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Power Modeling in Database Management Systems

Data centers consume large amounts of energy. Since databases form one of the main energy sinks in a typical data center,
building energy-aware database systems has become an active research topic recently. The quantification of the energy cost of
database systems is an important task in designing such systems. In this paper, we report our recent efforts on this topic, with
a focus on the power estimation of query plans during query optimization. We start from a series of physical models designed
for evaluating power cost of individual relational operators, and use such models as a basis for a complex model for individual
queries. Key parameters of the power model are generated by using linear regression tools upon running experiments with
simple workloads in a static environment. To further improve the above model to make it work under system dynamics
and fluctuations of workload characteristics, we develop anonline model estimation scheme over the static model based
on advanced modeling techniques adopted from the control engineering field. Our solution can effectively tune the model
parameters at runtime to reach high accuracy in power estimation. The models are implemented in the PostgreSQL kernel
and evaluated with a comprehensive set of experimental workloads generated from multiple TPC and scientific database
benchmarks.

1. INTRODUCTION

Data centers, which host a lot of the world’s computing resources, have been lambasted as the
“SUVs of the tech world” for their enormous consumption of energy. A recent survey [Kurp 2008]
shows that, in 2006, data centers in the U.S. alone consumed 61 billion kilowatt hours (kWh) of en-
ergy, which is about 1.5% of all electricity produced by the country. Meanwhile, the energy demand
of data centers grows at a rate of 12% per year, leading to approximately 100 billion kWh of energy
used in year 2011 - this translates into an annual electricity cost of $7.4 billion [Harizopoulos et al.
2009]. The situation in Japan is even more serious – roughly 5% of the nation’s total electricity
consumption is accounted for by its IT industry and this number is expected to reach 20% in 2025
[Hayamizu et al. 2011]! Naturally, energy consumption becomes one of the main optimization goals
in data center design and maintenance.

Recently, energy conservation has attracted much attention from the database community, as
database management systems (DBMSs) and their applications are found to be the main consumers
of energy in a typical data center [Poess and Nambiar 2008]. Acommon theme in this research
area is to design database systems with energy consumption as a first-class performance goal, as
advocated by the Claremont report [Agrawal et al. 2009]. Current work in energy-aware DBMS has
focused on energy-aware query optimization that considerstime performance and energy usage as
the target [Lang et al. 2011; Xu et al. 2010], and power management policies in distributed databases
[Berl et al. 2010; Poess et al. 2010]. This paper reports our work on another key issue in the design
and implementation of energy-aware DBMSs that has so far attracted less attention – modeling the
energy cost of database systems.

We believe energy cost estimation in databases carries hightechnical significance and can be per-
formed at two levels. At the single query level, the energy cost of alternative query execution plans
is indispensable in making decisions related to query optimization [Lang et al. 2011; Xu et al. 2010]
and query rescheduling [Lang and Patel 2009] in energy-aware DBMSs. An important approach
to capture the power-saving opportunities in energy-awareDBMSs is to find query plans with low
power cost during query optimization [Xu et al. 2010; Lang etal. 2011]. For that purpose, a query
plan is explicitly evaluated by both its (estimated) energyconsumption and performance. In such a
scheme, accurate energy estimation is critical in ensuringthe effectiveness of query optimization.
At the database server or even the data center level, estimating the energy consumption of a work-
load is an essential part of runtime resource management toward energy conservation, especially for
systems running on virtual resources [Kansal et al. 2010]. In general, power/energy estimation is
known to be a critical component in any energy-aware computing system. The paradigm of adjust-
ing hardware/software configurations at runtime to save energy is generally called dynamic power
management (DPM). According to [Irani et al. 2005], all DPM policies can be divided into two
groups:predictive schemesandstochastic schemes. For both cases, mechanisms to quantify system
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energy consumption are needed. In this paper, we report results of our explorations inenergy cost
estimation in databases, with a focus on the power estimation of query plans within the DBMS. A
salient feature of our power model is that it works under system/environmental dynamics by auto-
matically adjusting its parameters following control-theoretic techniques. We believe that such work
is required for energy-aware query optimization, and it will also build the foundation for predicting
power consumption of database workloads at the system level.

Our work focuses onpowercost instead ofenergycost for two reasons. First, power itself has
been regarded as a primary optimization goal in data center design. Due to the high density of
servers in a data center, each rack is often assigned a power budget and violation of this budget ren-
ders costly business downtime. On the other hand, low power generally translates into low energy
consumption. Current studies [Xu et al. 2010; Lang et al. 2011] have shown that in databases there
are many query plans that require much less power with the cost of little performance degradation.
Therefore, energy conservation can be achieved by harnessing such query plans. Furthermore, en-
ergy consumption of cooling systems decreases when system runs in low-power modes. A recent
study [Ahmad and Vijaykumar 2010] indicates that for every watt saved from powering the servers,
at least another half a watt can be saved from the cooling systems. Second, energy cost of a task
can be easily obtained from its power cost and running time (i.e., energy = power× time). Note
that running time estimation is a classic problem in query optimization [Chaudhuri 1998]. Existing
solutions to that problem can be integrated with our work on power modeling to estimate energy
consumption of database systems. By focusing on power in this work, we can effectively isolate the
errors generated by our power estimation models from those inherited from time estimation by the
existing query optimizer.

In this paper, we design and evaluate a two-level framework that provides accurate and robust es-
timations of database power consumption. We first introducea physical model to estimate the power
consumption of queries running in a database server. We build such a model from low-level mod-
els that describe the power consumption of relational operators via studying the hardware resource
consumption patterns of operator processing algorithms. Parameters of such models are derived
from a training query workload using classic regression tools. Such models show high accuracy in
predicting query power consumption when dealing with simple workloads running under a stable
computing environment. However, the value of the key parameters (e.g., number of watts to process
an indexed tuple) of the model depends on system state (e.g.,CPU utilization) and workload statis-
tics (e.g., table cardinality, query arrival rate, etc.). To further improve the static model by making
it adaptable to environmental and workload dynamics, we useanonline model estimationmethod
that uses a Recursive Least Square (RLS) estimator to periodically update the model parameters.

We implement and evaluate our power models in the PostgreSQLsystem. For that purpose, we
develop a workload engine that produces training/testing workloads and datasets derived from var-
ious TPC and scientific database benchmarks. We validate ourmodels using a comprehensive set
of workloads generated from that engine by comparing power predictions (provided by our model)
with real power measurements (using power meters). Experimental results show that our model
estimates power consumption of query plans with high accuracy. As an exploratory study of this
important topic of query energy quantification in DBMSs, ourwork focuses on power estimation
for query plan evaluation and the results are tested in a single database server. Despite such limita-
tions, we believe this work provides a general methodology that can be applied to a wide range of
scenarios such as power estimation in database servers withdifferent configurations or in systems
of different scales (e.g., at server rack or entire data center level).

1.1. Problem Statement

The problem that we aim to solve is to build a powerful model that can predict the power cost of
query plans in a database system. To be more specific, given a query plan, we are to quantify the
total power consumption of the server if that plan is executed. We emphasize that such model should
possess the following features:
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- Accuracy: the model should provide accurate prediction of power consumption;
- Robustness: the model should maintain high accuracy regardless of fluctuations of system states
and workload characteristics;

- Fast Response: the computational overhead of updating the model should beminimal to ensure
fast response to system/workload dynamics; and

- Non-disruptive: the implementation of the model should not interfere with the normal operations
of the DBMS.

Among the three, accuracy and robustness are obviously the key requirements, and are thus the main
metrics for evaluating our models in this paper.

1.2. Contributions and Paper Organization

The database research community has just started to realizethe importance of modeling
power/energy consumption of query processing in DBMSs. Thefew reported studies on this topic
have either focused on high level ideas [Lang et al. 2011] or individual aspects of database power
modeling.1 In this paper, we introduce a systematic solution with all required properties mentioned
in Section 1.1. Our long-term vision is to provide useful tools and information that can help in set-
ting up DPM policies and system performance analysis regarding energy conservation. The main
technical contributions of this paper are:

- We develop a general power model for DBMS queries based on the fact thatpower consumption
is directly related to the amount of work. This fact, revealed by our extensive experiments, is
different from common belief.

- We develop physical models for evaluating the power costs of relational operators in a static
environment. Such models can serve as the basis of more sophisticated models that handle sys-
tem/workload dynamics;

- We propose an online model estimation method to automatically adjust parameters in the physical
models to achieve high estimation accuracy in a dynamic environment;

- We implement our model in the kernel of a real DBMS, and evaluate it on a physical testbed
using a comprehensive set of workloads generated from multiple TPC benchmarks and scientific
database traces.

The remainder of this paper is organized as follows: we first compare our work with relevant
reports in similar topics in Section 2; we then provide an overview of our approach in Section 3; we
describe the technical details of our static power estimation models in Section 4; we present empir-
ical evaluations of such models and discuss their limitations in Section 5; we present online model
estimation method to extend the applicability of the model and evaluate it with various experiments
in Section 6; finally, we conclude the paper in Section 7.

2. RELATED WORK

Green (energy-efficient) database systems.Work in energy-efficient database systems can be
traced back to the early 1990’s. In [Alonso and Ganguly 1992], query optimization with energy as
the performance criterion is proposed within the context ofmobile databases. It is unclear whether
the vision proposed in that work has been implemented and evaluated in any real-world systems.
In this paper, we are interested in power consumption of servers connected to the power grid, and
this is a relatively new research arena in databases. Motivated by the increasing energy-related costs
of database servers, the database community has only recently identified building energy-efficient
database systems as an important direction of exploration [Agrawal et al. 2009]. Authors of two ar-
ticles [Graefe 2008; Harizopoulos et al. 2009] share a wide range of high-level ideas on how energy
efficiency can be improved in databases. Both emphasize query optimization with energy as the
target – this implicitly argues for a mechanism for estimating the energy cost of a query plan. More

1 A detailed comparison to such work can be found in Section 2.
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concrete work following the path of energy-aware DBMS has also been reported. Supported by
initial experimental results, [Lang and Patel 2009] presents two specific techniques to save energy
in databases: controlling CPU frequency and re-schedulinguser queries. In comparison to [Lang
and Patel 2009], Xu and co-workers [Xu et al. 2010] design a systematic framework for energy
reduction (while ensuring acceptable performance) insidea DBMS kernel. Their experiments us-
ing TPC workloads reveal the existence of many energy-efficient query plans that carry minimum
performance penalty. To harness such energy-saving opportunities, they propose a cost model for
evaluating query plans by both the (time) performance and energy consumption. By showing that
plans of high energy efficiency coincides with those of high performance in different database envi-
ronments, a subsequent report [Tsirogiannis et al. 2010] stirs up interesting discussions on whether
energy-aware query optimization is a worthwhile approach towards green databases. Our opinion is
that, when the search space is sufficiently big, we will find energy-efficient plans that most likely
will be ignored by existing query optimizers. This standpoint is supported by more recent evidence
provided by [Lang et al. 2011] and [Kunjir et al. 2012]. More details can be found in a short survey
regarding energy-aware databases [Wang et al. 2011].

Other related research in green databases diverge to several directions. Poess and Nambiar [Poess
and Nambiar 2008; 2010; 2011] report extensive experimental results on power consumption pat-
terns in typical commercial database servers. Based on those results, they provide suggestions on
how to make database systems energy efficient with a focus more on utilizing new hardware systems
than re-implementing the DBMS kernel. Energy-related datamanagement benchmarks are also de-
veloped: the Transaction Performance Council (TPC) officially announced TPC-Energy [Poess et al.
2010] in 2007 while another work [Rivoire et al. 2007] presents a benchmark for evaluating the en-
ergy efficiency of various sorting algorithms.

Modeling power in databases.It is worth noticing that power/energy modeling has been ad-
dressed in some of the work mentioned above. As a position paper, [Lang et al. 2011] proposes a
general formula for quantifying power cost of a query plan. We explicitly use that as a starting point
for our physical modeling process and perform a systematic study with extensive experiments. Fur-
thermore, our experiments reveal the important fact that power is directly related to the number of
database operations in a plan (instead of the density of suchoperations in time) therefore we quickly
adopt a new physical model. Part of the aforementioned project in power-aware query optimization
[Xu et al. 2010] is close in spirit to our work by presenting a model based on power estimation of
basic database operations. Estimation error is not a main focus in [Xu et al. 2010] and therefore
modeling is done in a straightforward way. Our work significantly improves the idea presented in
[Xu et al. 2010] for the purpose of developing a practical framework for database power estimation
and explores methodologies that are fundamentally different. First, the approach adopted in [Xu
et al. 2010] is exclusively based on linear regression of experimental observations. In comparison,
our method is built on the synergistic values of both physical and statistical (regression) models.
Second, aiming at a robust solution that delivers high accuracy in realistic database environment,
we use a dynamic modeling approach to continuously update key parameters of our model such that
it adapts quickly to dynamics in the system and workload. Other technical differences/improvements
also exist and we will mention those in the following sections. Another project [Rodriguez-Martinez
et al. 2011] follows the same technical path as in [Xu et al. 2010] in modeling the peak power of
database operations. However, the scope of their work is limited to only selection (scanning) oper-
ations while we deal with a more complete set of relational operators. More comprehensive results
in modeling peak power of databases can be found in a recent work [Kunjir et al. 2012]. As peak
power and average power (we are interested in) are very different concepts, the modeling processes
(and apparently the models) are also different. For example, they perform an elegant analysis of the
pipeline structure of query plans to identify the sources ofpeak power consumption and recommend
plans with low peak power. Our modeling process, on the otherhand, is based on a quantification of
the total amount of “work” to be done in a plan. Again, only static models are introduced in [Kunjir
et al. 2012] therefore it is not clear if their model handles system fluctuations or query interactions
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in a composite workload. Another related work [Poess and Nambiar 2011] is concerned with esti-
mating power consumption of industrial servers, as part of the TPC-C and TPC-Energy benchmark.
It uses a pure physical modeling approach – the idea is to aggregate the peak power of hardware
components in such systems.

Other related work.There are numerous reports on DPMs at the operating system level, and many
DPM techniques are summarized in a survey [Benini et al. 2000]. [Karlin et al. 1990] presents ran-
domized online algorithms for spin-block and snoopy-caching problems, which we apply to our dy-
namic modeling problem here in this paper. [Paleologo et al.1998] introduces a finite-state, abstract
system model for power-managed systems using Markov decision processes. Within this model, the
problem of making policies becomes a stochastic optimization problem of finding optimal tradeoff
between performance and power. However, the model’s computational overhead is so high to an ex-
tent that we cannot endure this penalty in the gain of limitedaccuracy. Such work, however, inspires
us toward using an online model estimation method to handle the real time disturbances that affect
the accuracy of our basic power model with acceptable overhead.

Cost modeling of relational operators is a conventional problem in the database field. Work related
to this topic can be traced back to the late 1970’s. Initially, Astrahan and co-workers share some
critical ideas in System R [Astrahan et al. 1976]. [Christodoulakis 1984] summarizes the early work
and the well-accepted assumptions for query cost estimation. In [Mackert and Lohman 1986], the
authors extend the work to distributed environment. Standing on their shoulders, we build up our
physical models based on similar assumptions and techniques. However, since we attempt to model
a different object, the variants and target objectives are no longer the same.

3. OVERVIEW OF OUR MODELING PROCESS

In a traditional DBMS [Mackert and Lohman 1986], query execution cost is treated as a linear
combination of three components: CPU cost, I/O cost, and communication cost. Such costs are
normally measured as the product of the number of basic operations required for executing the plan
and the resource consumption in each such operation. The relevant numbers of basic operations
include: number of pages read or written to disk (Npages), number of tuples (Ntuples) to process in
the CPU, and the number of bytes transmitted via networking system (Nmsg). Such a model can be
a starting point for power estimation in DBMSs [Lang et al. 2011]. Specifically, the power cost of a
query plan can be expressed as

P = Wcpu ×
Ntuples

T
+ WI/O ×

Npages

T
+ Wmsg ×

Nmsg

T
(1)

where quantityT is the query processing time, andWX are tunable system parameters. Among
them,Wcpu is related to the energy consumed by CPU,WI/O by the storage system, andWmsg by
the networking system. In our paper, we only focus on the single server scenario and therefore the
last item with communication cost can be ignored.

As a general linear model, Eq. (1) needs to be refined for accurate power estimation by consid-
ering two observations we obtain via a series of experimentswe run on real database systems.2 In
such experiments, we compose a set of simple queries that include single table scan and two-table
joins based on the TPC-H benchmark. At the same time, the query optimizer is forced to choose
specified plans (e.g., sequential scan) for execution regardless of the costs. We measure the actual
power consumption of the database server during query execution. We then feed the collected power
data and proposed model into a well-known regression tool – the LP solver of the general algebraic
modeling system (GAMS) software3 – to find the best values of coefficients to adjust the model to
the statistics. After a few rounds of training process, the model is established to predict the power
cost to executing relational operators (More details aboutthe model implementation are discussed
in Appendix I).

2 Here we skip the details of our experimental platform for better flow of the paper. Such details can be found in Section 5.1.
3 http://www.gams.com/default.htm
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Fig. 1. Total power measurements of a database server. A workload is launched at the 2.3th second and terminates at the
8.5th second

One important note is that, in this paper, we are interested in modelingaverage powerrather than
peak powerconsumption studied in [Kunjir et al. 2012] and [Rodriguez-Martinez et al. 2011]. We
believe average power is more directly related to energy useand thus the focus of most power-ware
system research [Poess and Nambiar 2010; 2011]. A common observation from our experiments is
that system power quickly enters a “steady” state in which nodramatic changes of power can be
observed. However, real power consumption frequently shows fluctuations within a small range, as
shown in Fig. 1. In practice, we take the average of all power readings in the lifespan of the query to
smooth out the spikes and use it as the measured power in our experiments. Apparently, our model
also targets at estimating such average power.

3.1. Observations on Hardware

First, there is a need to elaborate on the roles of different hardware components play in power
consumption of a typical database server. To study that, we measure the power consumption of major
hardware components in a database server when the system runs in idle state (when no query is being
processed) and when it is fully utilized (Table I). It is easyto see that CPU contributes most to the
active power used by the system (about 99%), and the difference between its peak and idle power is
large (147.15-88.2 = 59 watts). All other components (e.g.,hard disk, memory) consume almost the
same power no matter how intensive the workload is. This is due to an important physical feature
of such hardware – their leakage power dominates. Such results also verify the findings reported
in other work on database energy use [Lang and Patel 2009; Tsirogiannis et al. 2010]. To further
reveal the power use patterns of system components, we also record their power consumption under
different workload intensities. Fig. 2 shows the results: the power consumption of CPU increases
monotonically with the increase of the utilization while very little difference can be observed in the
storage system. In other words, power consumption of disks is much less sensitive to the workload
intensity, as compared to that of CPUs. Note that such a pattern in disks is not affected by the type of
data access - for both the sequential read workload and random read workload, power consumption
in the storage system is almost the same (Fig. 3).

Table I. Power consumption (in watts) of major hardware components
in our database server.

Component Peak Power Idle Power

CPU: Xeon X5365 147.15 88.2
Memory: 4 GB Kingston 14 14
Hard drive: Seagate 2TB ST32000644NS 8.33 7.91
others 20.62 N/A
Total 190.1 111

Thus, the original model in Eq. (1) has to be modified to reflectthe above findings. To estimate
the power cost of a query plan, we are essentially interestedin its marginal power if we assume the
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Fig. 3. Hard disk power consumption under sequential read and random read workloads

baseline power consumption is static.4 As the CPU is the only one that contributes meaningfully to
active power in a single node, we have to focus on the cost of processing tuples in CPU instead of
I/O operations. In other words, we have

P = Wcpu ×
Ntuples

T
(2)

Other components are ignored because their contributions to the active power are negligible. Note
that the above model is significantly different from what is used in a traditional query optimizer with
query processing time (or throughput) as the optimization goal [Kooi 1980; Selinger et al. 1979]. In
the latter, the I/O cost is the dominating factor that often overshadows CPU cost.

4 Here we make such an assumption explicitly and will relax it in Section 6.
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Fig. 5. Total power consumption of Join algorithms under different numbers of tuples accessed

3.2. Observations on Workload Characteristics

The model shown in Eq. (1) and Eq. (2) reflects the intuition that the totalenergyconsumption of
a query plan is proportional to the “work” (i.e., number of operationsNtuples) to be done by that
plan. Therefore, power consumption is related to the work intensity (i.e., work per unit time) instead
of work. For the same reason,Wcpu represents the energy consumption per operation. Again, the
same intuition was adopted in cost-based query plan evaluation in a traditional query optimizer.

The results of an extensive set of experiments we run, however, show that the actualpower con-
sumption of a database server depends directly on the numberof database operations. In such
experiments, we run the same query multiple times under different query parameters. Specifically,
by changing the range of search predicates or size of the underlying database tables, the number of
tuples accessed by the query processing algorithms changesin different runs of the query. Fig. 4
shows the CPU power consumption of such runs for two queries:one with a sequential table scan
and the other with indexed table scan. We can clearly see thatfor both queries, the CPU power
increases monotonically with the total number of tuples accessed. We also run such experiments for
single join queries and similar trends can be observed as shown in Fig. 5.

We believe the reasons for the above observations (which aresomehow counterintuitive) are
complicated. Our explanation is: reading larger number of tuples from a file needs more processing
overhead such as updating the free space map and visibility map in DBMS, swapping and schedul-
ing processes at the OS level. For example, we have observed more intensive system swap in/out
activities in processing queries associated with large data than in those with small data. Such over-
head translates into extra CPU power cost for reading largernumber of tuples – higher cache miss
rate could yield a higher power consumption as reported in [Isci and Martonosi 2003]. Therefore,
we have enough confidence to modify the previous power model into:

P = Wcpu × Ntuples (3)
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Fig. 6. One example of power cost estimation in a query tree generated by PostgreSQL

As compared to Eq. (2), the biggest difference here is that wedrop the processing timeT , and the
physical meaning of parametersWcpu is now themarginal power cost of processing each relevant
operation. Note that the slope of the two regression lines in Fig. 4 is a good indicator of the values
of such parameters, and such values will be used as initial parameters for our power models.

Given Eq. (3), the task of power estimation becomes to quantify the number of basic operations
Ntuples, and the model parameter (i.e., unit power costs)Wcpu. With Ntuples being readily available
from the existing query optimizer, the key problem is to findWcpu. In the following steps of mod-
eling, we first identify low-level factors in the workload that have an impact onWcpu and treat such
factors as static (time-invariant) parameters of our modelvia calibrating real power measurements
of different workloads (Details of such work can be found in Section 4). Realistically, the model
parameter should be modified under different system states and workload features. For example,
Fig. 2 shows that the marginal CPU power cost levels off when the CPU utilization increases - this
means our model parameter should also be much smaller when the CPU is heavily loaded.5 We
address dynamical tuning of the static model in Section 6.

4. STATIC MODELING

The theoretical model shown in Eq. (3) is too general to capture the resource consumption patterns
of query plans. Specifically, since the cost of different types of operations is different (as shown in
Figs. 4 and 5), keeping a single unit cost parameterWcpu is obviously an oversimplified solution.
Therefore, to refine the model in Eq. (3), there is a need to model the power consumption at the
individual relational operator level. Note that the query optimizer in a typical DBMS (i.e., those
with the System R style design) takes a bottom-up approach tobuild query trees, and alternative
plans in each substree (representing an operator as shown inFig. 6) will have to be evaluated. With
the operator-level cost models, we can follow the same bottom-up strategy to build the cost model
for the entire query plan.

Since we have identified CPU as the major active power consumer, we only need to focus on the
number of tuples to be processed by the CPU. For each operator, it could be assigned with one or
more power coefficients to estimate its run time power cost. In the remainder of this section, we
introduce power models for a set of popular relational operators. A summary of the operator power
models can be found in Table II while relevant model coefficients are listed in Table III.

4.1. Cost Models For Single Table Operations

For single table operators (i.e.,selectionandprojection), we only consider two file organizations
– heap files and index files, and their corresponding scanningalgorithms –sequential scanand
index-based scan. In addition, we also consider a special type of index scan –bitmap scanthat is
implemented in PostgreSQL. Since the latter involvessortingthat is a very important component of
multiple operators, we also study the cost of sorting (although it is not a relational operatorper se).

5 Otherwise, a plan with a hugeNtuples value will carry an unreasonably high power tag.
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Table II. Power cost functions for relational operators.

Methods Cost function

Sequential Scan wsn
Index Scan win
Sorting wtnR
Bitmap Scan win + wtnR

Nested Loop Join wi(n1 + n1n2c)
Sort Merge Join wt(n1R1 + n2R2) + wi(n1 + n2)

Hash Join wi

“ n1

H
+ n2

”

Table III. Key quantities in power estimation models.

Symbol Definition

n The number of tuples retrieved for CPU processing
ws The average CPU power cost for processing a regular tuple
wi The average CPU power cost for processing an index tuple
wt The average CPU power cost for sorting a tuple
H The number of hash partitions
R The number of runs in a sorting algorithm
c Selectivity of join condition

Sequential Scan.Sequential scan is a scan method that each row of source tableis read in a
sequential order and relevant columns are checked against apredicate. The anticipated power cost
of scanning a table withn tuples, according to Fig. 4, iswsn.

Index Scan.Index scan is similar to sequential scan except an (tree-based or hash) index is used
to reduce the number of tuples accessed. Thus, the estimatedpower cost for index scan iswin for
searching in then retrieved tuples. Note that the unit power cost of accessingan indexed tuplewi is
different from that of a tuple in sequential scan (ws).

Sorting.Sorting is an operation that is “hungry” for CPU resource dueto the need to process the
whole table in multiple runs. In estimating the sorting power cost, table size and the specific sorting
algorithm are the key factors to consider. For the merge sortalgorithm implemented in PostgreSQL
(other database systems may be different), the power cost for sorting iswtnR, wheren is the number
of tuples fetched to be sorted andR is the number of runs the sorting algorithm encounters. Note
thatR is a logarithmic function ofn with a large base such that it is generally a small number even
for large database tables.

Bitmap Scan.Bitmap scan has significant space and performance advantageover other index
structures for data that contains very few distinct values in the column of interest. Bitmap index
answers queries by performing bitwise logical operations based on bit arrays (commonly called
bitmaps). The scan is based on bitmap index on the records. Since bitmap scan also needs sorting
of the intermediate results, the cost iswin + wtnR.

4.2. Cost Model For Join Methods

For any two table joins (original or temporary table), the power consumption depends on the join
algorithm used.

Nested Loop Join.The cost model iswi(n1 + n1n2c) wherec is the selectivity of the join con-
dition, n1 andn2 stand for number of tuples fetched from the outer table and the inner table, re-
spectively. The nested loop join will pick up a tuple from theouter table and try to find matching
tuple(s) from the inner table. For each tuple in the outer table, n2c tuples from the innder table will
be accessed (n2 tuples accessed in worst case). Thus, the total number of tuples accessed would be
the sum of number of outer table tuples accessed and their associated inner table tuples. Therefore,
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the CPU power cost iswin1 for the outer table6 andwin1n2c for accessing the inner table. Note the
existing query optimizer will provide us with the estimatedvalue ofc.

Sort-Merge Join.The power cost of merge join comes from the two stages of the algorithm:sort-
ing andmerging. First, the sorting cost for both tables can be calculated using the aforementioned
sorting cost model. For merging, the power cost is the cost ofscanning each tuple in both sorted
tables. The total number of tuples accessed at this stage isn1 + n2. Therefore, the cost model for
merge join iswt(n1R1 +n2R2)+wi(n1 +n2) whereR1 andR2 are the numbers of runs in sorting
the two tables.

Hash Join.The hash join algorithm takes hashing to both relations on the join attribute and iden-
tifies the outer and inner tables in a subsequent probing phase. The power cost of hashing is the sum
of power costs from outer table access within each hash partition and inner table access. Thus, the

metric iswi

(n1

H
+ n2

)

.

4.3. Putting Everything Together

The above models can be combined to form complex models for any arbitrary query plan. For
example, for the query execution path tree shown in Fig. 6, its total power cost can be generated
from adding the power cost from each node (the relational operator) in the tree along the path. As
a result, the total power cost is the sum of those from two hashjoins, three scans and one sorting
operation. To be specific, following the path shown in Fig. 6,we can generate the following model
to quantify the power cost of the plan:

P = win1 + win2 + win2R2 + wsn3 + wi

(

n′

1

H1

+ n′

2

)

+ wi

(

n′

12

H12

+ n′

3

)

+ win
′

123
R′

123

= wsn3 + wi

(

n1 + n2 + n2R2 +
n′

1

H1

+ n′

2
+

n′

12

H12

+ n′

3
+ n′

123
R′

123

) (4)

wherenX stands for the number of tuples fetched from tableX , n′

X stands for the number of tuples
generated from previous relational operator, andHX is the number of hash partitions in the relevant
hash joins. Note that values of a few quantities, includingnX , H , andR, are provided by the existing
query optimizer.

5. STATIC MODEL VALIDATION

5.1. Experimental Setup

In this section, we mainly introduce our experimental setup, including hardware and software spec-
ifications, and how we evaluate our model’s effectiveness inpower cost estimation.

Hardware.Our testbed for model validation consists of two servers fordifferent purposes. The
one called “worker” contains a 3.0 GHz quad-core CPU Xeon X5365, 4GB of 667 MHz DDR3
memory, and a 2TB 7200RPM hard drive, as shown in Table I. It isused to run the DBMS and thus
the target for power modeling and estimation. The other one called “monitor” is responsible for
runtime collection of experimental data including query statistics and power consumption. Power
measurement is done by power meters (i.e., USB OscilloscopeDSO-8502 and watts’ Up power
meter) attached to “worker” and linked to the “monitor” via USB connections for data reading.
Specifically, the DSO-8502 is used to measure CPU power and the watts’ Up for that of the entire
database server.

6 Actually, this part of the model can also bewsn1 if the outer table is accessed by a sequential scan. Here we just assume
the outer table is accessed via indexed scan. The same assumption applies to inner table access and other join algorithms.
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Fig. 7. A sketch of the experimental platform

Software.Our “worker” machine is installed with PostgreSQL 8.3.14 asthe DBMS under Ubuntu
9.10. The DBMS’s kernel was hacked to provide detailed runtime system information such as es-
timated cost, data histogram and plan selection. Along withthe DBMS, we also implement (and
deploy in the “worker”) a workload generator based on TPC-H,TPC-C benchmarks7 and datasets
from the SDSS database8 – a well-known large-scale scientific database. The workload generator
creates a comprehensive set of workloads designed to simulate the effects of major factors that im-
pact power modeling, and are used to test the effectiveness of our models. The software architecture
of the “worker” server is sketched in Fig. 7.

Experimental Setup.We conduct a series of experiments to verify the models mentioned in Sec-
tion 4. As the first step of the modeling process, we create an ideal environment to run experiments
such that we can concentrate on verifying the model structures and obtaining initial values for the
model parameters from a set of training workloads. In this setup, we follow the assumptions men-
tioned in Appendix III to create such an environment in whichthe numbers of operations given by
the query optimizer are accurate.

We use the dedicated “worker” server for our experiments andfeed the database with simple
workloads that consist of very few types of queries. In such experiments, we set the multi-processing
level (MPL) to one, i.e., only one query is processed at a timein the DBMS. We measure the real
power of the entire server and compare it with the estimated power given by the corresponding
models. A metric namedEstimation Error Rate(EER) is used to quantify the model accuracy.
Specifically, EER is defined as

EER =
|C′ − C|

C′
(5)

whereC stands for the estimated power given by our model andC′ is the actual steady-state power
consumption (see Fig. 1) of the whole server measured by a power meter.

5.2. Experimental Results

5.2.1. Results of Single Table Models. We generate a set of 20 data files with a total size of 2.1TB
(w/wo indexes) for single table scans. Moreover, we preparea set of similar queries (queries with
the same structure but different selection predicates) to test the table scan models. For each scan
operation, there are equal number of queries visiting largetable files (e.g., 6GBlineitem table in
TPC-H) or small table files (e.g., 10MBorder table in TPC-H). Each experiment is repeated 100
times and we compute the average EER in all 100 runs. The results are plotted in Fig. 8.

7 http://www.tpc.org/
8 http://www.sdss.org/dr7/
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Fig. 8. Empirical validation results of single table operations’power models.
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Fig. 9. Empirical validation results of multi-table operations’power models.

As seen from Fig. 8, the estimated power shows very little difference to the real power measure-
ments in the sequential scan experiments (i.e.,± 0.3 watts). This translates into an average EER
of less than 0.5% for both large and small file scans. We believe this is a high accuracy as some
random error is inevitable – errors lower than 0.5% are essentially negligible. Results for index
scans (bitmap and regular index scan) are also very promising. The estimated power cost is nearly
the same as real power measurement in all cases (± 0.5 watts). In summary, our static model works
very well for single table operations by achieving accuracythat is over 99%. One other thing to
point out is that the power consumption is always higher in cases of large file access than in small
files, thus supporting our conclusion that power consumption depends on the amount of work to be
done (Section 3.2).

5.2.2. Results of Multi-table (Join) Models. The verification of join power models uses the same
experimental setup and data files in previous experiments (Section 5.2.1). From the TPC-H official
tool, we create a set of queries with one single join of two tables. Each join operation is a combi-
nation of two table scans and one join operation (see Fig. 6).It is not a surprise that system power
increases much faster than scan operators when the size of the joined tables (thus resource consump-
tion) increases (Fig. 9). Again, the observed EERs are less than 0.5%, indicating the effectiveness
of the join models.

5.2.3. SDSS Validation Experiments. To test our models under very large datasets, we materialize
a database from the published SDSS data.9 Then we create three workloads: workload I is an equal-
ity search based on a sequential single table scan; workloadII is a merge join of two tables after

9 Release 7, URL: http://www.sdss.org/dr7
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Fig. 11. Power model validation using a batch TPC-H workload

range searches; and workload III is a range search based on sequential scan. We run each single-
query workload for 1,000 times with different search predicates generated randomly, and the results
are shown in Fig. 10. The size of the largest table scanned in such queries is 2TB. As we can see,
the difference between the estimated power and measured power is very small in almost all cases.
The average EERs of the three experiments are 3.32%, 2.66%, and 1.78%, respectively.

5.2.4. Composite Model Validation. In the final set of experiments, we use composite workloads
that contain a random subset of the TPC-H queries. As compared to those mentioned in Section
5.2.2, such queries include joins of more than two tables combined with table scans. Therefore, the
composite model as that shown in Section 4.3 will be constructed to estimate the power cost. Fig.
11 shows the power measurements and estimation for a period of time during executing the random
TPC-H queries. We can hardly see any difference between the estimated power (dashed blue line)
and the average of measured power (solid red line). In fact, the EER in this experiment ranges from
0.32% to 2.65%. We also run single-query workloads for all 22queries of the TPC-H benchmark,
and the estimation results are demonstrated in Fig. 12. Again, we observe very high accuracy, with
an average EER of 2.97% and the highest EER reaching only 4.38%.

5.2.5. Limitations of the Models. The above experiments show that the power prediction using our
models is very successful in a static environment. However,our modeling task is far from complete.
When we change workload features and system resource availability, our models can easily fail. We
first test the system with 9 different composite workloads generated from TPC-H under an MPL
that is greater than one. Specifically, we initialize 100 client threads and allow queries sent from all
clients run concurrently (i.e., MPL can reach 100). The results of such experiments are plotted in
Fig. 13 – we can see that the EER for all workloads are over 40%,with the highest one reaching
65%. These are very inaccurate estimations as they almost reach the upper bound of possible errors,
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Fig. 13. Power estimation error for a mixed TPC-H workload with ninedifferent query sets under an MPL value of 100

such bounds are described in Appendix II. Note that all absolute errors in Fig. 13 are negative,
meaning the model systematically underestimates the powercost of the workloads.

In another experiment, we emulate a change of CPU resource availability by introducing CPU-
intensive non-database jobs into the system. Specifically,we fork a process that creates a number
of child threads to compute the Fibonacci sequence. Again, this causes a serious underestimation of
power consumption (blue line in Fig. 14) and an average EER of65%. This clearly shows that our
model needs to be updated dynamically to capture the changesof system status. One might argue
that the problem is caused only by the models’ failure in capturing the increased baseline power of
the system, and can be easily solved by reading in a baseline power in real-time. However, such a so-
lution would still not be robust. First, competition between concurrent queries has profound effects
on power consumption. Second, when such effects are mixed with those caused by system states
(such as that in Fig. 14), it is almost impossible to tell themapart. In the context of this experiment,
we implement and test such anad hocsolution that measures the system power consumption in
real-time and add the measured power to the results of the static model as the estimated total power.
The results (pink line in Fig. 14) clearly show that thead hocmodel systematically overestimates
the power with a large error margin (i.e., average EER reaches 18.67%).

5.2.6. Source of Errors. Many factors can contribute to the errors in power estimation of database
queries. According to our empirical study mentioned above and existing wisdom from the software
engineering community,10 such factors can be put into three categories.

- System status. Run time state change of the database system and even the OS can cause significant
errors in power estimation. A simple example can be seen in Fig. 2: the marginal increase of CPU
power is not linear to the CPU utilization. In other words, the parametersws, wi andwt should

10 A summary can be found at http://eu.wiley.com/legacy/wileychi/hbmsd/pdfs/mm154.pdf.
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Fig. 14. The static model fails under a change of system contention

have different values under different system contention, and the change of the latter cannot be
easily detected. Other events such as initialization of competing computational jobs can cause the
same problem;

- Operation quantity estimation error. Errors are inevitable in estimating the number of input tu-
ples (e.g.,n1, n2 in Table II) for a relational operator in the plan. In our models, such values are
provided by the existing query optimizer and are inherentlyinaccurate. In fact, this is a classi-
cal problem in query optimization as the query processing time also depends on such quantities
[Chaudhuri 1998].

- Workload dynamics. A workload generally contains queries with different resource consumption
patterns and the interactions among concurrent queries arevery complex. Workload features may
change over time and significantly impact power cost by changing variables such as cache hit rate
and concurrency level.

To derive an accurate model that minimizes the above errors,we could integrate all relevant
factors into an augmented physical model. However, this is an infeasible solution because it is
impossible to locate all the possible factors, and model their effects on power consumption. The
solution we propose and implement here is to use an online feedback mechanism that adjusts the
weight parameters of each relational operator’s estimation function by capturing the recent trends
of system and workload dynamics in order to decease the EER.

6. DYNAMIC MODELING

In this paper, we propose anonline model estimationstrategy to minimize the errors. The main idea
is: we keep the structure of the previous physical model we develop. We treat the database system
as a black-box and model the cost parameters (ws, wi, andwt) in our existing model as system-level
variables whose values reflect the combined effects of all possible system/environmental factors. We
then use a feedback control based mechanism to periodicallyupdate the parameters using real-time
power measurements. As a result, errors generated by the sources mentioned in Section 5.2.6, even
those in operation quantity estimation, will be compensated for by adjusting such parameters.

For each relational operator, we define its unit power consumption as a function of time (instead
of a time-invariant model shown in Table II) since we need to adjust the model in response to the
dynamics in system/environment. Such models are updated inevery period with lengthTs to refine
the estimation results. In each sampling period, we collectthe real power measurement and use it to
compute the estimation error and average baseline. Whenever a query enters the system, the online
model will use those two pieces of information to update the power coefficients which will, in turn,
be used for power cost prediction of the query plans.
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6.1. Online Model Design

In this section, let us introduce the online model estimation scheme, which is based on the a refined
Recursive Least Square (RLS) estimator [Wang et al. 2008; Vahidi et al. 2005; Wang et al. 2009]
with directional forgetting according to our preference.

We will maintain an operation vector~n = {n1, n2, · · · , nm} to hold quantities of all operations
of queries currently being processed in the system. Recall that the values in~n are provided by the
query optimizer. In general, the RLS scheme requires a vector ~w = {w1, w2, · · · , wn} to hold all
the parameters to be updated and a variablek =

∑n
j=1

wj . In our case, we have~w = {ws, wi, wt}

andk = ws + wi + wt. We then define a new vector~w′ = {ws, wi, wt, k}, and denote the value
of ~w′ at periodj as ~W (j). Similarly, for the operation vector~n = {n1, n2, · · · , nm}, we define
another vector~n′ = {n1, n2, · · · , nm, 1} and denote the value of~n′ at periodj as ~N(j). At each
period, the actual power consumption of the server,P , is measured. The RLS model generates a
quantityp(j) as the baseline power from the measurements of the lastj − 1 periods and currentP
as follows:

p(j) =
((j − 1)p(j − 1) + P + PI)

j
(6)

wherePI is idle power for all hardware components except the CPU, which is111− 88.2 = 22.8W
in the server we used according to Table III. We also set the initial value of the baseline power to 111
watts. In other words, we havep(0) = 111W . Now we know how to refine the baseline power to
estimate total power cost. The next step is to use this data toadjust the model to accurately estimate
power cost of query plans. The parameter vectorW (j) is updated as follows:

~W (j) = ~W (j − 1) +
e(j) ~NT (j)M(j − 1)

λ + ~N(j)M(j − 1) ~NT (j)
(7)

wheree(j) = p(j) − ~NT (j)W ′(j) is the estimation error,M(j − 1) is the covariance matrix of
vector ~N(j), andλ is the constant forgetting factor within[0, 1] – a smallerλ enables the estimator
to forget the history faster. The following routines are invoked at the beginning of every periodj of
model updating:

(1) the RLS estimator records the operator vector,~N(j) and calculates baseline powerp(j);
(2) it computes~W (j) according to Eq. (7).

The RLS estimator adapts itself so thate(j) is minimized in the mean-square sense. When the two
variables,~n andp(j), are jointly stationary, this algorithm converges to a set of tap-weights which,
on average, are equal to the Wiener-Hopf solution [Lawrie 2007]. As a recursive algorithm, the
RLS estimator has very low computational overhead (tens of microseconds as we recorded in our
experiments). It is also robust against different workloads and system conditions. In our method,
the initial values for the power parameters (ws, wi, andwt) are based on results obtained from the
static models upon running a composite workload (see Appendix I for details). We conduct power
statistics identification experiments for all the TPC-H queries, and the initial value of the parameter
vector is ~W (0) = {0.0023178, 0.0024535, 0.00223659}.

One special note aboutp(j) is: instead of being measured via a power meter, quantityP can
be translated from CPU utilization (provided by the OS) following the regression curve shown in
Fig. 2. The advantages of this method are obvious: first, realmeasurements from a power meter are
always associated with delays from the communication channels and resource overhead; Second,
our database system can be deployed in a server without a power meter connected - they are only
required for generating the initial values for the model parameters. This is a huge benefit in data
centers that host a large number of servers. By comparing this method with real power measurements
we found that the differences are negligible.
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The length ofTs implicitly affects the accuracy of the dynamic model. It is relevant to the fre-
quency of incoming query request. If the query arrival rate is high,Ts will be set a smaller value to
sampling sufficient variance. Otherwise, we could make it longer to avoid possible disturbance and
computational overhead. In our experiment, we set it to be 1/18 second, such a sampling frequency
is the same as that of the system power measurement.

6.2. Online Model Validation

6.2.1. Experimental Setup. The experiments are run in the same environment as that mentioned in
Section 5.1. However, as the enhanced model is meant to solvemore complex problems, our work-
load generator produces datasets and workloads that createscenarios that our static models cannot
handle well. First, the workload generator borrows data andqueries from three sets of benchmarks:

(1) The generator produces a query pool that consists of 2,000 queries derived from the 22 standard
queries in the TPC-H benchmark by changing the query parameters. The workload generator
draws queries from such pool with a predefined distribution of query arrival time and features
such as the level of resource sharing, query priority, and multiprogramming level;

(2) We also use a 1TB SDSS database that includes 53 million unique astronomical objects such
as stars, galaxies, and quasars. The set of 400 queries against this database are extracted from
the query templates posted on the SDSS website – it mainly consists of large table scans and
joins of few tables (mostly two-table joins). The purpose ofusing this workload is to identify
the model’s capability of estimating power cost of a large database.

(3) Finally, we use a TPC-C benchmark tool named TPCC-UVa11 to generate OLTP workloads.
Note that TPCC-UVa forms a black-box testing environment for our model verification as it is
a closed benchmark tool in that users cannot access (let alone modify) the queries.

Based on the queries from the above three benchmarks, we design a series of experiments running
different database workloads. In all such experiments, we set the MPL to 100 to create a realistic
database runtime environment in which multiple queries areprocessed concurrently. Each type of
workload is for verifying our dynamic model’s ability to handle one (or more) category of errors
mentioned in Section 5.2.6. By changing workload parameters, we can simulate different levels of
impacts the error sources have on our power models. Particularly, we have the following three types
of workload.

(1) Type I: To test the accuracy of our model under workload error and system error, we define this
type of workload with different levels of resource sharing among concurrent queries. Specifi-
cally, in such workloads, we simulate theshare-everythingandshare-nothingpatterns in what
we call thefine-grained parallelandcoarse-grained parallelworkloads. The coarse-grained
parallel workload contains queries of large computationaloverhead, and little data shared with
other queries. On the other hand, fine-grained parallel workload is generated by using queries
of small computation, large interaction and considerable amount of data shared among queries.
In a share-nothing system environment, the power cost of thesystem varies rapidly over time
due to the large volume of page demand and replacement. In theshare-everything environment,
the power consumption may be more stable since most data are reusable in the cache and the
CPU time won’t be wasted for waiting I/O. This type of workload is generated from the TPC-H
query pool as mentioned above.

(2) Type II: The resource estimation error is another important factorthat causes the power es-
timation failure. Poor estimation of data distribution (inthe form of data histograms) in the
database tables is the main reason for that [Chaudhuri 1998]. In order to verify its effects on
the accuracy of our model, this type of workload contains either: (i) deterministic access(DA)
queries that visit similar regions in the data domain from time to time; or (ii)random access
(RA) queries that randomly touch all spectra of the data domain. In running the DA workload,

11 http://www.infor.uva.es/˜diego/tpcc-uva.html
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the query optimizer will quickly learn the data distribution after running very few queries and
resource estimation for following queries will be accurate. For the same reason, in running the
RA queries, the data histogram will be updated frequently and it leads to inaccurate resource
estimation. In short, the purpose of this workload type is totest our model in facing the resource
estimation errors, or more specifically, errors in selectivity estimation. This type of workload is
also generated from the TPC-H query pool.

(3) Type III: In a real-world database server, processes other than the DBMS will run concurrently
and such processes may cause fluctuations of the system’s resource availability. We design this
type of workload to emulate those changes by via two mechanisms. The first one is to introduce
a user program that automatically spawns new processes to compute Fibonacci sequences. It is
a pure CPU intensive program and the number of its child processes can be fixed or limited to
avoid thread bomb and produce different resource consumption patterns. The other mechanism
is to change CPU frequency at runtime via the Dynamic Frequency and Voltage Scaling (DVFS)
technique built into many modern CPUs. Both mechanisms can introduce significant changes
of system capacity. Thus, this workload type is for verifying our models under system error.
Queries in this type of workload are drawn from both the TPC-Hand SDSS query pools.

We compare the performance of the dynamic models with the static models we develop in Section
4.3 and thead hocmodel mentioned in Section 5.2.5. Note here, since we have multiple queries
running in the system now, the average EER that we used to evaluate the system’s performance is
redefined as the arithmetic mean of the EERs of all involved queries.

6.2.2. Experimental Results.

Results of Type I workload.In such experiments, we create a query pool for the type I workload
sets following the descriptions in Section 6.2 and randomlypick queries from it. Specifically, we try
9 workloads, each draws a different number of queries randomly from the TPC-H query pool and
the query set size ranges from 10 to 2,000. As shown in Fig. 15,the EERs generated by the RLS
models are significantly smaller than those under the staticmodels for both Type I workloads (i.e.,
fine-grained and coarse-grained parallel). Also, by comparing the results of two workload types
under the RLS model, we can see that our model handles the coarse-grained parallel (i.e., share-
nothing) workload as well as the fine-grained (i.e., share-everything) parallel workload, with an
all-round average EER of 8.89% and 6.93%, respectively. Thehighest EER recorded for these two
workload types are not much higher – they are 10.88% and 9.07%. The fact that both query patterns
leads to similar model accuracy shows that our model can effectively handle the interactions among
queries. Thead hocsolution has much better accuracy than the static models, showing its ability
to partially capture the interaction among queries and reflect it in the modeling. However, it is still
no comparison to the full-fledged dynamic model – its EER often doubles or even triples that of
the latter (average EERs are 28.54% and 34.78%, respectively). Another observation here is, in
majority of the experiments, the coarse-grained parallel workload causes larger errors than the fine-
grained parallel workload. This shows that errors caused byquery interaction is a major obstacle to
overcome in database power modeling.

Results of Type II workload.As shown in Fig. 16, the dynamic model shows a very high accuracy
while handling DA workload – the average EER is 8.93% with thehighest EER being 11.9%. For the
DA workload, queries always visit the same part of the table therefore it leads to very high cache hit
rate. In other words, the workload runs under a relatively steady system environment. That is likely
to be the reason why the static model shows similar estimation errors in almost all experiments (i.e.,
accuracy stays around 40%). When it comes to RA workload, although the query optimizer could
produce large errors in resource estimation, our dynamic model can capture the trends of such errors
and compensate for them. The EER is again lower than 10% for most of the cases – the average EER
is 8.26% with the highest EER being 10.07%. Similar to the Type I workload experiments, thead
hocmodel is superior to the static model in modeling accuracy but demonstrates much higher EERs
than the dynamic model.
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Fig. 15. Model accuracy under different Type I workloads with different data sharing patterns
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Fig. 16. Model accuracy (average EER) under different Type II workloads with different data access patterns
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Fig. 17. Model behaviour at runtime when other Fibo processes “steal” system resources

Results of Type III workload.As discussed above, we create a pure CPU-intensive process called
Fibo, which continuously calculates numbers in the Fibonacci sequence. We use Fibo to emulate
real-world scenarios in which non-DBMS processes compete with the DBMS for resources. At
runtime, Fibo can automatically spawn different numbers ofchild processes according to parameters
received from a communication channel. The results of this experiment are demonstrated in Fig. 17:
the system starts with 20 Fibo processes and this number is changed to 54 at the 7th second and drops
at the 18th and 24th seconds to 10, and then increases to 40 at the 33rd second. By Comparing the
changes of number of Fibo processes running in the system (red line) and power estimation errors,
we can see that our online model can capture the trends of suchchanges and react within a short
period of time (i.e., shorter than 3 seconds in this experiment).
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Fig. 19. The average EER of running an unknown TPC-C workload repeatedly

We also emulate sudden changes of the system states by changing the CPU power consumption
pattern at runtime. We take advantage of the DVFS feature of the CPU to implement that. In Fig
18, we present a sequence of power data collected on-the-fly by plotting the measured power as the
green line, and the estimated power as the blue line. At first the CPU runs at 70% frequency, with
a power consumption of the system around 143 watts when running a mixed TPC-H workload. In
about one second, the CPU frequency increases to 80%, and then jumps to 90% after another second.
Our model starts to adjust the parameters to catch the changes of CPU frequency immediately after
the first jump of frequency, and manages to minimize the estimation error at about one second after
the second jump. The system experiences a sudden decrease ofpower at the 11th second, and the
RLS model, again, is able to respond to that in about two seconds’ time. The average EER we record
during this whole period is about 9.72%. This complements the above experiment in showing our
model’s ability to deal with dynamics in system resource availability.

Black box validation.We also validate our model within a closed query environmentgener-
ated from a non-commercial TPC-C tool called TPCC UVa, as mentioned before. Since we cannot
change data distribution or the query composition inside the workload, this serves as a perfect tool
for black box testing. As seen in Fig. 19, the average EER of our dynamic model is around 10% in
a 10GB DBMS configuration compared to the static model’s EER of 51.4% and the ad hoc model’s
23.62%. This clearly shows that our RLS model is robust even under a workload whose internal
features are concealed.

Effects of forget factorλ. Another interesting experiment is to see the effects of the important
forget factorλ in our dynamic model. The results of this experiment could help us fully explore
the effectiveness of the model and make recommendations on such value ofλ. For that purpose,
we create six workloads – two from SDSS queries and four with various combinations of TPC-
H queries – to provide a diversified testing environment. As seen in Fig. 20, the forgetting factor
λ could affect the accuracy of the RLS model significantly. Forthe SDSS workloads, the results
are stable without showing much difference under differentλ. Our explanation is: most queries in
SDSS are I/O-bound due to the sheer size of the database table- this creates a very static situation
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Fig. 20. Accuracy of the RLS model under 6 different workload sets and 4 differentλ values

in terms of power consumption. However, in a dynamic environment, if the system states follow a
historical trend (e.g., those of coarse-grained parallel workload or a deterministic access workload),
increasing the value ofλ gains significant benefits in terms of model accuracy. Thus, we suggest the
maximum value (i.e., 1.0) ofλ be used in order to obtain more historical data and higher accuracy
of the model.

6.2.3. Discussions. We are in general satisfied with the performance of our models. First, the
static model indeed provide estimations of the cost of queryoperators with negligible errors. For
more realistic database workload and environment, the RLS-based model is effective – EER is in
the range of 8-13%. Note that cost estimation in composite workloads is such a difficult prob-
lem that an estimation is regarded satisfactory when it is ofthe same magnitude as the real value
[Waas and Galindo-Legaria 2000]. Power estimation, on the other hand, is not as difficult due to the
narrow bound of errors (see Appendix II). Nevertheless, theestimation error can easily approach
the boundary value(s) if the model is poorly designed (Section 5.2.5). The absolute errors of our
dynamic model are less than 8 watts in a server with a saturation power of 190 watts and active
power range of 80 watts. A comparison between our work and others is less meaningful than one
might think: [Kunjir et al. 2012] and [Rodriguez-Martinez et al. 2011] focus on peak power and do
not provide dynamic models while [Xu et al. 2010] does not report model accuracy at all. By just
reading the numbers, our models have lower errors than thosereported in [Kunjir et al. 2012] and
[Rodriguez-Martinez et al. 2011] in static power estimation.

The runtime computational overhead of our model mainly comes from computing Eq. (7) and is
only 30 microseconds in the server we use. Our modeling framework is not intrusive in that it only
takes estimated resource by existing query optimizer as inputs and can be implemented as a separate
module in the DBMS.

7. CONCLUSIONS

This paper argues for the importance of building accurate and robust models for power cost esti-
mation in database systems. For that purpose, we conducted system identification experiments on
a single database server to explore the essential components of possible power models. Via such
experiments, we revealed the fact that power consumption iscorrelated with the work size when
the system utilization is low. Based on those findings, we proposed and evaluated a two-level power
estimation model: we started from a series of physical models that describe the power cost of in-
dividual relational operators under a static system environment, and then used an online model
estimation method to dynamically tune key parameters of thestatic models to achieve high robust-
ness. The static models for important relational operatorswere built on empirical results obtained
from running simple workloads using linear regression tools. The online model estimation scheme
ensures that the model can tolerate system dynamics and fluctuations of workload characteristics.
Performance of our models was validated by a large number of test cases that emulate realistic
database runtime environment. In summary, our models are found to be effective – the estimation
error is lower than 10% in almost all cases. We strongly believe our work has high technical sig-
nificance in that it serves as the basis for power-aware queryoptimization – a key mechanism in
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building energy-efficient database management system. Immediate follow-up work includes more
experiments and the extension of the estimation model to allrelevant relational operators. The idea
is to apply similar system identification methods to those relational operators and integrate them
into the composite model. Our estimation framework can alsobe extended in a few directions. For
example, it is obviously meaningful to explore power modeling in a distributed database system,
in which the power dynamics from storage and network systemsare considerably large therefore
cannot be ignored from the modeling process. Inspired by thesuccess of our online model tuning
method in power modeling, we are currently investigating the potential of such method in time
estimation in traditional query optimizers. This can also be combined with our power models to
explicitly quantify energy consumption of database systems.
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Appendix

I. DERIVATION OF STATIC MODEL PARAMETERS

Based on system identification conducted on the testbed introduced in Section 3, our system model
is initialized with the following parameters via running experiments (results shown in Fig. 4):

~W (0) =

[

0.00206303
0.00271021
0.00238662

]

(8)

Those numbers are further refined in the following process. As discussed in Section 3.2, our
model’s purpose is to estimate the power cost with lowest error (i.e., the smallest EER). Also, the
final static model mentioned in Section 4.3 is a mixed linear model for all the relational operators’
power profiles. This model could be solved by the Linear Equation and System Solvers (LESS) in
GAMS based on specially designed experiments for all operators mentioned in section 4.1. First, we
conduct a series of experiments for each single relational operators. For example, for nested-loop
join, we produce experiments on 100 simple two-table-join queries feeding into the PostgreSQL
which is hinted to give nested-loop join execution plan. Based on the data collected from this ex-
periment, we know the number of tuples fetched, the intermediate tuples for nested-loop join, and
run-time power consumption for such operations. Such data is formatted to feed into LESS and it
calculates the power coefficients for the assumable linear models that reach the maximum likelihood
for the set of data obtained. Similar experiments are run forother relational operators. By that, we
obtain a set of power coefficients for various relational operators. We use Weka12 to find the best

12 http://www.cs.waikato.ac.nz/ml/weka/
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value for those power weight coefficients for the whole model. Finally, our static model is equipped
with the following parameters:

~W (0) =

[

0.0023178
0.0024535
0.00223659

]

(9)

II. EER WORST CASE ANALYSIS

In analyzing the sources of errors and evaluating the accuracy of our models, it helps to answer the
following question:is there a provable upper bound of EER in the worst case?The answer is yes.
Using our experimental setup for an example, the maximum power consumption of our server (i.e.,
when all components are fully loaded) is about 190 watts and the idle power is about 110 watts
when the CPU utilization is on the lowest level (Fig. 2). Let us consider two extreme cases: (i) our
model predicts that the system runs at the maximal power while there is actually nothing running
in the system at all. According to Eq. (5), EER in this case is (110-190)/110 = -72.7%. Clearly,
the result is a serious overestimation; (ii) on the other hand, our model says the system is running
on minimal power, but actually the system reaches its maximal capacity. The EER is now (190-
110)/190 = 42.1%, and it reflects a dramatic underestimation. Thus, unlike query processing time
estimation that could result in unbounded estimation error, the lower and upper bound of power cost
prediction is bounded. Specifically, this bound is 72.7% under our hardware configuration.

III. ASSUMPTIONS

[Christodoulakis 1984] gives assumptions for time estimation models to lay out a common environ-
ment for research and practice of database query optimization. Similar to their work, we list some
assumptions as the basis for building our static model.

(1)Uniformity of per-tuple power cost: the power usage for processing one tuple/indexed tuple in
CPU is always the same.

(2)Constant number of tuples per page: the probability of referencing any page is1/P , whereP is
the number of pages.

(3)Random replacement of tuples among pages: the probability of referencing any tuple is1/B,
whereB is the number of tuples per page.

Assumption 1 affects whether there exist power coefficientsin the power cost metrics. Assump-
tions 2 and 3 affect the amount of estimated resource (e.g., the cardinality of data table). By building
models with the above assumptions, we will see decreased accuracy of estimation. However, such
assumptions provide us with a starting point for power modeling without worrying about complex-
ity of the system and workloads. When we build our online models based on the static model, the
latter two assumptions are relaxed in order to enhance the robustness of our power models.

ACM Transactions on Database Systems, Vol. X, No. X, ArticleXX, Publication date: December 2011.


