Power Modeling in Database Management Systems

Data centers consume large amounts of energy. Since desafoas one of the main energy sinks in a typical data center,
building energy-aware database systems has become anmstdarch topic recently. The quantification of the eneogy af
database systems is an important task in designing suamsysin this paper, we report our recent efforts on this tapith
afocus on the power estimation of query plans during quetiynigation. We start from a series of physical models design
for evaluating power cost of individual relational operat@nd use such models as a basis for a complex model foidnelv
queries. Key parameters of the power model are generatedihy linear regression tools upon running experiments with
simple workloads in a static environment. To further imgrdhe above model to make it work under system dynamics
and fluctuations of workload characteristics, we developrliime model estimation scheme over the static model based
on advanced modeling techniques adopted from the contgiheering field. Our solution can effectively tune the model
parameters at runtime to reach high accuracy in power estimarhe models are implemented in the PostgreSQL kernel
and evaluated with a comprehensive set of experimental lesxk generated from multiple TPC and scientific database
benchmarks.

1. INTRODUCTION

Data centers, which host a lot of the world’s computing reses, have been lambasted as the
“SUVs of the tech world” for their enormous consumption oéggy. A recent survey [Kurp 2008]
shows that, in 2006, data centers in the U.S. alone consufnbitlién kilowatt hours (kwWh) of en-
ergy, which is about 1.5% of all electricity produced by toeictry. Meanwhile, the energy demand
of data centers grows at a rate of 12% per year, leading t@ajppately 100 billion kWh of energy
used in year 2011 - this translates into an annual elegtigoist of $7.4 billion [Harizopoulos et al.
2009]. The situation in Japan is even more serious — roughlyobthe nation’s total electricity
consumption is accounted for by its IT industry and this nanib expected to reach 20% in 2025
[Hayamizu et al. 2011]! Naturally, energy consumption bees one of the main optimization goals
in data center design and maintenance.

Recently, energy conservation has attracted much attefition the database community, as
database management systems (DBMSs) and their applisatieriound to be the main consumers
of energy in a typical data center [Poess and Nambiar 200&ormon theme in this research
area is to design database systems with energy consumgtiatist-class performance goal, as
advocated by the Claremont report [Agrawal et al. 2009]réntrwork in energy-aware DBMS has
focused on energy-aware query optimization that constit@es performance and energy usage as
the target[Lang et al. 2011; Xu et al. 2010], and power mamegé policies in distributed databases
[Berl et al. 2010; Poess et al. 2010]. This paper reports @rkwn another key issue in the design
and implementation of energy-aware DBMSs that has so farcatid less attention — modeling the
energy cost of database systems.

We believe energy cost estimation in databases carriegéaginical significance and can be per-
formed at two levels. At the single query level, the energst o alternative query execution plans
is indispensable in making decisions related to query dpétion [Lang et al. 2011; Xu et al. 2010]
and query rescheduling [Lang and Patel 2009] in energy-@®&MSs. An important approach
to capture the power-saving opportunities in energy-ad®Ss is to find query plans with low
power cost during query optimization [Xu et al. 2010; Langke®011]. For that purpose, a query
plan is explicitly evaluated by both its (estimated) enezggsumption and performance. In such a
scheme, accurate energy estimation is critical in ensuhagffectiveness of query optimization.
At the database server or even the data center level, estgrthe energy consumption of a work-
load is an essential part of runtime resource managemeatdenergy conservation, especially for
systems running on virtual resources [Kansal et al. 2010¢dneral, power/energy estimation is
known to be a critical component in any energy-aware comgugystem. The paradigm of adjust-
ing hardware/software configurations at runtime to saveggnie generally called dynamic power
management (DPM). According to [Irani et al. 2005], all DPMlipies can be divided into two
groupspredictive schemeandstochastic schemeBor both cases, mechanisms to quantify system
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energy consumption are needed. In this paper, we repoitgedgiour explorations irenergy cost
estimation in databases, with a focus on the power estimatfauery plans within the DBM$\
salient feature of our power model is that it works underesygenvironmental dynamics by auto-
matically adjusting its parameters following control-tihetic techniques. We believe that such work
is required for energy-aware query optimization, and it migo build the foundation for predicting
power consumption of database workloads at the system level

Our work focuses ompower cost instead oénergycost for two reasons. First, power itself has
been regarded as a primary optimization goal in data cemsigd. Due to the high density of
servers in a data center, each rack is often assigned a padgetand violation of this budget ren-
ders costly business downtime. On the other hand, low poererglly translates into low energy
consumption. Current studies [Xu et al. 2010; Lang et al120ave shown that in databases there
are many query plans that require much less power with thisofdittle performance degradation.
Therefore, energy conservation can be achieved by hangessch query plans. Furthermore, en-
ergy consumption of cooling systems decreases when systesnn low-power modes. A recent
study [Ahmad and Vijaykumar 2010] indicates that for eveattvgaved from powering the servers,
at least another half a watt can be saved from the coolingsysstSecond, energy cost of a task
can be easily obtained from its power cost and running tinge, @nergy = powek time). Note
that running time estimation is a classic problem in queynoigation [Chaudhuri 1998]. Existing
solutions to that problem can be integrated with our work owegr modeling to estimate energy
consumption of database systems. By focusing on powersmitbiik, we can effectively isolate the
errors generated by our power estimation models from thdserited from time estimation by the
existing query optimizer.

In this paper, we design and evaluate a two-level framewwakprovides accurate and robust es-
timations of database power consumption. We first introdyaleysical model to estimate the power
consumption of queries running in a database server. Wd bugh a model from low-level mod-
els that describe the power consumption of relational dpesaia studying the hardware resource
consumption patterns of operator processing algorithragarReters of such models are derived
from a training query workload using classic regressioistd®uch models show high accuracy in
predicting query power consumption when dealing with senpbrkloads running under a stable
computing environment. However, the value of the key patars€e.g., number of watts to process
an indexed tuple) of the model depends on system state ¢4l utilization) and workload statis-
tics (e.g., table cardinality, query arrival rate, etcq.flirther improve the static model by making
it adaptable to environmental and workload dynamics, weamsenline model estimatiomethod
that uses a Recursive Least Square (RLS) estimator to peallydupdate the model parameters.

We implement and evaluate our power models in the Postgre§y®iem. For that purpose, we
develop a workload engine that produces training/testiotklwads and datasets derived from var-
ious TPC and scientific database benchmarks. We validatenodels using a comprehensive set
of workloads generated from that engine by comparing powetiptions (provided by our model)
with real power measurements (using power meters). Exjeatimh results show that our model
estimates power consumption of query plans with high acyuras an exploratory study of this
important topic of query energy quantification in DBMSs, atork focuses on power estimation
for query plan evaluation and the results are tested in destdajabase server. Despite such limita-
tions, we believe this work provides a general methodolbgy tan be applied to a wide range of
scenarios such as power estimation in database serversliffittent configurations or in systems
of different scales (e.g., at server rack or entire dataerdevel).

1.1. Problem Statement

The problem that we aim to solve is to build a powerful modat ttan predict the power cost of
query plans in a database system. To be more specific, givaerg glan, we are to quantify the
total power consumption of the server if that plan is exettufée emphasize that such model should
possess the following features:
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- Accuracy the model should provide accurate prediction of power gorion;

- Robustnesghe model should maintain high accuracy regardless ofutins of system states
and workload characteristics;

- Fast Responsehe computational overhead of updating the model shoulchiémal to ensure
fast response to system/workload dynamics; and

- Non-disruptivethe implementation of the model should not interfere witd hormal operations
of the DBMS.

Among the three, accuracy and robustness are obviouslgtheekguirements, and are thus the main
metrics for evaluating our models in this paper.

1.2. Contributions and Paper Organization

The database research community has just started to rethl@emportance of modeling
power/energy consumption of query processing in DBMSs. fElereported studies on this topic
have either focused on high level ideas [Lang et al. 2011hdividual aspects of database power
modeling? In this paper, we introduce a systematic solution with ajuieed properties mentioned
in Section 1.1. Our long-term vision is to provide usefullsoand information that can help in set-
ting up DPM policies and system performance analysis réggrehergy conservation. The main
technical contributions of this paper are:

- We develop a general power model for DBMS queries basedefatti thatpower consumption
is directly related to the amount of warlhis fact, revealed by our extensive experiments, is
different from common belief.

-We develop physical models for evaluating the power cobtelational operators in a static
environment. Such models can serve as the basis of moressioptéd models that handle sys-
tem/workload dynamics;

- We propose an online model estimation method to autoniigtedjust parameters in the physical
models to achieve high estimation accuracy in a dynamiacenmient;

-We implement our model in the kernel of a real DBMS, and eafut on a physical testbed
using a comprehensive set of workloads generated fromplaulfiPC benchmarks and scientific
database traces.

The remainder of this paper is organized as follows: we fioshgare our work with relevant
reports in similar topics in Section 2; we then provide anreisv of our approach in Section 3; we
describe the technical details of our static power estonatiodels in Section 4; we present empir-
ical evaluations of such models and discuss their limitetim Section 5; we present online model
estimation method to extend the applicability of the moael avaluate it with various experiments
in Section 6; finally, we conclude the paper in Section 7.

2. RELATED WORK

Green (energy-efficient) database systeWisrk in energy-efficient database systems can be
traced back to the early 1990’s. In [Alonso and Ganguly 19§@gry optimization with energy as
the performance criterion is proposed within the contexnhobile databases. It is unclear whether
the vision proposed in that work has been implemented anldateal in any real-world systems.
In this paper, we are interested in power consumption ofessreonnected to the power grid, and
this is a relatively new research arena in databases. Metigy the increasing energy-related costs
of database servers, the database community has only Isetnttified building energy-efficient
database systems as an important direction of exploratigrajval et al. 2009]. Authors of two ar-
ticles [Graefe 2008; Harizopoulos et al. 2009] share a waage of high-level ideas on how energy
efficiency can be improved in databases. Both emphasizey quedimization with energy as the
target — this implicitly argues for a mechanism for estimgtihe energy cost of a query plan. More

L A detailed comparison to such work can be found in Section 2.
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concrete work following the path of energy-aware DBMS ha® dleen reported. Supported by
initial experimental results, [Lang and Patel 2009] préséno specific techniques to save energy
in databases: controlling CPU frequency and re-schedulggy queries. In comparison to [Lang
and Patel 2009], Xu and co-workers [Xu et al. 2010] designstesyatic framework for energy
reduction (while ensuring acceptable performance) inai@BMS kernel. Their experiments us-
ing TPC workloads reveal the existence of many energy-effiquery plans that carry minimum
performance penalty. To harness such energy-saving appies, they propose a cost model for
evaluating query plans by both the (time) performance amtggnconsumption. By showing that
plans of high energy efficiency coincides with those of highfgrmance in different database envi-
ronments, a subsequent report [Tsirogiannis et al. 20i8]wgh interesting discussions on whether
energy-aware query optimization is a worthwhile approaglards green databases. Our opinion is
that, when the search space is sufficiently big, we will findrgg-efficient plans that most likely
will be ignored by existing query optimizers. This standyés supported by more recent evidence
provided by [Lang et al. 2011] and [Kunijir et al. 2012]. Moretdils can be found in a short survey
regarding energy-aware databases [Wang et al. 2011].

Other related research in green databases diverge to kéivecéions. Poess and Nambiar [Poess
and Nambiar 2008; 2010; 2011] report extensive experinhegsalts on power consumption pat-
terns in typical commercial database servers. Based oe tlessilts, they provide suggestions on
how to make database systems energy efficient with a focus amutilizing new hardware systems
than re-implementing the DBMS kernel. Energy-related daiaagement benchmarks are also de-
veloped: the Transaction Performance Council (TPC) officemnounced TPC-Energy [Poess et al.
2010] in 2007 while another work [Rivoire et al. 2007] pretsesmbenchmark for evaluating the en-
ergy efficiency of various sorting algorithms.

Modeling power in database#t. is worth noticing that power/energy modeling has been ad-
dressed in some of the work mentioned above. As a positioarpifang et al. 2011] proposes a
general formula for quantifying power cost of a query pla®. &plicitly use that as a starting point
for our physical modeling process and perform a systemtaitiysvith extensive experiments. Fur-
thermore, our experiments reveal the important fact thatgpas directly related to the number of
database operations in a plan (instead of the density ofguetations in time) therefore we quickly
adopt a new physical model. Part of the aforementioned grojgpower-aware query optimization
[Xu et al. 2010] is close in spirit to our work by presenting adel based on power estimation of
basic database operations. Estimation error is not a maimsfm [Xu et al. 2010] and therefore
modeling is done in a straightforward way. Our work signifitta improves the idea presented in
[Xu et al. 2010] for the purpose of developing a practicatfeavork for database power estimation
and explores methodologies that are fundamentally differféirst, the approach adopted in [Xu
et al. 2010] is exclusively based on linear regression oterpental observations. In comparison,
our method is built on the synergistic values of both physicel statistical (regression) models.
Second, aiming at a robust solution that delivers high aaguin realistic database environment,
we use a dynamic modeling approach to continuously updgtp&emeters of our model such that
it adapts quickly to dynamics in the system and workloade®tfchnical differences/improvements
also exist and we will mention those in the following seciofinother project [Rodriguez-Martinez
et al. 2011] follows the same technical path as in [Xu et aL®0n modeling the peak power of
database operations. However, the scope of their work igelihto only selection (scanning) oper-
ations while we deal with a more complete set of relationa@rafors. More comprehensive results
in modeling peak power of databases can be found in a recekt[Wanijir et al. 2012]. As peak
power and average power (we are interested in) are veryeliffeoncepts, the modeling processes
(and apparently the models) are also different. For exanimg perform an elegant analysis of the
pipeline structure of query plans to identify the sourcegesk power consumption and recommend
plans with low peak power. Our modeling process, on the dthed, is based on a quantification of
the total amount of “work” to be done in a plan. Again, onlytistanodels are introduced in [Kunjir
et al. 2012] therefore it is not clear if their model handigstem fluctuations or query interactions
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in a composite workload. Another related work [Poess and INan?011] is concerned with esti-
mating power consumption of industrial servers, as pati®ftPC-C and TPC-Energy benchmark.
It uses a pure physical modeling approach — the idea is tceggtg the peak power of hardware
components in such systems.

Other related work.There are numerous reports on DPMs at the operating systeindad many
DPM techniques are summarized in a survey [Benini et al. RQRarlin et al. 1990] presents ran-
domized online algorithms for spin-block and snoopy-caglmroblems, which we apply to our dy-
namic modeling problem here in this paper. [Paleologo €t388] introduces a finite-state, abstract
system model for power-managed systems using Markov degsocesses. Within this model, the
problem of making policies becomes a stochastic optimorgtroblem of finding optimal tradeoff
between performance and power. However, the model’s caatipnal overhead is so high to an ex-
tent that we cannot endure this penalty in the gain of limitecuracy. Such work, however, inspires
us toward using an online model estimation method to hahdledal time disturbances that affect
the accuracy of our basic power model with acceptable oaerhe

Cost modeling of relational operators is a conventionabfm in the database field. Work related
to this topic can be traced back to the late 1970’s. Initidllgtrahan and co-workers share some
critical ideas in System R [Astrahan et al. 1976]. [Christokkis 1984] summarizes the early work
and the well-accepted assumptions for query cost estimdtigMackert and Lohman 1986], the
authors extend the work to distributed environment. Staqain their shoulders, we build up our
physical models based on similar assumptions and techsitimvever, since we attempt to model
a different object, the variants and target objectives arlonger the same.

3. OVERVIEW OF OUR MODELING PROCESS

In a traditional DBMS [Mackert and Lohman 1986], query exému cost is treated as a linear
combination of three components: CPU cost, I/O cost, andntonication cost. Such costs are
normally measured as the product of the number of basic tipesaequired for executing the plan
and the resource consumption in each such operation. Téearglnumbers of basic operations
include: number of pages read or written to disk,{,..), number of tuplesi{;,pi.s) to process in
the CPU, and the number of bytes transmitted via networkystesn (V.,.4). Such a model can be
a starting point for power estimation in DBMSs [Lang et al12D Specifically, the power cost of a
query plan can be expressed as

Ntuples Nmsg

. ®

where quantityT is the query processing time, aidx are tunable system parameters. Among
them,W,,,,, is related to the energy consumed by CPIJ, by the storage system, amid,, s, by
the networking system. In our paper, we only focus on thelsuagrver scenario and therefore the
last item with communication cost can be ignored.

As a general linear model, Eq. (1) needs to be refined for ateyower estimation by consid-
ering two observations we obtain via a series of experimestsun on real database systefris.
such experiments, we compose a set of simple queries tHatlasingle table scan and two-table
joins based on the TPC-H benchmark. At the same time, theyaqumtimizer is forced to choose
specified plans (e.g., sequential scan) for execution dégss of the costs. We measure the actual
power consumption of the database server during query égacWe then feed the collected power
data and proposed model into a well-known regression taoé-+P solver of the general algebraic
modeling system (GAMS) softwate- to find the best values of coefficients to adjust the model to
the statistics. After a few rounds of training process, tloelet is established to predict the power
cost to executing relational operators (More details alteeimodel implementation are discussed
in Appendix I).

Nll €es
P =Wepu X + W0 x qu + Winsg X

2 Here we skip the details of our experimental platform fotdreflow of the paper. Such details can be found in Section 5.1.
3 http://wvww.gams.com/default.htm

ACM Transactions on Database Systems, Vol. X, No. X, Artk} Publication date: December 2011.



XX:6 Author Name

130

120 -

1101,

Power (Watt)

100 Steady State———————=| &1 :

90

Detected
Average

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (Second)

80

Fig. 1. Total power measurements of a database server. A workdoladimched at the 2.3th second and terminates at the
8.5th second

One important note is that, in this paper, we are interestetbdelingaverage powerather than
peak powerconsumption studied in [Kunjir et al. 2012] and [Rodrigudartinez et al. 2011]. We
believe average power is more directly related to energyndeghus the focus of most power-ware
system research [Poess and Nambiar 2010; 2011]. A commenaii®n from our experiments is
that system power quickly enters a “steady” state in whictdraonatic changes of power can be
observed. However, real power consumption frequently sHawetuations within a small range, as
shown in Fig. 1. In practice, we take the average of all powadings in the lifespan of the query to
smooth out the spikes and use it as the measured power in parigents. Apparently, our model
also targets at estimating such average power.

3.1. Observations on Hardware

First, there is a need to elaborate on the roles of differandiare components play in power
consumption of a typical database server. To study that, @asore the power consumption of major
hardware componentsin a database server when the systein idie state (when no query is being
processed) and when it is fully utilized (Table 1). It is easysee that CPU contributes most to the
active power used by the system (about 99%), and the difterkatween its peak and idle power is
large (147.15-88.2 = 59 watts). All other components (&ard disk, memory) consume almost the
same power no matter how intensive the workload is. This etdwuan important physical feature
of such hardware — their leakage power dominates. Suchtsessb verify the findings reported
in other work on database energy use [Lang and Patel 200&gdiannis et al. 2010]. To further
reveal the power use patterns of system components, weesdsdrtheir power consumption under
different workload intensities. Fig. 2 shows the resuli® power consumption of CPU increases
monotonically with the increase of the utilization whilerydittle difference can be observed in the
storage system. In other words, power consumption of dssksuich less sensitive to the workload
intensity, as compared to that of CPUs. Note that such arpattelisks is not affected by the type of
data access - for both the sequential read workload and nanekmd workload, power consumption
in the storage system is almost the same (Fig. 3).

Table I. Power consumption (in watts) of major hardware components
in our database server.

| Component | Peak Power] Idle Power |
CPU: Xeon X5365 147.15 88.2
Memory: 4 GB Kingston 14 14
Hard drive: Seagate 2TB ST32000644NS  8.33 7.91
others 20.62 N/A
Total 190.1 111

Thus, the original model in Eq. (1) has to be modified to refleetabove findings. To estimate
the power cost of a query plan, we are essentially interéstésimarginal power if we assume the
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Fig. 3. Hard disk power consumption under sequential read andramdad workloads

baseline power consumption is stdtids the CPU is the only one that contributes meaningfully to
active power in a single node, we have to focus on the costamfgssing tuples in CPU instead of
I/O operations. In other words, we have

Ntuples

P =Wepy % T (2)

Other components are ignored because their contributmtisetactive power are negligible. Note
that the above model is significantly different from whatsed in a traditional query optimizer with

query processing time (or throughput) as the optimizatimal §Kooi 1980; Selinger et al. 1979]. In

the latter, the I/O cost is the dominating factor that oftearshadows CPU cost.

4 Here we make such an assumption explicitly and will relar Béction 6.
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Fig. 5. Total power consumption of Join algorithms under différemmbers of tuples accessed

3.2. Observations on Workload Characteristics

The model shown in Eqg. (1) and Eq. (2) reflects the intuiticat the totalenergyconsumption of

a query plan is proportional to the “work” (i.e., number ofeo@tionsNy,es) to be done by that
plan. Therefore, power consumption is related to the waskisity (i.e., work per unit time) instead
of work. For the same reasoW/.,,, represents the energy consumption per operation. Agagn, th
same intuition was adopted in cost-based query plan evaituiata traditional query optimizer.

The results of an extensive set of experiments we run, hawslvew that the actuglower con-
sumption of a database server depends directly on the nuoibgatabase operationdn such
experiments, we run the same query multiple times undeeraifft query parameters. Specifically,
by changing the range of search predicates or size of therlyimdpdatabase tables, the number of
tuples accessed by the query processing algorithms chamgéerent runs of the query. Fig. 4
shows the CPU power consumption of such runs for two quesies:with a sequential table scan
and the other with indexed table scan. We can clearly seefdh&ioth queries, the CPU power
increases monotonically with the total number of tuplesased. We also run such experiments for
single join queries and similar trends can be observed agrshmoFig. 5.

We believe the reasons for the above observations (whicls@rehow counterintuitive) are
complicated. Our explanation is: reading larger numbeuples from a file needs more processing
overhead such as updating the free space map and visibaipyimDBMS, swapping and schedul-
ing processes at the OS level. For example, we have obsergeglimensive system swap in/out
activities in processing queries associated with larga thetn in those with small data. Such over-
head translates into extra CPU power cost for reading largerber of tuples — higher cache miss
rate could yield a higher power consumption as reportedsici And Martonosi 2003]. Therefore,
we have enough confidence to modify the previous power matt| i

P = chu X Ntuples (3)
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Fig. 6. One example of power cost estimation in a query tree gestbtat PostgreSQL

As compared to Eq. (2), the biggest difference here is thadnep the processing tinig, and the
physical meaning of parametérs.,,, is now themarginal power cost of processing each relevant
operation Note that the slope of the two regression lines in Fig. 4 is@dgndicator of the values
of such parameters, and such values will be used as initiahpaters for our power models.

Given Eg. (3), the task of power estimation becomes to gfyattite number of basic operations
Niuples, and the model parameter (i.e., unit power coBts),,. With N, .. being readily available
from the existing query optimizer, the key problem is to fifid,,,. In the following steps of mod-
eling, we first identify low-level factors in the workloaddhhave an impact oi/.,,, and treat such
factors as static (time-invariant) parameters of our meaetalibrating real power measurements
of different workloads (Details of such work can be found gcfon 4). Realistically, the model
parameter should be modified under different system sta@svarkload features. For example,
Fig. 2 shows that the marginal CPU power cost levels off whenGPU utilization increases - this
means our model parameter should also be much smaller wee@Rb is heavily loaded We
address dynamical tuning of the static model in Section 6.

4. STATIC MODELING

The theoretical model shown in Eq. (3) is too general to aapthe resource consumption patterns
of query plans. Specifically, since the cost of differentyf operations is different (as shown in
Figs. 4 and 5), keeping a single unit cost param@tgy,, is obviously an oversimplified solution.
Therefore, to refine the model in Eq. (3), there is a need toainied power consumption at the
individual relational operator level. Note that the queptimizer in a typical DBMS (i.e., those
with the System R style design) takes a bottom-up approabhitd query trees, and alternative
plans in each substree (representing an operator as shdvig i) will have to be evaluated. With
the operator-level cost models, we can follow the same bwotip strategy to build the cost model
for the entire query plan.

Since we have identified CPU as the major active power consuveeonly need to focus on the
number of tuples to be processed by the CPU. For each opétatould be assigned with one or
more power coefficients to estimate its run time power casthé remainder of this section, we
introduce power models for a set of popular relational ofpesaA summary of the operator power
models can be found in Table Il while relevant model coeffitsere listed in Table Ill.

4.1. Cost Models For Single Table Operations

For single table operators (i.eselectionand projectior), we only consider two file organizations
— heap files and index files, and their corresponding scaralgrithms —sequential scarand
index-based scarn addition, we also consider a special type of index schitmap scarthat is
implemented in PostgreSQL. Since the latter invos@gingthat is a very important component of
multiple operators, we also study the cost of sorting (algioit is not a relational operatper sg.

5 Otherwise, a plan with a hug¥; . pies Value will carry an unreasonably high power tag.
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Table Il. Power cost functions for relational operators.

[ Methods | Cost function \
Sequential Scan | wsn
Index Scan w;n
Sorting winR
Bitmap Scan w;n + win R

Nested Loop Join| w;(n1 + ninzc)
Sort Merge Join | w¢(n1R1 4+ naRa) + wi(n1 + n2)
n

Hash Join w; (ﬁl + nz)

Table lll. Key quantities in power estimation models.
| Symbol | Definition |
n The number of tuples retrieved for CPU processing
Wg The average CPU power cost for processing a regular tliple
w; The average CPU power cost for processing an index typle
wt The average CPU power cost for sorting a tuple
H The number of hash partitions
R
C

The number of runs in a sorting algorithm
Selectivity of join condition

Sequential ScarSequential scan is a scan method that each row of sourceitaidad in a
sequential order and relevant columns are checked agagnsticate. The anticipated power cost
of scanning a table with tuples, according to Fig. 4, is,n.

Index Scanindex scan is similar to sequential scan except an (treeebarshash) index is used
to reduce the number of tuples accessed. Thus, the estipatezt cost for index scan is;n for
searching in the retrieved tuples. Note that the unit power cost of accessimnigdexed tupley; is
different from that of a tuple in sequential scan].

Sorting. Sorting is an operation that is “hungry” for CPU resource thuthe need to process the
whole table in multiple runs. In estimating the sorting pow@st, table size and the specific sorting
algorithm are the key factors to consider. For the mergeadgarithm implemented in PostgreSQL
(other database systems may be different), the power aosifting isw,n R, wheren is the number
of tuples fetched to be sorted aitlis the number of runs the sorting algorithm encounters. Note
that R is a logarithmic function ofi with a large base such that it is generally a small number even
for large database tables.

Bitmap ScanBitmap scan has significant space and performance advaat@gether index
structures for data that contains very few distinct valuethe column of interest. Bitmap index
answers queries by performing bitwise logical operatioaseld on bit arrays (commonly called
bitmaps). The scan is based on bitmap index on the recondse Bitmap scan also needs sorting
of the intermediate results, the costisn + w;nR.

4.2. Cost Model For Join Methods

For any two table joins (original or temporary table), thevpo consumption depends on the join
algorithm used.

Nested Loop JoinThe cost model isv;(n1 + ninac) wherec is the selectivity of the join con-
dition, n; andn, stand for number of tuples fetched from the outer table aedrther table, re-
spectively. The nested loop join will pick up a tuple from theter table and try to find matching
tuple(s) from the inner table. For each tuple in the outeletaly ¢ tuples from the innder table will
be accessedy tuples accessed in worst case). Thus, the total number lestapcessed would be
the sum of number of outer table tuples accessed and theiciat=d inner table tuples. Therefore,
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the CPU power cost ig;n; for the outer tablandw;n,n.c for accessing the inner table. Note the
existing query optimizer will provide us with the estimatedue ofc.

Sort-Merge JoinThe power cost of merge join comes from the two stages of tarishm:sort-
ing andmerging First, the sorting cost for both tables can be calculatétgufie aforementioned
sorting cost model. For merging, the power cost is the costahning each tuple in both sorted
tables. The total number of tuples accessed at this stage-isns. Therefore, the cost model for
merge join isw; (n1 Ry +naRa) + w;(n1 + ne) whereR; andR» are the numbers of runs in sorting
the two tables.

Hash Join.The hash join algorithm takes hashing to both relations endim attribute and iden-
tifies the outer and inner tables in a subsequent probingepfide power cost of hashing is the sum
of power costs from outer table access within each hasttiparéind inner table access. Thus, the

.. ny
metric Isw; (ﬁ + TLQ).

4.3. Putting Everything Together

The above models can be combined to form complex models fpraditrary query plan. For
example, for the query execution path tree shown in Fig.s6total power cost can be generated
from adding the power cost from each node (the relationataipg in the tree along the path. As
a result, the total power cost is the sum of those from two laisls, three scans and one sorting
operation. To be specific, following the path shown in Figw8,can generate the following model
to quantify the power cost of the plan:

I !
P =w;ny +wing +winz Ry + wsnz + w; (Z—ll + n’z) + w; (2—1122 + ”é) + wingg3 Rygs

n’ n’

1 ’ 12 / / /
- T ny+ +ng + ”123R123>
H,y Hys

(4)

= Wsn3 + w; (nl + no +noRo +

wheren x stands for the number of tuples fetched from takile:; stands for the number of tuples
generated from previous relational operator, &hgis the number of hash partitions in the relevant
hash joins. Note that values of a few quantities, includirg H, andR, are provided by the existing
query optimizer.

5. STATIC MODEL VALIDATION
5.1. Experimental Setup

In this section, we mainly introduce our experimental setogluding hardware and software spec-
ifications, and how we evaluate our model’s effectivenegminer cost estimation.

Hardware.Our testbed for model validation consists of two serverdgftierent purposes. The
one called “worker” contains a 3.0 GHz quad-core CPU Xeon6&%3IGB of 667 MHz DDR3
memory, and a 2TB 7200RPM hard drive, as shown in Table l.uséd to run the DBMS and thus
the target for power modeling and estimation. The other alled “monitor” is responsible for
runtime collection of experimental data including quemtistics and power consumption. Power
measurement is done by power meters (i.e., USB OscillosB@@-8502 and watts’ Up power
meter) attached to “worker” and linked to the “monitor” viégSB connections for data reading.
Specifically, the DSO-8502 is used to measure CPU power and/dltts’ Up for that of the entire
database server.

6 Actually, this part of the model can also ben if the outer table is accessed by a sequential scan. Herestvagaume
the outer table is accessed via indexed scan. The same agsuagplies to inner table access and other join algorithms
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Fig. 7. A sketch of the experimental platform

Software.Our “worker” machine is installed with PostgreSQL 8.3.14hresDBMS under Ubuntu
9.10. The DBMS'’s kernel was hacked to provide detailed rnetsystem information such as es-
timated cost, data histogram and plan selection. Along WighDBMS, we also implement (and
deploy in the “worker”) a workload generator based on TPCFRC-C benchmarKsand datasets
from the SDSS datababe a well-known large-scale scientific database. The workipenerator
creates a comprehensive set of workloads designed to sentheffects of major factors that im-
pact power modeling, and are used to test the effectiveriess models. The software architecture
of the “worker” server is sketched in Fig. 7.

Experimental SetupMe conduct a series of experiments to verify the models roeatl in Sec-
tion 4. As the first step of the modeling process, we createeal ienvironment to run experiments
such that we can concentrate on verifying the model strastand obtaining initial values for the
model parameters from a set of training workloads. In thissewve follow the assumptions men-
tioned in Appendix Il to create such an environment in which numbers of operations given by
the query optimizer are accurate.

We use the dedicated “worker” server for our experiments fard the database with simple
workloads that consist of very few types of queries. In sugleements, we set the multi-processing
level (MPL) to one, i.e., only one query is processed at a fimtee DBMS. We measure the real
power of the entire server and compare it with the estimatatep given by the corresponding
models. A metric nameéstimation Error Rate EER) is used to quantify the model accuracy.
Specifically, EER is defined as

/ —
EER = |007,C| (5)

whereC stands for the estimated power given by our model@his$ the actual steady-state power
consumption (see Fig. 1) of the whole server measured by apoweter.

5.2. Experimental Results

5.2.1. Results of Single Table Models. We generate a set of 20 data files with a total size of 2.1TB
(w/wo indexes) for single table scans. Moreover, we prepaget of similar queries (queries with
the same structure but different selection predicatesdbthe table scan models. For each scan
operation, there are equal number of queries visiting ltabte files (e.g., 6GBineitemtable in
TPC-H) or small table files (e.g., 10M&der table in TPC-H). Each experiment is repeated 100
times and we compute the average EER in all 100 runs. Thetsesel plotted in Fig. 8.

7 http:/Aww.tpc.org/
8 http://www.sdss.org/dr7/
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Fig. 9. Empirical validation results of multi-table operatioqm®wer models.

As seen from Fig. 8, the estimated power shows very littledkéhce to the real power measure-
ments in the sequential scan experiments (ieQ.3 watts). This translates into an average EER
of less than 0.5% for both large and small file scans. We belileis is a high accuracy as some
random error is inevitable — errors lower than 0.5% are é&dnnegligible. Results for index
scans (bitmap and regular index scan) are also very prognisime estimated power cost is nearly
the same as real power measurement in all cas€sg watts). In summary, our static model works
very well for single table operations by achieving accurtd@t is over 99%. One other thing to
point out is that the power consumption is always higher sesaof large file access than in small
files, thus supporting our conclusion that power consumpatepends on the amount of work to be
done (Section 3.2).

5.2.2. Results of Multi-table (Join) Models. The verification of join power models uses the same
experimental setup and data files in previous experimeeti($ 5.2.1). From the TPC-H official
tool, we create a set of queries with one single join of twdesbEach join operation is a combi-
nation of two table scans and one join operation (see Fidt B)not a surprise that system power
increases much faster than scan operators when the sizzjofried tables (thus resource consump-
tion) increases (Fig. 9). Again, the observed EERs are hess@.5%, indicating the effectiveness
of the join models.

5.2.3. SDSS Validation Experiments. To test our models under very large datasets, we materialize
a database from the published SDSS dathaen we create three workloads: workload | is an equal-
ity search based on a sequential single table scan; worklagé merge join of two tables after

9 Release 7, URL: http://www.sdss.org/dr7
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Fig. 11. Power model validation using a batch TPC-H workload

range searches; and workload Il is a range search basedjorrg@l scan. We run each single-
query workload for 1,000 times with different search pratiés generated randomly, and the results
are shown in Fig. 10. The size of the largest table scannedcim gueries is 2TB. As we can see,
the difference between the estimated power and measureer fwery small in almost all cases.
The average EERs of the three experiments are 3.32%, 2.66P4, 8%, respectively.

5.2.4. Composite Model Validation. In the final set of experiments, we use composite workloads
that contain a random subset of the TPC-H queries. As cordparthose mentioned in Section
5.2.2, such queries include joins of more than two tableshioed with table scans. Therefore, the
composite model as that shown in Section 4.3 will be conttlto estimate the power cost. Fig.
11 shows the power measurements and estimation for a pdrimadeoduring executing the random
TPC-H queries. We can hardly see any difference betweenstiraaed power (dashed blue line)
and the average of measured power (solid red line). In faet=ER in this experiment ranges from
0.32% to 2.65%. We also run single-query workloads for alg@2ries of the TPC-H benchmark,
and the estimation results are demonstrated in Fig. 12.rAga observe very high accuracy, with
an average EER of 2.97% and the highest EER reaching onl9#1.38

5.2.5. Limitations of the Models. The above experiments show that the power prediction using o
models is very successful in a static environment. Howexarmodeling task is far from complete.
When we change workload features and system resourcelaimjjaur models can easily fail. We
first test the system with 9 different composite workloadsegated from TPC-H under an MPL
that is greater than one. Specifically, we initialize 10@mlithreads and allow queries sent from all
clients run concurrently (i.e., MPL can reach 100). The ltssaf such experiments are plotted in
Fig. 13 — we can see that the EER for all workloads are over 4Gi#h,the highest one reaching
65%. These are very inaccurate estimations as they alnmaugi tke upper bound of possible errors,
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Fig. 13. Power estimation error for a mixed TPC-H workload with nifiéerent query sets under an MPL value of 100

such bounds are described in Appendix Il. Note that all aliecdrrors in Fig. 13 are negative,
meaning the model systematically underestimates the povatiof the workloads.

In another experiment, we emulate a change of CPU resouaikalality by introducing CPU-
intensive non-database jobs into the system. Specifisadlyfork a process that creates a number
of child threads to compute the Fibonacci sequence. Adaimcauses a serious underestimation of
power consumption (blue line in Fig. 14) and an average EE&586. This clearly shows that our
model needs to be updated dynamically to capture the chariggstem status. One might argue
that the problem is caused only by the models’ failure in gapg the increased baseline power of
the system, and can be easily solved by reading in a baselmerjin real-time. However, such a so-
lution would still not be robust. First, competition betwesoncurrent queries has profound effects
on power consumption. Second, when such effects are mixébdtimse caused by system states
(such as that in Fig. 14), it is almost impossible to tell tregmart. In the context of this experiment,
we implement and test such al hocsolution that measures the system power consumption in
real-time and add the measured power to the results of ttie stadel as the estimated total power.
The results (pink line in Fig. 14) clearly show that the& hocmodel systematically overestimates
the power with a large error margin (i.e., average EER reatBe57%).

5.2.6. Source of Errors. Many factors can contribute to the errors in power estinmaticdatabase
queries. According to our empirical study mentioned abawkexisting wisdom from the software
engineering communit}f such factors can be put into three categories.

- System statu®kun time state change of the database system and even tten@8use significant
errors in power estimation. A simple example can be seengnZithe marginal increase of CPU
power is not linear to the CPU utilization. In other words frarameters),, w; andw; should

10 A summary can be found at http://eu.wiley.com/legacyité/hbmsd/pdfs/mma54.pdf.
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Fig. 14. The static model fails under a change of system contention

have different values under different system contentiow, e change of the latter cannot be
easily detected. Other events such as initialization ofpeting computational jobs can cause the
same problem;

- Operation quantity estimation erroErrors are inevitable in estimating the number of input tu-
ples (e.g.n1,no in Table II) for a relational operator in the plan. In our misdesuch values are
provided by the existing query optimizer and are inheremtfccurate. In fact, this is a classi-
cal problem in query optimization as the query processimg talso depends on such quantities
[Chaudhuri 1998].

- Workload dynamicsA workload generally contains queries with different n@s@ consumption
patterns and the interactions among concurrent querieseayeomplex. Workload features may
change over time and significantly impact power cost by chmgneariables such as cache hit rate
and concurrency level.

To derive an accurate model that minimizes the above emagsgould integrate all relevant
factors into an augmented physical model. However, thisnisnéeasible solution because it is
impossible to locate all the possible factors, and modet #féects on power consumption. The
solution we propose and implement here is to use an onlirdbfask mechanism that adjusts the
weight parameters of each relational operator’s estimdtiaction by capturing the recent trends
of system and workload dynamics in order to decease the EER.

6. DYNAMIC MODELING

In this paper, we propose amline model estimatiostrategy to minimize the errors. The main idea
is: we keep the structure of the previous physical model weldp. We treat the database system
as a black-box and model the cost parameters«;, andw;) in our existing model as system-level
variables whose values reflect the combined effects of aBipte system/environmental factors. We
then use a feedback control based mechanism to periodigadigte the parameters using real-time
power measurements. As a result, errors generated by theesauentioned in Section 5.2.6, even
those in operation quantity estimation, will be compergéte by adjusting such parameters.

For each relational operator, we define its unit power condiom as a function of time (instead
of a time-invariant model shown in Table 1) since we needdjust the model in response to the
dynamics in system/environment. Such models are updatekity period with lengtf’ to refine
the estimation results. In each sampling period, we cadllecteal power measurement and use it to
compute the estimation error and average baseline. Wheaepeery enters the system, the online
model will use those two pieces of information to update thwer coefficients which will, in turn,
be used for power cost prediction of the query plans.
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6.1. Online Model Design

In this section, let us introduce the online model estinrasicheme, which is based on the a refined
Recursive Least Square (RLS) estimator [Wang et al. 200Bidvat al. 2005; Wang et al. 2009]
with directional forgetting according to our preference.

We will maintain an operation vectotr = {ni,ns,--- ,n,, } to hold quantities of all operations
of queries currently being processed in the system. Rdgallthe values im are provided by the
query optimizer. In general, the RLS scheme requires a vette {w;,ws, - ,w,} to hold all
the parameters to be updated and a vari&biezz;l wj. In our case, we havé = {w,, w;, w; }

andk = ws + w; + w;. We then define a new vectar = {ws, w;, wt, k}, and denote the value
of w’ at periodj asW (j). Similarly, for the operation vectot = {ni,nz, - ,n,}, we define

another vector’ = {ni,n2, -+ ,nm, 1} and denote the value of at periodj asﬁ(j). At each
period, the actual power consumption of the serf&ris measured. The RLS model generates a
quantityp(y) as the baseline power from the measurements of the last periods and currerf?

as follows:

whereP; is idle power for all hardware components except the CPUghvisil11 — 88.2 = 22.8W

in the server we used according to Table Ill. We also set titialimalue of the baseline powerto 111
watts. In other words, we hayg0) = 111W. Now we know how to refine the baseline power to
estimate total power cost. The next step is to use this datdjtst the model to accurately estimate
power cost of query plans. The parameter vetiqyj) is updated as follows:

e N (M( —1)
W) =W -1+ A+ N(j)M(j — ))NT(j)

()

wheree(j) = p(j) — NT(j)W’(j) is the estimation erroiVI(j — 1) is the covariance matrix of
vectorN (), and) is the constant forgetting factor withjA, 1] — a smaller\ enables the estimator

to forget the history faster. The following routines aredked at the beginning of every perigaf
model updating:

(1) the RLS estimator records the operator vedfb(rj) and calculates baseline powsr);
(2) it computed¥ (j) according to Eq. (7).

The RLS estimator adapts itself so théj) is minimized in the mean-square sense. When the two
variablessi andp(j), are jointly stationary, this algorithm converges to a $eap-weights which,
on average, are equal to the Wiener-Hopf solution [Lawri@720As a recursive algorithm, the
RLS estimator has very low computational overhead (tensiofaseconds as we recorded in our
experiments). It is also robust against different workkadd system conditions. In our method,
the initial values for the power parameters, ( w;, andw;) are based on results obtained from the
static models upon running a composite workload (see Apgeridr details). We conduct power
statistics identification experiments for all the TPC-H geg, and the initial value of the parameter
vector isW (0) = {0.0023178, 0.0024535, 0.00223659}.

One special note abowlj) is: instead of being measured via a power meter, qua@tigan
be translated from CPU utilization (provided by the OS)dwling the regression curve shown in
Fig. 2. The advantages of this method are obvious: first, nealsurements from a power meter are
always associated with delays from the communication cklaremd resource overhead; Second,
our database system can be deployed in a server without a pogter connected - they are only
required for generating the initial values for the modelgmagters. This is a huge benefit in data
centersthat host a large number of servers. By compariagtbihod with real power measurements
we found that the differences are negligible.
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The length ofTs implicitly affects the accuracy of the dynamic model. It &avant to the fre-
quency of incoming query request. If the query arrival rateigh,Ts will be set a smaller value to
sampling sufficient variance. Otherwise, we could makerigkr to avoid possible disturbance and
computational overhead. In our experiment, we set it to b8 $&cond, such a sampling frequency
is the same as that of the system power measurement.

6.2. Online Model Validation

6.2.1. Experimental Setup. The experiments are run in the same environment as thatoneuqitin
Section 5.1. However, as the enhanced model is meant to sake complex problems, our work-
load generator produces datasets and workloads that ceatarios that our static models cannot
handle well. First, the workload generator borrows datacareties from three sets of benchmarks:

(1) The generator produces a query pool that consists 002j06ries derived from the 22 standard
queries in the TPC-H benchmark by changing the query pammethe workload generator
draws queries from such pool with a predefined distributibquery arrival time and features
such as the level of resource sharing, query priority, antfipnagramming level;

(2) We also use a 1TB SDSS database that includes 53 millimuarastronomical objects such
as stars, galaxies, and quasars. The set of 400 queriesatgsndatabase are extracted from
the query templates posted on the SDSS website — it mainlgistsrof large table scans and
joins of few tables (mostly two-table joins). The purposaising this workload is to identify
the model’s capability of estimating power cost of a largebase.

(3) Finally, we use a TPC-C benchmark tool named TPCC¥¥a generate OLTP workloads.
Note that TPCC-UVa forms a black-box testing environmenbiar model verification as it is
a closed benchmark tool in that users cannot access (let elodify) the queries.

Based on the queries from the above three benchmarks, wgndeseries of experiments running
different database workloads. In all such experiments, et¢h® MPL to 100 to create a realistic
database runtime environment in which multiple queriespaoeessed concurrently. Each type of
workload is for verifying our dynamic model’s ability to hdle one (or more) category of errors
mentioned in Section 5.2.6. By changing workload pararsetee can simulate different levels of
impacts the error sources have on our power models. Pattigule have the following three types
of workload.

(1) Type  To test the accuracy of our model under workload error astesy error, we define this
type of workload with different levels of resource sharimgaag concurrent queries. Specifi-
cally, in such workloads, we simulate tebare-everythingndshare-nothingpatterns in what
we call thefine-grained paralleland coarse-grained paralleorkloads. The coarse-grained
parallel workload contains queries of large computati@varhead, and little data shared with
other queries. On the other hand, fine-grained parallel watkis generated by using queries
of small computation, large interaction and considerabiewnt of data shared among queries.
In a share-nothing system environment, the power cost a§yktem varies rapidly over time
due to the large volume of page demand and replacement. ghtre-everything environment,
the power consumption may be more stable since most dat@asable in the cache and the
CPU time won't be wasted for waiting 1/0O. This type of worktbia generated from the TPC-H
query pool as mentioned above.

(2) Type II: The resource estimation error is another important fatttat causes the power es-
timation failure. Poor estimation of data distribution ¢me form of data histograms) in the
database tables is the main reason for that [Chaudhuri 1898}der to verify its effects on
the accuracy of our model, this type of workload containisegit (i) deterministic acces®A)
queries that visit similar regions in the data domain frometito time; or (ii)random access
(RA) queries that randomly touch all spectra of the data dontia running the DA workload,

11 http://www.infor.uva.es/ diego/tpcc-uva.html
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the query optimizer will quickly learn the data distributiafter running very few queries and
resource estimation for following queries will be accur&ter the same reason, in running the
RA queries, the data histogram will be updated frequentty iaieads to inaccurate resource
estimation. In short, the purpose of this workload type i®#t our model in facing the resource
estimation errors, or more specifically, errors in selétgtigstimation. This type of workload is
also generated from the TPC-H query pool.

(3) Type llI: In a real-world database server, processes other thanBMSDwill run concurrently
and such processes may cause fluctuations of the systemiscesvailability. We design this
type of workload to emulate those changes by via two mechemnighe first one is to introduce
a user program that automatically spawns new processesipute Fibonacci sequences. Itis
a pure CPU intensive program and the number of its child msE®can be fixed or limited to
avoid thread bomb and produce different resource consompttterns. The other mechanism
is to change CPU frequency at runtime via the Dynamic Frecpend \oltage Scaling (DVFS)
technique built into many modern CPUs. Both mechanismsmoduce significant changes
of system capacity. Thus, this workload type is for verifyiour models under system error.
Queries in this type of workload are drawn from both the TP@rd SDSS query pools.

We compare the performance of the dynamic models with thie st@dels we develop in Section
4.3 and thead hocmodel mentioned in Section 5.2.5. Note here, since we havgpheuqueries
running in the system now, the average EER that we used taaeathe system’s performance is
redefined as the arithmetic mean of the EERSs of all involveztigs.

6.2.2. Experimental Results.

Results of Type | workloadn such experiments, we create a query pool for the type | lvack
sets following the descriptions in Section 6.2 and randgoidi queries from it. Specifically, we try
9 workloads, each draws a different number of queries rahdéom the TPC-H query pool and
the query set size ranges from 10 to 2,000. As shown in FigthE5SEERSs generated by the RLS
models are significantly smaller than those under the stadidels for both Type | workloads (i.e.,
fine-grained and coarse-grained parallel). Also, by coingahhe results of two workload types
under the RLS model, we can see that our model handles theecgaaiined parallel (i.e., share-
nothing) workload as well as the fine-grained (i.e., shaemghing) parallel workload, with an
all-round average EER of 8.89% and 6.93%, respectively.fifjieest EER recorded for these two
workload types are not much higher —they are 10.88% and 9.0F#&fact that both query patterns
leads to similar model accuracy shows that our model cactafédy handle the interactions among
queries. Thed hocsolution has much better accuracy than the static modedsyisp its ability
to partially capture the interaction among queries andgeifién the modeling. However, it is still
no comparison to the full-fledged dynamic model — its EERrofteubles or even triples that of
the latter (average EERs are 28.54% and 34.78%, resp@ggtiveiother observation here is, in
majority of the experiments, the coarse-grained parakekivad causes larger errors than the fine-
grained parallel workload. This shows that errors causegligyy interaction is a major obstacle to
overcome in database power modeling.

Results of Type Il workloadAs shown in Fig. 16, the dynamic model shows a very high acyura
while handling DA workload — the average EER is 8.93% withhighest EER being 11.9%. For the
DA workload, queries always visit the same part of the talideefore it leads to very high cache hit
rate. In other words, the workload runs under a relativedgdy system environment. That is likely
to be the reason why the static model shows similar estimatiors in almost all experiments (i.e.,
accuracy stays around 40%). When it comes to RA workloadoafh the query optimizer could
produce large errors in resource estimation, our dynamaaiean capture the trends of such errors
and compensate for them. The EER is again lower than 10% fet ofithe cases — the average EER
is 8.26% with the highest EER being 10.07%. Similar to theeTyporkload experiments, thad
hocmodel is superior to the static model in modeling accurat¢ylbmonstrates much higher EERs
than the dynamic model.
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Results of Type Il workloadAs discussed above, we create a pure CPU-intensive proakss ¢
Fibo, which continuously calculates numbers in the Fibehaequence. We use Fibo to emulate
real-world scenarios in which non-DBMS processes compéiie the DBMS for resources. At
runtime, Fibo can automatically spawn different numbeihilfl processes according to parameters
received from a communication channel. The results of tpgement are demonstrated in Fig. 17:
the system starts with 20 Fibo processes and this numbeaiigel to 54 at the 7th second and drops
at the 18th and 24th seconds to 10, and then increases to 14 38itd second. By Comparing the
changes of number of Fibo processes running in the systehtitfied and power estimation errors,
we can see that our online model can capture the trends ofchastges and react within a short
period of time (i.e., shorter than 3 seconds in this expermijne
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We also emulate sudden changes of the system states by nhahgiCPU power consumption
pattern at runtime. We take advantage of the DVFS featureeofPU to implement that. In Fig
18, we present a sequence of power data collected on-thg-fliohiing the measured power as the
green line, and the estimated power as the blue line. At fisstPU runs at 70% frequency, with
a power consumption of the system around 143 watts whenmgranmixed TPC-H workload. In
about one second, the CPU frequency increases to 80%, anjdithps to 90% after another second.
Our model starts to adjust the parameters to catch the chafi@PU frequency immediately after
the first jump of frequency, and manages to minimize the egitom error at about one second after
the second jump. The system experiences a sudden decrgaseearfat the 11th second, and the
RLS model, again, is able to respond to that in about two st dime. The average EER we record
during this whole period is about 9.72%. This complemergsabove experiment in showing our
model’s ability to deal with dynamics in system resourcelatdity.

Black box validationWe also validate our model within a closed query environngarter-
ated from a non-commercial TPC-C tool called TPCC UVa, astioead before. Since we cannot
change data distribution or the query composition insigevtbrkload, this serves as a perfect tool
for black box testing. As seen in Fig. 19, the average EER oflgnamic model is around 10% in
a 10GB DBMS configuration compared to the static model’'s EERL4% and the ad hoc model's
23.62%. This clearly shows that our RLS model is robust evedeua workload whose internal
features are concealed.

Effects of forget factoA. Another interesting experiment is to see the effects of thgoirtant
forget factor)\ in our dynamic model. The results of this experiment coullh hus fully explore
the effectiveness of the model and make recommendationaanw&lue ofA. For that purpose,
we create six workloads — two from SDSS queries and four wattious combinations of TPC-
H queries — to provide a diversified testing environment. ésnsin Fig. 20, the forgetting factor
A could affect the accuracy of the RLS model significantly. tfer SDSS workloads, the results
are stable without showing much difference under diffeper®ur explanation is: most queries in
SDSS are 1/0-bound due to the sheer size of the database thidecreates a very static situation
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in terms of power consumption. However, in a dynamic envitent, if the system states follow a
historical trend (e.g., those of coarse-grained paraltekioad or a deterministic access workload),
increasing the value of gains significant benefits in terms of model accuracy. Thesswggest the
maximum value (i.e., 1.0) of be used in order to obtain more historical data and higharracyg

of the model.

6.2.3. Discussions. We are in general satisfied with the performance of our modHist, the
static model indeed provide estimations of the cost of quggrators with negligible errors. For
more realistic database workload and environment, the Basgd model is effective — EER is in
the range of 8-13%. Note that cost estimation in compositklads is such a difficult prob-
lem that an estimation is regarded satisfactory when it ihefsame magnitude as the real value
[Waas and Galindo-Legaria 2000]. Power estimation, on therdiand, is not as difficult due to the
narrow bound of errors (see Appendix Il). Nevertheless efténation error can easily approach
the boundary value(s) if the model is poorly designed ($ach.2.5). The absolute errors of our
dynamic model are less than 8 watts in a server with a sabargbwer of 190 watts and active
power range of 80 watts. A comparison between our work andrstis less meaningful than one
might think: [Kunjir et al. 2012] and [Rodriguez-Martinetzad. 2011] focus on peak power and do
not provide dynamic models while [Xu et al. 2010] does nobrémodel accuracy at all. By just
reading the numbers, our models have lower errors than tlepseted in [Kunijir et al. 2012] and
[Rodriguez-Martinez et al. 2011] in static power estimatio

The runtime computational overhead of our model mainly cofmem computing Eq. (7) and is
only 30 microseconds in the server we use. Our modeling fnarieis not intrusive in that it only
takes estimated resource by existing query optimizer agsrgnd can be implemented as a separate
module in the DBMS.

7. CONCLUSIONS

This paper argues for the importance of building accuraterabust models for power cost esti-
mation in database systems. For that purpose, we conduathsidentification experiments on
a single database server to explore the essential commooepbssible power models. Via such
experiments, we revealed the fact that power consumpticorielated with the work size when
the system utilization is low. Based on those findings, wepsed and evaluated a two-level power
estimation model: we started from a series of physical nwotielt describe the power cost of in-
dividual relational operators under a static system enwvirtent, and then used an online model
estimation method to dynamically tune key parameters o$thgc models to achieve high robust-
ness. The static models for important relational operat@® built on empirical results obtained
from running simple workloads using linear regressiongodhe online model estimation scheme
ensures that the model can tolerate system dynamics anddtiosts of workload characteristics.
Performance of our models was validated by a large humbegstfdases that emulate realistic
database runtime environment. In summary, our models anedfto be effective — the estimation
error is lower than 10% in almost all cases. We strongly keli@ur work has high technical sig-
nificance in that it serves as the basis for power-aware qojetiynization — a key mechanism in

ACM Transactions on Database Systems, Vol. X, No. X, Artk} Publication date: December 2011.



Title XX:23

building energy-efficient database management systemetivate follow-up work includes more

experiments and the extension of the estimation model t@l@Vant relational operators. The idea
is to apply similar system identification methods to thodatienal operators and integrate them
into the composite model. Our estimation framework can bésextended in a few directions. For
example, it is obviously meaningful to explore power moaglin a distributed database system,
in which the power dynamics from storage and network systemasonsiderably large therefore
cannot be ignored from the modeling process. Inspired bytiveess of our online model tuning
method in power modeling, we are currently investigating plotential of such method in time

estimation in traditional query optimizers. This can algodombined with our power models to
explicitly quantify energy consumption of database system
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Appendix
|. DERIVATION OF STATIC MODEL PARAMETERS

Based on system identification conducted on the testbeatinted in Section 3, our system model
is initialized with the following parameters via runninggetiments (results shown in Fig. 4):

B 0.00206303
W(0) = [0.00271021 8)
0.00238662

Those numbers are further refined in the following processdscussed in Section 3.2, our
model’'s purpose is to estimate the power cost with lowestr€ie., the smallest EER). Also, the
final static model mentioned in Section 4.3 is a mixed lineadet for all the relational operators’
power profiles. This model could be solved by the Linear Eiquaand System Solvers (LESS) in
GAMS based on specially designed experiments for all opesatentioned in section 4.1. First, we
conduct a series of experiments for each single relatiopataiors. For example, for nested-loop
join, we produce experiments on 100 simple two-table-jaierigs feeding into the PostgreSQL
which is hinted to give nested-loop join execution plan.d&hen the data collected from this ex-
periment, we know the number of tuples fetched, the interateduples for nested-loop join, and
run-time power consumption for such operations. Such datarinatted to feed into LESS and it
calculates the power coefficients for the assumable lineaiets that reach the maximum likelihood
for the set of data obtained. Similar experiments are rumfioer relational operators. By that, we
obtain a set of power coefficients for various relationalrapa's. We use WeRato find the best

12 http://www.cs.waikato.ac.nz/ml/weka/
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value for those power weight coefficients for the whole moBglally, our static model is equipped
with the following parameters:

0.0023178
] 9)

W(0) = [ 0.0024535
0.00223659

Il. EER WORST CASE ANALYSIS

In analyzing the sources of errors and evaluating the acgwfour models, it helps to answer the
following questionis there a provable upper bound of EER in the worst caBe& answer is yes.
Using our experimental setup for an example, the maximunepaansumption of our server (i.e.,
when all components are fully loaded) is about 190 watts &eddle power is about 110 watts
when the CPU utilization is on the lowest level (Fig. 2). Letaonsider two extreme cases: (i) our
model predicts that the system runs at the maximal powerevthére is actually nothing running
in the system at all. According to Eq. (5), EER in this caseliB0¢190)/110 = -72.7%. Clearly,
the result is a serious overestimation; (ii) on the othemdhaunr model says the system is running
on minimal power, but actually the system reaches its maxgapacity. The EER is now (190-
110)/190 = 42.1%, and it reflects a dramatic underestimalibos, unlike query processing time
estimation that could result in unbounded estimation etherlower and upper bound of power cost
prediction is bounded. Specifically, this bound is 72.7%arralir hardware configuration.

IIl. ASSUMPTIONS

[Christodoulakis 1984] gives assumptions for time estiomamnodels to lay out a common environ-
ment for research and practice of database query optimizadimilar to their work, we list some
assumptions as the basis for building our static model.

(1) Uniformity of per-tuple power costhe power usage for processing one tuple/indexed tuple in
CPU is always the same.

(2) Constant number of tuples per padlee probability of referencing any pagelisP, whereP is
the number of pages.

(3) Random replacement of tuples among pagdles probability of referencing any tuple 19 B,
whereB is the number of tuples per page.

Assumption 1 affects whether there exist power coefficiantee power cost metrics. Assump-
tions 2 and 3 affect the amount of estimated resource (Beycardinality of data table). By building
models with the above assumptions, we will see decreasenlaaycof estimation. However, such
assumptions provide us with a starting point for power miagedithout worrying about complex-
ity of the system and workloads. When we build our online ni®8dased on the static model, the
latter two assumptions are relaxed in order to enhance thestoess of our power models.
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