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Abstract The large amount of data generated by sci-

entific applications introduces a great challenge in data

management and storage. Many queries against scien-

tific data are analytical in nature and require superlin-
ear time to process. This paper focuses on an important

query in scientific simulation data analysis – the Spatial

Distance Histogram (SDH). The computation time of
an SDH query using brute force method is quadratic.

Furthermore, such types of queries are often executed

continuously to analyze the simulation system over cer-
tain time periods. This increases the total computa-

tion time of the SDH. We propose an approximate but

highly efficient algorithm to compute SDH over consec-

utive time periods with provable error bounds. The key
idea of our algorithm is to derive statistical distribution

of distances from the spatial and temporal characteris-

tics of particles. Upon organizing the data into a Quad-
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tree based structure, the spatiotemporal characteristics

of particles in each node of the tree are acquired to de-

termine the particles spatial distribution as well as their

temporal locality in consecutive time periods. We also
report our efforts in implementing and optimizing the

above algorithm in Graphics Processing Units (GPUs)

as a means to further improve the efficiency. The accu-
racy and efficiency of the proposed algorithm is backed

by mathematical analysis and results of extensive ex-

periments using data generated from real simulation
studies.

Keywords Scientific databases · spatial distance
histogram · quad-tree · density map · spatiotemporal

locality · GPU

1 Introduction

The advancement of computer simulation systems and
experimental devices has yielded large volume of scien-

tific data. This imposes great strain on the data man-

agement software, in spite of effort made to deal with

such large amount of data using database management
systems (DBMS) [11,18,32]. But the traditional DB-

MSs are built with business applications in mind and

are not suitable for managing the scientific data. There-
fore, there is a need to have another look at the de-

sign of the data management systems. Data in scien-

tific databases is generally accessed through high-level
analytical queries, which are much more complex to

compute in comparison to simple aggregates. Many of

these queries are composed of few frequently used an-

alytical routines which usually take super-linear time
to compute using brute-force methods. Hence, the sci-

entific database systems need to be able to efficiently

handle the computation of such analytical queries. This
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Fig. 1 A snapshot of simulated collagen fiber structure

paper presents our work related to such type of a query

that is very important for the analysis of molecular

simulation (MS) data.

Molecular (or particle) simulations are simulations

of complex physical, chemical or biological structures

done on computers. They are extensively used as a
basic research tool in material sciences, astronomical

physics, biophysics, biomedical sciences, etc. The core

units of these simulations are natural particles (e.g.,
atoms, molecules, etc.) that interact with each other

governed by classical forces. Researchers perform such

simulations to analyze the behavior of natural systems
under experimental framework based on principal the-

oretical models [14,31]. The number of particles in-

volved in MSs is usually large, oftentimes counting mil-

lions. For example, Fig. 1 is a visualization of a section
of a collagen fiber system and this section along con-

tains more than 890,000 atoms. In addition to the large

amount of particles, simulation datasets may consist of
multiple snapshots (called frames) of the system’s state

captured at different time points. Each frame contains

measurements (e.g., spatial coordinates, mass, velocity,
charge) of all particles and big number (e.g., tens of

thousands) of such frames are being stored during a

typical simulation process.

In order to analyze the MS data, scientists compute

complex quantities through which statistical properties

of the data is shown. Often times, queries used in such
analysis count more than one particle as basic unit: such

a function involving all m-tuple subsets of the data is

called an m-body correlation function. One such ana-
lytical query discussed in this paper, is the so called

spatial distance histogram (SDH) [42]. An SDH is the

histogram of distances between all pairs of particles in
the system and it represents a discrete approximation

of the continuous probability distribution of distances

named Radial Distribution Function (RDF). Being one

of the basic building blocks for a series of critical quan-
tities (e.g., total pressure and energy) required to de-

scribe the physical systems, this type of query is very

important in MS databases [14].

1.1 Problem Statement and Notations

The SDH problem can be formally described as fol-

lows: given the coordinates of N particles and a user-

defined distance w, we need to compute the number
of particle-to-particle distances falling into a series of

ranges (named buckets) of width w: [0, w), [w, 2w), . . . ,

[(l− 1)w, lw]. Essentially, the SDH provides an ordered
list of non-negative integersH = (h0, h1, . . . , hl−1), where

each hi(0 ≤ i < l) is the number of distances falling into

the bucket [iw, (i + 1)w). We also use H[i] to denote
hi in this paper. Clearly, the bucket width w (or total

bucket number l) is the only parameter of this type of

problem.

To capture the variations of system states over time,
there is also the need to compute SDH for a large num-

ber of consecutive frames. We denote the count in bucket

i at frame j as Hj [i].
Notations used throughout this paper are listed in

Table 1. If a notation is not shown in this table, it is

used in a local context only.

Table 1 Common notations and their definitions.

Symbol Definition

N total number of particles in data
l total number of histogram buckets
w width of histogram buckets
i an index on histogram buckets
j an index on frames

H[i] counts in the i-th bucket of the SDH
M number of cells in the density map of interest
nA number of particles in a cell A
rA count ratio of a cell A
α probability bound in chi-square test for identi-

fying uniform regions

1.2 Overview of Our Approach.

Previous work [9,42,17] has studied algorithms to com-
pute SDHs. Proved to have low time complexity, such

algorithms, however, are not always practical in that

the running time can still be long under certain con-
ditions.1 In contrast to those, this paper presents a

highly efficient and practical algorithm for process-

ing SDH of large-scale MS data. Our algorithm shows
efficiency that is orders of magnitude higher than exist-

ing solutions under a wide range of query parameters.

On the other hand, the accuracy of query results is

also higher in our algorithm. To achieve the desired effi-
ciency and accuracy, the algorithm mainly takes advan-

tage of the two types of uniformity widely present in MS

1 Details can be found in Section 2.
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data. To further improve the running time of the algo-

rithm, we harness the computational power of modern
massively parallel hardware by implementing and opti-

mizing the proposed algorithm in Graphics Processing

Unites (GPUs).

The first type of data uniformity used by the al-
gorithm refers to the spatial distribution of data

points (e.g., atoms) in MS datasets. We have observed

that systems generated by molecular simulations often
have regions in the simulation space where the data par-

ticles are uniformly distributed. Also, it is well known

that parts of natural systems tend to spread out evenly
in space due to the existence of inter-particle forces

and/or chemical bonds [3,5]. Because of this, there are

many localized regions in the simulation space in which

the particles are uniformly distributed.2 For instance,
Fig. 1 shows that the solvent molecules, represented by

red dots, are uniformly distributed since a body of water

is basically incompressible. Because of this uniformity,
we treat such regions as single entities when computing

SDH. As shown later in this paper, utilizing this type

of uniformity does not introduce significant error to the
accuracy of the algorithm. The main achievement via

exploiting this property is that it makes the running

time of the algorithm independent to the SDH bucket

width w – such dependency (as discussed in Section
2) is the main drawback of existing algorithms. This

technique is presented in more details in Section 4.

The second type of uniformity is about the signifi-

cant temporal similarity among neighboring fra-
mes. We have observed that such similarity is actually

reflected in the final results of the SDH obtained for

neighboring frames. So, given two frames f0 and f1, if
we have already computed the SDH of f0, we can ob-

tain the SDH of f1 by dealing only with the regions that

do not exhibit similarity between the two frames while

ignoring regions that are similar. To take advantage of
such similarities among frames, we design an incremen-

tal algorithm that can quickly compute SDH of a frame

from the SDH of a base frame which was obtained using
traditional single-frame algorithms. Section 5 has more

details on this technique.

Finally, parallel processing is an obvious strategy to

reduce computing time in our problem. As mentioned
earlier, our algorithm takes advantage of the processing

power of the GPUs. GPUs are popular, massively par-

allel systems used in many scientific applications. Be-
cause of their highly parallel structure, they are more

effective than general purpose CPUs especially for al-

gorithms like ours that can process large blocks of data

in parallel. For us, they provide a low-cost and low-

2 This does not make the data system-wise uniform. Oth-
erwise, SDH computation becomes a trivial task.

power platform to improve efficiency as compared to

computer clusters. However, the unique architecture of
GPUs imposes interesting challenges to developing soft-

ware that takes full advantage of the computing power

of GPUs. In this paper, we develop several techniques to
address such challenges. Such techniques are very differ-

ent from those used for optimizing towards CPU-based

systems and generate significant boosts in performance
(and energy efficiency) as compared to straightforward

GPU implementations. More technical details about the

implementation of our algorithm to harness the GPU

power can be found in Section 8.

1.3 Contributions and Paper Organization

We have implemented a composite algorithm combining
the above ideas and tested it on real MS datasets. The

experimental results clearly show the superiority of the

proposed algorithm over previous solutions in both ef-

ficiency and accuracy. For example, with the proposed
algorithm, we are able to compute 11 frames of a 8-

million-atom dataset in less than a second! In addition

to a highly efficient and practical algorithm for SDH
processing, we also believe that our success will open up

new directions in the molecular simulation paradigm.

First, our work builds a solid foundation for solving the
more general and also difficult problem of multi-body

(m-body) correlation function computation [38]. With

a O
(

Nm
)

complexity in nature, such problems can be

addressed by taking advantage of the methodologies we
propose in this paper. Second, the high efficiency of our

algorithm enables on-the-fly MS data processing: data

can be analyzed as they are generated. As a result, we
can integrate our algorithm into the simulation software

such that effective tuning of the simulation process be-

comes feasible.

The major technical contributions of our work pre-

sented in this paper are:

– Techniques to identify spatial uniformity within a
frame and temporal uniformity among consecutive

frames;

– An approximate algorithm to compute the SDH of
large number of data frames by utilizing the above

properties;

– Analytical and empirical evaluation of the above al-
gorithm, especially rigorous analysis of the tradeoff

between performance and guaranteed accuracy of

the algorithm; and

– Implementation of the above algorithms in modern
GPUs to boost performance, with a focus on the op-

timization of such implementations in a GPU pro-

gramming environment.



4 Anand Kumar et al.

The remainder of this paper is organized as follows:

in Section 2 we give an overview of the work done in the
field related to the SDH problem. Then, in Section 3 we

introduce the main concepts and techniques utilized in

our work. Sections 4 and 5 discuss the utilization of the
spatio-temporal properties of the data to enhance the

algorithm. In Section 6 we present an algorithm that

combines both spatial uniformity and temporal locality
properties. Then, in Section 7 the performance (running

time and errors) of the proposed technique in utilizing

the spatio-temporal property of the data is analyzed.

In Section 8 we briefly look at the basic architecture
of the GPUs and their programming paradigms and we

modify our algorithm to map onto the GPU. Section 9

presents the results obtained through extensive experi-
ments. Finally, we conclude this paper with Section 10

in which we also discuss our future work.

2 Comparison to Related Work

The brute-force method for SDH computation calcu-

lates the distances between all the pairs of particles in

the MS system and distributes these distances into the
relevant buckets of the histogram. This method requires

quadratic time. Some of the popular software for ana-

lyzing the MS data, like GROMACS [23], still utilizes
the brute-force method for SDH computation. But, the

current state-of-the-art models for SDH computation

involve methods that treat a cluster of particles as a
single processing unit [42,17]. Space-partitioning trees

(like kd-trees [17]) are often used to represent the sys-

tem, each node of the tree representing one cluster. The

main idea in such approach is to process all the parti-
cles in each node of the tree as a whole. This is an

obvious improvement in terms of time over the brute-

force method which builds the histogram by comput-
ing particle-to-particle distances separately. A Density-

Map based SDH algorithm (DM-SDH) using a quad-

tree data structure is presented in our previous work [42].
It has been proved that the running time for DM-SDH

is Θ(N
3
2 ) for 2D data and Θ(N

5
3 ) for 3D data. We will

go over the main idea of DM-SDH in more detail later

in this paper. Although the DM-SDH algorithm is an
improvement over the brute-force method for SDH com-

putation, it is still not a practical and efficient solution

for the following reasons:

(1) The running time analysis of DM-SDH [42] is done

considering the data sizeN as input (under a certain

bucket width w). Considering the running time as a
function of w, or the total number of buckets l in the

SDH, one can see that the running time increases

dramatically with w decreases (or l increases). As

a result, when w is considerably small, the running

time of the DM-SDH can even be greater than that
of the brute-force method [42]!

(2) DM-SDH only addresses the SDH computation of

a single frame. We mentioned earlier in this paper
how important is the MS data analysis of the sys-

tem over a period of time, i.e. multiple consecutive

frames. In order for DM-SDH algorithm to achieve
such computation over F consecutive frames, one

needs to actually run the same algorithm F times.

This is not quite acceptable, since usually F is on

the order of tens of thousands.

An approximate SDH algorithm (ADM-SDH), with
running time not related to the data size N was also

introduced in [42]. But its running time is influenced

by a guaranteed error bound as well as by the bucket
size w. Like the DM-SDH, it too can only be applied to

a single frame of the MS system. A thorough analysis of

the performance of ADM-SDH is presented in a recent

paper [21]. Under some assumptions, that paper also
derives an error bound of ADM-SDH that is tighter

than the one presented in [42]. We will briefly men-

tion such findings in Section 7.1.2. To remedy the cons
of these two aforementioned algorithms, we direct our

current work in designing a new, improved algorithm

with higher efficiency and accuracy. Furthermore, we
are able to substantially decrease the running time of

the algorithm by implementing and optimizing code in

a GPU programming environment. The end result is a

solution that is both practical and efficient, delivering
very accurate results in a (almost) real-time manner. A

shorter version of this paper can be found in [29].

It is important to note here that the SDH problem
is often confused with the force/potentional fields com-

putation in the MS process [6,19]. In the latter, the

physical properties of a particle are determined by the
forces applied to it by all other particles in the system.

Different approximate algorithms have been introduced

to tackle this problem by making use of the mathemat-

ical features of the formula that defines such forces.
Even though the force/potentional fields computation

has similar definition to the SDH problem, the algo-

rithms used to solve such problem are not useful in
computing the SDH. There is a detailed comparison of

the two problems in [9]. Here, we will just note that the

force field computation is for simulation of a system,
while the SDH computation is for system analysis.

The problem of SDH computation over multiple con-

secutive frames is related to persistent data structures

[10], which allow for various versions of the computa-
tion results to be maintained and updated over time

for quick query processing. Such a structure can be

extended into a multi-dimensional persistent tree (i.e.,
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MP-tree) [40] for searching in spatio-temporal data. Ef-

ficient handling of spatio-temporal data has been mo-
tivated by location based services (such as GIS ap-

plication). Building persistent index schemes on com-

plex spatio-temporal data allows for a time efficient re-
trieval [30]. There has been a detailed survey of appli-

cations made by Kaplan [26] in which persistent data

structures has been used to improve efficiency. Such
structures are designed to resolve the I/O bottleneck

problem. But, the multi-frame SDH problem involves

heavy computation at each instance, overshadowing the

I/O time. Thus, the techniques developed for persistent
data can hardly be used for efficient multi-frame SDH

computation.

Special hardwares fulfill the need of computation
intensive tasks. In recent years, there is strong inter-

est in improving the performance of such tasks using

GPUs [24,28]. These devices were originally designed
for processing graphics, but their computing power can

be utilized for general purpose computing via software

frameworks such as CUDA [34] and OpenCL [27]. A

number of database operators are implemented on GPUs:
relational join processing on GPUs is presented by He

et al. [22] while a number of algorithms for other rela-

tional operators including selections, aggregations [16]
as well as sorting [15] are presented by Govidaraju et

al.. An overview of the GPU techniques is available in

a detailed survey of general purpose computation on
graphics hardware done by Owens et al. [37]. In this

work, we leverage the computing power of the GPUs to

achieve the goal of on-the-fly SDH computation with

guaranteed accuracy.

3 Background

In this section, we introduce the main concepts and ba-
sic techniques presented in existing work [42] but will

serve as a foundation for the proposed algorithm. To

represent the simulation data space we use a concep-
tual data structure we call density map (DM). A DM

divides the simulation space into a grid of equal sized

cells (or regions). A cell is a square in 2D and a cube
in 3D.3 To generate a density map of higher resolution,

we divide each cell of the grid into four equally sized

cells. We use a region quad-tree [36] to organize dif-

ferent density maps of the same data. Each cell of the
DM is represented by a tree node, so a density map is

essentially the collection of all nodes on one level of

the tree. Each node of the tree contains the cell loca-
tion (i.e., coordinates of corner points) as well as the

3 In this paper, we focus on 2D data to elaborate and il-
lustrate the proposed ideas. The extension of our work to 3D
space would be straightforward.

B1

B2
B3

B
A

Fig. 2 Computing minimum (i.e., length of solid lines) and
maximum distance (i.e., length of dashed lines) range between
two cells

number of particles in it. We refer to such a tree as the

Density-Map Tree (DM-tree).
The fundamental part of the DM-SDH algorithm is

a procedure we call ResolveTwoCells. This proce-

dure takes two cells (e.g., A and B in Fig. 2) from a
density map as an input and computes the minimum

and maximum distance (denoted as u and v) between

them in constant time. The main task of this procedure

is to determine whether the two cells are resolvable or
not. We call a pair of cells resolvable if both u and v fall

into the same SDH bucket i. In the case when the two

cells resolve into bucket i, we increment the distance
count of that bucket by nAnB , where nA and nB are

the number of particles in cell A and B, respectively.

In the case of non-resolvable cells, we take one of the
following actions:

(1) Go to the next density map with higher resolution

and resolve all children of A with those of B, or
(2) If it is the leaf-level density map, compute every

distance between particles of A and B and update

the histogram accordingly.

To get the complete SDH of the MS system, the

algorithm executes the ResolveTwoCells procedure

for all pairs of cells on a given density map DMk (the
DM where the diagonal of a cell is smaller than or equal

to the bucket width w). So, basically, the algorithm

calls ResolveTwoCells recursively (i.e., action (1)
above) till it reaches the leaf level of the tree (i.e., ac-

tion (2) above). Via a geometric modeling approach,

we have proved that the time complexity of DM-SDH
is O

(

N
2d−1

d

)

[9], where d is the number of dimensions.

But the more exciting news is that DM-SDH can be

enhanced to approximately compute SDH with a time

complexity of I
(

1
ǫ

)2d−1
, where ǫ is an error bound and I

is the number of pairs of cells in DMk.
4 This algorithm

is named ADM-SDH.
The idea behind the ADM-SDH algorithm is to re-

cursively call ResolveTwoCells only for a predeter-

mined number (m) of levels in the tree. If after vis-
iting the m levels, there are unresolved pairs of cells,

4 There is also a O(N logN) cost for building the Quad-
tree.
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heuristics is being used to greedily distribute distances

into relevant SDH buckets. We will study the heuris-
tics for distance distribution in Section 4. The beauty

of this algorithm is: given a user specified error bound

ǫ, our analytical model can tell what value of m to
choose [42]. Although ADM-SDH is fast in regards to

the data size N , its running time is very sensitive to the

bucket width w. The main reason for this is: when w
decreases by half, we have to start the algorithm from

the next level of the tree. As a result, the number of

cells in the starting level DMk increases by a factor of

2d and I increases by a factor of 22d. Since the SDH
is a discrete approximation of a continuous distribution

of the distances in the MS system, more information is

lost with the increase of w. In practice, scientists pre-
fer smaller values of w so that there are a few hundred

buckets in the SDH. In this paper, we present an ef-

ficient and accurate multi-frame SDH computing
algorithm whose performance is insensitive to

both N and w. This new algorithm uses the same re-

gion quad-tree for data organization as in the DM-SDH

and ADM-SDH algorithms.

4 SDH Computation Based on Spatial

Uniformity

4.1 Algorithm Design

The DM-based algorithms depend heavily on resolving

cells to achieve the desired accuracy. Only when we fin-
ish visiting m levels of the tree or reach the leaf nodes

do we use heuristics to distribute the distances into rel-

evant buckets. That is the main reason for the long
running time. Our idea to remedy that problem is to

greedily distribute distances between very large regions

of the simulation space, even when no pairs of such re-
gions are resolvable. In other words, we use heuristics

for distance distribution as early as possible. However,

the distribution of distances between two large regions

may yield arbitrarily large errors. Therefore, the key
challenge is to design a heuristic with high accuracy

even under large regions.

Our first idea to address the aforementioned chal-
lenge is to take advantage of the spatial distribution

of data points in the cells. As illustrated in Fig. 3: two

cells have a distance range [u, v] that overlaps with three
SDH buckets (i.e., from bucket i to i+2). A critical ob-

servation here is: if we knew the probability distribution

function (PDF) of the point-to-point distances between

cells A and B, we can effectively distribute the actual
number of distances nAnB into the three overlapping

SDH buckets. Specifically, the total number of nAnB

distances will be assigned to the buckets based on the

distance

iw (i+1)w (i+2)w
vu

i
bucket bucket bucket

i+1 i+2

Inter−cell distance range

(i-1)w

distance distribution

Fig. 3 Distance range of non-resolvable cells overlaps with
more than one bucket of the SDH

probability of a distance falling into each bucket ac-

cording to the PDF. For the case in Fig. 3, the relevant

SDH buckets and the number of distances assigned to

them are as follows:

H[i], nAnB

∫ iw

u

g(t)dt (1)

H[i+ 1], nAnB

∫ (i+1)w

iw

g(t)dt (2)

H[i+ 2], nAnB

∫ v

(i+1)w

g(t)dt (3)

where g is the PDF. The biggest advantage of the above

approach is that the errors generated in each distance

count assignment operation can be very low, and the
errors will not be affected by the bucket width w, as

long as the PDF is an accurate description of the un-

derlying distance distribution [8]. Therefore, the main
task of the proposed approach is to derive the PDF.

4.1.1 Methods for deriving the PDF

Note that in the work presented in [42], the distances
are proportionally distributed into the three buckets

based on the overlaps between range [u, v] and the in-

dividual buckets. Such a primitive heuristic, which is

named Prop (short for “proportional”), implicitly as-
sumes that the distance distribution is uniform within

[u, v]. However, our experiments show that a typical

distance distribution in MS data is far from being uni-
form. Hence, our proposed solution will naturally intro-

duce less errors than the Prop heuristics adopted by

ADM-SDH.
In general, the PDF of interest can be obtained by

the spatial distribution of particles in the two relevant

cells. The coordinates of any two particles - one from A

and the other from B - can be modeled as two random
vectors vA and vB , respectively. The distance between

these two particles can also be modeled as a random

variable D, and we have

D = ||vA − vB ||. (4)
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Given that, if we know the PDFs of both vA and vB ,

the PDF of D can be derived via either one of the fol-
lowing two strategies:

(1) generation of a closed-form via analyzing the PDFs

of vA and vB as well as Eq. 4; or

(2) Monte Carlo simulations using the PDFs of vA and
vB as data generation functions.

In practice, it is difficult to get a closed-form PDF
for D even when the particle spatial distributions follow

a simple form. In Section 4.3, we present the results of

our efforts in obtaining such a closed-form PDF for D
under uniformly distributed vA and vB .

Monte Carlo simulations can help us obtain a dis-

crete form of the PDF of the distance distribution, given

the PDFs of the particle spatial distributions [31]. One

important note here is that the method works no matter
what forms the spatial distributions follow. However, to

generate the particle spatial distributions, it is infeasi-

ble to test the MS dataset for all possible data distri-
butions. Instead, we focus on testing if the data follows

the most popular distribution in MS - spatial uniform

distribution.5 As discussed in Section 1.2, natural sys-
tems often contain localized regions with uniformly dis-

tributed components.

4.1.2 Algorithmic details

Given the discussions, our proposed algorithm contains

the following steps:

(1) Identifying uniform regions in which particles are
uniformly distributed;

(2) Deriving the distance distribution PDFs between all

pairs of uniform regions by:
• Mathematical analysis towards a closed-form, or

• Monte Carlo simulations;

(3) Assigning the actual distance counts in such regions

following Eqs. 1– 3.

One technical detail skipped is that we also need
to assign intra-cell distances to the first few buckets of

the SDH, as step(2) only handles inter-cell distances.

In particular, given a cell A with diagonal length of q,
the distances between any two particles in A fall into

the range [0, q], and can be modeled as the following

random variable:

D′ = ||vA − v′

A|| (5)

where v′

A is an independent and identically distributed
variable to vA. Let us further assume the range [0, q]

5 Particle spatial distribution is different from the distribu-
tion of distances between particles.

Q

f+1 f+2 f+4

P

Root

h+1 h+2 h+4

4 cells4 cells

0 4

t 
- 

m
  

le
v
e

ls

t - k
  le

v
e

ls

leaf level  t

tt-m t-k

level  m

level  k

level  0

t-m t-k

Fig. 4 Sub-trees of nodes P and Q with their leaf nodes

overlaps with buckets 0 to j. Then we can follow the
same idea shown in Eqs. 1-3 to assign the distance

counts of cell A into the relevant buckets:

H[0],
nA(nA − 1)

2

∫ w

0

gD′(t)dt (6)

H[1],
nA(nA − 1)

2

∫ 2w

w

gD′(t)dt (7)

· · · · · ·
H[j],

nA(nA − 1)

2

∫ q

(j−1)w

gD′(t)dt (8)

where gD′(t) is the PDF for random variable D′, and
can also be generated by mathematical analysis or ap-

proximated by Monte Carlo simulations.

Finally, to complete the above algorithm, all pairs

of cells containing at least one non-uniform cell, will be
processed using the Prop heuristic – same as in ADM-

SDH. Physical study of molecular systems have shown

that it is normal to see a small number of large uniform

regions covering most of the particles, leaving only a
small fraction of particles in non-uniform regions [3,5].

This is also verified by our experiments using real MS

datasets (Section 9). This translates into high efficiency
of the proposed algorithm. Furthermore, the time com-

plexity of steps (1) and (2) is unrelated to the bucket

size w. The time needed for step (3) is linearly and
negatively related to w.

In the remainder of this section, we present tech-

nical details in implementing the different steps of our

algorithm.
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4.2 Identification of Uniform Regions

The first problem related to this topic is: given a spa-

tial region (represented as a quad-tree node), how do

we test if it is a uniform region? We take advantage
of the chi-square (χ2) goodness-of-fit test to solve this

problem. Here we show how the χ2 test is formulated

and implemented in our model. A brief introduction to
this statistical tool and justification of its applicability

to our problem can be found in Appendix A.

Definition 1 Given a cell Q (i.e., a tree node) in the

DM-tree, we say Q is uniform if its probability value

p in the chi-square goodness-of-fit test against uniform
distribution is greater than a predefined bound α.

To obtain the p-value of a cell, we first need to compute

two values: the χ2 value and the degree of freedom (df)

of that particular cell. Suppose cell Q resides in level

k of the DM-tree (see Fig. 4). We go down the DM-
tree from Q till we reach the leaf level, and define each

leaf-level descendant of Q as a separate category. The

intuition behind the test here is: Q is uniform if each
category contains roughly the same number of particles.

The number of such leaf-level descendants of cell Q is

4t−k, where t is the leaf level number. Therefore, the
df becomes 4t−k − 1. The observed value, Oj , of a cat-

egory j is the actual particle count in that leaf cell.

The expected value, Ej , of a category is computed as

follows:

Ej =
Total Particle Count in Cell Q

# of leaf level descendants of Q
=

nQ

4t−k
(9)

Having computed the observed and expected values of

all categories related to Q, we obtain the χ2 test score
of cell Q through the following equation:

χ2 =
4t−k

∑

j=1

(Oj − Ej)
2

Ej
(10)

Next, we feed these two values, the χ2 and the df , to
the R statistical library [41], which computes the p-

value. We then compare the p-value to a predefined

probability bound α (e.g., 0.05). If p > α, we mark the
cell Q as uniform, otherwise we mark it as non-uniform.

Note that the χ2 test performs poorly when the particle

counts in the cells drop bellow 5 [20]. But, we already
had similar constraint in our algorithm while building

the DM-tree, essentially making the cells in the leaf

level contain more than 4 particles. Hence, we choose

leaf level nodes as the categories in the test.

To find all the uniform regions, we traverse the DM-

tree starting from the root and perform the above χ2

test for each node we visit. However, once a node is

Algorithm MarkTree(node Q, level a)

0 checkUniform(Q, a)
1 if Q is NOT uniform
2 then for each child Bi of cell Q: i := 1 . . . 4
3 MarkTree (Bi, a+ 1)

Procedure checkUniform(node Q, level a)

0 Go to leftmost leaf level (t) descendent of Q
1 for k = 1 to 4t−a

2 χ2 := χ2 + (Ok−Ek)
2

Ek

3 Get pval(χ2) using R library
4 if pval > significance value α
5 then mark Q as uniform
6 else mark Q as not uniform

Fig. 5 Marking uniform regions

marked uniform, there is no need to visit its subtree.

The pseudo code shown in Fig. 5 represents this idea –
to find all uniform regions, we only need to call proce-

dure MarkTree with the root node of the DM-tree as

input.

4.3 Analysis of the PDF

In practice, it is difficult to get a closed-form PDF for

D even when the particle spatial distributions follow a
simple form. There has been some work done in [13]

that addresses one special cases: tackling the distribu-

tion of distance between points within a unit square –
this can be seen as a case of variable D′ shown in Eq.

(5). The distribution of random variable D is also stud-

ied in [2] under the special case that vA andvB are from
two adjacent unit squares. Both work show closed-form

and such formulae can be used in our algorithm. Since

the formulae are complex, we list their results in Ap-

pendix B. To the best of our knowledge, there has not
been any work that achieved derivation of a closed-form

for the general cases.

In this part, we show the results of our efforts in ob-

taining an approximate closed-form for the general case:

finding distance distribution between points in any two

cells. The main claim is: if the data points in cell A and
cell B are uniformly distributed, then the square of the

distance between the two cells’ points can be approxi-

mated by a Noncentral chi-square distribution and
the distribution is not related to the number of points

in cell A or B.

To shed more light on the claim, we take a look
at two randomly chosen cells A and B of same size

(i.e., from the same level of the DM tree). We start by

assuming that the particles in the cells are uniformly
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distributed. Our goal here is to give a representation

of the PDF of the distance between points in such two
cells. Let us choose two random points PA and PB ,

from cell A and B, and denote the coordinates of PA

and PB as (XPA, YPA) and (XPB , YPB), respectively.
The square of the distance D between these two points

can be expressed with the following equation:

D2 = |XPA −XPB |2 + |YPA − YPB |2.

Since the points are chosen randomly, their coordinates

can be regarded as random variables. Furthermore, |XPA−
XPB | and |YPA − YPB | can be viewed as random vari-

ables that follow a triangular distribution. But using

triangular distribution would make the result and the
analysis really hard (if not impossible) to achieve. In or-

der to ease the analysis process we will approximate the

triangular distribution with a normal distribution. So,
naturally, we continue by first figuring out how much

error will be introduced by such approximation. The

following subsection shows that the introduced error is

only 10%.

4.3.1 Approximating Triangular with Normal
distribution

Lemma 1 If X and Y are independent random vari-

ables uniformly distributed on (a, b) and (c, c + b − a),
and c ≥ a, then Y −X is a triangular random variable

and can be regarded as a normal random variable with

total variation distance 0.1.

Proof The probability density of X is

f(x) =
1

b− a
, a < x < b (11)

and the probability density of Y is

g(y) =
1

b− a
, c < y < c+ b− a (12)

There are two cases to be considered: (1) when c is

equal to a; and (2) when c is greater than a.

Case 1 (c = a): The probability density of Y − X

can be calculated as follows

fY−X(z) =

∫ c+b−a

c

f(y − z)g(y)dy (13)

When 0 > z > a−b, the probability density of Y −X
can be computed as follows

fY−X(z) =
b− a+ z

(b− a)2
(14)

c-b c-a c+b-2a

1
b-a

x

Fig. 6 The distribution of Y-X

When 0 < z < b−a, the probability density of Y −X

can be computed as follows

fY−X(z) =
b− a− z

(b− a)2
(15)

Case 2 (c > a):

When c − b < z < c − a, the probability density of

Y −X can be computed as follows

fY−X(z) =
b− c+ z

(b− a)2
(16)

When c− a < z < c+ b− a, the probability density

of Y −X can be computed as follows

fY−X(z) =
c+ b− 2a− z

(b− a)2
(17)

The probability density of Y − X is illustrated in
Figure 6.

Now, let us take a look at a different random vari-

able Q. Assuming Q is a normal random variable with

parameters (c− a, (b−a)2

6 ), the probability density of Q

can be written as follows:

fQ(x) =

√
6e

−6(x−c+a)2

2(b−a)2

√
2π(b− a)

(18)

Let u = x−(c−a)
b−a , then the probability density of Q

can be rewritten as follows

fQ(u) =

√
6e−3u2

√
2π

(19)

Let v = z−(c−a)
b−a .Then, the probability density of

Y −X can be rewritten as follows

fY−X(v) = Min{1 + v, 1− v}, −1 < v < 1 (20)

Now let us study how well the normal distribu-

tion approximates the triangular distribution. Let P

be the triangular distribution with PDF p(x) given by

Eq. (20) and Q is the normal distribution N(0, 1
6 ), the

PDF of which is q(x) =
√
6 exp{−3x2}√

2π
, x ∈ (−∞,+∞).
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Fig. 7 The difference between normal and triangular distri-
butions

Note that the first two moments of the two distribu-
tions are exactly the same: E[P ] = E[Q] = 0, and

var[P ] = var[Q] = 1
6 . Although these indicate the sim-

ilarity between the two distribution, we still want to

quantify how close the two probability measures are.

A natural measure of the difference between the two
probability measures P and Q is the total variation

distance defined as:

V (P,Q) , sup
A∈F

|P (A)− P (A)| = 1

2

∫

R

|p(x)− q(x)|dx,

where F is the σ−field upon which the probability

space is defined. Note that P is absolute continuous

with respect to Q in our case, then we have

V (P,Q) =
1

2

∫

R

∣

∣

∣

∣

p(x)

q(x)
− 1

∣

∣

∣

∣

q(x)dx

Numerical computation shows that V (P,Q) = 0.1012

in this case.

Following the above reasoning, we conclude that we

can use normal distribution instead of triangular distri-

bution, introducing an error of about 10%. ⊓⊔

Using the aforementioned findings, we now regard
the differences |XPA −XPB | and |YPA − YPB | as ran-
dom variables with normal distribution. In the follow-

ing subsection, we continue with the proof of our main
claim. Here we show that the square of the distance

can be viewed as random variable with non-central chi-

squared distribution.

4.3.2 Distance distribution of particles in two cells A

and B

As we know, if XPA and XPB are independent random

variables uniformly distributed on (a, b) and (c, c+b−a)

respectively, (c ≥ a) then XPB−XPA follows a triangu-

lar distribution that we saw can be approximated with
normal, introducing an error of not more than 10%.

Knowing this, XPB − XPA can be regarded as a nor-

mal random variable with parameters (c−a, (b−a)2/6).

Similarly, YPB −YPA can be regarded as a normal ran-

dom variable with parameters (c′−a′, (b−a)2/6). Since
(b − a)2/6 is a constant, which is noted as σ2, we can

write the following equation for the distance D between

the two points PA and PB :

D2

σ2
=

(XPB −XPA)
2

σ2
+

(YPB − YPA)
2

σ2
(21)

As it is known, the right hand side of the above

equation is a Noncentral chi-square distribution. This

means that the distances between the two cells’ points
can be described as a Noncentral chi-square distribution

with the parameters (2, λ), where λ can be defined as

follows:

λ =
(c− a)2

σ2
+

(c′ − a′)2

σ2
(22)

where c−a and c′−a′ are the means of the two normal

distributions.

Note that, since our discussions started with the
only assumption that points in A and B are uniformly

distributed, the parameters of above PDF have no re-

lationship with the actual number of points in cell A or
cell B.

So, our conclusion is that the square of the dis-

tance between any two points from two cells follows

(can be approximated to) a Noncentral chi-square dis-
tribution. Since the PDF of a Noncentral chi-square

distribution has a closed form [12], the PDF of D (i.e.,

the square root of the Noncentral chi-square) can be ob-
tained through Jacobian transformation. However, we

stop here after obtaining the (approximated) PDF of

D2 since it can already be used to guide distance dis-
tributions in our algorithm with minor tweaks. Recall

the scenario in Figure 3: the share of distance counts

that should go into bucket i is now
∫ i2w2

u2 h(t)dt where

h(t) is the PDF of the Noncentral chi-square. The other
buckets can be treated in a similar way.

It is our belief, based on the thorough work we have

done on this matter, that to get an explicit and more ac-
curate closed form for the distribution of the distances

between the points of the cells is a really challenging, if

not impossible to solve, problem.

4.4 Monte Carlo Simulations

The distribution of distances between a pair of cells,

say A and B, can be determined based on their spatial

distribution of particles, by running Monte Carlo sim-
ulations. Monte Carlo simulation is a way to model a

phenomenon that has inherent uncertainty [31]. If the

spatial distributions of particles in A and B are known



Distance Histogram Computation Based on Spatiotemporal Uniformity in Scientific Data 11

to be uniform, the simulations can be done by sam-

pling (say ns) points independently at random from
uniform distributions within the spatial ranges of A and

B. Then, the distance distribution is computed from the

points sampled in both cells. A temporary distance his-
togram can be built for this purpose. All n2

s distances

are computed (brute-force method), and put into buck-

ets of the temporary histogram (e.g., those overlapping
with [u, v] in Fig. 3) accordingly. The final proportions

of each bucket in the temporary histogram will fulfill

our needs in step (3) of the algorithm.

Sufficient number of points are needed to get reason-
ably high accuracy of the SDH generated [8]. The cost

of running such simulations can be high if we were to

perform one simulation for each pair of uniform regions.
This, fortunately, is not the case. First, let us empha-

size that the simulations are not related to the number

of particles (e.g., nA and nB) in the cells of interest
- the purpose is to approximate the PDF of distance

distribution. Second, and most importantly, the same

simulation can be used for multiple pairs of cells in the

same density map, as long as the two cells in such pairs
have the same relative position in space. A simple ex-

ample is shown in Fig. 2: cell pairs (A,B) and (A,B1)

will map to the same range [u, v] and can definitely use
the same PDF. A systematic analysis of such sharing is

presented in following theorem.

Theorem 1 The number of distinct Monte Carlo sim-

ulations performed for all pairs of cells in a density map

of M cells, is O(M).

Proof See Appendix C. ⊓⊔
Theorem 1 says that, for the possible O(M2) pairs

of uniform regions on a density map, there are only
a linear number of simulations that need to be run.

Furthermore, as we will see later (Section 5), the same

cells exist in all the frames of the dataset, therefore, a
simulation run for one frame can be shared among all

frames. Given the above facts, we can create a lookup

table (e.g., hash-based) to store the simulation results
to be shared among different operations when a PDF

is required.

Remark 1 If we were given the PDF of the random vari-

able D and use the integration of the PDF to guide

distance distribution in step (2) of our algorithm, the
number of distinct integrations is also O(M).

5 SDH Computation Based on Temporal

Locality

Another inherent property of the MS is that the parti-

cles often exhibit temporal locality, and such temporal

property can be utilized to compute the SDH of con-

secutive frames even faster. The existence of temporal
locality is mainly due to the physical properties of the

particles in most of the simulation systems. More specif-

ically, such properties can be observed at the following
two levels:

(1) Particles often interact with each other in groups

and move randomly in a very small subregion of the
system;

(2) With particles moving in and out of a cell, the to-

tal number of particles in that cell does not change

much over time.

5.1 Basic Algorithm Design

We discuss the algorithm in terms of only two frames
f0 and f1, although the idea can be extended to an

arbitrary number of frames. Suppose DM-trees T0 and

T1 are built for the two frames f0 and f1, respectively.

Since the DM-trees are built independently from the
data they hold, the number of levels and cells, as well as

the dimensions of corresponding cells in both DM-trees

will be the same. First, an existing algorithm (e.g., DM-
SDH or ADM-SDH) is used to compute the SDH H0

for the base frame f0. Then we copy the SDH of frame

f0 to that of f1, i.e., H1 = H0. The idea is to modify
the initial value of H1 to reach its correct form by only

processing cells that do not show temporal locality.

Let DM0
k and DM1

k be the density maps, at level

k, in their respective DM-trees T0 and T1. We augment
each cell in DM1

k with the ratio of particle count of

that cell in DM1
k to the particle count of the same cell

in DM0
k . A density map that has such ratios is called a

ratio density map (RDM). The next step is to update
the histogram H1 according to the ratios in the RDM.

Let rA and rB (A 6= B) be the density ratios of any two

cells A and B in the RDM, we have two scenarios:

Case 1: rA × rB = 1. In this case, we do not make
any changes to H1. It indicates that the two cells A and

B contributed the same (or similar) distance counts to

the corresponding buckets in both histograms H0 and
H1.

Case 2: rA × rB 6= 1, which indicates that some

changes have to be made to H1. Specifically, we follow

the Prop heuristic, as in ADM-SDH, to proportionally

update the buckets that overlap with the distance range
[u, v]. For example, as shown in Fig. 3, consider the

distance range [u, v] overlapping three buckets i, i + 1,

and i + 2. The buckets and their corresponding count
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Fig. 8 Grouping cells with equal density ratios by sorting the cell ratios in the RDM

updates are given in Eqs. 23– 25.

H1[i],
(

n1
An

1
B − n0

An
0
B

) iw − u

v − u
(23)

H1[i+ 1],
(

n1
An

1
B − n0

An
0
B

) w

v − u
(24)

H1[i+ 2],
(

n1
An

1
B − n0

An
0
B

)v − (i+ 1)w

v − u
(25)

where n0
A and n0

B are counts of particles in cells A and

B, respectively, in density map DM0
k of frame f0. Sim-

ilarly, n1
A and n1

B are counts of particles in correspond-
ing cells of density map DM1

k in frame f1. Note that we

have n1
A = rA ·n0

A and n1
B = rB ·n0

B . The total number

of distances to be updated in the buckets is n1
A × n1

B -
n0
A×n0

B . This actually gives us the number of distances

changed between cells A and B of density map DMk,

going from frame f0 to frame f1.

5.2 Algorithmic Details

An efficient implementation of the above idea requires

all pairs of cells that satisfy the Case 1 condition to
be skipped. In other words, our algorithm should only

process the Case 2 pairs, without even checking

whether the product of two cells is 1.0 (explained
later). The histogram updates can be made efficiently

if cells with equal or similar density ratios are grouped

together. Our idea here is to store all the ratios in the
RDM in a sorted array (Fig. 8). The advantage in sort-

ing is that the sorted list can be used to efficiently find

all pairs of cells with ratio product of 1.0. In other

words, for any cell D with density ratio rD, find the
first cell E and the last cell F in the sorted list with

ratios 1/rD, using binary search. Then, pair cell D with

all other cells except the cells between E and F in the
sorted list. Fig. 8 shows an example of a cell (D1) with

ratio 1.0 – we mark the first cell E1 and the last cell

F1 with ratio of 1.0. Then we pair D1 with rest of the
cells in the list. Take another example of cell (D2) with

ratio 0.2 : we will effectively skip all the cells (E2 to

F2) with ratio 5.0 (as 1/0.2 = 5.0), and start pairing

D2 with those cells that do not have ratio 5.0 (to the
left of E2 and right of F2).

In practice, a tolerance factor ǫ can be introduced

to the Case 1 condition such that the cells with ratio

product within the range of 1.0 ± ǫ are skipped from

the computations. While saving more time by allowing

more cell pairs untouched, the factor ǫ can also intro-
duce extra errors. However, our analysis in Section 7

shows that such errors are negligible. Our experimental

results (Fig. 14(b)) show that there are a large number
of pairs of cells whose density ratio products are around

1.0, thus providing sufficient savings of computation.

Same as in Section 4.1.2, there are also intra-cell

distances to be processed. Again, we assume the cell of

interest has diagonal length q, and the distance range
[0, q] overlaps with buckets 0, 1, . . . , j. If an individual

cell is with an RDM of 1.0, nothing needs to be done.

For those cells whose RDM is not 1.0, the following

rules are used to update the counts.

H1[0],

[

n1
A(n

1
A − 1)

2
− n0

A(n
0
A − 1)

2

]

w

q
(26)

· · · · · ·

H1[j − 1],

[

n1
A(n

1
A − 1)

2
− n0

A(n
0
A − 1)

2

]

w

q
(27)

H1[j],

[

n1
A(n

1
A − 1)

2
− n0

A(n
0
A − 1)

2

]

(j − 1)w

q
(28)

6 Putting Both Ideas Together

The continuous histogram processing is sped up by uti-

lizing both spatial uniformity and temporal locality prop-

erties. An overview of the technique is shown in the flow
diagram of Fig. 9. The left branch (decision A ≡ B) is to

compute the intra-cell distances. In the right branch we

check the locality property of every pair of cells before
checking for uniform distribution of the particles. Any

pair that satisfies the locality property is skipped from

further computations. The pairs that fail the locality
property check are tested for the uniformity property.

Based on the results of the check, subsequent steps are

taken and the histogram buckets are updated.

The Monte Carlo simulation step introduced in our

algorithm is expensive when computing SDH of a se-

quence of frames. As mentioned in Section 4, the cost
can actually spread over when we are processing a se-

quence of frames. It is an interesting fact that the tree

building process is such that a cell in the DMs of same
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Fig. 9 Steps in dealing with two cells of the composite algo-
rithm for computing SDH

level in all frames is of same dimensions. Therefore, a

simulation done once can be reused in all other frames.

Given a pair of cells A and B and their respective
distance range [u, v], we compute the proportions of

distances that map to each bucket covered by [u, v]

through Monte Carlo simulation. For each distinct [u, v]

range, we store such (and only such) proportions of dis-
tance distributions in a universal hash table.

For every pair of uniform cells that do not resolve

and have distance range [u, v], we look into the hash
table to get the proportions to distribute the distances

into buckets. If an entry is available in the hash table,

we use it directly. Otherwise, a new simulation is done
and proportions are calculated. This new simulation in-

formation is stored in the hash table. The hash table

is universal and is used for computing the histogram of
all the frames for a given bucket width.

The same strategy can be followed if we were to

use closed-form PDFs (if available) to determine the

proportions of distances.

To simplify the implementation, one decision we

made was to choose a level k in the DM-tree and pro-

cess cells on that level only (instead of working on
uniform regions on different levels). We need a level

that balances both SDH computation time and the er-

ror – choosing a level close to the leaves may increase

the time, while a level close to the root will introduce

higher errors in the SDH. An important feature of our
algorithm is that the user can choose a level to run

the algorithm according to her tolerance of the errors.

Such choices can be made beforehand by analysis as
discussed in Section 7.1.3. Note that all the cells in the

DM-tree that are uniform are marked before the con-

tinuous SDH processing begins.

The proposed technique is completely based on the
general temporal and spatial uniformity of the data set.

Such cell-wise uniformity is not only observed in MS,

but also in many traditional spatiotemporal database
applications [39]. Hence, it can be applied to very dif-

ferent data sets such as crowd of people and stars in

astronomical studies.

7 Performance Analysis

The performance (running time and errors) of the pro-

posed technique in utilizing the spatio-temporal prop-

erty of the data is analyzed in this section.

7.1 Analysis About Spatial Uniformity

7.1.1 Time analysis

The running time of the algorithm utilizing only the
spatial uniformity property is contributed by the fol-

lowing factors:

(1) Quad tree construction time O(N logN) where N

is the number of particles in simulation;

(2) Identification of uniform regions. This can also be
bounded by O(N logN), as the count in each leaf

node is used for at most logN chi-square tests;

(3) Distribution of distances into buckets; For this, all

pairs of cells on a DM need to be computed - in a
DM with M cells, the time is O(M2).

(4) Monte-Carlo simulations that require O(MTs) time

according to Theorem 1. Here Ts is the time of each
individual simulation.

Theoretically, the first two costs will dominate as
their complexity is related to system sizeN . In practice,

the O(M2) time for factor (3) can dwarf others if we

choose a density map on the lower levels of the quad
tree - M approaches N when the level gets lower. Recall

that this will happen to the ADM-SDH algorithm when

the bucket width w gets smaller. Our following analysis
and experiments will show that M is under control in

our algorithm.

Factor (4) is also worth a special note. Although the

simulation time Ts can be regarded as a constant (as it
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is unrelated to bothN and w), a larger number of points

in the simulation is preferred for better accuracy. Thus,
it is essential to study how many data points we have

to simulate in order to reach desired accuracy. Such

analysis is shown in Section 7.1.2.

7.1.2 Error analysis

Based on the sources, two types of errors are introduced
by utilizing the spatial uniformity feature:

I. error (eu) by pairs of cells that are both uniform,

and
II. error (ea) by those with at lease one non-uniform

cell.

Type I error is basically the simulation error, i.e.,
the expected percentage of distances put into the wrong

buckets when both cells have uniformly distributed data

points. According to the Law of Iterated Logarithm

(LIL) [7], such error is up to the order of
(

Sm

log log Sm

)−1/2
,

where Sm is simulation size. Since we compute the Eu-
clidean distance between two randomly selected points

which are uniformly distributed in the two cells, we have

Sm = n2
s, where ns is the number of points simulated

in each cell. Clearly, the error drops dramatically with
the increases of ns. Considering a scenario where nA

and nB are of the order of 102, the simulation error is

slightly smaller than the order of 10−2. In other words,
we can effectively control the Type I error without suf-

fering from a heavy simulation overhead.

The Type II error is obviously no greater than the

error achieved by the Prop heuristic. It is hard to get
a tight error bound when the distribution of points in

a cell is not uniform. But it is easy to see that the error

for one single distribution using Prop can be arbitrar-

ily large. Unlike the Type I error, error in this category
cannot be controlled. At this point, we can at least con-

clude that, due to the small Type I error, our algorithm

will be more accurate than existing solutions based on
Prop, such as ADM-SDH [42].

An important note here is that our analysis has so

far concentrated on the errors introduced in an indi-

vidual distribution operation (i.e., between one pair of
cells). However, our work [21] has revealed the fact that

errors generated by different pairs of cells can cancel

out, and reduce the error in the whole SDH to a great
extent. We call such a phenomenon error compensation.

In particular, our qualitative study shows that the error

(at the entire SDH level) caused by Prop can be loosely

bounded by 10%. Since this is not a tight bound, we ex-
pect to see much smaller errors in practice, as shown in

our experimental results for the ADM-SDH algorithm

(Section 9.2). For the same reason, the effects of Type I

error can also be reduced by error compensation, mak-

ing the Type I error a negligible quantity.

7.1.3 Error/performance tradeoff

Given the above analysis, we show our algorithm is tun-

able in that the user can choose a level of DM-tree to
get a desired error guarantee. Suppose pu is the frac-

tion of pairs of cells that are uniform on a given level,

the total error ξ produced by our algorithm based on
spatial uniformity is

ξ ≤ eupu + ea(1− pu) (29)

A remark here is: as compared to ADM-SDH that is

based on Prop heuristics, our algorithm shows an ad-

vantage in accuracy: error will be lower by (ea − eu)pu.

From the above equation, we can also solve pu to
obtain a guideline on the level of the DM tree from

which we run the algorithm:

pu ≥ ea − ξ

ea − eu
(30)

In other words, a user will choose to work on a DM
where the fraction of uniform cells is at least

√
pu, in

order to get an error lower than ξ.

One special note about pu is: defined as the frac-

tion of actual uniform cell pairs, pu is smaller than
the percentage of cell pairs marked as uniform by our

algorithm shown in Fig. 5. This is because it is not a

deterministic decision to mark a cell uniform, and cases
of false positive can happen. In marking the cells, the

chance of getting a false positive consists of the ap-

proximation error of the Pearson’s χ2 test statistic [7]

and the probability bound α used in the test. The test

statistic error is up to the order of O
1−ν
ν

t , where ν is

degree of freedom and Ot is the number of observations
in χ2 test. In our environment, Ot tends to be a large

number, as we often see large uniform regions. The α

value is user tunable and usually set around 5%. When
ν is sufficiently large, the error in marking a cell uni-

form is γ = α+ 1/Ot ≈ α. Therefore, if the percentage

of pairs of cells marked uniform by our algorithm is p′u,
we have

pu = (1− γ)2p′u ≈ (1− α)2p′u .

7.2 Analysis About Temporal Locality

7.2.1 Time analysis

The running time is determined by the number of cell

pairs that do not satisfy the temporal locality condition,
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i.e., ratio products are not in the range of 1.0±ǫ. Due to

the sorted list of ratios in the RDM, all cell pairs satis-
fying the above condition are skipped by the algorithm.

Suppose pr is the fraction of such cell pairs, only (1−pr)

pairs of cells need to be processed by the algorithm. The
sorting and searching of the cells can be performed in

O(M logM) time. Hence, the running time of the al-

gorithm is bound by (1 − pr)T + O(M logM) where
T is the time for processing the base frame. In other

words, by utilizing the temporal locality, we achieve a

(1− pr)-factor improvement in running time.

7.2.2 Error analysis

We tackle this by studying the extra errors our algo-

rithm generates for a frame f1 on top of those in the
base frame f0. The error introduced when utilizing the

temporal locality can be categorized based on two cases:

1. temporal locality property is satisfied, and

2. temporal locality property is not satisfied.

Case 1: Error is produced by temporal locality prop-

erty only when the cell pairs satisfy the condition rA ×
rB = 1.0± ǫ. A small error equal to the fraction ǫ is in-

troduced. When the fraction ǫ = 0, there is no change in

the number of distances between the two cells. In both

situations, a negligible error, very hard to compute, is
produced due to small change in position of the points.

The fraction ǫ is negligible when the pairs of cells have

uniformly distributed points in both the frames f0 and
f1. Actually, the small movement of particles has min-

imal effects on the distance distribution.

Case 2: This case will not cause any additional er-
rors. When the temporal locality condition is not satis-

fied for a pair of cells in f1, we update the histograms

as if we are running the algorithm for the base frame

therefore the error will be on the same level as in the
base frame. On the other hand, we do not save any

processing time in such cases.

From the above analysis, we conclude that the error
in the derived frame will be on the same level as that

of the base frame. Note that this conclusion should be

interpreted in a statistical way.

8 SDH Computation on Graphics Processors

In this section, we look at the basic architecture of

the GPUs and their programming paradigms. Then we

modify our algorithm of utilizing spatiotemporal unifor-

mity to map onto the GPU programming environment.
Our discussions, however, will focus on how to optimize

our algorithm in a typical GPU architecture rather than

a straightforward implementation. This is because the

GPU Device

Instruction cache

Register file

Core Core Core

Core Core Core Core

Core

Multi−

ProcessorProcessor

Multi−

64 KB shared memory / L1 cache

L2 CacheMemory
MainCPU

Host

Multi−Processor

Global Memory

Fig. 10 The basic architecture of modern graphics proces-
sors (GPUs)

GPU architecture is very different from that of CPUs

thus code optimization requires special (and sometimes

unintuitive) techniques. For example, the GPU hard-
ware provides a hierarchy of programmable memories

with heterogeneous capacity and performance. For that,

the data can be organized, on these memories, in such

a way that the access latency is minimized. We also
study other possible optimizations to further improve

the performance by using such memory. The complex-

ity of the computations such as, instruction branching
and memory access patterns, affect the advantages of

such special hardware features.

8.1 GPU Architecture

The basic GPU architecture, for both NVIDIA [34] and

AMD [4] products, is illustrated in Fig. 10. The GPU

consists of many multiprocessors that execute instruc-
tions on a number of GPU cores in a SIMD (Single

Instruction Multiple Data) manner at any given clock

cycle. The GPU devices have a considerable amount
of global memory with high bandwidth. For example,

the NVIDIA GTX 570 we used has 15 multiprocessors,

each of which encapsulates 32 GPU cores. It also has

about 1.2 GB of global memory with a bandwidth of 152
GB/s.6 Apart from the global memory, the GPUs have

programmable, very fast cache memory (called shared

memory). This type of memory is on-chip and shared by
all GPU cores in a single multi-processor. Since it is on-

chip the access latency is very low. In contrast to that,

the global memory has high access latency (400 to 800
clock cycles [34]). Therefore, the access pattern should

be optimized to reduce the overall latency caused by

global memory.

6 In high-end cards such as Tesla C2075, the amount of
global memory can reach 6GB.
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A large number of threads can be executed in SIMD

fashion on the GPUs. The major difference between
CPU and GPU threads is that the GPU threads have

low creation and context-switch time. We follow the

terminology of NVIDIA’s compute unified device archi-
tecture (CUDA) [34] to describe the operation of GPU

multiprocessors. A group of threads executing on a mul-

tiprocessor is called block. The blocks are scheduled
dynamically on different multiprocessors. All threads

within a block share all the resources, such as regis-

ters, L1 cache etc., available on the multiprocessor. An

interesting feature of the memory in GPUs is that dif-
ferent threads in a block can read different memory

locations simultaneously. This is achieved only when

threads read consecutive memory locations. The under-
lying hardware groups the consecutive memory access

requests into one access. This process is called coalesced

access. How to fully utilize the available high bandwidth
via coalesced access is another direction for code opti-

mization.

8.2 Minimizing Branches in GPU Kernels

In the computation of SDH, different paths will be

taken by the algorithm to process cells in a density map
(Fig. 9). This causes a major problem in GPU imple-

mentation as conditional branches in the code can sig-

nificantly degrade performance in SIMD architectures

[43,35]. Therefore, the first code optimization strategy
we take is to minimize the number of branches. The first

branch can be easily removed: we process the cases of

intracell computation (A ≡ B) and intercell compu-
tation separately. Note that the intercell computation

is the one that dominates the running time of our al-

gorithm (Section 7.1.1). Thus, we invest most of our
efforts into optimizing such computations.

Processing pairs of cells: We follow the steps after the

first conditional branch shown in the algorithm flow di-
agram (Fig. 9) to process the density map. The steps

have to be followed for each pair of cells. By process-

ing different pairs of cells in parallel, we can achieve
improved performance. The cells of the chosen density

map are placed in the memory such that consecutive

threads can read consecutive cells through coalesced
access mechanism. A pair of cells of the density map,

to be processed, are assigned to a single thread of the

GPU. Each thread processes distinct pair of cells. Each

block (group of threads) executing on a multiprocessor
processes different portions of the density map. Thus,

parallel processing improves the performance of the al-

gorithm.

density map cells

Gj GkGi

Intra−group
pair

Shared Memory Block
On Multi−Processor

Global Memory

Inter−group pair

Fig. 11 Grouping cells in global memory and loading into
shared memory for improving performance

Precomputing Monte-Carlo simulations: When the dis-

tances between a pair of cells have to be distributed into

different buckets, the algorithm has to make such de-
cisions based on Monte Carlo simulations. This causes

the large number of threads to diverge (at the “En-

try found” condition box in Fig. 9), which could hinder
the performance. These divergences can be eliminated

if the simulations are run and their results are stored

in the hash table beforehand. When processing pairs of

cells, we send all requests to such information directly
to the pre-built hash table. This is a feasible plan since

Theorem 1 sates there are only a linear number of sim-

ulations to be run. By this, Monte-Carlo simulations
would not hinder the performance. Section 8.4 explains

details about efficient computation of simulations.

8.3 Memory Optimization and Issues

The speed of memory access can be improved by placing
the cells of the density map in shared memory. Each

thread can access distinct pairs of cells from the shared

memory. One major obstacle in implementing this idea
is the limited size of shared memory. Therefore, we pair

cells by grouping them. Let M be the number of cells in

a density map and shared memory can hold 2MS cells.

We divide the shared memory into two sections, each
holding up to MS cells. With MS as the size for group

of cells, we have Gc = M/MS number of groups out

of M cells of the density map. Each CUDA block can
process two groups of cells in shared memory. Fig. 11

shows the mechanism of processing these groups. First,

the cells belonging to groups Gi and Gj are loaded into
shared memory. One cell is chosen from each group and

paired to process. This is repeated for all cells in Gi

and Gj . Then, the cells within each group are paired

and processed. Next, the second group Gj is evicted
and a new group Gk is brought into the shared memory.

This is repeated for all the groups of the density map

until all the cells are processed. We can easily see that
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Fig. 12 Illustrating bank conflicts in shared memory access
on GPU

such a cell grouping strategy can significantly reduce

the number of global memory accesses.

There are some other issues with the utilization of
shared memory for SDH computation:

– Bank conflicts: The shared memory is organized as

banks in the hardware such that the threads read

different banks in parallel. If threads read different
addresses in the same bank, it gives rise to an access

conflict called bank conflict. An example of bank

conflicts is illustrated in Fig. 12.
– Computation intensive task: The operations of the

algorithm, as shown in Fig. 9, are computation in-

tensive rather than memory access intensive. Once,
the information about cells is accessed, a large num-

ber of operations are performed. This shadows the

latency involved in memory accesses.

– Thread divergence: Even after our efforts to reorga-
nize the workflow in Fig. 9, there are still branches

in the code. Once threads in the same block diverge,

the hardware serializes the processing. But, the par-
allelism between blocks is maintained as they are

assigned to different multiprocessors.

Due to the above issues, thread level parallelism

may not be achieved in all cases. However, parallelism
will be achieved at the multiprocessor level in the worst

case.

8.4 Efficient Simulation

The cells of a density map have fixed dimensions. When
a Monte-Carlo simulation is performed, we generate

fixed number of random points in these cells and com-

pute the distribution of distances between points of two
cells. Such distribution is repeated for all pairs of cells

for which distance distribution is required. However,

according to Theorem 1, total number of actual sim-
ulations to be performed for a given density map is

linear. Hence, the simulations can be performed on the

GPU before the algorithm is executed. We utilize the

shared memory of the multi-processors to optimize the
simulations.

A set of random numbers are generated between

range 0.0 to 1.0 in the shared memory for two cells.

Instead of generating random numbers for every pair

of cells, these are used for all the simulations required
for processing SDH. Given two cells, of a density map,

these random numbers are mapped to the boundaries of

the cells. This operation does not require global device
memory access, as the data is in very fast shared mem-

ory. Each block running on distinct multi-processor of

the GPU can perform this mapping for different pairs
of cells in parallel. The numbers are organized in the

shared memory such that all the accesses belong to dif-

ferent banks.

Thus, the simulations can be performed efficiently
by eliminating bank conflicts. Once we have the sim-

ulations performed, the distance distribution are com-

puted and stored in a hash table. The hash table is
stored in the global memory, due to limited size of the

shared memory that is already occupied by the simu-

lated points. The hash table is then used by the algo-

rithm, eliminating the factors that would affect GPU
performance in performing all need-based simulations.

9 Experimental Evaluations

9.1 Experimental Setup

The proposed continuous SDH computation algorithm

was implemented in C++ programming language and

tested on real MS data sets. The experiments were con-
ducted on an Apple Xserve server with two Intel quad-

core processors and 24 GB of physical memory. The

Xserve was running OS X 10.6 Snow Leopard operating
system. We tested the following algorithms to evaluate

the performance of our approach.

A1: The ADM-SDH algorithm presented in our previ-

ous work [42]. This method processes SDH frame

by frame, and distributes the distances using Prop

exclusively;

A2: The algorithm utilizing only temporal locality to

compute SDH continuously over multiple frames;

A3: The algorithm utilizing only spatial uniformity to
compute SDH frame by frame;

A4: The algorithm utilizing both temporal locality and

spatial uniformity to compute SDH continuously.

The running time of the algorithms on different data

sets are measured for comparison, along with the errors
introduced due to approximation. The errors are com-

puted by comparing the approximate SDH results with

the correct SDH of each frame. The error (in percent-
age) of each frame is calculated as

Perror = 100×
∑l−1

i=0

∣

∣H[i]−H ′[i]
∣

∣

∑l−1
i=0 H[i]
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Fig. 13 Percentage of the area of uniform regions at different
levels of the DM tree

where H[i] and H ′[i] are the correct and approximated
distance counts in bucket i of the histogram, respec-

tively.

Data Sets: Two datasets from different simulation sys-

tems were used for experiments. The first dataset con-
sists of frames captured from a collagen fiber simula-

tion system. The simulated system is made of 890, 000

atoms and their positions are stored in a total number

of 10, 000 frames. The second dataset is collected from
a simulation of cross membrane protein system with

about 8, 000, 000 atoms and 10, 000 frames. We ran-

domly selected a chunk of 100 consecutive frames from
the first dataset and 11 frames from the second dataset

for our experiments. The main bottleneck in testing the

algorithms is computing the correct histogram of the
frames, needed to compute the error. Obtaining correct

histogram is basically running the naive or DM-SDH

algorithm, which is computationally expensive. There-

fore, we could only get the correct histograms of 11
frames from the 8 million dataset (by naive approach

in about 27 days!).

The percentage of cells with uniform data distri-
bution (i.e., uniform regions) at different levels of the

density map tree is shown in Fig. 13. The leaf level of

the tree is not used to determine the uniformity, as very
few particles fall into small cells. For both datasets, we

started to see considerable amount of uniform regions

at level 6 of the tree. Note that level 6 is still at the
higher end of the tree (total number of levels is 9 for

the smaller dataset and 11 for the larger one) and the

total number of cells is only 46 = 4, 096. At level 8,

the percentage of uniform regions is already over 90%.
This confirmed the great potential of using spatial uni-

formity to save time in SDH processing.

We also observed significant temporal similarity a-
mong frames of both datasets. The success of utilizing

the temporal similarity property depends on the total

fraction of cells that exhibit such property. In fact, the
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Fig. 14 Temporal similarity between two consecutive frames
chosen randomly from the dataset of 890K atoms

running time of the technique is affected by the number

of cell pairs (A,B) for which rA×rB = 1±ǫ. Figs. 14(a)

and 14(b) show the density of ratios and ratio products
at each level of the DM-tree in two consecutive frames,

chosen randomly from the dataset of 890, 000 atoms.

For all levels we tested, majority of the cells (cell pairs)
show ratio (ratio product) that is close to 1.0. The num-

ber of cell pairs with ratio product of 1.0 increases as

we descend down the tree.

9.2 Results of CPU Experiments

Main results: The average running time of all the algo-

rithms for different bucket widths is shown in Fig. 15(a)

and 15(c). It can be noted that the running time of A1
can be orders of magnitude longer than our proposed al-

gorithms. The important observation to be made about

algorithm A1 is that the running time increases dra-

matically with the decrease of w (note the logarithmic
scale). Method A2 is similar to A1 but, utilizes tem-

poral locality while working on only one level. When

the bucket width is small, both methods work on lower
tree levels, with small number of atoms in the cells. The

utilization of locality gives scope to save some running

time in A2. Unlike the first two methods, the time spent
by methods A3 and A4 does not change much with the

change of bucket width w. The data size however, lim-

its the levels at which the algorithms work. Changing

levels would affect the running time. The algorithms
run at tree levels 6 and 7 for 890K and 8 million data

set, respectively.7 Such levels are chosen to ensure that

80% of the area is covered by uniform regions (see Fig.
13). We generate 75 points from each of the two cells in

Monte Carlo simulations - this number is chosen based

7 In [29], we run experiments on levels 5 and 6 of these two
datasets, respectively, and very similar results are reported.
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Fig. 15 Comparison of average running time and percentage errors of different algorithms. Both algorithms A3 and A4 process
level 6 of the DM tree. (a)–(b) The results from 890, 000 atom dataset. (c)–(d) Results from 8 million atom dataset

on our empirical results about sufficient simulation size

(Fig. 19). Note that the average running time presented
here have amortized all “start-up” costs including that

for running Monte Carlo simulations and spatial uni-

formity test. The running time for larger bucket width
is close to algorithm A1 and A2. This is because, in

A1 and A2, the processing level is closer to root than

the (fixed) level of tree used in algorithms A3 and A4.
When we choose to have A3 and A4 run on a higher

level, their time will clearly beat A1 and A2, as we have

shown in [29]. The performance of A2 under smaller

bucket width is bad because it works for lower levels of
the tree, and the temporal locality is weak due to the

small number of particles in each cell. For example, if

there are 4 atoms in a cell in the base frame and one
atom moves out of it in the derived frame, the density

ratio is as low as 3/4 = 0.75.

The average errors (in percentage) of each method

are shown in Fig. 15(b) and 15(d) for different values

of w. The errors rendered by A3 and A4 are always
lower than those by method A1. However, the errors of

A2 are slightly higher than A1 for small bucket width.

The number of distances to be distributed between two

cells is very small, as the algorithm works close to leaf
level. Therefore, by utilizing the temporal locality prop-

erty the small errors are added on top of the Prop

method applied for other cell pairs. Although method
A4 is faster than A3, the price for that is an error rate

that is slightly higher, as we expected based on our

analytical results (Section 7.2). However, it provides a
good tradeoff as the improvement of performance is of

larger magnitude than the loss of accuracy. The method

A3 stands clear winner in accuracy of the results. The

distance distribution curve computed by Monte Carlo
simulations diminishes the error that would have been

introduced by heuristically distributing distances as in

A1. The errors in method A1 stay low (still equal to

or higher than other methods) for smaller bucket width

but goes higher under larger w values. The reason be-
ing, proportions for small buckets are almost similar in

all the algorithms. Number of distances that are in the

range of very small buckets are few and therefore their
proportional distribution are not much different. Hence,

the error is low. With the increase of bucket width,

A1 would end up distributing the distances equally in
all the buckets while our methods accurately compute

the proportions of distances that should go into each

bucket. For both datasets, A2 has the same level of er-

rors with those of A1, although the error fluctuates in
the spectrum of different bucket width and tends to be

larger under smaller bucket width. The reason for this,

again, is because A2 works for lower levels of the tree
and the number of particles is small.
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Fig. 16 Time–Error Product (TEP) of different SDH com-
putation algorithms

Deeper insights on the performance/error tradeoff
of different algorithms can help users make justifiable

choices. One way to quantify the performance/error

tradeoff is the product of time and error - an algorithm
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with lower time–error product (TEP) is obviously pre-

ferred. We calculated the TEPs of all tested algorithms
and found that, among all settings and algorithms, A4

stands the winner by producing the smallest TEPs un-

der all bucket widths (Fig. 16), although its advantage
over A3 is very small in the 8-million atom dataset. Al-

gorithm A3 is only second to A4 with slightly higher

TEPs, beating A1 and A2. This clearly shows that A4,
although carries a larger error than A3, can still be a

viable choice – its performance gain overshadows the

loss of accuracy as compared to A3. The gain or loss

in time and error may compensate each other in some
cases, producing similar TEPs. It is user’s choice to pick

either A3 or A4. Again, A2 only shows its advantage

over A1 under larger w values, indicating that using
temporal locality alone is not a viable choice.

Number of simulations: Much time in computation of
the first few frames is spent in performing the simu-

lations to update the hash table entries. In our exper-

iments on the dataset of 890K atoms, the number of
simulations performed for each frame dropped quickly.

In total, 100 frames were processed to compute SDH

using algorithm A3. Fig. 17 shows the distribution of

simulations performed over 100 frames. We can see that
the first frame peaks at 120 simulations. In most of the

other frames, no simulations are performed except for

few frames for which less than 25 simulations are per-
formed. This clearly states that the hash table utilized

in A3 saves running time by reusing the simulations

performed in previous frames.
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Fig. 17 Number of simulations performed per frame to pro-
cess 100 frames together under bucket width of 1450

The resolved pairs of cells eliminate direct compu-

tation of large number of distances, saving simulation
time as well. Fig. 18 shows the number of such distance

computations eliminated in SDH processing with dif-

ferent bucket sizes.

Simulation size: The number of points used in every

Monte Carlo simulation does not affect the SDH results,

as long as sufficient number of points are generated.
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Fig. 18 Distances resolved in SDH computation. Datasets:
D1 - 890K atoms; D2 - 8 million atoms (y-axis has log scale)

The error shown in Fig. 19 does not change when the

number of points in the Monte Carlo simulations goes

beyond 50. Thus, our analysis of the Type I error in
Section 7.1.2 only gives a loose error bound whereas

the actual errors are much lower.
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Fig. 19 Effects of simulation size on SDH error

Using noncentral χ2 distribution: The noncentral χ2

distribution approximation of the distances between two
cells is applied to compare with the Monte-Carlo simu-

lations. Specifically, for each pair of cells, we distribute

the distance counts into the relevant buckets based on
the values obtained from the Cumulative Distribution

Function (CDF) of the noncentral χ2 distribution. Such

values are computed by calling a MATLAB library [33]

and cached into a hash table to avoid repeated compu-
tations (exactly the same as what we did for the Monte

Carlo simulation results). Fig. 20 shows the compar-

ison of errors in the SDH obtained and the running
time. The errors generated by using the CDF of non-

central χ2 are slightly higher than those by the Monte

Carlo simulation. This is expected as we know there is
a systematic error in using the CDF (Lemma 1) while

the Monte Carlo simulations are shown to be very accu-

rate (Section 7.1.2). The simulation-based method also

beats the CDF-based method in efficiency. This is be-
cause the CDF of noncentral χ2 distribution has a very

complex form [25] therefore the time used for numerical

computations in Matlab is non-trivial.
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Fig. 20 Histogram errors and computation time using non-
central χ2 distribution function (CDF) and Monte Carlo sim-
ulation (Sim)

Summary: Computation of SDH based on spatial uni-
formity delivers the significant performance boost over

existing algorithm while generating more accurate re-

sults. The idea of utilizing the temporal locality can
work on top of the spatial uniformity idea to achieve

higher performance and also better performance/accuracy

tradeoffs. This idea by itself did not show clear ad-

vantage, as demonstrated by the bad performance of
A2 under small bucket width. Monte Carlo simulation

should be the choice in making distance distribution

decisions, although the approach based on the CDF of
noncentral χ2 is only marginally worse. The simulation-

based approach generates very little error even when

the simulation size is small, making it a winner over the
CDF-based approach. The advantages of the new algo-

rithm over ADM-SDH become small under large bucket

width, but this does not generate a concern since the

target of the new algorithm is the smaller bucket width,
which is preferred in scientific data analysis.

9.3 Results of GPU Experiments

The GPU versions of the proposed algorithm and ADM-

SDH were implemented under CUDA, version 4.0 [34].

The performance of the algorithms was evaluated on an

NVIDIA GeForce GTX 570 GPU. We report results for
processing the 8-million-atom dataset.

Main results: A comparison of results of different im-
plementations of the proposed algorithm are shown in

Fig. 21, in which we show the performance of process-

ing the first frame only using A3. The running time

on GPU shows the trend similar to that on CPU, but
much faster. The speedup varies with the use of differ-

ent types of memory. When only the global memory is

used, the speedup achieved ranges from 7X to 10.4X.
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Fig. 21 Comparing running time and speedup on GPU us-
ing different memories. MM: host main memory; GM: GPU
global memory; SM: GPU shared memory

The use of shared memory pushes the speedup further
by a factor of 2 (i.e., actual speedup ranges from 14.9X

to 25.8X). The speedup is limited by the random mem-

ory access patterns emerging due to divergence in the

thread computation. The thread divergence also serial-
izes the execution of some of the threads. The size of

the tree nodes that are stored in the memory also af-

fect the access patterns due to bank conflicts in shared
memory.

The huge speedup under small w values is due to

two factors: (1) Parallel processing of the cells in only
one level of the density map tree and (2) Reduced diver-

gence in the threads of each GPU block. Even though

the computations diverge in processing some pairs of

cells, the speedup is achieved by processing on different
multiprocessors. Each multiprocessor has its own dedi-

cated shared memory and does not interfere with other

multiprocessors’ execution.

The separation of simulation and other computa-

tions made the algorithm running time almost constant

for consecutive frame, for fixed bucket width. Fig. 22
shows the processing time of all 10 frames using the A3

algorithm implemented in both CPU and GPU. Em-

ploying the GPUs reduces the computation time of first

frame significantly. Also, all the simulations can be done
within 100ms, significantly reducing their contribution

to the algorithm’s running time. Hence, the SDH can

be computed efficiently in real time.

Energy efficiency: As a side note, the energy efficiency
of the GPU implementations is worth some discussions.

Energy consumption has become a major concern in

database system design [1]. The product of computa-
tion time and active power8 consumed for SDH pro-

8 Active power is the power measured for the entire
database server less the system idle power. It can be viewed
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Fig. 23 Active energy consumption of CPU and GPU im-
plementations of A3 algorithm under different bucket width

cessing define the energy efficiency of the algorithms.
Fig. 23 plots the energy consumed by both CPU and

GPU versions of the A3 algorithm. Although the ac-

tive power consumption of a GPU is a couple of times

higher than that of the CPU (46 watts vs. 17 watts
as we recorded), the efficiency of the GPU algorithms

makes it an energy efficient device for SDH computa-

tion - active energy consumption is 5.39 to 9.13 times
lower for the GPU code using shared memory. Even for

the one that uses only global memory, energy efficiency

is 2.51 to 3.81 times higher. To calculate the total en-
ergy consumption for the whole machine, we have to

add an idle power of 114.5 watts to the active power

readings and that will translate into even larger energy

savings for the GPU implementations.

GPU implementation of ADM-SDH: We also imple-

mented the ADM-SDH algorithm (A1) on the GPU,
and the running time and speedup are shown in Fig. 24.

We can see speedup up to 100 times in cases of small w

as the power used for processing the workload. In our experi-
ments, we use a WattsUp power meter to measure total server
power consumption.

values, and such performance gain diminishes when w

increases. Recall that, in A1, a density map is chosen
for processing such that the cell diagonal length is no

greater than w. As w increases, the density map closer

to root of the tree is selected. This reduces the computa-
tion time in CPU, and in GPU the number of cell pairs

processed in parallel decreases. Hence, we see a trend of

decreasing speedup achieved by the GPU version. We
see a small speedup drop in the GPU algorithm for very

small bucket width. This is mainly because the number

of cell pairs to be processed increases significantly at

the lower level of the tree, increasing the running time.
Note that we only show the results of a GPU implemen-

tation on global memory, since the utilization of shared

memory for ADM-SDH does not further improve the
performance. The reason for that is: ADM-SDH pro-

cesses cells on several levels of the tree (starting from

DMk) therefore we need to pack subtrees instead of sin-
gle cells into shared memory. However, only a part of

each subtree will be used for computation in a random

manner thus it is not efficient.
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Fig. 24 Comparing running time and speedup of ADM-SDH
(A1) on GPU. MM: host main memory (CPU) implementa-
tion; GM: GPU global memory (GPU) implementation

Summary: The GPU versions of our algorithm demon-

strate the great potential of GPUs in large-scale data

analytics. For the SDH problem we tested, speedup over
the single-CPU implementation reaches 25X - that is a

significant improvement of performance. The speedup

decreases under larger bucket width, but it is always
the cases of smaller bucket width that make the SDH

problem difficult. Such diminish of speedup, as well as

the different optimization strategies, however, indicate

that GPU programming is a non-trivial task. Finally,
the combination of GPU’s computing power and effi-

cient algorithm to utilize the spatio-temporal unifor-

mity, delivers very high performance. As a result, we
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are able to analyze scientific simulation data in a real

time manner.

10 Conclusions and Future Work

An efficient approximate solution to the spatial distance

histogram query is provided in this paper. SDH is one

of the very important molecular simulation data anal-
ysis queries that is frequently applied to a collection of

data frames. We use the point region Quad-tree to or-

ganize simulation data as we did in our previous work.

However, the algorithm presented in this work provides
much higher efficiency and accuracy by taking advan-

tage of the data locality and statistical data distribution

properties. The algorithm presented makes it practi-
cally feasible to analyze data of large number of frames

continuously. Its efficiency and accuracy are supported

by mathematical analysis and extensive experimental
results. We have also shown that, through experiments,

utilizing power of modern GPUs gives very significant

improvement in the performance. The scientific data

analysis can be performed in real time by using such
modern hardware systems.

An immediate work of interest is to extend our al-
gorithm to spatial particle distributions other than the

uniform pattern. Another important direction of re-

search would be to study the feasibility of comput-
ing general m-body correlation functions in scientific

databases. Such functions, despite the high scientific

value they carry, have not been thoroughly studied due
to the lack of efficient computing algorithms. We strongly

believe the idea based on spatial uniformity as well as

GPU programming can be extended to m-body corre-

lation function computation. We are in the process of
developing solutions for such problems and hope, with

the success of such development, to enter an exciting

era of computational science endeavours.
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Appendix

A Introduction to χ
2 test

The chi-square test checks if a population is uniformly dis-
tributed over different categories. It essentially tests how close
the observed values are to the expected values of the model
tested. The observed values are the frequencies in categories/classes
of the test sample and the expected values are the frequen-
cies in categories/classes under uniform distribution assump-
tion. The smaller the differences between the observed and
expected values, the bigger the chances that the sample of
data in question follows the claimed distribution. One con-
strain for the χ2 test is that it performs poorly when the
expected values of each category is less then 5 [20]. The χ2

goodness-of-fit test is defined as follows:

Definition 2 The χ2 test is defined for the following hy-
pothesis:

H0: The data are uniformly distributed over categories.
Ha: The data are not uniformly distributed over cate-

gories.
The test statistic(χ2) is defined through the following equa-
tion:

χ2 =
k
∑

i=1

(Oi − Ei)2

Ei

where k is the number of categories, Oi is the observed fre-
quency and Ei is the expected frequency of data in each cat-
egory.

Another value that the χ2 test needs is the degrees of
freedom value, df . The degrees of freedom value is computed
as follows: df = cat − 1, where cat is the number of differ-
ent categories of data we are considering in the test. Once
the chi-square value is computed, one can either look up the
chi-square table or use software to compute p-value. Lastly,
the p-value is compared to α, the significance value. If p > α,
the null hypothesis is not rejected, otherwise, the null hy-
pothesis is rejected. The smaller the significance value α, the
stronger the test is, meaning if p > α, the probability that
the observed distribution is equivalent to the expected one
is higher. Most accepted α values in the scientific world are
0.001, 0.01 and 0.05, signifying that the probability of making
mistake in accepting the null hypothesis is 0.1%, 1% and 5%
respectively.

The validity of χ2 test of the spatial uniformity is sup-
ported by the mutual independence/weak dependence assump-
tion of the distribution of the particles over the localized re-
gions. This may result from the fact that the inter-particle
forces take effect only within a critical distance, negligibly
short compared with the diameter of the localized regions.
Therefore, each particle may be treated as the center of a
ball with the radius of the critical distance. The distribution
of the balls, hence the particles, are mutually independent
over the localized regions.
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B Distance Distribution Within and Between

Two Unit Squares

If two points are randomly and uniformly taken from the same
unit square (i.e., one with lateral length 1), the distribution
of the distance between such two points has the following
probability density function:

f(x) =
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For two points uniformly sampled from two adjacent unit
squares, the distance has the following distribution function:
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C Total Number of Simulations Performed

The density map is organized as a grid of M = n×n cells. We
represent the position of each cell by an ordered pair (x, y),
where x and y are the horizontal and vertical displacements
respectively, of the cell from the top-left corner of the den-
sity map. A cell C with displacements i, j is represented by
C(i, j). The width or side of each cell is denoted by t (see
Fig. 25). We discuss the number of Monte Carlo simulations
performed in a density map through a special feature called
L-shape (Definition. 3). The number of simulations performed
is directly related to the number of distinct L-shapes found
in the density map.

Definition 3 L-shape of two cells A and B, L(A,B), is a
subset of the density map that includes the two end cells
A(xA, yA) and B(xB , yB) and all the cells with positions

(xA + 1, yA), (xA + 2, yA), . . . , (xB , yA) and

(xB , yA + 1), (xB , yA + 2), . . . , (xB , yB − 1)

or the positions

(xA, yA + 1), (xA, yA + 2), . . . , (xA, yB) and

(xA + 1, yB), (xA + 2, yB), . . . , (xB − 1, yB)

A(a ,a )1 2

distmin

dis
tm

ax

O(1,1)

}t}

t

B(b ,b )1 2

a=b -a
1 1

b
=

b
-a

2
2

Fig. 25 Illustration of L-shape L(A,B) of size d(L(A,B)) =
(a, b) in a density map

Without loss of generality we assume xA < xB and yA < yB
in rest of the discussion. It is to be noted that both cells, A
and B, have only one neighbor cell in the L(A,B)-shape.

Definition 4 The size of an L(A,B) shape, which is denoted
as d(L(A,B)), is the ordered pair (a, b) where a is the horizon-
tal distance (counted in number of cells) and b is the vertical
distance between the cells A and B.

Definition 5 Equivalent L-shapes: Let L(A,B) and L(C,D)
be two L-shapes with sizes d(L(A,B)) = (a, b) and d(L(C,D))
= (c, d). Then L(A,B) is equivalent to L(C,D) (i.e,. L(A,B) ≡
L(C,D)) iff (a = c and b = d) or (a = d and b = c).

Lemma 2 L(A,B) ≡ L(C,D) iff the minimum and max-
imum distances between A,B and between C,D are equal.
In other words, L(A,B) ≡ L(C,D) iff distmin,max(A,B) =
distmin,max(C,D).

Proof Consider two L-shapes, L(A,B) and L(C,D) with sizes
d(L(A,B)) = (a, b) and d(L(C,D)) = (c, d).

If L(A,B) ≡ L(C,D) then, by the definition 5, d(L(A,B)) =
d(L(C,D)). Thus, a = c and b = d or a = d and b = c.

Fig. 25 shows maximum distance between cells A and B.

distmax(A,B) =
√

((a+ 1) ∗ t)2 + ((b+ 1) ∗ t)2

=
√

((c+ 1) ∗ t)2 + ((d+ 1) ∗ t)2

= distmax(C,D)

Similarly for the minimum distance between cells A and B,

distmin(A,B) =
√

((a− 1) ∗ t)2 + ((b− 1) ∗ t)2

=
√

((c− 1) ∗ t)2 + ((d− 1) ∗ t)2

= distmin(C,D).

Let two pairs of cell (A,B) and (C,D) have same minimum
and maximum distance between them i.e.,

distmin,max(A,B) = distmin,max(C,D)

or in an equivalent form:

√

((a− 1) ∗ t)2 + ((b− 1) ∗ t)2 =
√

((c− 1) ∗ t)2 + ((d− 1) ∗ t)2
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Table 2 Number of L-shapes for each value of a

a 0 1 2 3 . . . n-2 n-1
# L-shapes n-1 n-1 n-2 n-3 . . . 2 1

The equation holds only if (a = c and b = d) or (a = d and
b = c). Thus, d(L(A,B)) ≡ d(L(C,D)). By definition, if two
L-shapes have same size, they are equivalent. ⊓⊔

Theorem 2 The number of distinct L-shapes (regardless of

position) in a density map with M = n2 cells is n(n+1)

2
− 1.

Proof The form of each L-shape L(A,B) is defined by its
size d(L(A,B)) = (a, b), where 0 ≤ a ≤ n − 1 and 0 ≤ b ≤
n− 1. But, since the L shapes with size (a, b) are equivalent
to the L-shapes with size (b, a) we need only to count the
L-shapes with size (a, b) where b ≥ a and b 6= 0. The number
of such L-shapes for given values of a = 1, 2, . . . n − 1 are
n − 1, n − 2 . . . , 1 respectively. For a = 0 there are n − 1 L-
shapes. Obviously, the total number of all distinct L-shapes

of size (a, b) is n∗(n+1)

2
− 1. ⊓⊔

As the number of distinct Monte Carlo simulations per-
formed in an RDM is equal to the number of distinct L-
shapes, the total number of simulation performed to compute
SDH is bound by O(M).


