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ABSTRACT
Implementing database operations on parallel platforms has
gain a lot of momentum in the past decade, due to the in-
creasing popularity of many-core processors. A number of
studies have shown the potential of using GPUs to speed
up database operations. In this paper, we present empiri-
cal evaluations of a state-of-the-art work published in SIG-
MOD’08 on GPU-based join processing. In particular, such
work provides four major join algorithms and a number of
join-related primitives. Since 2008, the compute capabilities
of GPUs have increased following a pace faster than that of
the multi-core CPUs. We run a comprehensive set of ex-
periments to study how join operations can benefit from
such rapid expansion of GPU capabilities. Our experiments
on today’s mainstream GPU and CPU hardware show that
the GPU join program achieves up to 20X speedup over a
highly-optimized CPU version. This is significantly better
than the 7X performance gap reported in the original pa-
per. We also modify the GPU programs to take advantage
of new GPU hardware/software features such as read-only
data cache, large L2 cache, and shuffle instructions. By ap-
plying such optimizations, extra performance improvement
of 30-52% is observed in various components of the GPU
program. Finally, we evaluate the same program from a few
other perspectives including energy efficiency, floating-point
performance, and program development considerations to
further reveal the advantages and limitations of using GPUs
for database operations. In summary, we find that today’s
GPUs are significantly faster in floating point operations,
can process more on-board data, and achieves higher energy
efficiency than modern CPUs. The availability of new tools
and models have made program development and optimiza-
tion on GPUs much easier than before.

1. INTRODUCTION
The design of modern CPUs has experienced a reform

from single-core to multi-core architecture. The single-core

designs reached a bottleneck where instruction-level paral-
lelism is too exhausted to continue providing performance
improvements. On the other hand, the strategy of further
increasing clock frequency hits an “energy wall” in that the
high power leakage of the chips becomes intolerable [11]. Al-
though multi-core CPUs have become more power efficient
than ever before, the growth of their performance can hardly
catch up with Moore’s Law any more. As a result, Many-
core architectures such as Graphics Processing Units (GPU)
have become a popular choice of high-performance comput-
ing (HPC) platform. GPUs once were dedicated hardware
for computer graphic rendering tasks such as gaming, 3D
design, and video processing. Its architecture is uniquely
designed towards rendering tens of video frames that each
contains millions of pixels within a second. A modern GPU
chip consists of thousands of cores that deliver tremendous
computing power. It is also equipped with high speed mem-
ory modules to satisfy the data communication needs of the
cores. Such characteristics of GPUs, along with the general-
purpose programming frameworks such as Compute Unified
Device Architecture (CUDA) [1] and Open Computing Lan-
guage (OpenCL) [6], have drawn much attention from the
HPC communities. Various studies have shown that GPU
is promising for accelerating data-independent parallel com-
puting, especially in applications such as fluid dynamics,
molecular simulation and data mining [28, 30, 25, 24, 37, 26,
34]. Such work reported performance boosts (over CPUs)
ranging from one to three orders of magnitude, depending
on the level of parallelism that can be exploited in the algo-
rithms.

The database community is also among those who bene-
fited from general-purpose GPU (GPGPU) computing tech-
nology. In recent years, a number of studies have provided
evidence of GPU’s capability to speed up database oper-
ations [38, 19, 20, 33, 23, 12, 21, 35, 32]. In relational
DBMSs, the most time-consuming operation is join, which
is accomplished by either exhaustively scanning the whole
table or accessing accessory data structures (e.g., indexes)
to reduce search space. In 2008, He et al. published their
work in the design and implementation of four major join
algorithms on GPUs [20]: block-based non-indexed nested
loop join (NINLJ), indexed nested loop join (INLJ), sort
merge join (SMJ), and radix hash join (HJ). They thor-
oughly compared the performance of these algorithms on
a mainstream GPU device with that of a highly-optimized
CPU version and demonstrated that GPU achieved up to a
7X speedup over CPU, which is a significant improvement
by any standards. In this paper, we report the results of
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a comprehensive set of experiments running the program
developed by He et al.. However, our study serves more sig-
nificant purposes than simply verifying the findings of [20].
Instead, we aim at drawing an up-to-date and panoramic
image of GPGPU as a means for processing join operators.

With the promising performance shown in existing work,
it is worth exploring the actual benefit of using GPUs for
processing database operators as of today. This is especially
important in that the GPU industry has since released new
devices that carry many times of computing capabilities as
those found in 2008. For example, Table 1 shows the spec-
ifications of several Nvidia GPUs, including the 8800 GTX
that is used as the testbed in [20]), and the GTX Titan plus
GTX 980 that we use in our study. We can easily see that
the memory bandwidth of the GTX Titan is 3.3 times as
that of the 8800 GTX, and the raw computing power is 13
times as high. It would be interesting to see how such in-
crease of computing capabilities is reflected in performing
database operations. Therefore, an important objective of
our work is to empirically evaluate the performance of the
aforementioned GPU join algorithms in today’s GPU de-
vices. To that end, we run the code used in [20] in modern
GPUs and CPUs and compare their performance. In partic-
ular, the code includes both GPU and CPU versions of four
join algorithms mentioned above: NINLJ, INLJ, SMJ, and
HJ, as well as a set of data primitives such as map, sort, and
prefix-scan. Our experiments show that the GPUs achieve
up to a 20X speedup over the CPUs in the four join algo-
rithms. It is clear that the performance gap between GPU
and CPU in join processing is widened since 2008. The sec-
ond objective is to evaluate the full potential of GPGPU
in processing joins by considering the many new techniques
implemented in GPUs in recent few years. Specifically, we
modify the aforementioned GPU programs by taking advan-
tage of new hardware and software features such as read-only
data cache, large L2 cache, and shuffle instructions. By ap-
plying such optimizations, extra performance improvement
of 30-52% is observed in various kernels. Finally, we evalu-
ate the join programs from a few other perspectives such as
energy efficiency, floating-point performance, and program
development considerations. Those are done in response to
relevant discussions presented in [20] and further revealed
the advantages and limitations of GPGPU from a database
perspective. In short, we find that today’s GPUs are signif-
icantly faster on floating point operations, can process more
on-board data, and achieves higher energy efficiency than
modern CPUs. The availability of new tools and models
has made program development and optimization on GPUs
much easier than before.

Roadmap: The remainder of this paper is organized as
follows: We briefly review related work in Section 2; The
experimental setup is described in Section 3; We report per-
formance of the original join code used in [20] in both CPUs
and GPUs in Section 4; We present design and evaluation of
optimized join algorithms based on new GPGPU features in
Section 5; We continue to evaluate the GPU join algorithms
from other perspectives in Section 6, summarize our findings
in Section 7, and conclude this paper by Section 8.

2. RELATED WORK
In the database domain, multi-core CPUs and various

many-core devices have been used for increasing the perfor-

mance of various database operations. The key ideas of algo-
rithm design and optimization in this field include minimiz-
ing overhead of synchronization, reducing frequency of inter-
core communications, optimizing memory access pattern for
maximum bandwidth utilization and decreasing cache miss
rate. In [14], Blanas et al. studied a number of main mem-
ory hash join algorithms that took advantages of multi-core
CPUs. The authors implemented four flavors of hash joins
and demonstrated that the one with a single shared hash
table performed better than all other alternatives in most
cases. Zagha et al. [36] implemented radix sort on Cray
multiprocessors that laid out the foundation for radix hash
join and provided important theoretical guidance for paral-
lel implementations. Moreover, in dealing with the speed
gap between processor and memory, Manegold et al. [29]
evaluated the impacts of memory cost of database opera-
tions and showed how memory optimizations address such
issues.

GPGPU has become very popular high-performance com-
puting technique in the last few years. The SIMD architec-
ture of GPU provides tremendous amounts of computing
power under very high energy efficiency – more than 9% of
the Top500 supercomputers in the world has deployed GPUs
in their architecture [8]. In computational sciences, GPUs
are widely embraced by researchers from various fields to
accelerate their applications [28, 30, 25, 24, 37, 26, 34]. It
is inevitable that the database community delves into inte-
grating GPGPU into the implementation of DBMSs. Before
the emergence of GPGPU programming languages such as
CUDA and OpenCL, there were already a number of stud-
ies that used GPUs to accelerate database operations via
graphic APIs. Sun et al. [31] utilized the rendering and
searching functions of GPU to speed up spatial database se-
lections and joins. Their hardware-assisted method reached
a speed-up of 4.8-5.9X in joins comparing to CPUs. In a
later work, Bandi et al. [13] extended that proposal to a
practical scenario by integrating GPU-assisted spatial op-
erations into a commercial DBMS. Govindaraju et al. [17]
proposed a set of commonly used operations including selec-
tions, aggregations and semi-linear queries implemented on
GPUs. The same group implemented a high performance
bitonic sorting algorithm on GPUs that served as an essen-
tial part of many other database operations [16]. However,
the studies mentioned above were all based on very old GPU
architectures, which were not optimized for general-purpose
computation. They also had to rely on graphic APIs such
as OpenGL and DirectX that limited the programmability
and functionality of their implementations.

Since the major GPU manufacturers evolved their prod-
ucts to adopting the Unified Shading Architecture around
2007 [9], there has been unprecedented effort devoted to the
GPGPU paradigm, especially after the release of advanced
GPU computing models such as CUDA [1] and OpenCL
[6]. The same trend has also affected the database commu-
nity. He et al. [18] proposed very efficient gather and scat-
ter operations on CUDA-enabled GPUs. These algorithms
made full use of the high memory bandwidth of GPUs by
addressing computation for coalesced memory access, thus
eliminating the costly overhead of random memory access.
They also developed plausible solutions for data read and
write primitives of database operations on GPUs. Based
on that, He et al. [20] developed a comprehensive pack-
age of GPU-based database algorithms including a series
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Table 1: Specifications of hardware mentioned in this paper. Information is mainly extracted from the Intel and

Nvidia corporate websites, with other information obtained from www.techpowerup.com

Device
CPU GPU

Xeon
E5-2640 V2

Core i7 3930K
Core 2 Quad

Q6600
GTX Titan GTX 980 8800 GTX

Date
released

Q3 2013 Q4 2011 Q1 2007 Q1 2013 Q3 2014 Q4 2006

Core Speed 2.00GHz 3.20GHz 2.40GHz 0.84GHz 1.13GHz 0.58GHz

Core Count 8 6 4 14 × 192 16 × 128 8 × 32

Cache Size
L1: 512KB

L2: 2MB
L1: 384KB
L2: 1.5MB

L1: 256KB
L2: 8MB

L1: 64KB × 14
L2: 1536KB

L1: 96KB × 16
L2: 2MB

L1: 16KB × 8

RAM DDR3 Triple Channel
DDR2

Dual Channel
GDDR5 6GB

384 bit
GDDR5 4GB

256 bit
GDDR3

768MB 384 bit

Memory
Bandwidth

38.4GB/s 12.8GB/s 288GB/s 224GB/s 86.4GB/s

Max
GFLOPS

128 153.6 38.4 4494 4612 345.6

Max TDP 95W 130W 105W 250W 230W 155W

Launch
Price

889 USD 594 USD 530 USD 999 USD 549 USD 599 USD

of primitives and four join algorithms developed on top of
those primitives. The algorithms took advantage of coa-
lesced memory access and shared memory to reduce mem-
ory latency and initiated sufficient number of threads to hide
memory stalls. With the computing power of a first genera-
tion CUDA-supported GPU, the primitives reached speedup
of 2.4-27.3X while the four join algorithms achieved 1.9-7.0X
speedup compared to a quad-core Intel CPU. In an extended
version [19] of [20], the same team studied performance mod-
eling and combining CPUs and GPUs for relational data
processing. Since the core issue we are interested in is GPU
performance, we will only refer to [20] for comparison and
discussions in this paper. In [23], Kaldewey et al. used
Unified Virtual Addressing (UVA) to alleviate the difficulty
of explicitly copying data to GPUs by enabling the GPU
accessing host memory directly. Bakkum et al. [12] inte-
grated a GPU-accelerated SQL command processor into the
open-source SQLite system. Specifically, the command pro-
cessor boosted the performance of SQL SELECT queries in
the database system, where 20-70X speedups were achieved.
Due to the limitation of SQLite, this result was achieved by
comparing with single-thread CPU implementation. How-
ever, our work is based-on a multi-core, multi-thread en-
abled code which make full use of the maximum performance
of recent hardware platforms. Apart from pure GPU-based
studies, there were also studies on further improving the
overall system performance via distributing computation to
both CPU and GPU [19, 22].

3. EXPERIMENTAL SETUP
Our testbed is a high-end workstation featuring 48GB of

DDR3 memory and one 512GB SSD disk. The motherboard
is an AsRock X79 Extreme 11 hosting seven PCI-E 3.0 slots
with full 16X speed and can support up to four double-width
GPU cards. Note that each PCI-E slot provides approxi-
mately 15.8GB/s of bandwidth [7] for efficient data transfer
between the host and the GPU.

We obtain the entire code package introduced in [20] from
its first author, Dr. Bingsheng He. This package includes
both CPU and GPU versions of four join algorithms and five
join-related data primitives. We test the code with a variety
of CPUs and GPUs. However, in this paper we focus on the
results of two GPUs - the Nvidia Geforce GTX 980 and the
Nvidia GTX Titan, in comparison to two CPUs: Intel Core
i7-3930K and Intel Xeon E5-2640v2. The specifications of
the chosen hardware are shown in Figure 1. Based on their
prices, the Core i7 and GTX 980 are mid-range hardware
found in typical desktop computers while the Xeon E5 and
GTX Titan represent those found in powerful workstations.
Note that the CPU and GPU within each group are at the
same price range – this allows a fair comparison in terms of
cost efficiency. We also tested three other GPU products:
the GTX 770, Tesla K20, and K40 [4], all belonging to the
Kepler architecture. Note that these devices are way more
expensive than (yet with only comparable performance as)
the Titan therefore we just briefly discuss their performance
in Appendix A.

Our workstation is a dual-boot platform that runs the
following systems: (1) Windows 7 (SP1) with Visual Stu-
dio 2010 as the program development environment; and (2)
Ubuntu 13.10 with Linux kernel version 3.11.0, and GCC/G++
version 4.8.1 for compiling the CPU code. For GPU com-
puting, we use CUDA 6.0 to compile the GTX Titan code
and CUDA 6.5 for the GTX980. The code was originally de-
veloped and tested using Visual Studio in Windows. To en-
sure fair comparisons, unless specified otherwise, we report
GPU results under the Windows system throughout the pa-
per. For the convenience of our future work, we ported the
GPU code to Linux without much modification. We tested
the GPU code under both Linux and Windows and found
that the change of operating system has minor effects on
the performance of GPU code. However, some parts of CPU
code were implemented by using Windows-oriented libraries.
Therefore, we conduct the CPU tests strictly in Windows.
The code was compiled and tested with the best configura-
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tion and parameters discussed in the previous work [20]. As
in [20], each tuple in the database table contains an id and
a key value. Unless specified otherwise, the key values are
integers ranging from 0 to 230. Such values are generated
randomly, and an ID is specified to each key value in order.
As in the original code, we fixed the number of output tu-
ples in our experiments by setting the tuple matching rate
between two tables to 0.1% . The number of output tuples
is changed only in one experiment for the purpose of testing
the effects of such changes on the overall performance. In
all experiments, both the inner and outer tables are of the
same size. In order to test the double precision computing
power of CPUs and GPUs, we transform the key values into
double precision floating point numbers by modifying the
random number generator.

Performance measurement is done by the build-in timing
functions in the original code for both CPUs and GPUs. To
measure the power consumption of hardware, we connect a
WattsUp Pro power meter [10] to our machine. A software
reads the power consumption and power readings are sent
to the computer from the power meter via a USB connec-
tion. Energy consumption is obtained by integrating all the
runtime power readings under the assumption that power
does not change within the sampling window.

4. MAIN RESULTS
In this section, we report the performance of the original

code provided by He et al. for both CPUs and GPUs. We
focus on performance comparison between GPUs and CPUs
found in today’s market. As mentioned earlier, this gives
an overview of the advantages of GPUs for processing joins
over CPUs, and whether such advantages increase/decrease
over time.

4.1 GPU Architecture
Before starting our discussions on GPU-based joins, we

need a close look at the typical GPU architecture. Take
the GTX Titan’s Kepler architecture as an example (Figure
1): it consists of a few Streaming Multiprocessors (SMX),
each of which is regarded as a fully functional computing
unit. Within an SMX, there are many (e.g., 192 in Kepler)
computing cores, certain amount of cache, and a consider-
ably large register file. The register pool consists of tens
of thousands of 32-bit registers providing sufficient private
storage for threads. Each SMX has its own L1 cache for fast
data access and synchronization among threads. A unique
feature of Nvidia GPUs is: part of the L1 cache can be con-
figured to be a programmable section called shared memory
(SM). Similar to traditional CPU architectures, GPUs have
a multi-level memory system: in addition to the L1 cache in-
side the SMX, there are also L2 cache and the global memory
(GM) shared by all SMXs. The global memory, being the
main data storage unit for GPUs, often comes with a size
of a few GBs and high bandwidth following the GDDR5
standard.

Comparing with previous architectures such as that of the
8800 GTX, the Kepler architecture [3] carries much more
cores as well as larger shared memory and cache. This is
the key source of GPU’s increasing computing power. Ob-
viously, more cores can provide more resources for support-
ing larger number of threads concurrently. Also there are
subtle hardware improvements, such as faster atomic oper-
ation, better double-precision performance, dual instruction

L2 Cache

SMX

Register File 65536 x 32bit

Core Core Core Core

… … … …

L1 Cache/Shared Memory 64KB

Read-Only Data Cache 48KB

SMX

Register File 65536 x 32bit

Core Core Core Core

… … … …

L1 Cache/Shared Memory 64KB

Read-Only Data Cache 48KB

SMX

Register File 65536 x 32bit

Core Core Core Core

… … … …

L1 Cache/Shared Memory 64KB
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Core Core Core Core

… … … …

L1 Cache/Shared Memory 64KB

Read-Only Data Cache 48KB

Global 
Memory

Figure 1: Memory hierarchy in Kepler architecture
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dispatch unit, all of which make the GPU hardware more
capable in general-purpose computing. Note that the GTX
980 belongs to the latest Maxwell architecture [2], which
is not much different from Kepler except for larger shared
memory and higher compute efficiency.

As a relatively new type of hardware, the GPU’s comput-
ing power has grown in a manner close to the Moore’s Law.
On the other hand, even with multi-core technology, it be-
comes more difficult for the CPUs to follow the same trend.
This can be seen from Figure 2A, in which we plot the rel-
ative capacity of different on-board hardware resources of a
new GPU (GTX 980) to an old one (8800 GTX), as well as
such of a new CPU (Xeon E5-2640) to its predecessor (Core
2 Q6600). In particular, the GPU in-core computing power
becomes 13.4X in a roughly 7-year period while that of the
CPU reaches only 3.3X. For the size of L1 cache, the number
is 15X for the GPU and only 2X for CPU. The growth of
memory bandwidth on the GPUs (2.6X) is slightly smaller
than that of the CPUs (3X).

In accordance with the growing computing power, the de-
ployment of PCI-E 3.0 standard makes data copying be-
tween main memory and GPU’s global memory much faster
than before. The time for such data transfer is regarded as
an extra cost in GPGPU computing. The top part of Figure
3 shows the data transfer rate achieved in our experiments
run under different data block sizes on the new GPUs. The
achieved bandwidth is around 10GB/s, in comparison to the
theoretical value of 15.8GB/s. On the other hand, this is sig-
nificantly higher than the 3.1GB/s peak bandwidth on the
8800 GTX reported by [20]. The 8800 GTX connects to the
host machine via PCI-E 1.0, with a theoretical bandwidth
of 4GB/s. We also verified the global memory bandwidth of
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the new GPUs (bottom part of Figure 3): a data transfer
rate between 150GB/s and 200GB/s is observed. We no-
tice that in order to achieve optimal bandwidth utilization,
moving a large chunk at a time is necessary.

Apart from performance, GPUs have better power/energy
efficiency as well. Although the scale of the GPU chips has
increased due to the larger number of cores, their power
consumption (indicated by TDP - thermal design power)
remains at the same level, which implies better energy effi-
ciency than CPUs when performance is considered.

4.2 Performance Comparison
Table 2 shows the performance of the four join algorithms

on the two CPUs and two GPUs mentioned above. Each
data point is the average of four runs with identical setups.1

The data size is presented in number of tuples (each tuple is
8 bytes long) and both tables in a join are of the same size.

Our first observation is from the CPU side: the 6-core i7-
3930K has better performance than the 8-core Xeon E5 in
all experiments, although the latter is a newer CPU with a
higher price tag. We believe the high clock speed of the i7-
3930K compensates for the smaller number of cores. This
also reflects a general trend of modern CPU design: the
focus moved from computing performance to other factors
such as energy efficiency. We have similar observations from
the GPUs: the less expensive GTX 980 outperforms the
high-end Titan in all but the SMJ experiments. This is
not really a surprise to us: the main selling point for the
Maxwell architecture is higher efficiency and its specifica-
tions are better than those of the Titan in almost all aspects
(Table 1). Therefore, the two speedup values shown in each
row of Table 2 actually represent the high and low bounds
of all possible GPU-to-CPU speedups from our data. Other
comparisons such as ‘Titan vs. E5’ and ‘GTX980 vs. i7’
will fall between those two values.2

In most cases, the recorded speedup beats the correspond-
ing value reported in [20] (shown in the Baseline column
of Table 2). The largest difference between the recorded
speedup and baseline comes from the SMJ algorithm: even

1In all cases, the variance of the four runs is very small, indicating
stable performance of both CPU and GPU code.
2Not exactly true for SMJ, but close enough as the performance
of GTX980 is almost the same as Titan.
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the smallest speedup value is a few times higher than the
2.4X reported in [20]. The NINLJ algorithm also shows a
great boost of speedup over the baseline: on the higher end
it reaches 20X, and even for the lower end (Titan vs. i7),
everything is still higher than the 7X baseline. For INLJ,
we observe speedups at about the same level as the 6.1X
baseline. The HJ achieves an speedup in the range of 5.67X
to 14.28X when the table size is 16M – this is much higher
than the 1.9X baseline. However, there is a huge perfor-
mance degradation when table size is 32M and then it goes
up slowly with larger table sizes. A thorough investigation
of the source code reveals the reasons for such performance
drop: in the radix partitioning stage (see Section 4.1 of
[20] for details), a fixed partition size is assumed. A table
size bigger than 16M triggers another round of partitioning
within each existing partition, resulting in a dramatic in-
crease of total number of partitions. A prefix scan has to
be done in every partition, and such scans are pure over-
head for the GPU code. As the table size keeps increasing,
the effects of such overhead diminish, as seen by the better
GPU performance under table sizes 64M and 128M. Unfor-
tunately, we are not able to run tests on even larger tables
due to limited GPU memory. In fact, we have to stop at 64M
for the GTX980. We will elaborate more on this in Section
6.3. Note that the above problem cannot be fixed by simply
changing the partition size – the performance “valley” at
particular input sizes always exists. These are represented
by the missing values in Table 2. The average speedup over
all data sizes are plotted in Figure 4. The above results
clearly show that, other than in INLJ, the performance
gap between GPU and CPU is widened in the past
seven years. In other words, GPUs are more suitable for
processing joins than it was in 2008.

Performance analysis via profiling: Nvidia provides
intensive performance profiling via the Visual Profiler as
part of its CUDA Toolkit. Basically, the profiler reports the
quantity of about two dozen hardware counters during the
lifetime of a CUDA kernel and performs a detailed qualita-
tive analysis on performance bottlenecks. Such information
is invaluable in understanding the behaviour, and in turn,
further optimizing the GPU code. For our work, we can use
such information to (partially) interpret the GPU-to-CPU
speedup data shown above. In Table 3, we list the utiliza-
tion of the most relevant hardware resources recorded by
the Visual Profiler in running the main kernels of all four
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Table 2: Performance of four join algorithms on different GPUs and CPUs

Algorithm
Data Running time (second) GPU to CPU Speedup

Size E5-2640 i7-3930K GTX Titan GTX980 GTX980/E5 Titan/i7 Baseline

NINLJ

1M 123.74 109.36 14.74 6.03 20.51 7.42 7.0

2M 492.99 434.17 58.66 24.25 20.33 7.40 –

4M 1967.14 1719.55 235.48 97.18 20.24 7.30 –

8M 7823.65 6846.33 957.01 388.90 20.12 7.15 –

INLJ

16M 0.58 0.45 0.11 0.11 5.47 4.09 6.1

32M 1.28 0.99 0.24 0.20 6.53 4.13 –

64M 2.97 2.25 0.55 0.46 6.43 4.09 –

128M 5.93 5.03 1.24 1.07 5.55 4.06 –

SMJ

16M 9.41 6.86 0.45 0.48 19.73 15.24 2.4

32M 18.32 12.48 0.97 1.04 17.70 12.87 –

64M 36.02 24.82 2.09 2.24 16.11 11.88 –

HJ

16M 2.87 2.04 0.36 0.20 14.28 5.67 1.9

32M 5.77 4.08 3.55 3.33 1.73 1.15 –

64M 11.66 8.27 4.15 3.70 3.15 1.99 –

128M 24.68 17.15 5.37 – – 3.19 –

GPU join algorithms. The missing values represent zero
or negligible utilization that is not reported by the profiler.
The kernels are ordered by their weight in terms of relative
running time within each algorithm. The impressive per-
formance of NINLJ in GPUs is clearly the result of high
utilization of cache, especially the shared memory. On the
CPU side, although profiling results are not available, we
can see why they cannot rival the GPUs in running NINLJ:
the E5-2640, for example, has 512KB of L1 cache that has
to be shared by the entire system; but the GTX980 has a
total of 1.5MB of L1-level shared memory that is dedicated
to cache the table blocks. We also notice that, as data is fed
into the arithmetic units in cache speed, the utilization of
the later also reaches a high level (84% and 55%). By this,
the GPUs enter their comfort zone due to their arithmetic
computing power that is tens of times higher than CPUs
(Table 1). The situation of SMJ is similar: two kernels enjoy
very high utilization of L2 cache and considerable utilization
of L1 cache. The other kernel (bitonic) is bound by global
memory bandwidth, but it does not hurt the performance
significantly with its 23% and 11% utilization of L2 and L1
cache. The INLJ is a different story: all three kernels are
found to be bound by memory latency, although some cache
hits are observed. In particular, the random access manner
in searching the tree causes code divergence, which leads to
low level of parallelism that is not sufficient to hide the la-
tency. This can be verified by its extremely low utilization
of compute units. Another factor that limits the speedup of
INLJ is the overhead of transferring input/output (Figure
5). Among all algorithms, such overhead is the biggest in
INLJ as the total amount of work for join processing is the
smallest – the can be seen from the total running time. For
HJ, all kernels use the shared memory and L2 cache to some
extent therefore manage to feed the compute unit with some
work, especially in Probe Write. That explains why the HJ
has better speedup over CPUs than the INLJ.

In summary, cache utilization seems to be the most im-
portant factor in harnessing the capabilities of GPUs. Only

through the high bandwidth of cache can the large com-
puting capabilities of GPUs be released. Modern GPUs are
also well designed towards that direction with a significant
amount of L1/L2 cache. The programmability of L1-level
shared memory, we believe, is a big plus by giving program-
mers the opportunity to fully explore data locality. The
profiler provides abundant information for us to analyze the
program behaviour therefore is a much welcomed tool. On
the other hand, we understand a complete performance anal-
ysis needs other information, such as hardware utilization of
the CPU code. Although profiles of CPU code are not avail-
able, the following discussions may derive some insights.

Code scalability: So far we have focused our discussions
on comparing GPU with CPU. Another perspective to study
the performance data is how the code scales with the growth
of raw computing power of GPUs/CPUs over time. Desir-
ably, the performance of software would naturally scale up
with the increase of hardware capabilities in a parallel en-
vironment. To that end, we plot the relative performance
(under table size 1M for NINLJ and 16M for other algo-
rithms) between different generations of GPUs and CPUs in
Figure 2B, along with the relative specifications between the
same set of hardware shown in Figure 2A. Again, the plot-
ted GPU data represents relative performance of GTX980
to 8800 GTX, and CPU data is that of E5 to Q6600. The
raw performance data of the old GPU and CPU is taken
directly from [20]. In general, we can see that GPU code
scales well over time - the smallest performance growth is
around 4X (for SMJ). The CPU code, on the other hand,
does not scale as well, especially in SMJ and HJ. For the
INLJ algorithm, the CPU code scales better than the GPU
code. Such results, from a different angle, explain why we
achieve large GPU-to-CPU speedups in SMJ and HJ but
only moderate speedups in INLJ, as reported in Table 2.

Relating the information in Figure 2B to the hardware
information in Figure 2A, we also have interesting findings.
All GPU algorithms scale better than the global memory
bandwidth, showing the latter is not a bottleneck. Their
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Table 3: Resource utilization of major GPU join kernels on GTX980

Algorithm
Kernel Running GM SM L1 Cache L2 Cache Arithmetic
Name Time B.W. B.W. B.W. B.W. Op. Units

NINLJ
write 71.4% 0.03% 45.2% 0.15% 0.3% 84%

gpuNLJ 28.6% 0.13% 95.2% 0.48% 1.0% 55%

INLJ
gSearchTree 63.3% 19.23% – 20.29% 55.4% –

gJoinWithWrite 24.2% 31.46% – 3.97% 11.6% –
gIndexJoin 12.1% 28.44% – 3.57% 9.6% –

SMJ
bitonic 55.7% 76.81% – 11.34% 23.0% 5%

partBitonicSort 32.0% 23.45% – 43.62% 96.0% 6%
unitBitonicSort 10.6% 4.79% – 47.03% 95.6% 0.1%

HJ

Probe Write 23.2% 11.58% 25.6% 2.05% 3.9% 56%
Reorder3 21.8% 20.65% 2.6% 2.92% 6.8% 4%
Reorder 21.1% 21.51% 2.7% 2.73% 6.6% 4%

Histo 10.2% 9.21% 5.9% 1.61% 2.8% 8%
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scalability is only bound by the scale-up of compute unit
capacity and L1 cache size in the GPUs – both are much
larger than their CPU counterparts. On the CPU side, the
scalability of SMJ and HJ performance is worse than that
of all hardware resources. However, NINLJ and INLJ scale
very well, indicating such algorithms are well designed.3

Time Breakdown: The time spent on join algorithms
includes three parts: copying input from host memory, on-
board join processing, and copying output back to host
memory. Figure 5 shows the time breakdown of the tested
join algorithms under two GPUs. Clearly, join processing is
still the dominant component, same as shown in Figure 12 of
[20]. However, the percentage of time spent on input/output
data transmission between GPU and CPU is much larger in
our experiments, especially in INLJ, SMJ, and HJ. In GTX
980, the numbers are 29.25%, 5.83% and 15.23%. In Titan,
they are 29.06%, 6.64% and 8.17%. Both are much higher
than the 13%, 4%, and 6% reported in [20]. This is caused
by increased GPU performance over the years: the absolute
time spent in join processing is greatly reduced (by a factor
of at least 4 according to Figure 2B). On the other hand,
copying data between host and GPU is bottlenecked by the

3At this point, we are not sure why they even did better than the
growth of all CPU specifications. We speculate that the compilers
play a role in this – code could be much less optimized in older
versions of Visual Studio based on our experience.
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Figure 6: GPU-to-CPU speedup of four join algo-
rithms under different join selectivity

PCI-E bus, whose performance only increased by a factor of
3 according to Figure 3.

Effects of join selectivity: Figure 6 shows the GPU-
to-CPU speedup of four join algorithms under different se-
lectivity of the join conditions. Lower selectivity results in
more matching tuples, thus increases the size of output. Ac-
cording to Figure 6, the four joins have stable running time
on both CPU and GPU under smaller tuple matching rates.
Such observation is similar to those shown in Figure 13 of
[20]. It indicates the data transfer rate between host mem-
ory and GPU device memory is sufficient for such workload
and therefore has minor effects on the performance of GPU.
However, as we increase the tuple matching probability to
50%, we see a decrease of speedup for most joins. This is
not surprising as a 50% matching rate will generate a large
number of output values thus increase the overhead of trans-
mitting output to the host memory for GPU programs to a
great extent (Figure 5). On the other hand, such overhead
is still small comparing to the large amount of computa-
tions performed in the main body of the NINLJ algorithm –
its speedup over CPU does not change even under the 50%
tuple matching rate.

Performance of other kernels: We also compare the
performance of primitives that serve as building blocks of
the four join algorithms, which is shown in Table 4. From
the figure we see GPU has 4.7-39.3X speedup over CPU.
Compared with [20], most primitives achieve much better
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Table 4: Running time (ms) of join-related data primitives

Algorithm Xeon E5 Core i7 GTX Titan GTX 980 980-E5 speedup Titan-i7 speedup Baseline

map 550 364 15 14 39.3 24.3 27.3

scatter 2274 1815 235 196 11.6 7.7 12.6

gather 4550 3016 104 149 30.5 29.0 9.7

prefix scan 400 348 38 24 16.7 9.2 10.1

split 1056 691 147 169 6.2 4.7 6.5

qsort 4594 3409 284 241 19.1 12.0 2.4

speedup. However, we notice that scatter and split oper-
ations have smaller lower speedup than the baseline. For
both operations, the problem is much like the situation in
HJ: a kernel is always launched with only 32 threads (a
warp) within a thread block. This might not be devastating
on earlier GPU device. However, those 32 threads are not
able to fully occupy a multiprocessor in newer generation
GPUs, making the multiprocessor underutilized.

5. OPTIMIZATION ON NEW GPU ARCHI-
TECTURE

In this section, we demonstrate how features in latest gen-
erations of GPUs affect join performance. Note that we
focus on mechanisms that can be implemented without a
disruptive change of the code structure. A systematic re-
design of GPU join algorithms is beyond the scope of this
paper.

The GPUs have a carefully designed memory system that
allows for maximum throughput feeding the large number
of cores and minimizing memory stalls. The global mem-
ory in modern GPUs is based on GDDR5 technology with a
bandwidth up to 300GB/s. However, if the memory is not
accessed in a coalesced manner, the high latency (i.e., a few
hundred cycles) of GDDR5 can easily make it the perfor-
mance bottleneck in various applications. If the data to be
read has some locality, the cost of accessing global memory
can be lowered by utilizing the cache. Starting from Fermi
architecture, Nvidia GPUs are equipped with L1/L2 cache
with comparable performance as their CPU counterparts.
The L1/L2 cache cannot be controlled by programmers but
provides extra performance when locality exists in global
memory access. Part of the L1 cache is set aside as a pro-
grammable section named the shared memory. Due to its
high performance and programmability, the shared memory
has been widely used for optimizing GPU applications. The
original join code we tested is of no exception.

In the Kepler architecture, the shared memory and L2
cache both come with a larger size than the 8800 GTX.
Apart from that, some new features further enhance the
cache system. One thing we have not mentioned in Figure
1 is a 48KB L1-grade read-only data cache. It is aimed at
providing extra buffering for data that will not be modified
during the kernel runtime. Although the read-only cache is
not fully programmable, programmers can give hints to the
compiler to cache a certain piece of data in it. The Maxwell
architecture [2] has no read-only cache, but the size of its
L2 cache increases to 2MB.

In earlier GPU architectures, the registers are distributed
to the threads running on the same multiprocessor as pri-
vate storage for each thread. The contents in registers be-

longing to one thread could not be seen by other threads –
the only way for threads to share data is via the global or
shared memory. In CUDA, the basic unit of threads that
are scheduled together to run on the hardware is called a
warp – recent versions of CUDA have a fixed warp size of 32
threads. The Kepler architecture allows direct register-level
data sharing among all threads in a warp by using shuffle
instructions. A thread can disseminate its data to all oth-
ers in the same warp at core speed, thus further reducing
latency brought by accessing shared memory.

Global Memory

Shared Memory Read-Only Data Cache

L2 Cache

S’ S’’

R S
Figure 7: Data movement in the modified NINLJ
algorithm. S’ and S” are two blocks of table S

5.1 Cache/Register Optimization
We develop a method that increases data locality in the

NINLJ program to take advantage of the L2 and read-only
data cache. We present our ideas here with the help of
Figure 7. Note that in the original NINLJ algorithm, the
outer table S is divided into blocks that can fit into the
shared memory. In one iteration of the outer loop, one such
block S′ is loaded into the SM and the entire inner table
R is directly read from global memory. Each item in S′ is
accessed many times but the fact they reside in SM leads to
high performance. Our strategy here is to use the read-only
or L2 cache as an extension to SM by allowing another block
S′′ to be loaded. By this, fewer rounds of reading the inner
table R are needed. The challenge here is that, unlike SM,
the other cache systems are not programmable. Our solution
is to implement the inner loop as a nested double loop, in
which loading table R is the outer layer and reading blocks
S′ and S′′ is the innermost layer. By this, we create locality
such that S′′ will sit in the cache while seeing everything
from R. There are two places for storing the extra block
S′′: the L2 cache and the read-only data cache. In CUDA,
the later is done by putting special qualifiers before a defined
pointer referencing S′′.
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Figure 8: Data access pattern using shuffle instructions

Moreover, we reimplement the prefix-scan primitive with
shuffle instructions. Note this primitive involves generating
a prefix sum of numbers stored in an array (Figure 8), and
is implemented in the original code by using shared mem-
ory. Each thread keeps an element from the array in its own
register. In the i-th iteration of the kernel loop, each thread
adds its element to the one that is i positions away to the
right in the array. Using the CUDA shuffle up instruction,
such operations can be done by accessing two registers hold-
ing the two involved elements, bypassing any cache. Note
that there are two limitations of the shuffle instruction: (1)
registers are only open to threads in a warp; (2) it requires
coordinated register access such as that in our case, random
access within the warp is not allowed. After five iterations,
the partial sums of each warp are collected and integrated
in shared memory, which is the same as in original code.

5.2 Performance Evaluation
Table 5 reports the performance of L2 cache and read-only

cache optimization on the GTX Titan. The two schemes
achieved an average speedup of 1.3X and 1.29X, respec-
tively. Factoring this into the GPU-to-CPU performance
comparison (table 2), the average Titan-to-i7 speedup
of NINLJ now becomes 9.5X. The speedup decreases as
data size becomes larger. We believe this is caused by in-
creased cache contention – as more data is read from global
memory in each iteration of the outer loop, the cached data
would soon be replaced by other data. We can also see that
the effects of both optimizations on performance are very
similar. One might expect the utilization of both read-only
and L2 cache (by putting one extra block of S into each
of the two cache locations) would render even better per-
formance. However, when we combine both techniques, the
measured running time is even longer than the original code!
Furthermore, the cache optimization does not yield any per-
formance boost in GTX980. By studying the performance
profiles, we found that all such results are caused by the
dramatically increased number of registers assigned to each
thread. As a result, the occupancy (i.e., number of concur-
rent threads running on an SMX) becomes lower, eating up
the performance gain from the cache. This is surprising to
us as our development only involves adding a few lines of
code yet the number of registers per thread increased a lot
– this clearly shows there are still room for improvement in
the CUDA compiler. One thing to point out is: in all above
tests, the profiler shows that the utilization of read-only/L2
cache increases as exactly what we expect – this validates

our implementation.

Table 5: NINLJ performance on GTX Titan under read-

only and L2 cache optimizations

Data Running time (sec) Speedup

Size Original L2 read-only L2 read-only

1M 14.64 11.40 11.62 1.28 1.26

2M 61.62 45.24 46.26 1.36 1.33

4M 252.09 201.71 197.25 1.25 1.28

Table 6 shows the result of prefix-scan optimization by us-
ing shuffle instructions. The optimized version of prefix-scan
reached a speedup of up to 1.52X over the original imple-
mentation. We notice that at 4M data size, the speedup
drops to only 1.21X. This is due to underutilized computing
resources since input data is too small to make full use of
the computing cores and it cannot hide the kernel launch
and memory access overhead. The 1.52X speedup is with-
out doubt a significant boost of performance – it increases
the Titan/i7 speedup shown in Figure 4 to 13.68X. We must
point out that such boost of prefix-scan performance has a
small impact on join performance - the time spent on prefix-
scan is less than 1% of the total running time for most joins.
However, looking forward, we believe register sharing among
threads provides a novel and promising approach for code
optimization in applications with coordinated data access
pattern. Another fact that adds to such enthusiasm is: the
size of the entire register pool in Kepler GPUs are relatively
large. For example, there are 65,536 32-bit registers in each
of the 15 multiprocessors of Titan. As a result, the register
pool even dwarfs the L1 cache in size.

Table 6: Running time (ms) of the Prefix scan kernel

optimized by Shuffle Instruction

Data size Original With optimization Speedup

4M 2.58 2.14 1.21

8M 4.06 2.67 1.52

16M 7.00 4.60 1.52

6. OTHER CONSIDERATIONS
In this section, we study several other related issues, in

hope to provide a panoramic image of GPU’s advantages
and limitations on processing joins. Specifically, we run ex-
periments to evaluate energy/power efficiency, floating point
computing performance, database size, and kernel configu-
ration. Most of the issues are mentioned in [20] but without
much quantitative results.

6.1 Energy / Power Consumption
Energy consumption has become a first-class performance

goal in modern computing system design. Energy has be-
come the second largest cost in maintaining today’s IT in-
frastructure [15]. In a data center environment, it also has
profound effects on the design and operational cost of cool-
ing systems. With the energy efficiency of CPUs steadily
increasing in the last decade, the GPU industry is also mak-
ing every effort to make GPUs green. The thermal design
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Figure 9: Energy consumption of different CPUs/GPUs in processing four join algorithms

power (TDP) information listed in Table 1 is a good indica-
tion of the typical level of power the hardware runs on. By
combining TDP and performance-related hardware specifi-
cations (i.e., memory bandwidth, maximal Gflops) in Table
1, we can get a rough idea on the energy efficiency of differ-
ent hardware. Clearly, with less than three times of power
consumption yet many times of bandwidth and computing
capacity as those of the CPUs, the GPUs stand out as the
winners on paper.

Table 7: Average active power consumption (watt)

Algorithm
Table Xeon Core GTX GTX
Size E5 i7 Titan 980

NINLJ

1M 28.04 97.61 178.16 120.63
2M 28.34 96.01 179.97 152.51
4M 26.07 96.67 172.17 161.25
8M 26.75 100.37 164.83 165.49

INLJ
16M 12.51 57.63 72.70 62.43
32M 11.04 59.57 78.39 60.95
64M 11.29 58.86 80.12 61.75
128M 13.37 55.10 76.84 52.11

SMJ
16M 10.38 39.75 92.44 70.54
32M 10.49 46.69 95.02 72.38
64M 11.28 51.01 94.65 71.23

HJ

16M 10.02 46.96 84.82 66.54
32M 9.97 48.94 94.37 67.05
64M 11.50 50.60 90.99 64.14
128M 10.16 51.75 86.51 –

To study how the above insights derived from hardware
specifications are reflected in join operations, we contin-
uously measure the actual power consumption during the
course of running the joins. Fluctuations of power are ob-
served in all join experiments – this is due to the different
hardware activities at different times of the join process. For
the same exact experiments mentioned in Table 2, the aver-
age active power consumption is shown in Table 7. Note that
active power is defined as the difference between recorded
system power while processing the workload and that when
the system is idle. Qualitatively, we can see that GPUs con-
sume more power than CPUs. The Xeon E5-2640, being a
member of the new generation of Intel’s server-class CPU,
has a much lower power profile than the older i7-3930K. On
the GPU side, the GTX980 consumes less power than the
GTX Titan, as energy efficiency is the main selling point
of the Maxwell architecture. NINLJ consumes much more

power than the other algorithms. This is due to the higher
utilization of computing cores reached by this algorithm.
For all algorithms, input table size does not have significant
impact on power.

As to the total active energy consumption, it is obvious
that in most cases the i7-3930K consumes the most energy
(Figure 9). The GPUs are clear winners in NINLJ and SMJ
algorithms, especially in SMJ where the GTX980 achieves
energy efficiency one order of magnitude higher than the i7.
The relatively low energy efficiency of GPUs in HJ (under
large data size) is caused by their long running time rather
than power consumption. Comparing with i7, the GPUs still
consume less energy in most cases of HJ. The Xeon E5 shows
very good energy efficiency across the board, thanks to its
low-power design. More data about energy consumption can
be found in Table 16.

6.2 Floating Point Performance
So far we have only tested the integer computing capabil-

ities of GPUs. Although the most expensive part of the join
algorithms is memory access and the computation part only
involves simple key value comparison, it is worthwhile to
study how GPU performs on processing joins with key data
types other than integers. In [20], this aspect was listed as
a weakness of GPGPU as high precision numbers were not
supported by any GPUs at that time.

In recent few years, much progress has been made in
floating point computing in GPUs. G80, the first CUDA-
supported GPU, does not support floating point numbers
although it has many more cores than any CPUs of its time.
The following Fermi architecture supports full IEEE754-
2008 single-precision (SP) and double precision (DP) float-
ing point standards. It also features the new fused multiply-
add (FMA) instructions that are much faster than the tradi-
tional multiply-add (MAD) operations. The Fermi architec-
ture boosts its double precision performance by 4.2X over
the predecessor architecture. The Kepler architecture goes
even further by integrating dedicated DP units into each
multiprocessor [3]. This increases the peak DP performance
to over 1 TFlops, roughly 1/3 of its peak SP performance.
However, due to consideration of graphics performance and
power consumption, this feature is weakened in all GeForce-
series gaming cards (including the GTX980) other than the
GTX Titan. For example, the Titan’s DP units can operate
at maximum core speed while in other Kepler cards they
only run at 1/8 of the core speed.

Again, we choose the NINLJ algorithm to demonstrate the
floating point performance of GPUs. Figure 10 shows the
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Figure 10: Relative performance of NINLJ with SP/DP

keys in different CPUs/GPUs

speedup of GPUs over CPUs by plotting the SP performance
of the Xeon E5-2640v2 as the baseline (actual running time
is also marked on each bar). For SP performance, the GTX
Titan achieves a surprising 24X and 23X speedup over the
Xeon E5 and Core i7, respectively. This result doubles its
speedup over the CPUs with integer key values (Table 2).
For DP performance, Titan reaches about 7X speedup over
both of the CPUs, which is roughly the same as integer-
based results reported in Table 2. The main reason for such
different speedup is that both CPUs performed much better
in DP than in SP computing. Their SP performance is only
1/4 of their integer performance while their DP performance
is around 1/2. Meanwhile, the performance of GTX Titan
only degrades by half for both SP and DP. This reflects the
different strategies adopted in CPU and GPU hardware de-
sign – much more resources are dedicated to DP computing
in CPUs. The GTX 980 is less powerful in floating point
computation, yet it still achieves a 8-9X speedup in SP and
a 2-3X speedup in DP over the CPUs.

The above results are also carried over to energy consump-
tion. According to Table 8, the power of computing joins
with SP and DP keys in GPUs is 20-30% lower than that
with integer keys! For the CPUs, slightly lower power is ob-
served in SP keys while up to 25% more power is recorded
in DP keys. This amplifies the advantages of GPUs when
energy consumption is calculated (Table 16). The GTX Ti-
tan stands out as the clear winner in all cases, followed by
the GTX 980 and then the E52640. Without surprise, the
i7 is the least energy efficient one among the four devices.
For SP, the energy efficiency of GPUs is 3.9-6.8X as high as
that of CPUs; For DP, this number is 1.7-3.0X.

Table 8: Active power consumption (watt) of NINLJ
with floating-point key values

Quantity
Table Xeon Core GTX GTX
Size E5 i7 Titan 980

Average(SP)
1M 24.57 90.79 115.05 110.38
2M 25.57 90.41 151.34 113.04
4M 26.44 92.73 163.30 115.54

Average(DP)
1M 32.36 98.07 157.58 110.17
2M 34.72 102.96 147.38 116.88
4M 36.12 102.43 146.22 115.53

Peak(SP)
1M 25.28 94.59 228.70 121.85
2M 26.15 95.50 224.10 118.59
4M 37.95 98.40 209.94 120.20

Peak(DP)
1M 32.82 103.86 197.94 119.04
2M 37.70 108.28 209.63 172.87
4M 46.43 111.93 229.30 119.12

6.3 Limitation of memory size
The GPU join algorithms we tested assume all input /out-

put data and intermediate results can be stored in the global
memory therefore the size of the latter determines how large
the input tables can be. To explore the space use of GPU
joins, we repeatedly run the code with a varying table size
(in a binary search manner) until we find the largest table
each algorithm can run with. The largest table we can run
each join in the GTX Titan (with 6GB of global memory)
is as follows: with a larger state (i.e., both sorted tables)
to keep, the SMJ will stop at 96 million records in both
tables (i.e., 1.5GB total data size). Following that are HJ
and INLJ – the largest table they can run have 200M and
250M records, respectively. This makes sense as the HJ and
INLJ only keep intermediate state with a size equivalent to
one of the input tables. We did not obtain data for NINLJ
as each run of it needs excessively large amount of time.
We believe the allowed table size will be larger than that of
INLJ (we tried 256M records without a problem) as there
is almost no intermediate data other than the output ta-
ble. With only 4GB of global memory, smaller tables are
allowed in the GTX980. However, the order of reachable
table size does not change for the algorithms: SMJ, HJ, and
INLJ have maximum table sizes of 64M, 121M, and 185M,
respectively.

6.4 Parameters for Launching a Kernel
Another issue discussed in [20] is the configuration of ker-

nel launching parameters and their effects on kernel perfor-
mance. Such a problem is of high practical value – a model
that accurately predicts kernel performance under different
parameters can help us in: (1) identifying the set of param-
eters leading to optimized performance; and (2) controlling
the performance (towards a balanced load) of individual ker-
nels in a multi-kernel environment. In [20], the Map and
Split kernels were launched under various numbers of blocks
(NoB) and numbers of threads per block (NoTB) and their
running time recorded (Section 5.3 in [20]). Their exper-
imental results identified two suitable numbers for each of
the two variables mentioned above. The results regarding
NoB (Figure 8 in [20]) are straightforward: larger number of
blocks means higher level of parallelism till it reaches a point
where there are too many blocks than what the hardware
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can schedule concurrently. For NoTB, however, no conclu-
sions were drawn other than some qualitative discussions on
suitable numbers shown in their experiments.
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Figure 11: Model-predicted and actual performance of

the NINLJ kernel under different NoTB values

With the improvement of GPGPU techniques and more
information about the CUDA runtime environment revealed
by NVidia, using a quantitative model to predict kernel per-
formance becomes feasible. Actually, in our recent research
we developed a model using an indicator of the level of par-
allelism achieved called Running Rounds to predict the per-
formance of compute-intensive single kernels under different
NoTB values [27]. Here we just present the validation of our
model in the context of join algorithms instead of elaborat-
ing on the modeling details (interested readers can refer to
[27] for such details). Specifically, we run the NINLJ kernel
under different NoTB values, measure the actual running
time and compare it with the running rounds provided by
our model. From Figure 11, we can see the measured run-
ning time (i.e., blue line) matches the running rounds (i.e.,
red line) given by our model very well. The Pearson correla-
tion coefficient between the two lines is 0.9606, indicating a
near-perfect matching. Our on-going work in this direction
involves modeling the performance of pure memory-bound
kernels (e.g., map and split) as well as controlling kernel
performance by changing total number of threads (in ad-
dition to NoB and NoTB). Due to space limit and double
submission issues, we skip such details in this paper.

7. DISCUSSIONS
In this section, we summarize our findings and comment

on the advantages and limitations of GPU-based join pro-
cessing. In particular, our discussions will directly respond
to the issues raised by He et al. in Section 6 of [20].

Main findings and recommendations: The hardware
resources on GPUs have expanded rapidly over the past few
years. This provides increasingly stronger support of data-
parallel join processing and builds the foundation of much
higher performance than those reported in 2008. We also
notice that the capacity growth of GPUs is unbalanced be-
tween its compute cores and global memory bandwidth (i.e.,
13X vs. 3X as shown in Figure 2A). Such a strategy in GPU
design, although suitable for high-performance computing
(HPC) applications, leaves a question mark on whether join
processing can really make good use of GPGPU. Generally,
the performance bottleneck of database operations such as
join and selection is memory access given that the latency
of memory system is hundreds of CPU clock cycles [29] and

the demand on arithmetic operations is small by the nature
of such operations. GPUs share the same problem although
its GDDR5 global memory system has higher bandwidth
and lower latency than the DDR3 host memory. Therefore,
the GPU-to-CPU speedup is not expected to exceed 8X,
which is roughly the difference between the memory band-
width of today’s mainstream GPUs and CPUs (Table 1).
To our surprise, the performance of NINLJ, SMJ, and HJ
(considering only 16M input) is way better than that on
the GTX980. The key to such success is clearly the large
cache size, which effectively moved the bottleneck away from
global memory. In an extreme case of NINLJ, global mem-
ory utilization dropped to less than 1% and arithmetic unit
utilization reaches up to 84%! We are pleased to see that
increasing memory bandwidth and size (by three orders of
magnitude) is the main design goal of Pascal - Nvidia’s next
generation GPU architecture [5].

As to program development, it is still true that GPU code
has to be written from scratch 4 due to the different pro-
gramming models between CPUs and GPUs. As more and
more programmers are trained in GPGPU programming,
this does not seem to be as big a concern as before. We
believe the rapid change of architectural design is a major
inconvenience in CUDA programming. New features emerge
in each new generation of GPU architecture. Our results
show that an algorithm designed for older GPUs may not
fully utilize resources in newer ones. It is important to (at
least partially) re-design the algorithm considering the new
architectural features. There are also problems in compiler
support of new features. For example, the same shuffle in-
struction code that work perfectly in Titan (Section 5) can-
not be compiled when the GTX980 is chosen as the target
device. However, we must emphasize that new GPU features
can bring great performance benefits.

Developers now have abundant choices of GPU devices
ranging from entry-level integrated gaming cards to pro-
fessional compute-dedicated cards. Our work show that a
mainstream or high-end gaming card is adequate for general
application development. It often costs a few hundred US
dollars but delivers desirable performance. If the code has
higher demand on double-precision performance and relia-
bility (e.g., ECC memory), more expensive cards (i.e., K20,
K40) can be considered. We have not experienced any reli-
ability issues in the join code we tested.

Gaming GPUs are often equipped with relatively smaller
global memory (typically 2GB VS 8GB), and the memory
on GPU is not upgradable because they are soldered on the
board. Data larger than the GPU’s memory size requires
frequent data transfer between host and device. This under-
mines the capability of GPU in that the overhead of sending
data back and forth between host and device increases as the
size of data grows. Fortunately, the GPU vendors seem to
be changing the situation. In our test bed, the GTX Ti-
tan with 6GB memory can hold two tables each with 250
million tuples in non-index nested loop join, which result in
4GB data plus index storage and other temporary variables.
The GPUs can store much more data than they did a few
years ago.

4OpenCL follows a heterogeneous programming model that sup-
ports multi-core CPUs and GPUs, but it still requires hardware-
specific program development for code optimization.
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Response to concerns shown in [20]: Algorithm de-
sign and optimization in GPGPU is still a complex task.
In particular, the random data access pattern of the SMJ,
INLJ, and HJ algorithms does pose a threat to GPU join
performance. As an SIMD architecture, a GPU can suffer
from high latency caused by code divergence. We however
want to point out that in CUDA, the direct impact of di-
vergence is within a single warp. With higher level of par-
allelism made possible by the large amount of resources in
modern GPUs, memory stall can be more effectively hidden.
Recall that the SMJ and HJ algorithms both perform well
on the new GPUs. Atomic operations are now supported in
CUDA, it can effectively handle read/write conflicts. That
said, the pre-scan routines to determine write offset in the
join algorithms cannot be replaced by atomic operations.
The problem is that dynamic memory allocation is not al-
lowed in CUDA at this moment.

We also appreciate the modularized design of the join pro-
grams, in which a series of primitives are implemented as
GPU kernels. In our experience, the amount of work in re-
implementing the program can be greatly reduced by such.
For example, the work reported in Section 5 only involves
modifying two kernels, in which only a few lines of code are
added/modified.

The program development environment on GPUs has been
improved dramatically in recent years. For example, a com-
prehensive set of tools are provided as part of the CUDA
SDK. With such tools, programmers can develop and de-
bug their applications as (if not more) conveniently as one
can do with CPUs. In particular, we find the CUDA Visual
Profiler very handy in visualizing the runtime statistics of
CUDA kernels. We routinely use it to find possible bottle-
necks in the application, and optimize such based on sugges-
tions it provides. Such tools fundamentally change the way
we develop program from pure empirical experimentation to
guided analysis based on quantitative measurements. Our
work in modeling performance under different kernel param-
eters (Section 6.4) is another example that shows the value
of the improved software support.

High power efficiency has been a major goal of GPU de-
sign, as is in CPUs. We have witnessed a sharp drop of power
consumption in the recent two generations of Nvidia GPUs.
We admit modern CPUs (e.g., the E5-2640 we used) have
become extremely power efficient, and there is still room for
improvement for GPUs. However, by putting performance
into the equation, we see that GPUs are obvious winners in
energy efficiency (Section 6.1). It might be infeasible to ex-
pect that future GPUs carry the same power tag as CPUs,
considering the huge difference of computing capability be-
tween the two. Plus, our experiments (e.g., comparing i7-
3930K with E5-2640) imply that high power efficiency comes
with the cost of a large performance cut in CPU design.

Finally, the situation of limited data type support has
changed a lot. Floating-point numbers are not only sup-
ported by the CUDA language, the new GPU hardware also
dedicates much of its silicon to speed up floating-point com-
putation. This is a natural result of the GPU industry’s
vision to make GPGPU the core technology in HPC sys-
tems. Our work shows that the performance of joins with
SP and DP keys is many times higher than that in the CPUs
(Section 6.2).

8. CONCLUSIONS AND FUTURE WORK

GPGPU is a capable parallel computing platform that
also shows its potential in processing database operations.
To take advantage of its architectural design for massively
parallel computing, join algorithms were developed in pre-
vious work and enjoyed up to 7X speedup over CPUs. We
revisit the performance of such algorithms on the latest GPU
devices to provide an updated evaluation of the suitability
of GPGPU in join processing. Our results indicate a signif-
icantly expanded performance gap between GPU and CPU,
with a GPU-to-CPU speedup up to 20X. By exploiting new
hardware/software features such as extra data cache and
shared registers, we further boost the performance of cho-
sen algorithms by 30-50%. Upon investigating the floating
point performance, energy consumption, and program devel-
opment issues, we believe GPGPU has also become a mature
platform for database operations than before.

Work in this topic can be extended along two directions.
First, we could continue the evaluation of the join algorithms
on emerging GPU hardware and software. For example,
the coming Pascal architecture promises memory bandwidth
and size that are a few times higher than those in Kepler. It
would be interesting to have close observations on the race
between such GPUs and other multi/many-core processors
in processing database operators. Second, design of join
algorithms optimized towards new architectural features, as
suggested by our work, deserves more attention. Features
such as fast links between host and GPU can be a game-
changer but also calls for re-hauling of the algorithm design.
In today’s big data applications, joins can be performed on
tables that are too big to fit in the global memory of one
GPU device. Therefore, there are urgent needs to consider
distributed versions of GPU joins.
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APPENDIX
A. PERFORMANCE OF OTHER GPU DE-

VICES
In this section, we sketch the performance of three other

Nvidia GPU cards we tested with the aforementioned join
programs. They are: the GTX 770, Tesla K20, and Tesla
K40. Note that the GTX 770 is a low-end gaming card while
the K20 and K40 belong to the Tesla series that Nvidia pro-
motes as their hard-core compute workhorse. With a very
high price tag, the K20 and K40 are frequently chosen to
build many of the world’s most powerful supercomputers.
Specifications of such devices are listed in Table 9. We com-
pare the performance of the three GPUs with the GTX 980
and GTX Titan in Table 10, with a larger number repre-
senting better relative performance. The results of NINLJ
is very clear, all three GPUs have only a small fraction of the
performance of that of the GTX 980 and Titan. In INLJ,
K40 outperforms the GTX 980 and Titan by a small margin
under smaller table sizes. For SMJ, K40 wins over GTX 980
but is outperformed by Titan. For the join-related primi-
tives (Table 11), the K40 is again outperformed by GTX 980
in all cases (with the map primitive being the only excep-
tion). As compared to Titan, K40 performs better in three
primitives: map, prefix scan, and qsort.

The floating-point performance of the three GPUs is shown
as part of Figure 10. We can easily see that the SP perfor-
mance of K40 is essentially the same as that of the GTX
Titan, the K20 is about 20% slower than the K40, and the
GTX 770 is the worst, with a performance only comparable
to that of the two CPUs. For joins with DP keys, K40 over-
performs the GTX Titan by a 10-15% margin. Again, it is
tailed by the K20, and GTX 770 only achieves a performance
that is slightly better than the CPUs.

The overall energy efficiency of the three GPUs as com-
pared to GTX 980 and Titan is presented in Table 12, in
which a larger number represents lower energy efficiency. If
we consider integer-type join keys, all three GPUs tested
here are much less energy efficient than the GTX 980 but
stay on the same level as that of the Titan. In fact, for most
cases of HJ, the GTX 770 and K20 consume less energy than
the Titan. By considering floating-point computation, the
K20 and K40 is much more energy efficient than the GTX
980 (in NINLJ) but are still less energy efficient than the
Titan. The energy efficiency of GTX 770 under SP and DP
drags far behind all other GPU devices.

In summary, the Tesla series cards, including both K20
and K40, do not deliver better performance in processing
joins than the less expensive gaming cards. In some cases,
their performance even fall far behind to that of the GTX
980 and Titan. The top-of-the-line K40 outperforms the
latter two by a small margin in several cases. The same
trend is observed in energy efficiency. Their floating-point
performance seems to be in par with the gaming cards. The

Table 9: Specifications of more hardware

Device
GPU

Tesla K40 Tesla K20 GTX 770

Date
Released

Q4 2013 Q4 2012 Q2 2013

Core
Speed

0.75GHz 0.71GHz 1.05GHz

Core
Count

15 × 192 13 × 192 8 × 192

Cache Size
L1:

64KB × 15
L2:1536KB

L1:
64KB × 13
L2:1280KB

L1:
64KB × 8
L2:512KB

RAM
GDDR5
12GB
384 bit

GDDR5
5GB
320 bit

GDDR5
2GB
256 bit

Memory
Band-
width

288GB/s 208GB/s 224GB/s

Max
GFLOPS

4291 3524 3213

Max
TDP

245W 225W 230W

Launch
Price

7699 USD 3199 USD 399 USD

GTX 770, being a low-end card, does not surprise us with
its mediocre performance and energy efficiency.
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Table 10: Relative performance of four join algorithms on different GPUs

Algorithm
Data GPU to GPU Speedup

Size K40/980 K20/980 770/980 K40/Titan K20/Titan 770/Tian

NINLJ

1M 0.38 0.29 0.33 0.92 0.70 0.81

2M 0.38 0.29 0.33 0.97 0.73 0.85

4M 0.38 0.29 0.34 0.99 0.75 0.87

8M 0.38 0.29 0.34 1.01 0.76 0.89

INLJ

16M 1.09 0.74 0.68 1.14 0.78 0.71

32M 0.88 0.66 0.59 1.00 0.76 0.67

64M 0.76 0.65 0.67 0.88 0.76 0.78

128M 0.76 0.66 – 0.87 0.76 –

SMJ

16M 1.06 0.75 0.84 0.99 0.70 0.79

32M 1.06 0.76 0.85 0.98 0.70 0.79

64M 1.06 0.75 – 0.98 0.70 –

HJ

16M 0.76 0.48 0.53 1.27 0.81 0.88

32M 0.90 0.70 0.19 0.99 0.77 0.21

64M 0.88 0.67 – 1.02 0.78 –

128M – – – 1.04 0.77 –

Table 11: Relative performance of join-related data primitives between GPUs

Algorithm
GPU to GPU Speedup

K40/980 K20/980 770/980 K40/Titan K20/Titan 770/Titan

map 1.00 0.67 0.54 1.50 1.00 0.62

scatter 0.80 0.66 1.04 0.97 0.80 1.25

gather 0.90 0.75 0.64 0.70 0.58 0.50

prefix scan 0.80 0.57 0.50 1.20 0.86 0.75

split 0.79 0.66 0.56 0.70 0.58 0.49

qsort 0.87 0.66 0.59 1.02 0.78 0.70

Table 12: Relative active energy consumption of four algorithms between GPUs

Algorithm Table size 770/980 K20/980 K40/980 770/Titan K20/Titan K40/Titan

NINLJ

1M 3.37 3.91 3.56 0.93 1.08 0.99
2M 2.73 3.19 2.85 0.96 1.12 1.00
4M 2.67 3.04 2.73 1.03 1.17 1.05
8M 2.72 2.52 2.73 1.11 1.03 1.12

INLJ
16M 1.54 1.38 1.41 1.27 1.14 1.17
32M 1.81 1.59 1.74 1.15 1.01 1.11
64M 1.51 1.57 2.10 0.98 1.02 1.36
128M – 1.84 2.53 – 1.08 1.48

SMJ
16M 1.43 1.41 1.42 1.16 1.14 1.15
32M 1.42 1.35 1.37 1.16 1.09 1.11
64M – 1.36 1.39 – 1.10 1.12

HJ

16M 1.65 1.75 1.95 0.72 0.77 0.85
32M 0.95 1.30 1.58 0.63 0.87 1.05
64M – 1.47 1.66 – 0.92 1.04
128M – – – – 0.99 1.12

NINLJ(SP)
1M 6.12 0.51 0.58 16.40 1.38 1.56
2M 6.11 0.51 0.59 12.36 1.03 1.19
4M 6.03 0.51 0.60 11.52 0.97 1.14

NINLJ(DP)
1M 2.45 0.81 0.67 3.47 1.15 0.94
2M 2.38 0.78 0.64 3.73 1.23 1.01
4M 2.45 0.77 0.68 3.80 1.19 1.05
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B. MORE EXPERIMENTAL DATA
The following tables show more experimental results that

we have discussed in the main body of the paper.

Table 13: NINLJ performance (sec) using SP keys

Data
Size

E5
2640

i7
3930k

GTX
Titan

GTX
980

980
vs E5

Titan
vs i7

1M 487 454.2 19.7 54.8 8.9 23.1
2M 1942 1815.3 80.4 217.8 8.9 22.6
4M 7758 7120.5 322.0 868.6 8.9 22.1

Table 14: NINLJ performance (sec) using DP keys

Data
Size

E5
2640

i7
3930k

GTX
Titan

GTX
980

980
vs E5

Titan
vs i7

1M 187.6 180.3 26.2 53.1 3.5 6.9
2M 749.7 701.7 107.0 211.2 3.6 6.6
4M 2979.9 2759.6 430.9 846.1 3.5 6.4

Table 15: Peak active power consumption (watt)

Algorithm
Table Xeon Core GTX GTX
Size E5 i7 Titan 980

NINLJ

1M 28.60 99.99 199.01 169.82
2M 29.14 100.43 230.58 180.94
4M 27.30 143.69 233.63 189.91
8M 28.06 103.41 234.32 217.97

INLJ
16M 31.20 90.58 84.58 91.52
32M 38.84 111.80 105.98 119.34
64M 39.61 109.80 130.03 103.34
128M 39.26 108.52 177.19 110.18

SMJ
16M 11.37 92.13 135.76 103.69
32M 11.46 64.25 186.07 135.92
64M 19.80 115.71 200.49 127.68

HJ
16M 10.35 70.22 108.74 78.37
32M 10.81 63.41 125.23 126.59
64M 11.93 64.08 136.51 101.23
128M 11.89 63.94 165.72 –
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Table 16: Active energy consumption of four algorithms running on different hardware

Algorithm
Table Energy Consumed (Joule) Relative Energy
Size E5-2640 i7-3930K GTX Titan GTX980 i7 / 980 E5 / Titan

NINLJ

1M 3.47 × 103 1.07 × 104 2.63 × 103 727.85 14.67 1.32
2M 1.40 × 104 4.17 × 104 1.06 × 104 3.70 × 103 11.27 1.32
4M 5.13 × 104 1.66 × 105 4.05 × 104 1.57 × 104 10.61 1.26
8M 2.09 × 105 6.87 × 105 1.58 × 105 6.44 × 104 10.68 1.33

INLJ

16M 7.25 25.93 8.00 6.62 3.92 0.91
32M 14.14 58.98 18.81 11.95 4.94 0.75
64M 33.53 132.42 44.07 28.53 4.64 0.76
128M 79.31 277.15 95.29 55.70 4.98 0.83

SMJ
16M 97.67 272.68 41.60 33.65 8.10 2.35
32M 192.16 582.71 92.17 74.92 7.78 2.08
64M 406.28 1266.11 197.82 159.28 7.95 2.05

HJ

16M 28.76 95.80 30.54 13.37 7.16 0.94
32M 57.52 199.67 335.01 223.41 0.89 0.17
64M 134.12 418.48 377.62 237.40 1.76 0.36
128M 250.71 887.58 464.57 – – 0.54

NINLJ(SP)
1M 1.20 × 104 4.12 × 104 2.26 × 103 6.05 × 103 6.81 5.29
2M 4.97 × 104 1.64 × 105 1.22 × 104 2.46 × 104 6.67 4.08
4M 2.05 × 105 6.60 × 105 5.26 × 104 1.00 × 105 6.58 3.90

NINLJ(DP)
1M 6.07 × 103 1.77 × 104 4.13 × 103 5.85 × 103 3.02 1.47
2M 2.60 × 104 7.22 × 104 1.58 × 104 2.47 × 104 2.93 1.65
4M 1.08 × 105 2.83 × 105 6.30 × 104 9.78 × 104 2.89 1.71
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