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Abstract

Storage of large scientific data, such as molecular dynamics (MD) simulation

measurements, for analysis is a challenging task. The requirements on disk

space, input/output (I/O) and data transfer bandwidth are excessively high

due to the large volume of data generated. Storage of data in compressed

form has been a popular approach to address such issues. In this paper, we

present a lossy compression framework that yields significant performance by

combining the strength of principal component analysis (PCA) and discrete

cosine transform (DCT). Though it is a lossy compression technique, the

effect on analytics performed on decompressed data is very minimal. We show

the effectiveness of the technique by presenting results on real MD simulation

data. The data storage requirement is reduced by a large magnitude while

achieving a compression ratio up to 13. The errors comparable to other

existing techniques are achieved.
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1. Introduction

Large-scale scientific data management has become an important task,

since scientific discoveries are more dependent on storage and analysis of

data than ever before. The explosive growth of scientific data is mainly

driven by two factors. First, the high-performance sensing devices today can

measure and observe natural systems in very high resolution and efficiency.

For example, a typical next-generation sequencer can generate 600GB to 6TB

of genome sequence data over a period of only 2 to 3 days [1]. There are also

non–biological applications where data are abundant – the Large Hadron

Collider 2 generates raw data at a rate of 320MB/sec.

Many scientific disciplines, such as biochemistry [2], astronomy [3], and

material sciences [4], are undergoing a radical change in research methodology

from conducting “wet-bench” experiments to performing computer simula-

tions. As a result, the particle simulations (PS) have seen tremendous effi-

ciency improvements in the last decade. In PS, the system of interest (e.g., a

protein and its environment) is studied as a collection of large number of ba-

sic components (e.g., atoms) whose behavior can be completely described by

classical physics. Often such simulations generate spatio–temporal data that

are in tera to peta bytes in size. With increasing size of data the problem

of efficient storage and transfer persists. This paper addresses these issue in

spatio-temporal data generated from PS applications by proposing effective

data compression techniques.

2http://lhc.web.cern.ch/lhc
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1.1. Motivation

The PS data is obtained from simulation results of a biological, physical

or chemical phenomenon. Figure 1 shows part of a model bilayer system

simulation. In this system, all individual atoms (we use atom and particle

interchangeably) together represent large biological structures. Thus, pro-

viding nano-scopic description of biological process. The simulation consists

of measuring properties such as, 3-D location of the atoms, velocity, charge,

mass etc. at very small intervals of time (pico-seconds). Measurements of all

atoms taken at a time instant, called snapshot (or frame), are stored on to

computer disk. Considering the simulation for few microseconds, the data

generated can easily reach terabytes. Since the simulation is generally done

in large computer clusters (e.g., those in National Center for Supercomputing

Applications), data needs to be transferred to the storage server (e.g., those

in a scientist’s own lab). On the server end, data analytics face bottleneck

due to limited I/O bandwidth. The above facts necessitate the compression

of data for better utilization of the storage devices and network transfer band-

width. The MD and the data management communities have been primarily

focused on the high-performance computing, visualization and simple data

management, thus left the problem of MD data compression inadequately

addressed.

Another property of the simulation data is that the changes of location for

most of the atoms are small as a result of smaller time steps. The researchers

are generally interested in analytical results on MD datasets. Therefore, some

errors in the data due to compression and decompression would not affect

the results of analytics significantly [5].
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Traditionally, as the underlying simulation data contains the location and

speed information of the particles (i.e., atoms), the textual data compression

methods [6, 7], which use dictionary based approaches, are used to compress

the data. The inherent disadvantage of such compression methods for particle

simulation data is twofold:

• The resulting size of the compressed data can still be large, which adds

high cost to I/O and network transfers;

• The compression method has to scan the whole data at once before it

can begin compression.

In addition, the compressed data file can be completely corrupted (which

makes decompression impossible), if one or few data bytes are corrupted or

damaged.

1.2. Contributions

The disadvantage of the simple textual compression method can be over-

come by a combination of different encoding-based compression technique

for MD data as presented by Omletchenko et al. [5]. The technique uses

space-filling curve (SFC) to sort the atom positions from the 3-dimensional

space to a 1-dimensional space, followed by an adaptive and variable length

encoding to achieve the compression. Another method by Meyer et al. [8]

uses principal component analysis (PCA) [9] based method to achieve lossy

compression. These methods do not consider the temporal locality of the

atoms for compression, which leaves a significant amount of redundancy in

the compressed data. We address these problems in this paper by presenting
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Figure 1: A simulated hydrated dipalmitoylphosphatidylcholine bilayer system.

a new compression method for MD data. Our technique is designed to meet

the following four goals.

• High compression ratio and dynamic error control: As the MD

data can easily reach tera to peta bytes in size, a compression method

should provide high compression ratio (> 5), without noticeable er-

rors. In addition, a compression method should allow users to fully

control the errors, so that the compression quality can always meet the

predefined requirements.

• Error tolerance and propagation: Due to possible transmission

errors or any other damage, the compressed data should be highly error

tolerant and largely decompressed even if some data are corrupted. In

addition, the compression method should ensure that the errors do not

propagate across the data frames.

• Random access to compressed data: The compressed data should

be randomly accessible so that the users can randomly access and de-

compress any particular frames without decompressing the whole data

(which is computationally expensive and heavily time consuming).
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• Balanced compression across different dimensions: Because MD

data are recorded in 3-D for both location and speed, the compression

method should ensure that the compression errors are balanced across

all three dimensions, without diminishing the compression quality of

each dimension significantly.

In this paper we focus on reduction of the data size from the perspective

of disk storage and network transfer bandwidth, by achieving high com-

pression ratio. In our framework, the MD data are first transformed, using

PCA (section 3), from the generic 3-D coordinate space to another 3-D eigen

space, with the dimensions sorted in decreasing importance levels in captur-

ing the variance of the atoms’ movements. In the eigen space, the DCT is

applied (section 4) to achieve lossy compression across a window of consecu-

tive frames. The lossy compression does not affect the results of the analytics

that are often executed on molecular simulation data [5, 10, 11, 12]. The com-

bination of the PCA and DCT ensures that our framework can (1) achieve

balanced compression across 3-D coordinate space, (2) realize dynamic error

control and avoid the propagation of the compression errors and data corrup-

tion; and (3) ensure random access to any portion of the data without fully

decompressing the whole data file. Random access to a window of frames,

compressed together, is possible. However, random access to single frame

from each compression window results in decompression of the whole data.

2. Related Work

Popular compression tools like WinZip and Gzip use dictionary based

methods (such as Ziv-Lempel [6]). Statistical methods like Huffman encod-
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ing [13] and arithmetic encoding [7] are used in compression of the multi-

media data. These methods are either suitable for large text data or that

exhibit certain statistical properties. The resulting size of the compressed

data can still be large. Thus adding high cost to I/O and network trans-

fers. There have been efforts to process approximate analytics using random

sampling [10], histograms [11] and wavelets [12]. In these methods, the anal-

ysis is done on the synopses of the data. In wavelets based method, the

wavelet decomposition is applied on the data to obtain compact synopses.

The synopses comprise of a small collection of wavelet coefficients. The focus

was mainly on the efficient data analysis while minimizing the I/O during

execution time.

A number of compression techniques have been proposed for alphanu-

meric data. Some techniques compress each measurement separately [14].

A compression framework formed by composing primitive compression op-

erators is presented by Chen et al. [15]. It considers compression of blocks

of data from one or more measurements. The framework presented is used

to compress the analysis results in a systematic way such that data transfer

over network is efficient. This helps in choosing appropriate plans for data

analysis also. However, these techniques could not achieve high compression

ratios as the underlying encoding techniques are similar to the traditional

techniques. A detailed survey of the traditional data compression techniques

is provided by Salomon et al. [16].

A combination of different encoding-based compression techniques for

molecular dynamics (MD) data is presented by Omletchenko et al. [5]. The

technique presented uses an oct-tree index to sort the atom positions on a
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space-filling curve (SFC). Then, the sorted atom coordinates are encoded

using adaptive and variable length encoding to handle exceptional values.

It is purely an encoding technique that uses spatial locality of the atoms to

achieve compression. Another approach to compression of trajectories and

data management is provided by Essential Dynamics (ED) tool [8]. It is sim-

ilar to compression of data using principal component analysis (PCA) [9].

The data are transformed into an orthogonal space defined by the eigenvec-

tors obtained by diagonalization of the covariance matrix. The size of the

compressed data (and compression ratio) is determined by the number of

selected principal eigenvectors. The trajectory pattern and the number of

eigenvectors determine the error produced in the uncompressed data. The

ED tool does not consider the temporal locality of the atoms for compression.

Hence, the achievable compression is limited by the number of eigenvectors

in the data. In molecular dynamics simulations, most atoms move along a

trajectory of their own that changes very little over time. There is a huge

scope for achieving high compression if this temporal locality is considered.

We attempt to achieve better compression in our approach by considering

the temporal locality.

3. Principal Component Analysis (PCA)

The principal component analysis (PCA) is used to find different direc-

tions, that represent different variances available in the data. In most of the

compression techniques, the variance is useful for encoding. The compression

techniques find frequently appearing values (that can be obtained using vari-

ance) so that those can be encoded using less number of bits, as compared
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to the non-frequent values. In this section we provide a brief overview of the

PCA and explain the intuition behind application of PCA for compression.

Let xt = [xt,1, xt,2, . . . , xt,d]
T ∈ R be the vector of d measurements of parti-

cles (atoms) obtained at time instance t during the simulation process. The

measurements obtained at every time instant add a new row of information

and grow to a t×d matrix Xt = [x1,x2, . . . ,xt]
T ∈ R

t×n. In the MD data, xt

is the column vector of all measurements of single particle at time t. There

are d number of measurements obtained for that particular particle. Such

measurements are made for every particle in the system. In this discussion

we explain by focusing on only one particle.

In the measurements obtained, there exists correlation between the d

dimensions. Capturing these correlations helps to identify the directions in

which maximum variance of the data is observed. The variance information

is used to encode the data (section 5). The correlations can be captured by

principal component analysis (see an example in figure 2). If we project every

point onto a line passing through a direction v1, the error of this projection

is very small. In general, the principal component v1 is defined as below.

Definition 1. : Given a collection of d-dimensional vectors xr = [x1, x2, . . . , xd] ∈

R
d, r = 1, 2, . . . , t, the first principal direction v1 ∈ R

d is the vector that min-

imizes the sum of the squared distances J1(v1) between v1 and the various

xt.

v1 = arg min
‖v1‖=1

J1(v1) (1)

where the squared-error criterion function J1(v1) is given by,

J1(v1) =
t

∑

r=1

‖ v1 − xr ‖
2 (2)
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Figure 2: Principal Component Analysis: Two principal components (marked by thick

lines) in the trajectory of an atom.

The projection of xr on to a line passing through the data mean in the princi-

pal direction is called the principal component, given by yr,1 = vT
1
xr, r =

1, 2, . . . , t.

The principal component can be projected back to get the original data,

i.e., xr. Since ‖ v1 = 1 ‖ the original d-dimensional data is obtained by the

projection x̃r = yr,1v1. However, the reconstruction x̃r is not perfect. There

is loss of some information due to the projection onto a single principal vector

v1. The PCA can produce k ≤ d vectors v1,v2, . . . ,vk such that we can

represent the d-dimensional data in k dimensions by projecting onto the k

principal components (vectors), yt = [vT
1
xr,v

T
2
xr, . . . ,v

T
k xr]

T , r = 1, 2, . . . , t.

The mean squared error between the original and reconstructed data (given

by equation 3) can be minimized by selecting more vectors to project onto.

Perr =
t

∑

r=1

‖ xr − x̃r ‖
2 (3)
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Some Observations:. Following are some observations that can be made about

principal component analysis.

• When k = d, using d number of principal components, the reconstruc-

tion error Perr = 0.

• When the number of principal components k ≪ d, we can represent

the complete data using few dimensions. The storage space required

for these dimensions is less than that required for the original data.

The space and time requirements of estimating PCA depend upon the

time instant t. We partition the data into windows along the time t domain

to compute the PCA faster. The measurements of every particle in the MD

data is partitioned into windows of fixed size. Each window is processed

separately to get the principal components. The principal components are

actually the eigen vectors of XtX
T
t . Different techniques are available to

compute the eigen vectors. Singular value decomposition (also known as

SVD) [9] is one of the efficient ways to compute.

PCA in Spatio-Temporal Data:. The PCA is used as a tool to obtain the

direction of maximum variance in the data. The data is projected onto the

principal components after the analysis. The eigen values e1, e2, . . . , ed and

eigen vectors v1,v2, . . . ,vd are computed from XtX
T
t . The eigen vectors are

sorted in decreasing order to obtain the principal components in the cor-

responding order. The data shows maximum variance along the direction

of component represented by highest eigen value and minimum along the

component of least eigen value. The maximum variance direction gives large

number of frequently occurring values, which can be encoded using small
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number of bits. Thus giving scope for better compression. A lossy com-

pression with controllable error can be performed by applying discrete cosine

transform and other encodings.

4. Discrete Cosine Transform and Particle localization properties

The discrete cosine transform (DCT) is often used in signal and image

processing. Since it has strong energy compaction property, it is often used

in data compression [17]. In this section we give a brief overview of DCT

and intuition behind its use in our work.

The discrete cosine (DCT) transform is similar to the discrete Fourier

transform (DFT). The DCT decomposes the input signal into a number of

coefficients that can be encoded independently. Given an input signal with N

values {x0, x1, . . . , xN−1}, a set of coefficients {X0, X1, . . . , XN} is obtained

by applying the cosine transform (given by equation 4). A few low frequency

components of the DCT capture most of the signal information.

Xk =

N−1
∑

n=0

xncos

[

π

N

(

n +
1

2

)

k

]

, 0 ≤ k ≤ N − 1 (4)

The inverse DCT transform (iDCT) can exactly restore the original signal

values from the coefficients (see equation 5). An interesting property of DCT

is that, the signal can be reconstructed with very minimal error by rounding

or loosing some precision of the DCT coefficients. Rounding off the coef-

ficients (also called quantization) corresponding to certain frequencies gives

many repeating values. The repeating values can be encoded very efficiently

to get compressed data. A compression technique in which no coefficients
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Figure 3: The discrete cosine transform (DCT) of a signal and its inverse.

loose precision gives lossless compression. However, to obtain high compres-

sion ratio, we drop (or quantize) insignificant DCT coefficients. As shown in

Figure 3, the first three coefficients X0, X1, X2 are more significant than the

remaining coefficients. Dropping rest of the coefficients gives the lossy com-

pression of the input signal. The use of DCT for MD data compression has

two major advantages (1) the running time of compression is feasible (i.e.,

O(N log N)); (2) the compression error can be adjusted by encoding desired

number of DCT coefficients, allowing users to control the compression errors.

xk =

N−1
∑

n=0

Xncos

[

π

N

(

n +
1

2

)

k

]

, 0 ≤ k < N − 1 (5)

In the context of MD data we utilize the motion property of the particles

to achieve compression. The movement of an atom is influenced by its inter-

actions with other atoms in the vicinity. The movement can be decomposed

as “slow” or “fast”, each of which is a continuous function with respect to

each atom. The speed and movement of atoms is highly localized in a suf-

ficiently small time simulation. In addition, at any specific time, the atoms

within a small range also have similar movement. The projection of data on

to the principal components gives more number of particles that exhibit the
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locality property. The DCT can perform better with large number of data

points along the principal component. As a combined result, the efficient

encoding can be obtained to save space and achieve high compression ratio.

We try to utilize this property of the atoms to compress the MD data.

5. Compression Framework

In general, the data compression methods can be categorized as either

lossy or lossless. Lossless compression gives the exact copy of the original

data after decompression, whereas the decompression of lossy compressed

data does not. The choice of a particular type of compression is determined

by the type of application that uses the data. In scientific datasets, most of

the analytical results are acceptable within certain error bars. Hence, a lossy

compression technique, with high compression ratio, and control over errors

is a good choice.

The molecular dynamics simulation data is generated in large volumes,

which is stored in single or multiple trajectory files containing time frames.

Each frame is a sequential list of atoms with their positions, velocities, per-

haps forces, masses and types. The data can be very large with up to millions

of atoms and tens of thousands of frames. The disk storage required is min-

imized by applying compression technique explained in this section. In the

following sections we discuss the the basic framework of compression along

with the encoding techniques used. Figure 4 shows the framework of the pro-

posed compression method. Our main theme is to employ PCA to transform

data to another space from which lossy compression can be achieved using

DCT.
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Figure 4: The framework for the compression of particle simulation data.

5.1. Transforming Data to Eigen Space

The measurement values captured during molecular simulation change

over time as the data is stored after each snapshot. The measurements de-

pict changes in certain properties of the atoms in the simulation. As the MD

data is of large volume, we compress a group of snapshots (frames) called

window. The number of frames in the window can be controlled depending

on the availability of computational resources and the level of errors we are

willing to tolerate in the final data. We apply orthogonal linear transfor-

mation to the data using principal component analysis (PCA) [9]. For each

atom (as in Figure 5) we collect its locations across a number of adjacent

frame, f1, f2, . . . , fn, each of which contributes a 3-D location (lx, ly, lz). PCA

transforms data to a new coordinate system (lp, lq, lr) such that the greatest

variance is observed on the first coordinate lp after projection of the data.

The coordinates are ordered in increasing order of the variance of the pro-

jection, which is obtained by ordering the eigen values and corresponding

eigenvectors of the data. The transformation F of given data D, with eigen-
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Figure 5: Intuition behind compression: Performing principal component analysis (PCA)

followed by discrete cosine transform (DCT) on data.

vectors E in increase order of eigen values, using PCA is given by equation

(6).

FT = DTE (6)

The eigen values and eigenvectors can be found from the covariance ma-

trix of the data in the window. The original data D can be obtained back

from the transformation using equation (7).

DT = E−1F (7)

The eigen space transformation aligns the data along eigenvectors based

on the variance observed in the data. By transforming the data to the new

coordinate system (P, Q, R), we can pick few dimensions that represent the

complete data (compressed) while maintaining low errors (in decompressed

data). This is lossy compression. In our approach we transform the data into

new coordinates to obtain the different directions of variance. These direc-

tions are then compressed independently using DCT. Each dimension uses

different DCT parameters based on the degree of variance for compression.

This gives data with minimal loss to achieve better performance of the DCT
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compression (section 5.2).

5.2. Computing DCT of transformed data

The eigen analysis step transforms data into new dimensions [9]. We

encode every dimension (attribute/measure) of the atoms separately. How-

ever, the eigen space transformation is applied to 3D trajectories of each

atom separately. Finally, we apply the DCT [18] on each dimension P, Q, R

of the transformed data. By transforming the data to the new coordinate

system, we are trying to reduce the errors in all dimensions that may occur

in performing the DCT step. This makes recovering DCT coefficients more

accurate during decompression, as the coefficients in the beginning contain

more accurate information. The DCT has been used in compression of mul-

timedia content. It is being used as part of the JPEG image compression

and video compression standard also [19].

The atom localization property is utilized by applying the DCT to a

constant number of adjacent frames, say N . Given a window of size N

(frames), we compress single measurement of every atom individually. The

trajectory of length N is transformed using the DCT as given in equation (4).

The trajectories of all the atoms in the window are transformed similarly.

Now, the DCT data C is quantized to reduce the number of bits required to

store the coefficients. The coefficients can be eliminated by assigning very low

weights to the high frequency components. As a result, the coefficients are

close to 0 value, the quantization step helps in achieving further compression

of the data. Therefore, after all the data is processed, we apply the ZIP

compression on the DCT data. As a lossless compression method, the ZIP

compression removes the redundant information present in the data. It uses
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dictionary based methods to achieve this (e.g. LZ method [6]). This gives

the final compressed data. We discuss the compression ratio and the error

in uncompressed data in experiments section.

The combination of the PCA and DCT ensures that our framework can

(1) achieve balanced compression across 3-D coordination space, (2) realize

dynamic error control and avoid the propagation of the compression errors

and data corruption; and (3) ensure random access to any portion of the

data without fully decompressing the whole data file.

5.3. Decompressing The Data

The original data is obtained back from the compressed data by perform-

ing the operations of Figure 4 in reverse order. First, we unzip the data to

obtained quantized data. Then the quantized data is again de-quantized by

using the same window size W as used during the compression step. Then

inverse DCT is applied (Equation (5)) on the de-quantized data to obtain

eigen space transformed data. Finally, the original trajectories T are ob-

tained by back projection of the principal components. The experimental

results of the proposed compression framework are discussed in section 6.

5.4. Wavelets for Compression

Multi-resolution decomposition is another technique to capture differ-

ent frequencies in the signals. The signal processing literature provides the

wavelet transform tool for multi-resolution analysis. The wavelet transform

is applied to capture different frequencies present in the signal. The trans-

form is applied repeatedly, on the transformed signal, to get all frequencies

present at different resolutions.
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Table 1: The molecular simulation datasets used for the compression experiments.

Data set Description Objects Data size

Protein MD data of protein 286,849 3.8 GB

Fiber MD data of collagen fiber 891,272 6.4 GB

The wavelet transform is reversible, like inverse DCT, to reconstruct the

original signal. The reconstruction can be done to any required resolution

level. The transform is represented as a set of coefficients. At each resolution

the signal is represented in different coefficients. The low energy coefficients

of the transform can be ignored or quantized to achieve compression. This is a

lossy compression technique similar to the DCT based compression discussed

before. Therefore, there is scope for using the discrete wavelet transform or

DWT (wavelet transform for discrete signals) as a replacement to DCT in

our compression technique.

6. Experimental Results and Discussion

The proposed compression technique is tested on real molecular dynam-

ics datasets. We used two different datasets, as shown in table 1, for the

experiments. The protein data set was obtained from a protein MD system

of 286, 849 particles. The collagen fiber data was obtained from another MD

system of 891, 272 particles. These data sets were obtained from snapshots of

real molecular simulations. The complete data set had around 600 frames of

snapshots. The measurements stored in the data are: x, y and z coordinates

of the atoms, charge and mass during the simulation.

The effect of compression on the quality of the data is measured as the

19



Table 2: Compression using PCA and DCT. The compression ratio on different data sets

using window size W = 128.

Data set Data size Compressed size Compression ratio RMSE (Å)

Protein 3.8 GB 293.45 MB 13.26 0.14

Fiber 6.4 GB 535.86 MB 12.23 0.09

error in the final decompressed data. The error is measured as the root mean

square error (RMSE; equation (8)).

Error =

√

√

√

√

1

Na × Nf

Nf
∑

i=1

Na
∑

j=1

{Fc − Fu} (8)

The distance between the original data frame Fu and the compressed data

frame Fc (we call the data obtained after decompression as compressed) is

used to compute the error. Na is the number of atoms in every frame, and

Nf is the total number of frames in the data set. We computed the RMSE

on the locations of the objects present in the system.

The results shown in table 2 explain the performance of the proposed

compression technique. In this method we are able to achieve high compres-

sion ratio. The results shown in table 2 are obtained with a window size of

128. The effect of window size on the compression ratio of the data is shown

in table 3.

The compression of protein data using only DCT gives compression ratio

of about 7.5. A decrease in compression ratio is observed by increasing the

window size. Table 4 shows the effect of window size on the compression ratio.

A balance between the errors and compression ratio is achieved by choosing

window sizes between 32 and 128. The errors obtained in this method are
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Table 3: Effect of window size on compression using PCA and DCT on the protein MD

data.

Window size Compressed data size Compression ratio RMSE (Å)

008 987.61 MB 3.94 0.25

016 603.29 MB 6.45 0.23

032 432.36 MB 9.00 0.21

064 353.75 MB 11.00 0.18

128 293.45 MB 13.26 0.14

256 386.03 MB 10.08 0.09

512 407.46 MB 9.55 0.05

similar to the proposed technique. The error introduced by the proposed

technique in the compressed data are shown in table 3. It can be seen that

the amount of error introduced in the compressed data is small. Choosing a

right window size, therefore, depends on the required compression ratio and

the acceptable error rates.

The compression ratio directly depends on the amount of error that can

be allowed to appear in the final data. The errors can be controlled by

adjusting coefficients that are retained (as explained in section 5) after the

DCT step. The error should increase with the compression ratio. This effect

is observed in our dataset also. The plot shown in Figure 6(a) presents the

relation between the compression ratio and the error. The RMSE increases

as the compression ratio is increased.

The PCA and DCT based compression technique gives better compression

ratio while maintaining low errors in the compressed data. This method is
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Table 4: Compression ratio of the DCT technique using different window sizes.

Window size Compressed data size Compression ratio

008 508.65 MB 7.65

016 518.82 MB 7.50

032 533.04 MB 7.30

064 555.89 MB 7.00

128 595.00 MB 6.54

256 649.61 MB 5.99

512 720.59 MB 5.40

best suited for compression of very large volumes of data, which are common

in the scientific data bases.

6.1. Data Analysis Results

The effect of compression on the data set can also be measured using

the results of analytical queries. We applied some queries, interesting to

researchers, on the decompressed data to measure this effect.

Mean square displacement (MSD). Consider a system with N particles. Let

ri(t) be the location of particle i, of mass mi, at time instant t. The mean

square displacement (MSD) information biophysicists ask frequently is given

by (equation (9)).

MSD(t) =
1

N

N
∑

i=1

|ri(t) − ri(0)|2 (9)

The proposed compression technique introduces very small error in the

MSD. The plot of figure 6(b) shows the root mean square displacement of
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Figure 6: (a) Relation between the compression ratio and the error in compressed data.

Average RMSE (in Å) is plotted against the compression ratio. Window size of 128 is

chosen for compression (b) Effect of compression on the root mean square displacement

(RMSD in Å) between original and decompressed frames.

the compressed frame from the original frame. A very small peak in the plot

indicates the start of a new window used for the compression. Window size

of 128 frames was used for the particular experiment.

Mass center (MC). Another information of interest to biophysicists is the

mass center of the system at any given time instant. The mass center of the

system at any time instant is given as in equation (10). Figure 7(a) shows

the effect on the mass center R(t) of the particle space at a given time instant

t. It can be seen that the displacement in the mass center is very small. The

small fluctuations in the plot are the effects of DCT coefficient quantization.

This shows that the proposed method performs well in the compression and

decompression of the simulation data.
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R(t) =

∑N

i=1
miri(t)

∑N

i=1
mi

(10)
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Figure 7: Effect of compression: (a) On center of mass (in Å). The difference between

actual and decompressed mass centers is plotted. (b) On radial distribution function

(RDF). Shell resolution δr = 0.025Å and window size of 128 frames was used.

Radial distribution function (RDF). The main motivation behind the pro-

posed compression approach is to demonstrate the minimal effect on the

analytical queries. We observed this behavior in the experimental results on

radial distribution function (RDF [20]). The RDF is defined as in equation

(11).

g(r) =
N(r)

4πr2δrρ
(11)

where N(r) is the number of atoms in the shell between r and r+δr around

any particle, ρ is the average density of particles in the whole system, and

4πr2δr is the volume of the shell. The RDF can be viewed as a normalized
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spatial distance histogram (SDH [21]). The SDH is a fundamental tool in

the validation and analysis of particle simulation data.

Figure 7(b) shows that the RDF is not much affected by the compression.

The figure shows the beginning part of the RDF plot. The RDF values in

the compressed and decompressed data are almost same for shell resolution

r > 0.025Å. This shows that the error introduced by the compression in the

RDF of the frames is minimal. Hence, the proposed technique is suited for

compression of the molecular simulation data.

6.2. Discussion

The temporal locality of the atoms found in the trajectories is better

utilized in the proposed compression technique, achieving high compression

ratio. The PCA transforms the data into eigen space such that the encod-

ing of the DCT coefficients along the eigenvectors gives better performance.

Therefore, the proposed compression technique gives high compression ratio,

with acceptable errors, as compared to the DCT-only compression technique

(table 3). Moreover, the error rate in our method is acceptable, as specific

values of atoms are of no interest to the researchers. Instead, the results

of analytical queries on the complete dataset are of interest, which are not

affected.

As mentioned in the earlier sections, considering the temporal locality of

the atoms gives high compression ratios, which is not possible to achieve by

using combination of different encoding methods [5] or only the PCA [8, 9].

The compression ratio achieved using the space-filling curve (by Omeltchenko

et al. [5]) is limited by the encoding method applied and the volume of the

boxes that enclose the atoms to map them onto the curve. As no errors due
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to volume of the SFC boxes are reported by Omeltchenko et al. [5], a direct

comparison of our method cannot be made.

Compression with PCA only. For comparison purposes we used the PCA–

only technique to measure the compression ratio on the protein dataset (table

1). Only top two eigen vectors were used to compress the data. A com-

pression ratio of about 4.5 was achieved while producing maximum average

RMSE in a dimension of about 1.2 and minimum of 0.07. The huge dif-

ference in error on different dimensions is an inherent feature of PCA, only

the more important dimensions are kept correct. To compare our method

with the PCA-only method, we combined the errors in all three dimensions

together by calculating the displacement of the original particle from the

decompressed coordinates. We measured a displacement of 0.9 in 3D space

in the PCA-only experiments. The compression ratio obtained with this

approach was about 5. However, our compression technique gives a displace-

ment of about 0.05. It can also be observed that the proposed technique

achieves good compression ratio while producing similar (or smaller) errors

in the data.

One coarse way to compress data is by down sampling. Some of the

frames, chosen randomly, from the data set are dropped to get the com-

pressed data. The number of such random frames chosen is proportional to

the compression ratio required. The major disadvantage of this approach

is the significant loss of dynamics of the particles of the simulation system.

Therefore, down sampling of the MD data is not feasible.

Compression of other measurements. The simulation data may also contain

measurements such as charge, mass and velocity of the particles at a given
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time instant. The charge and mass values do not change or change very

rarely in a simulation. Hence, any encoding technique (dictionary based)

can be applied to achieve high compression. The velocity values also exhibit

the change patterns as that of position values. Velocity values differ by

small fractions in short time intervals (i.e., close frames). Therefore, the

proposed compression technique can also be applied to store the velocity

measurements.

Algorithmic complexity. The algorithmic time complexity to compress a data

of N atoms and F frames using space-filling curves [5] is O(NF log(NF )).

The complexity to compress, with window size W , using proposed method

is O(NFW 2 + NF log W ). The PCA is computed for trajectory of every

atom, which requires O(FW 2) operations. For N data points, the fast DCT

transformation can be done in O(N log N) operations [22]. In our approach,

DCT has to be performed for each particle over W frames. Therefore, it can

be computed in O(NF log W ) time. The window size W is always a small

constant. As a result, the computational overhead is not significant.

7. Conclusions and Future Work

A lossy compression technique for storage of large volumes of molecular

simulation data is presented in this paper. The proposed technique uses

eigen space transformation (using PCA) and DCT to compress the data.

Compression ratio of about 13 is achieved using the proposed technique. A

comparison of the DCT and PCA based compression techniques is made to

analyze the feasibility and select appropriate steps for the compression.
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The proposed technique exploits the temporal locality of the atoms to

achieve good compression and hence is able to achieve very high degree of

space utilization. The achieved compression can be used to satisfy the re-

quirements of disk I/O and network bandwidth for the high volume of molec-

ular simulation data.

A future direction of research would be to analyze the effects of compres-

sion ratio and the error bounds on the quality of the analytical results on

the decompressed data. Some of the problems that need to be addressed in

future are:

• The compression and decompression are computationally intensive tasks.

Hence, measurements on the compressed data directly (without decom-

pression) would be one of the interesting problems.

• Accessing every frame randomly without decompressing all frames from

a compressed window of data.

• Need for an efficient encoding technique, in place of ZIP used here, to

utilize the correlation between different trajectories.

• Data mining to find patterns of interest in the trajectories.

As an initial work in the topic of simulation data compression, the findings

that we reported in this paper will definitely lead to abundant research efforts.
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