8985 76.2390 76.3078 76.3112 76.3114
87.3542 88.1171 88.1539 88.1556 88.1557
93.6550 94.0582 94.0777 94.0778 94.0778
96.8222 97.0290 97.0285 97.0389 97.0389
98.4098 98.5145 98.5198 98.5195 98.5195
99.2046 99.2572 99.2596 99.2597 99.2597
99.6022 99.6286 99.6298 99.6299 99.6299
99.8011 99.8143 99.8149 99.8149 99.8149
99.9005 99.9072 99.9075 99.9075 99.9075

© 00 N o o b~ W DN P

[N
o

means, to ensure the 3% error bound, we only need to visit éweld of the tree (excluding
the starting levelDM,), and no distance calculation is needed. Table Il servesaxeellent
validation of Theorem 1u(m) almost exactly halves itself when increases by 1, even when
[ is as small as 2. Since the numbers on the first row (i.e., sdiiel — «(1)) are also close
to 0.5, the correct choice of for the guaranteed error rates

m=lg 1

€

The cost of the approximate algorithm only involves resajvicells on them + 1 levels of

density maps. From formula (4), we obtain the time compjegitthe new algorithm

2d—1
TL(N) e 1204m — p@a-Dist _ g (1) (5)
€

wherel! is the number of cell pairs on the starting density niaj/,, and it is solely determined
by the query parameter. Apparently, the running time of this algorithm is not rel@tto the

input sizeN.

A. Heuristic Distribution of Distance Counts
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Now let us discuss how to deal with Range of inter-cell
h distances ﬁ
those non-resolvable cells after visiting ————— ———— - —
(-Dp ip (i+1)p @+2)p distance
m + 1 levels on the tree. In giving the | bucke bucke buckzerj
i it i+,

error bounds in our approximate algol-:ig. 2. Distance range of two resolvable cells overlap wittee
rithm, we are conservative in assuming,cyets.

the distances in all the unresolved cells will be placed theowrong bucket. In fact, this almost
will never happen because we can distribute the distancatean the unvisited cells to the
histogram buckets heuristically and some of them will beelaorrectly. Consider two non-
resolvable cells in a density map with particle countsand n, (i.e., total number ofn;n,
distances between them), respectively. We know their miminand maximum distancesand

v (these are calculated beforehand in our attempt to resodra)tfall into multiple buckets. Fig.
2 shows an example that spans three buckets. Using this éxawg describe the following
heuristics to distribute the,n, total distance counts into the relevant buckets. Theseadtesr

are ordered in their expected correctness.
1. Put allnin, distance counts into one bucket that is predetermined, @ways putting the
counts to the leftmost bucket); We name this heuristic asvG
2. Evenly distribute the distance counts into the three étsckhat|u, v] overlaps, i.e., each
bucket get%nlng; this heuristic is named \EEN;

3. Distribute the distance counts based on the overlapseeetwangeu, v] and the buckets.

In Fig. 2, the distances put into bucketsi + 1, andi + 2 are nln;p _u, nina ,
v—Uu v—r
—(i+1 . . .
and nlngm, respectively. Apparently, by adapting this approach, ssume the

(statistical) distribution of the point-to-point distas between the two cells is uniform.
This heuristic is called Rop (short for proportional).

The assumption of uniform distance distribution iRd® is obviously an oversimplification.
In [29], we briefly mentioned a 4th heuristic: if we know theasipl distribution of particles within
individual cells, we can generate the statistical distrdouof the distances either analytically or
via simulations, and put the;n, distances to involved buckets based on this distributidns T
solution involves very non-trivial statistical inferenoé the particle spatial distribution and is

beyond the scope of this paper.
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Note that all above methods require only constant time toprdena solution for two cells.

Therefore, the time complexity of ADM-SDH is not affected matter which heuristic is used.

V. EMPIRICAL EVALUATION OF ADM-SDH

We have implemented the ADM-SDH algorithm using
the C programming language and tested it with various
synthetic/real datasets. The experiments are run at areAppl
Mac Pro workstation with two dual-core 2.66GHz Intel Xeon
CPUs, and 8GB of physical memory. The operating system
is OS X 10.5 Leopard. In these experiments, we set the
program to stop after visiting different levels of density

maps and distribute the distances using the three hesristic

(Section 1V). We then compare the approximate histogram
with those generated by regular DM-SDH. We use various
synthetic and real data sets in our experiments. The syatheg:- 3- The simulated hydrated dipalmi-
data are generated from: (1) uniform distributions to satel tcc:::psheo:f\;:tlglet:i;nhidbrz:;:cShy:;Z”;ro\LV:S
a system with particles evenly distributed in space; and (£ higher atom density) connected to hy-
Zipf distribution with order 1 to introduce skewness to daferhobic tails (lower atom density) are sur-
spatial distribution. The real datasets are extracted feorﬁoundecl Py water molecules (red dots).
molecular simulation of biomembrane structures (Fig. 3)e Tata size in such experiments
range from 50,000 to 12,800,000.

Fig. 4 shows the running time of ADM-SDH under one singlealue of 2500.0. Note that
the ‘Exact’ line shows the results of the basic DM-SDH altjori whose running time obviously
increases polynomially withV at a slope of about 1.5. First, we can easily conclude that the
running time after the tree construction stage does notgsharith the increase of dataset size
(Fig. 4(a)). The only exception is when is 5 — the running time increases whahnis small and
then stays as a constant afterwards. This is because thetlatgdnas less than 5 levels to visit
in a bushy tree resulted from smail values. WhenV is large enough, running time no longer
changes with the increase of. In Fig. 4(b), we plot the total running time which includé®t
time for quad-tree construction. Under smallvalues, the tree construction time is a dominating

factor since it increases with data size(i.e., O(N log N)). However, whenn > 3, the shape
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Fig. 4. Efficiency of the ADM-SDH algorithm.

of the curve does not change much as compared to those in @@).iddicating the time for
running RESOLVETWOTREES dominates.

We observed surprising results on the accuracy of ADM-SDHFig. 5, we plot the error
rates observed in experiments with three different dasagetl three heuristics mentioned in
Section IV-A. First, it is obvious that less error was obserwhenm increases. The exciting
fact is that, in almost all experiments, the error rate isdothan 10% — even for the cases of
m = 1! These are much lower than the error bounds we get from TablEhke correctness of
heuristic XEw is significantly lower than that of &N, and that of EZEN lower than RROP, as
expected. Heuristic PROP achieves very low error rates gvenenarios with smalt values.
For most experiments, the data sixedoes not seem to affect the error rate of the algorithm.

The above trends are observed in all three datasets.

A. Discussions

At this point, we can conclude that the ADM-SDH algorithm s @legant solution to the
SDH computation problem. According to our experimentsyesrely low error rates can be
obtained even we only visit as few as one level of density nkegging to a very efficient

algorithm yet with high accuracy in practice. It is clearlyosvn that the required running time

August 8, 2011 DRAFT



TECHNICAL REPORT NO. CSE/ 11- 052, DEPT. OF COMPUTER SCI. & ENUNIV. OF SOUTH FLORIDA, JULY 2011 18
SKEW EVEN PROP

m=4 a
m=5

m:
10° m=
m=3 -

10t

102 °

Error rate
*
=3

o %
o %
o0 *
o %
o o*x
*
Y\
3
1
|
|
|
|

10 | | e =

Uniform Data

10" °

10-5 L

10°

10-1 L

[n]

]

N

o

u]

]
mrx
0%

Zipf Data

o %

Error rate

¢
“
o
=
=3
ok
3
s

ok

ox

,_\
o
%
Real Data

Error rate
*
*
*
*

10° 10 10 10° 10 10 10°
Number of atoms Number of atoms Number of atoms

10 10

Fig. 5. Accuracy of the ADM-SDH algorithm.

for ADM-SDH grows nicely with the data siz&' (i.e., only whenm is of a small value does
the tree construction time dominate).

The errors rates achieved by ADM-SDH approximate algorishiown by current experiments
are much lower than what we expected from our basic anallysisexample, Table Il predicts
an error rate of around 48% for the caserof= 1, yet the error we observed forn = 1 in
our experiments is no more than 10%. With thedP heuristic, this value can be as low as
0.5%. Our explanation for such low error rates is: in an iidiial operation to distribute the
distance counts heuristically, we could have renderedge larror by putting too many counts
into a bucket (e.g., bucketin Fig. 2) than needed. But the effects of this mistake cowdd b
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(partially) canceled out by another distribution openatimm which too few counts are put into
bucketi. Note that the total error in a bucket is calculated afterogkrations are processed,
thus it reflects the net effects of all positive and negativers from individual operations. We
call this phenomenoerror compensation

While more experiments under different scenarios are alslyoneeded, investigations from
an analytical viewpoint are necessary. From the above,fagsinderstand that the bound given

by Table Il is loose. The real error bound should be descrased

€E=¢€¢€ (6)

wheree' is the percentage of resolved distances given by Table IFaigithe error rate created
by the heuristics via error compensation. In the followiagtgn, we develop an analytical model

to study how error compensation dramatically boosts acguoh the algorithm.

VI. PERFORMANCEANALYSIS OF ADM-SDH

It is difficult to obtain a tight error bound for ADM-SDH due tbe fact that the error is
related to data distribution. In this paper, we develop aalydical framework that achieves
gualitative analysis of the behaviors of ADM-SDH, with a fiscon the generation of errors.
Throughout the analysis, we assume uniform spatial digich of particles and we consider
only one level in the density map (i.e» = 1). At the start level (and the only level we visit),

the side length of a cell is/2p/2. First, we are going to analyze th&S~ method.

A. The distribution of Two Cells’ Distance

We study two cells A and B on a density map, with cell As row rhandenoted as and
column number ag, and cell B’s row number ak and column number as We further denote
the minimum distance between A and Bw@sand the maximum distance asWe propose the
following lemma:

Lemma 1: The rangefu, v] overlaps with at most three buckets in the SDH. In other words
p<=0v—u<=2p.

The proof of Lema 1 can be found in Appendix A. By Lemma 1, we easily see that must
fall into one of the two buckets with rangés® |p + p, | 5 |p + 2p) and[| 2 ]p + 2p, [ 2]p + 3p).

u u u
p p p
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Suppose the distance between points from the two cells¥@lacumulative distribution function
F over the rangédu, v], then the probabilities of a distance falling into the relevbucket can
be found in Table III.

TABLE 11l

THE BUCKETS INVOLVED IN THE DISTRIBUTION OF DISTANCES FROM TW NON-RESOLVABLE CELLS.

No Bucket Range Cumulative Probabilities
1 [L2]p, [3]p+p) F(l3]p+p)

2 | [[3]p+p [2lp+2p) | F(l3]lp+2p) — F(l3]p+p)
3 | [lz]p+2p, [3]p+3p) 1—F(l3]p+2p)

B. Compensating the distance counts in $«ew method

As mentioned earlier, an important mechanism that leadswodrror rate in our algorithm
is that the errors made by one distribution operation candmepensated by those of another.
We can use the SKEW heuristic as an example to study this. BVEgKall distance counts are
put into one bucket, say, the one with the smallest buckegxnth other words, The distance
counts in all three buckets (Table 1ll) are put into buckelﬂwange[L%Jp, L%Jp+p). The error
would be large if we only consider this single distributiopeoation — by denoting the error as
e, we havee = 1 — F([2]p + p) for the bucket[| *|p, | *|p + p). The errore here is positive,
meaning counts in the first bucket are overestimated. Howsueh errors can be canceled out
by other distribution operations that move all distancentedrom this bucket into another one.
For example, if there exists another distribution operatiath minimum distance.; = u — p,
it would move some counts that belong to buckeh Table IIl out, generating a negative error
in bucket1 and thus compensating the positive error mentioned be@xen this, an important
goal of our analysis is tdéind such compensating distribution operations and study hwch
errors can be compensated/e first show that under an ideal situation the error canhregaco.

Lemma 2:For any distribution operation with minimum distanag if there exists another
such operation with minimum distanee = u — p, the error generated by ADM-SDH using
the KEw approach is zero.

The proof of Lema 2 can be found in Appendix B.
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In the following text, we study how the errors can be parti@bmpensated by neighboring
pairs of cells.

Without loss of generality, we take any pair of cells in the
density map — one with coordinatég, 0) as the base cell, and

another one with coordinatgs;, ), such as cellsA and B in

Figure 6. For the convenience of presentation, we remove the
constant in our future discussions. In other words, distances are
now defined withp as the basic unit. For example, the coordinate

(x,y) means that this cell's location is of a distaneg away Fig. 6. Pairs of cells that lead to par-

from the base cell horizontally angp vertically. The minimum & €rror compensation in thek&w

. . approach.
distance between the above two cells can be therefore wake
(with p as unit and the side of a cell agp):

{L'Z y2
=4\/=+= 7
The critical observation that leads to the success of oulysisais obtained by studying
another cell located atr — 1,y — 1), i.e., cell B’ in Figure 6. Its minimum distance to the cell

A at(0,0) isu; = \/@ + @ Let us denote the quantity — u; asA. We have

(w—u)(u+u)  u?—ui

A = u—u =
U+ Uy U+ Uy
r— 2 _1)2
_ §+%—L%L—Q§L:x+y—lzx+y—l (8)
U+ Uy U+ ug 2u
Supposer >= y and z = y/x, Equation (8) can be rewritten as follows
Atty—1 P 142
. s\ )
1+2-1 142

= L~ (9)

V21222 /2122

Althoughz andy are integers, we can treatas a continuous variable due to the existence of a
large number of possible values ofandy in a density map with many cells. Sindé\ /dz > 0,
we conclude that\ increases with:. Two boundary cases are: 1) when= 0 we havez = 0
and A = ¥2; 2) wheny = z, we havez = 1 andA = 1.

According to Lemma 2, the error of theBw method,e,..,, can be noted by the difference

between one and\, e ..., = 1 — A. This error,esewed, ranges frond to 1 — ¥2 sinceA ranges
2
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from @ to 1. The compensating process in distance counts is shown urd-y As mentioned
before,C' and C’" are examples of two cells for which the difference of minimdistances to
cell A is 1 and the cellsB and B’ are two cells for which the difference of minimum distances
is different from one (less than one in this case).
Figure 7 represents the triangular density dis-
tributions of three different minimum distances,
u, u; andu — 1. In our analysis we have used

normal distribution in stead of triangular, based

\4

on the approximation shown in appendix €.s
the minimum distance between the base cell agg. 7. Compensating the distance counts

the cell which is located atx,y) and u; is the

minimum distance between the base cell and the cell whichdatéd atxz — 1,y — 1). In our
analysis we defing: as [u], and we also defind/ = G + 1 andI = H + 1. The triangles of
STU, AEW and BC'F are the density distributions of the minimum distanees; andu — 1,
respectively. The ling?’S’D’ is the symmetry line of// F'H with respect to the vertical line
which passes through the point D.

As we know, ifu; = u — 1, the error of distance counts produced by the period betwgen
and / can be compensated by that produced by the period betweand /. In other words,
according to 8w, when we count the number of distances between the cell atlicates
(0,0) and the cell located atr,y), the number of distances betweéh and / is added and
leads to a positive error. When we count the number of dissbetween the base cell and the
cell which is located atz — 1,y — 1), the number of distances betwe€nand H is missed and
leads to a negative error. If the distribution is the same,afea ofG BC'F'H is the same as the
area of HSTUI.

If u;, # uw — 1, there is difference be- ~
tween the area offAEW H and the area of
HSTUI. In other words, there is difference
between the area ¢t AEW H and the area of
GBCFH. This difference can be computed
by the area ofABD’S’ and that represents

the error imposed by the difference between
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u; andu — 1 which we denote as,, ,—1. We

know thatCE = uv; —u + 1 and GH' <

u —u; = A. Considering the fact that the

area of each of the three triangles in Figure 7

is one, the height of each of these triangle%%g (since the base is — u). Therefore, the ratio

A—g has the following value (for more detailed explanationapke refer to Appendix D):

AB = 4

— v—Uu — l
CE =S¢  (v—u)? (10)
Furthermore, the length ol B is:
4 4w —u+1) 41— A)
AB_(v—u)2*CE_ w—w?  (w_u)p (11)
The area ofABD'S’, thus the erroe,, ,_;, can be computed as follows:
vy = ABxGH < =8 x4 (12)
’ (v —u)?
1—-A 1
Curu—1 < ( A ) = Z —1 (13)

Therefore the accumulated erret,_g7 over the range ot, z = 0,1 can be computed by the
following equation (considering Eq. (9) fak)

1 1 1
V2 + 222
€Z:m = Z Cuju—1 = Z —_— = 1 Z (ﬁ — 1) (14)
=0 =0 z=0

When( < z <1, we can approximate,_g7 as follows (from Figure 8).

1
.7 < > 0211 (1—2)° +0.211% (1 - 2)° (15)
z=0

1
¢ ot = / (0.211 # (1 — 2)° 4 0211 # (1 — 2)?) d2 = 0.1055 (16)
0

Eq. (16) means that the total error rendered by tkeV% under the assumptions we stated
in the beginning of Section VI is less than 10.55%. Due to tbgumptions we made, we do
not claim this as a rigorous bound. However, it clearly shahat our algorithm is able to
produce really good results with low errors by visiting owolye level in the density map. And

this conclusion builds the foundation of an improved apprate algorithm (Section VII).
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One special note here is that Eqg. (16) does not cover the cagdsch the minimum distance
u falls into the first SDH bucket (i.ey < p). However, our analysis shows that such cases do

not impact the results in Eq. (16) significantly. More detaibn be found in Appendix E.

VIl. SINGLE LEVEL APPROXIMATE ALGORITHM

Via the performance analysis of ADM-SDH, and looking backhe error bound described
in Eg. (6), we concluded that’ is very small. Even if we allowt’ be 100%, meaning no
cell resolution is needed, we can still achieve low and aiaiole error rates in our results.
Therefore, in this section, we introduce an improved apipnate algorithm, we calkingle
level approximate algorithn (ISL-SDH), based on such a conclusion. SL-SDH has all the same
parts as the original ADM-SDH algorithm with the only difégrce is that we nowisit only one
density map (i.e., one level of the tree) instead of visitinigvels as in the original approximate
algorithm SL-SDH improves over ADM-SDH in two important aspectssEiwe only need a
single DM which can be built inO(N) time (instead of the) (N log N) time needed to build
the quad tree). Second, we reduce the post-tree-constucinning time of the algorithm, with
little increase of the error, as we only rureBOLVETWOTREES for cells in one density map.

However, the running time of SL-SDH still depends heavilytbe bucket widthp. Recall
that ADM-SDH starts at the density mdpM, where the diagonal of a single cell is less than
or equal top. Whenp is small, the number of cells iW ], is large, and we have to invoke the
RESOLVETWOCELLS procedure more times. To remedy this, we further modify S)HSby
allowing it to run on a (single) density map ababé/, i.e., one with larger cell sizes (and fewer
cells). This is based on a hypothesis motivated by our padoce analysis of ADM-SDH: the
error compensation mechanism we studied will also work femsity maps abové M,. We
know the error is very small for running,EROLVETWOTREES for those cells inD M, - doing
the same on higher level density maps should still rendesoregble (although higher) error
rates. Unfortunately, an analytical study of such errongely difficult. In the remainder of this
section, we empirically evaluate the error and time traidebthe final version of the SL-SDH

algorithm.

August 8, 2011 DRAFT



TECHNICAL REPORT NO. CSE/ 11- 052, DEPT. OF COMPUTER SCI. & ENUNIV. OF SOUTH FLORIDA, JULY 2011 25

Uniform Data
10 7.5 Million atoms
L T — | =Level3
e s s e S B +£evei 2
Error —_— N - +Leve
in % N N e e e N -Level 6
10" \\ N ~y ~Level 7
NN . | ~Levels
10” |v Level 9
25 50 100 150 200 500 1000 1500 2000 2500 3000 3500 4000
Bucket width
Skewed Data
10° 7.5 Million atoms
=Level 3
1 -
10 == Level 4
Error ) % = —y - +Level 5
in% 10 = = — ~Level 6
e T
., T ~Level 7
10 Level 8
10 Level 9
25 50 100 150 200 500 1000 1500 2000 2500 3000 3500 4000
Bucket width
Real Data
10 891,272 atoms
I Level 3
=Leve
—_— | I
T~ T +Level 4
1 00 o m—— s N
Error —r— N ~ +Level 5
in % ™S N e B S S e —~Level 6
10" — N /\\\ —————— ~Level7
N N . Level 8
10° \\/‘ Level 9
25 50 100 150 200 500 1000 1500 2000 2500 3000 3500 4000
Bucket width

Fig. 9. Accuracy of the SL-SDH algorithm under different kecwidth for synthetic (uniform and skewed) and real data.

A. Experimental Results

We have implemented the SL-SDH algorithm using the C prograrg language and tested
it with various synthetic/real datasets. The experimergsran in the same environment as the
experiments for the ADM-SDH in Section V.

Since we know, from our previous experiments, that tm@Pheuristic for distributing the
distances in non-resolvable cells produces the best sesud#t have only used that heuristic to
show the results of the single level approximate algorithivie. have run the algorithm on two
synthetic datasets, one with uniform and another with skegistribution of atoms, under five
different numbers (i.el, 3, 5, 7.5 and 12 million) of atoms. We also ran the algorithm on one
real simulation dataset witk01, 272 atoms. Figure 9 shows the results from the experiments on

uniform and skewed data respectively witth million atoms and the real data witp1, 272
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Fig. 10. Accuracy of the SL-SDH algorithm under differentket width and different atom counts for synthetic dataf@ma

and skewed).

atoms. From these figures we can see that the error rate desredien we increase the level
in the density map. We also see that the error rate is lowenwie bucket width increases.

In Figure 10 we demonstrate the effects of system 8izen the accuracy of SL-SDH. Each
line in Figure 10 plots the error rates of SL-SDH when run vatlparticular level of density
map under a particular atom count. We can easily see thairtbe flor the five different system
sizes (of the same density map) are very similar, givingtasene cluster of lines for each level
of density map. The above two figures actually show that ther éntroduced by the SL-SDH
algorithm is not affected by the number of atoms in the datagebut by the level of density
map the algorithm works at. On the other hand, the running tifithe SL-SDH algorithm was
also found to be independent of, as shown in Figure 11. The only exceptions are for levels
3 and 4, in which the tree construction time dominates.

The difference between SL-SDH and ADM-SDH can be seen by eomgp Figure 11 with
Figure 4, and Figure 10 with Figure 5. However, to better wstd@d the accuracy/performance
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Fig. 11. Efficiency of the SL-SDH algorithm.

tradeoffs provided by the two algorithms, we introduce a meetric Error Delay Product
(EDP), which is defined as the product of the error rate and the ngntime of the algorithm.
Obviously, higher EDP means worse accuracy/performaiacieaff. Figures 12, 13 and 14 show
the EDP for both algorithms run under three different buckitth (i.e., 100, 500 and 1000).
From these figures it is obvious that the SL-SDH algorithnwshbetter EDP than the regular
approximate algorithm. This is especially the case wherbtieket width is small — the EDPs
of SL-SDH are orders of magnitude lower than those providedDM-SDH. The reason for
this is that the ADM-SDH algorithm starts at a level deteredirby the bucket widtlp. When
p gets smaller, it has to start at a lower level of the tree withvercells to process. In Figure 14,
ADM-SDH shows better EDPs, but the lowest level it reachestilsseveral times higher than
that of SL-SDH. In general, the EDP of SL-SDH decreases withdecrease of density map
level, with level 9 always shows the worst tradeoff. This methe accuracy of our approximate
algorithm is already high with working on a coarse densitypptae improvement of accuracy
levels out with further increase of the density map resotuti

In summary, our experimental results convey two importaessages. First, the SL-SDH
algorithm significantly improves the accuracy/performat@deoff over ADM-SDH. Such im-

provements are more obvious under small SDH bucket widths T very important: the
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Fig. 12. Accuracy and performance tradeoffs of the ADM-SDid &L-SDH algorithms under SDH bucket width of 100.

computation of SDHSs is generally preferred to be done unahedlsrp values as it carries more
information about the distribution of the distances. Ussaa choose the appropriate (single)
level among all the density maps to run the algorithm basdy @m the desired accuracy. On
the other hand, we also show that, like ADM-SDH, the runnimgetand the error rate of

SL-SDH are not affected by the number of atoms in the data set.

VIII. CONCLUSIONS ANDFUTURE WORK

The main objective of our work is to accomplish efficient cartgtion of SDH, a popular quan-
tity in particle simulations, with guaranteed accuracythis paper, we introduce approximate
algorithm for SDH processing based on our proviso work dgvadl around a Quadtree-like data
structure namedensity mapThe experimental results show that our approximate dlyorhas
very high performance (short running time) while delivgriesults with astonishingly low error
rates. Aside from the experimental results, we also artalyi evaluate the performance/accuracy
tradeoffs of the algorithm. Such analyses showed that thaimg time of our algorithm is
completely independent of the input si2& and derived a provable error bound under desired
running time. We further developed another mathematicalehto perform in-depth study of

the mechanism that leads to low error rates of the algorithside from administering tighter
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Fig. 13. Accuracy and performance tradeoffs of the ADM-SDid &L-SDH algorithms under SDH bucket width of 500.

bounds (under some assumptions) on the error of the basioxapte algorithm, our model
also gives insights on how the basic algorithm can be immto¥®llowing these insights, a
new single level approximate algorithm with improved tias®uracy tradeoff was proposed.
Our experimental results supported our analysis. Haviegdlexperimental results on hand, one
aspect of our future work will be to establish a provable elround for the new algorithm.
Many times, the molecular simulation systems are observed certain period of time and
SDH computation is required for every frame (time instarme)r that period. Therefore, another
direction of our on-going work is to efficiently compute th®I$s of consecutive frames by
taking advantage of the temporal locality of data points. 848 also extend our work to the
computation ofm-body correlation functions withn > 2 — a more general form of SDH that

involves counting all possible:-particle tuples.

APPENDIX A
Proof of Lemma 1

We study two cells A and B on a density map, with cell A's row rhendenoted as and
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m levels ; bw=1000 single level ; bw=1000
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Fig. 14. Accuracy and performance tradeoffs of the ADM-SDid &L-SDH algorithms under SDH bucket width of 1000.

column number ag, and cell B’'s row number ak and column number as We further denote
the minimum distance between A and B @asand the maximum distance as Thenv andu
can be written as functions of the two cells’ row and colummbers as follows:

Case 1 When A and B are in different rows and columns, iie# k£ andj # [, we have

u:p\/(i—/;— 1)2+(j—l2— 1)2 (17)
and
7 — 2 ;o 2
U:p\/( k:2+1) i l2+1) (18)

Case 2 When Cell A is located in the same row (but not in the samernapuas Cell B, i.e,

1 =k, r andv can be rewritten as follows

u:pw (19)
U:p\/(j—l2+1)2+% (20)

Case 2 When Cell A is located in the same column (but not in the saomg as Cell B, i.e,

j =1, randv can be rewritten as follows

_ —‘i_k;”ﬂ (21)
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(i—k+1)2 1

v= p\/ (U SV (22)
2 2

We consider the following two scenarios to accomplish th@opr
Case 1Cell A is located on the same row or column as Cell B. By equmti(19), (20), (21)

and (22), we can easily get
v—u>2pxV2/2>p

and

vV—uU=0p

4v/2r + 5 4/2r +5 D
Var < v2r :(\/§+ )p

20+ 2u p 4u 4

Whenu > 2v/2p, we can easily see th{t\/ﬁ+ %)p < 2p and thusv — u < 2p. If u < 2v/2,
we have to study the value of quantity- © case by case. Fortunatelycan only be of a series
of discrete values. We enumerate such cases as follows:
Whenu = 0 (i.e., the cells are adjacent to each other), we haver = v = py/10/2;
Whenu = %p,v = /5p, v — u ~ 1.646p < 2p.

Whenu:ﬂp,v:%p,v—u%1.52p<2p. A

Whenu = S—‘Q/ip,v = /13p,v —u ~ 1.5p < 2p.

Whenu = 2v/2p,v = @p,v—u% 1.5p < 2p. SN

Case 2 When cell A and cell B are located in different rows \
and columns (as shown in Fig. 15), we can dividand v into N
two line segments, respectively. First, we have- CB + BD, )-8

andv = AB+BE. SinceAC+CB > ABandBD+DFE > BE,
we easily getAC + DE + CD > AFE, which is equivalent to

AC + DE +u > v. Due t0 AC = DE = p, we conclude "9 15 The minimum and the max-
imum distance of two cells.

v—u < 2p.
On the other hand, since is the minimum distance between the two cells (i6G > u),
we havev —u = AE — CD > AF + GE > /2p > p.

The results on the above two scenarios conclude the proof.

APPENDIX B
Proof of Lemma 2
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According to Table IlI, for any distribution operation, teeror to the first SDH bucket (denoted
as bucket) it involves is1 —F(L%Jpﬂ)), and this error is positive (i.e., overestimation). Sugpos
that there is another distribution with minimum distange= v —p, then this operation generates
a negative errof”(| 3 |p+2p) — F'(| 3 ]p+p) to bucketi. For the same reason, a third distribution
with minimum distance:, = u — 2p generates a negative error bf- F'([ > |p + 2p). It is easy
to see that the combined error (by putting all relevant negatnd positive errors together) to
bucketi is 0. An example of two cells that contribute to each othemsrecompensation in the
aforementioned way can be seen in Figure 6. Namely, the €CetladC’ when we compute the
minimum distancesAC' and AC’.

Unfortunately, the above condition of the existence af;avalue that equalss — p cannot
be satisfied for all pairs of cells. From Lemma 2, however, &e easily see that the error is

strongly related to the quantity.

APPENDIX C
Approximation of Triangular to Normal Distribution

Lemma 3:If X andY are independent random variables uniformly distributed «m) and
(¢c,c+b—a), andc > a, thenY — X is a triangular random variable and can be regarded as a
normal random with the relative error less tham.

Proof:

The probability density ofX is

flz) = a<x<b (23)

b—a
and the probability density of is

1
g(y):b_—a,c<y<c+b—a (24)

There are two cases to be considered. One is whsrequal toa and the other is when is
greater thanu.
Casel: c is equal toa

The probability density o™ — X can be calculated as follows
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; b-a
c-b c-a; ctb-2a X
Fig. 16. the distribution of Y-X
ctb—a
frx@) = [ Hw= =gy (25)
WhenO > z > a — b, the probability density o™ — X can be computed as follows
b—a+z
fr-x(z) = _ar (26)
WhenO < z < b — a, the probability density ob” — X can be computed as follows
b—a—z
fr-x(z) = —a? (27)

Case2: c is greater tham.
Whenc — b < z < ¢ — a, the probability density ot” — X can be computed as follows
b—c+z

fr-x(z) = B—ar (28)
Whenc —a < z < ¢+ b — a, the probability density ok” — X can be computed as follows
c+b—2a—z
fr-x(z) = a2 (29)

The probability density o™ — X is shown in Figure 16.

(b—a)?
6

If w is a normal random variable with parametérs- a, ), then the probability density

of w can be written as follows.

76(w7c+a)2

\/66 2(b—a)2
V2m(b — a)
w—(c—a

o ). Then, the probability density af can be rewritten as follows

\/66—3u2
V2T

flw) = (30)

Letu =

f(w) =
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1.0

-1.0

Fig. 17. the relative error between normal and triangulatritiution

z—(c—a

Letv = —— ) Then, the probability density df — X can be rewritten as follows

fr-x(z)=Min{l+v,1 —v},—-1<v<1 (31)

If v = v, then, whenu = 4+0.02, u = +0.41 or v = +0.92, the probability density ofv
is equal to that oY — X. So, if we use the normal distribution to approximate thantgular

distribution, the relative errorRe, which is shown in Figure 17, is given by the following

equation: .
0.02 —3u
Re:2/ (1—u—\/667)du
0 2T
0.41 —3u2
+2/ (\/667 — 14 u)du
0.02 V2 (32)
0.92 \/66‘3“2
+2 (1—u———)du
0.41 V2T
1.0 \/66—3u2
+2/ ——— —1+u)du
0.92( V2 )

Computing the value foRe, we getRe = 0.093 < 0.1. So, we conclude that we can use normal

distribution instead of triangular distribution, intrazing an error of less than0%.

APPENDIX D
Similar Triangles Ratio

Figure 18 represents the two leftmost triangles from Figur&hese two triangles, triangles

MNC and K PE, are equivalent with area of one. Their sidds”’ and K E are parallel to each
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¢ &

Fig. 18. similar triangles

other. This imposes tha/ K = CE and K K’ = AB. Following the values from Figure 7, we

note the following:

MK =u—u+1=1-A, MN =v—u, MC' =MV = vou O = 2o = 2 (from the
formula of the area of the trianglé:= %MN x C'C").

Now, lets look at triangles\/ K K’ (the red triangle) and trianglé/C’C (the green one).
These two triangles are similar right triangles. Followihg properties of similar triangles we

get the following:

KK  cc 2 4
MK — MC %% (v—u)?
4
KK = — —«MK
(v =2
AB=KK = L*MK—L*Q—A) (33)
- - (v—u)? - (v—w)?
APPENDIX E

Boundary situation in error compensation analysis

When the minimum distance is within the first bucket, i.eu < p, the error produced by
SKEW cannot be compensated in the way described in Section VI.rd&son being, there are

no buckets to the left of the first bucket, therefore the pasgrrors in it cannot be compensated.
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The average error caused by this, denoted,as, can be computed as follows

0.3N?
= ~ 0.1 4
L = NV ) N (34)

Therefore, by considering the Eqgs. (34) and (16), the aeergor over all buckets of our

algorithm based on &Ew can be computed as follows:

, . 0.1%740.1055 % (n — 7)
et = Jim, ; = Jim b

Cu<1 ¥T + e, g7 *(n—7)

—0.1055 (35)

wheren is the total number of distances,is the number of the distances in the first bucket.

The reason for the second step of the above equation is leecate be computed as:

% =P((z1—22)* + (11 —p)? < 1) (36)

Sincex, 9, y; andy, are independent variables with uniform distribution, thee proba-
bility can be shown to be very small:

1 4 —4
L4 dr—d (37)

T ont T 33 3n?

APPENDIX F
Distance distribution of particles in two cells A and B

Lemma 4:1If the points in cell A and cell B are uniformly distributed, then the distances
between the two cells’ points can be described as a Nont¢eirgquare distribution and the
distribution has no relationship with the number of poimtscell A or cell B.

Proof:

Suppose a pointin cell A with coordinates:; andy; and a pointj in cell B with coordinates
is z; andy;. As we know, ifx; andz; are independent random variables uniformly distributed
on (a,b) and (¢, c+ b — a) respectively,(c > a) thenz; — z; follows a triangular distribution.
According to the Appendix C, the triangular distributionnche approximated with normal,
introducing an error of not more thamm%. Knowing this,z; — z; can be regarded as a normal
random variable with parametefs — a, (b — a)?/6). Similarly, y; — y; can be regarded as a

normal random variable with paramete$ — o, (b — a)?/6). Since (b — a)?/6 is a constant,
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which is noted asr?, we can write the following equation for the distancbetween the two
pointsi and j:
I? (z; — ;)? (y; — yi)?

- — +
o2 o2 o2

(38)

As itis known, the right hand side of the above equation is adeatral chi-square distribution.
This means that the distances between the two cells’ poarsbe described as a Noncentral

chi-square distribution with the parametégs \), where\ can be defined as follows:

(c-a? , (= a)

o2 o2

A\ =

(39)

wherec — a andd — o’ are the means of the normal distribution.

Since the parameters of Noncentral chi-square distributiave no relationship with the
number of points in cellA or cell B, the shape of the distribution of the distances is not
influenced by the points count in the cells.

So, our conclusion is that the square of the distance betva@gntwo points from two
cells follows (can be approximated to) a Noncentral chiasgudistribution. Since the pdf of
a Noncentral chi-square distribution has a closed form Wwhiwolves an infinite sum, the
pdf of the square root of Noncentral chi-square distributean be easily obtained through
Jacobian transformation. SB(d) can be easily worked out. However, such a closed-form is
for an approximated distribution of using the technique presented in Appendix C. It is our
belief, based on the thorough work we have done on this maitar to get a closed form for
the distribution of the distances between the points of #iks ¢s really tough and challenging,

if not impossible to solve, problem.
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