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Abstract—The unrivaled computing capabilities of modern
GPUs meet the demand of processing massive amounts of
data seen in many application domains. While traditional HPC
systems support applications as standalone entities that occupy
entire GPUs, there are systems where multiple tasks are meant to
be run at the same time in the same device. To that end, system-
level resource management mechanisms are needed to fully
unleash the computing power of GPUs in large data processing. In
our previous work, we designed and implemented a push-based
DBMS named G-SDMS that supports concurrent data processing
on GPUs under NVidia’s CUDA framework. This paper focuses
on resource allocation of multiple GPU applications towards op-
timization of system throughput in the context of systems such as
G-SDMS. Our approach is to control the launching parameters of
multiple GPU kernels as provided by compile-time performance
modeling as kernel-level optimization. Specifically, we construct a
multi-dimensional knapsack model to maximize concurrency in a
multi-kernel environment. We present an in-depth analysis of our
model and develop an algorithm based on dynamic programming
technique to solve the model. We prove the algorithm can find
optimal solutions (in terms of thread concurrency) to the problem
and bears pseudopolynomial complexity on both time and space.
Such results are verified by extensive experiments running on
our microbenchmark that consists of real-world CUDA kernels.
Furthermore, solutions identified by our method also significantly
reduce the total running time of the workload, as compared to
sequential and random scheduling schemes. We also present a
more general pre-processing model with batch-level control to
enhance performance.

Index Terms—push-based systems, GPU, GPGPU, CUDA,
resource model

I. INTRODUCTION

With the recent development of semiconductor technology,
the number of processing units integrated on a chip increases
rapidly, resulting in massively parallel computing capability.
Many-core hardware systems such as Intel Xeon Phi co-
processors and Graphics Processing Units (GPU) are becom-
ing more and more popular. As shown in Fig. 1, the single
precision peak performance of the latest NVidia GPU reaches
6144 GFLOPS and the latest AMD GPU has 5914 GFLOPS.
On contrary, the CPU only provides 354 GFLOPS, and the
Intel Phi reaches 1200 GFLOPS. Such unrivaled computing
power has made GPUs an indispensable component in today’s
high-performance computing (HPC) systems and shown great
value in many compute-intensive applications.
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Fig. 1. Growth of computing capacity on CPU, Intel Phi, and NVidia/AMD
GPUs. Data is extracted from www.techpowerup.com

The use of GPUs in application domains that are typically
not heavy users of HPC resources is also explored. For exam-
ple, novel database management system (DBMS) architectures
have been proposed to meet the challenges of handling “big
data.” Among others, DBMSs with a push-based query engine
design has gained much momentum [1]. Unlike traditional
relational DBMSs, the core of a push-based DBMS follows a
stream-based design in its data input mechanism. In particular,
it creates a shared I/O stream to deliver data to all run-
ning queries simultaneously, while traditional DBMSs (“pull-
based” system) retrieve the needed data from storage for each
individual query. Due to single I/O stream and minimization
of random I/Os, push-based DBMS successfully moves the
performance bottleneck from I/O to computation. The high-
speed data streams in such systems require large computing
capabilities and parallel hardware such as GPUs fills this
gap. General-purpose programing frameworks such as the
compute unified device architecture (CUDA) and Open Com-
puting Language (OpenCL) also made implementing push-
based DBMSs for GPUs a feasible task. Our work reported
here focuses on a CUDA environment. In our previous work
[2], we proposed a GPGPU-based Scientific Data Management
System (G-SDMS) that uses CUDA-supported GPUs as the
platform for query processing in a push-based manner. G-
SDMS can be viewed as a middleware that provides query



processing/optimization and resource management functional-
ities on top of CUDA. As compared to most of today’s research
on GPUs with the assumption of processing computational
kernels one at a time, our work on G-SDMS is system-oriented
and imposes unique challenges.

A key challenge is to support concurrent execution of
heterogeneous applications (i.e., queries). At runtime, data will
be loaded into the memory chunk by chunk and all queries
have to be processed against the in situ chunk before the next
chunk is loaded. Such systems are generally optimized towards
data processing throughput therefore maximizing resource
utilization is essential. In a CPU-based environment, (main)
memory and CPU cycles are often the only involved resources,
and much work has been done in the context of data stream
systems [3]. The GPUs, on the other hand, have a complex
architecture (Section II-B) that provides abundant resources
under more categories (e.g., registers, shared memory, blocks,
threads, etc.). Such complexity brings opportunities for im-
proved application performance, and also necessitates non-
trivial modeling and algorithmic techniques in system design
and implementation.

CUDA allows a kernel to run with a large number of
threads and blocks. The limited total resource, however, means
the threads will have to take turns to be executed on the
hardware. To run a thread in a CUDA kernel, a certain
amount of resource under different categories is required. In
a multi-kernel environment such as G-SDMS, it is essential
to determine how many threads for each kernel should be
launched simultaneously such that the overall performance is
the best. Being the main objective of our study, this problem
is non-trivial due to the multiple types of resources involved.
Let us illustrate this with a simple example (Fig. 2) with
two kernels bearing different resource use patterns. If we
schedule the kernels sequentially (as in a typical HPC resource
scheduler), we can run 10 threads of kernel I or kernel II, as
the concurrency is determined by the largest single-resource
consumption (e.g., 10% of resource B for kernel I). If the
latency of running such threads is T for both kernels, this
gives a throughput of 10/T . However, if we schedule both
kernels concurrently, we could run 8 threads of both kernels
I and II at the same time, leading to a throughput of roughly
16/T . Obviously, by scheduling kernels with complementary
resource utilization patterns together, we avoid hitting the
limit of a bottlenecking resource quickly. The problem can be
very complex by considering more general cases with more
resources and kernels involved.

The CUDA framework achieves hardware-level kernel con-
currency via a mechanism named CUDA Stream (not the input
data stream mentioned earlier). Given sufficient resources,
many CUDA streams can run simultaneously with each stream
containing one or more kernels. In CUDA, all threads in a
block are scheduled to run on the same resource pool (i.e., the
multiprocessor) thus a block can be conceptually viewed as a
basic unit for studying our problem. On the other hand, CUDA
allows a kernel to be launched with user-specified parameters
and such parameters determine the actually resource use of
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Fig. 2. Normalized resource use per thread of two different kernels

each block of threads at runtime. Therefore, our problem
essentially becomes: how to set the runtime parameters of ker-
nels in different CUDA streams to achieve the best throughput?
To the best of our knowledge, optimization of multi-kernel
parameters has not been studied before. As the first work on
this topic, we aim at developing rigorous solutions by breaking
this problem to two-stages. Specifically, we develop a kernel-
level optimization model towards largest thread concurrency
with the runtime parameters of all kernels as input, and a
batch-level optimization model towards smallest batches to
run all the kernels. We identify the kernel-level optimization
problem as a variation of the multi-dimensional knapsack
problem. Via thorough analysis of the model structure and
features of CUDA runtime system and CUDA streams, we are
able to reduce the number of dimensions of the constraints in
the original model. We then develop an algorithm based on
dynamic programming to solve the modified model. We prove
the algorithm can find optimal solutions (in terms of thread
concurrency) to the problem and bears pseudopolynomial
complexity on both time and space. Moreover, the batch-level
optimization problem can be identified as a variation of the
multi-dimensional bin-packing problem. Via transforming the
model into a cutting stock problem, we are able to develop an
algorithm based on Gilmore and Gomory algorithm [4] [5].
Such results are verified by extensive experiments running
on our microbenchmark that consists of real-world CUDA
kernels. Furthermore, solutions identified by our method also
significantly reduce the total running time of the workload, as
compared to simple and random solutions.

The remainder of this paper is organized as follows: in
Section II, we briefly introduce the technical background of
this study; in Section III, we describe our kernel-optimization
model and the analysis, simplification of the model, and a
more general batch-optimization model; in Section IV-A, we
present the dynamic programming algorithm of the kernel-
optimization model as well as the column generation algorithm
of the batch-optimization model; Section V describes experi-
mental validation of our solutions; we compare our study with
related work in Section VI and conclude the paper in Section
VII.
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Fig. 3. An example of G-SDMS runtime query network [7]

II. BACKGROUND

A. The G-SDMS System

G-SDMS is a push-based DBMS that embraces the com-
puting power of GPUs. At runtime, the query engine of G-
SDMS creates a network of operators and pushes data into this
network. Such a network is much like the relational algebraic
query plans supported in traditional DBMSs, the difference
is that multiple query pipelines can be combined to form a
complex workflow. The output of an upstream operator is the
input of the next one(s) in the workflow (Fig. 5). Each operator
has a memory buffer (queue) to hold the intermediate results.
Operators supported by the system include relational operators,
aggregates, and user-defined functions. G-SDMS retrieves data
via a scan-based I/O framework, combining data processing
load into the scanning process to thinly spread cost to many
queries. Since random I/O is minimized, G-SDMS can receive
input data at a high rate (e.g., up to 4.8 GB/s with dual
FibreChannel interfaces [6]). This is also the main motivation
of using GPUs to process the queries. Since all kernels share
the same input data stream, kernel concurrency is an important
requirement in the implementation of G-SDMS. In practice,
data is loaded in chunks into global memory, and all queries
have to finish their execution with the current chunk before the
next chunk of data can be loaded. An obvious system design
goal is to maximize throughput of data processing.

B. Typical GPU Architecture

A modern GPU is a special hardware that encapsulates
many processing units together to provide high parallel com-
puting capability. As shown in Fig. 4, main components of a
GPU includes: (1) A number of Multi-Processors (MP) that
each groups tens of processor cores together. The cores execute
threads in a Single-Instruction-Multiple-Data (SIMD) fashion;
(2) Multi-level memory. Of largest amount (e.g., 12GB for the
Titan X Pascal) is the global memory, which can be accessed
in parallel by cores in different MPs. The bandwidth of global
memory can be as high as 480GB/s [8]. GPU also offers high-
speed on-chip cache called shared memory (SM) similar to
L1 cache, and each MP has its own SM with a size up to
96KB [9]. SM is user programmable in GPU code and is
not visible to the CPU code. Within each MP, there are also

Fig. 4. Architecture of a typical NVidia GPU [7]

other memory: the read-only data cache 24 KB [9] and the
nonprogrammable L2 cache with a certain size (3 MB) and a
bandwidth smaller than that of SM [10].

In the CUDA programming framework, a function to be
executed in a parallel way is called a CUDA kernel. A kernel
can be spawned with a large number of computational threads.
Threads for a kernel is called a grid and the grid is divided
into blocks that each contains the same number of threads
to be executed on a single MP. On the other hand, multiple
blocks can be run on the same MP, and one MP can process
up to 32 blocks. It is device driver’s responsibility to schedule
the blocks to use the different MPs. Threads are scheduled as
groups of 32 threads called warps. The entire global memory
can be accessed by any thread in any MP, shared memory
and registers of each MP can only be accessed by the thread
of the same MP. CUDA provides a mechanism called CUDA
stream with the ability to schedule multiple CUDA kernels
simultaneously. One CUDA stream can encapsulate multiple
kernels, and they have to be scheduled strictly following a
particular order. However, kernels from multiple streams can
be scheduled to run concurrently. However, NVidia does not
reveal much detail about the internal mechanism for kernel
scheduling in CUDA streams. Our previous work [7] studied
kernel scheduling policies of CUDA streams, the findings of
that work form the foundation of this paper.

III. MULTI-KERNEL OPTIMIZATION

A GPU contains different types of resources including
physical hardware units and software constraints. In our pre-
vious work [7], we have identified three types of resources /
constraints that affect the performance in a single-kernel setup:
registers, shared memory, and maximum warps allowed in an
MP. In a multi-kernel environment, there is one additional
constraint we have to consider: total blocks of all the kernels
allowed to run simultaneously in an MP.

As long as all the resources are sufficient, multiple kernels
can be executed at the same time. For any kernel, its resource
consumption can be controlled at runtime by changing the
launching parameters in the host (CPU) code. CUDA allows
three parameters in launching a kernel: total number of blocks,



block size (i.e., number of threads in a block), and shared
memory consumption as an optional parameter. Note that the
product of the first two is actually the total number of threads.
The third parameter is generally not specified, as programmers
often hardcode the total shared memory use to match the size
of a chunk of input data. Therefore, in this paper, we only
consider total number of blocks and block size as the controls
we apply to affect resource consumption. Note that, in CUDA,
each thread gets its own set of registers while the shared
memory is shared by all threads in the block. Therefore, by
changing the block size, we can control the register use per
block and shared memory use among all blocks of a kernel.
Needless to say, the block size itself directly determines the
number of warps per block.

Before we start developing our optimization model, it is
worth mentioning that the problem of optimizing single-kernel
performance was solved in our previous work [7]. In particular,
we build a model to quantify the total number of threads that
can be executed simultaneously (i.e., occupancy in CUDA
terminology) as an indication of kernel performance. Based
on this model, we can accurately predict kernel performance
under any block size and then pick the one with highest
performance to run. Although some ideas can be borrowed,
the same problem under a multi-kernel environment is much
more complicated. First, the modeling method based on a
series of discrete functions for the single-kernel situation will
only yield models that are too complicated to handle; Second,
kernel scheduling rules among different CUDA streams are
not revealed by NVidia – such information is vital for the
development of our optimization model; Finally, with multi-
ple kernels, the solution space of the optimization problem
increases exponentially. This places stringent requirements on
the efficiency of the algorithm(s) for solving the optimization.

Fortunately, our previous work [7] built a solid foundation
for multi-kernel modeling by identifying basic rules of CUDA
stream scheduling. Here we briefly present one scheduling rule
that is most relevant to our modeling. The rule says: CUDA
scheduler always takes as many MPs as possible in scheduling
the different blocks of a kernel. For example, if we have two
kernels A and B, both of them have 14 blocks, and there are
14 MPs. Each MP can run two blocks of A, or one block of
B, or one block of A and one block of B at the same time.
Based on the rule above, CUDA scheduler will schedule one
block of A to each MP then schedule one block of B to each
MP, now there are one block of A and one block of B running
on each MP. Without the rule, scheduler will put as many as
blocks of A into MP, which makes each of seven MPs has two
blocks of A, and each of the rest seven MPs has one block of
B, rest of seven blocks of B need to wait for the next round
to be scheduled.

According to the above rule of CUDA stream scheduling,
our model can target one MP, the final result of each kernel
is the number of MPs times optimized blocks. In particular,
we divide the total threads of each kernel by the number of
MPs, using the result as the total thread in our model. In this
way, we make sure each MP has same amount and portion of
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Fig. 5. An example of CUDA stream scheduling

kernels. We also assume that there is at least one solution for
all the kernels to fit in the MPs. Otherwise, the left kernels
need to wait for another round to run. If there is a situation
that combined MPs can hold the total threads of all the kernels
while a single MP cannot (i.e. the number of kernels exceed
the maximum number of blocks in an MP), we group two
MPs as a unit, which means we divide the total threads of
each kernel by half number of MPs.

A. Kernel-level Optimization Model Development

The desirable optimization goal of the multi-kernel resource
allocation problem is total running time of all kernels. How-
ever, it is difficult (if possible at all) to derive a model that
maps the launching parameters of multiple kernels to running
time. This is mainly due to the lack of low-level details of
CUDA runtime environment. To the best of our knowledge,
no one has done research on performance modeling in a multi-
kernel GPU environment. In this paper, we set the optimization
goal to be maximizing concurrency, which is defined as the
total number of threads that can be scheduled to run at the
same time. Such a goal is meaningful for two reasons: (1) it
is a direct measurement of throughput; and (2) as shown in
our previous research [7], concurrency has a strong (negative)
relationship with kernel running time.

To achieve maximum concurrency on a GPU, we need to
get the most threads (of different kernels) running in an MP
(Eq. (1)). The problem can be formulated as the following
integer programming statement:

Maximize
∑

i

∑
j 32jxijbi (1)

subject to
∑

i

∑
j 32jxijbiri ≤ R (2)∑

i

∑
j jxijbi ≤W (3)∑
i bisi ≤ S (4)∑

i bi ≤ B, bi ∈ Z+ (5)∑
j xij = 1,∀i (6)∑

j 32jxijbi ≥ ci,∀i (7)
xij ∈ {0, 1},∀i, j (8)

In the above statement, i is the index of a kernel, j is the
index of all the possible choices of block size for a single
kernel. Since CUDA schedules 32 threads (a warp) as a unit,
we use warp instead of thread in this model, 32j stands for
thread number of a block for a single kernel. To be specific,



CUDA allows a block to have up to 32 warps in it therefore we
have ti,j = j (j ∈ [1, 32]), x is a binary number to represent
which block size is chosen in a solution (Eq. (6) and Eq.
(8)). The quantities bi and si stand for the block number and
shared memory use for kernel i, respectively. ri is the per-
thread register number for the same kernel. The constants R,
W , S, and B stand for the total number of registers, warps,
shared memory and blocks of an MP in the GPU. The reason
for having Eq. (7) is as follows: for most CUDA programs,
the total number of threads ci is fixed by the programmer to
cater to the data size, changing total blocks and block size are
the actually the same: when block size increases by a factor of
f , total number of blocks will decrease by the same factor f ,
however, the data size of a kernel can hardly be the multiplier
of 32, thus we use ≥ instead of = in Eq. (7). For each kernel i,
ri, ci, and si are constants thus the inputs to the optimization
problem. On the other hand, the solution to the optimization
contains quantities xij and bi.

Remark:
(1) Note that the aforementioned formulation has an interesting
feature: according to Eq. (7), any feasible solution to the
formulation actually provides us a schedule with the maximal
concurrency. However, due to a large number of 0−1 variables
(xij for all i and j) and the other 6 non-trivial constraints,
it is an NP-hard problem to locate a feasible solution. To
address such challenges, we discuss model simplification and
transformation in Section III-B. Such transformation results in
the development of a pseudo-polynomial algorithm in solving
the problem (Section IV-A);
(2) Eq. (7) determines that solutions to the formulation do
exist. In other words, we can find a set of launching parameters
for every kernel such that they can all be processed by the
GPU at the same time. In Section III-C, we will remove this
assumption and introduce a batch-level model to solve the
more general situation of the problem.

B. Kernel-optimization Model Analysis and Simplification

By studying the structure of the current model, we realize
it is a flavor of the well-known multidimensional knapsack
problem (MKP). An MKP is NP-hard even when the number
of constraints is only one [11]. It is easy to see our model
is equivalent to an MKP with m = 4 therefore it is also
an NP-hard problem. Moreover, the original model involves
binary variable xij as part of the solution and as many
as seven constraints. Therefore, the original formulation is
difficult to analyze or to compute. To remedy that, we aim
to transform the model into a form that is easier to handle
via considering the actual environment where our problem is
defined. Specifically, we derive a reformulation with a much
smaller number of variables and constraints.

Our first goal is to eliminate the binary integer xij . As
mentioned before, CUDA schedules threads in groups of 32
(i.e., a warp). For example, if we launch a kernel with 240
threads, the CUDA runtime framework will actually launch 8
warps for this kernel (with the last warp containing empty

threads in this case). Therefore, we use warp number wi

(wi =
ti
32 ) to replace jxij , and the value of wi ranges from 1

to 1024/32 = 32 (since the maximum block size is 1024). As a
result, the total thread number of a kernel has a ceiling of the
total threads in the assigned warps, Eqs. (3) and (7) become:∑

i wibi ≤W (9)
32wibi ≥ ci,∀i (10)

We then aim at removing some of the constraints. As we
mentioned, any feasible solution to the original model is actu-
ally a solution that gives us the maximal concurrency. Hence,
it suffices to develop a new model that aims at finding one
feasible solution to the original model with fewer constraints.
Note that based on Eq. (10), we can easily calculate the results
of
∑

i

∑
j 32jxijbiri given any problem inputs. Thus, the

constraint about registers in Eq. (2) only serves the purpose of
determining if there is a feasible solution, and we can remove
it from the problem statement. Now we have the newly derived
constraints shown in Eqs. (9) and (10) plus the remaining
constraints Eqs. (4) and (5).

With the above constraints, we further reduce the level of
difficulty in solving the problem via a technique that modifies
the object function. This can be done by transforming a
constraint into the object function. In particular, we can choose
any of the remaining constraints as our new object function.
In our problem, we pick Eq. (4) since it is the only one that
has a unique coefficient si. Consequently, the new problem
formulation becomes:

Minimize
∑

i bisi (11)
subject to

∑
i bi ≤ B (12)∑

i wibi ≤W (13)
32wibi ≥ ci,∀i (14)
bi ∈ Z+ ∀i. (15)

Remark:
(1) Equivalence: if the optimal value of the new formulation is
less than or equal to total shared memory S, the corresponding
optimal solution is feasible to the original formulation, i.e., a
schedule with maximal concurrency;
(2) Simplicity: although this reduced formulation deals with
general integer variable bi, we have way fewer discrete vari-
ables, along with only three non-trivial constraints, which
indicates its computational burden might not be heavy in
practice, if a well-designed algorithm can be developed. Note
that the quantities bi and wi are the solutions and all other
quantities are inputs to the model.

After a series of transformations without adding new as-
sumptions, the problem becomes one to minimize the total
shared memory use of all kernels. Intuitively, minimizing
shared memory use of one kernel will also minimize its block
number so that there are more space left for remaining kernels
in dimension of B (see Eq. (4) in original model).



C. Batch-level Optimization Kernel for More a General Situ-
ation

As we mentioned, our kernel-optimization model is for a
bunch of kernels that can all fit in an MP. However, there
could be more general scenarios in which an MP cannot
accommodate all kernels due to resource constraints. For such
problems, our solution is to run all the kernels in different
batches, each batch will fit in an MP. In each batch, we
solve the below model to get a batch-level solution as a pre-
precessing. Then the key problem becomes how to determine
the membership of each batch. Specifically, the problem can
be formulated as follows:

Minimize G =
∑

k yk (16)
subject to G ≥ 1 (17)∑

i wixik ≤Wyk
(18)∑

i rixik ≤ Ryk
(19)∑

i sixik ≤ Syk
(20)

xik ∈ {0, 1},∀i, k (21)
yk ∈ {0, 1},∀k (22)

In this problem, we still target the maximum concurrency,
i.e., we want to pack as many kernels as possible in a batch,
thus the number of batches G is minimized, as shown in Eq.
(16). Each G has the same maximum capacity, i.e., total warp
numbers W , register numbers R, and shared memory S. Here,
k is the index of a batch, yk is a binary variable where yk = 1
if bin k is used, and i is the index of a kernel, xik is a binary
variable setting to 1 if kernel i is put in batch k. Same as
the model described earlier, the quantities ri, wi and si stand
for the register number (per thread), warp number, and shared
memory use for kernel i, respectively. For each kernel i, wi,
ri, and si are constants thus the inputs to the optimization
problem, the solution to the optimization problem contains
quantities xik.

The above pre-processing model is a three-dimensional Bin
Packing Problem (3D-BPP), which is strongly NP-hard [12].
Silvano et al. [13] proved that the lower bound of Bin Packing
Problem is 1

8 , which is the asymptotic worst-case performance.

IV. SOLVING THE OPTIMIZATION PROBLEM

In this section, we present algorithms to focus on solving
the kernel-optimization model shown in Eq. (11) to Eq. (15)
firstly, then presenting the algorithm of the batch-optimization
model shown in Eq. (16) to Eq. (22).

A. Algorithm of Kernel-optimization model

In this section, we present algorithms to solve the sim-
plified model shown in Eq. (11) to Eq. (15). Note that the
new formulation is not a simple knapsack problem anymore.
Indeed, because both wi and bi are variables, the formulation
in Eq. (11)- Eq. (15) is a quadratic general knapsack problem
(QGKP), which is also an NP-hard problem [14]. Hence,
a brute-force algorithm would have to search through all

O
(
BW ) possible combinations with respect to a total of n

kernels, giving a total time complexity of O
(
(BW )n), and

this is clearly infeasible for practical instances.
However, the transformation of the original problem into

QGKP enabled us to develop a (practically) efficient algo-
rithm based on the dynamic programming approach. Dynamic
Programming is a well-known divide-and-conquer technique
to solve optimization problems. The idea is to transform a
complex problem into relatively simple sub-problems. The
algorithm examines previously solved sub-problems and com-
bine the solution to give a best solution for a slightly larger
sub-problem.

Applying dynamic programming to knapsack problem is to
essentially trade time with space. We can use a table to record
decisions made for sub-problems and recursively look up the
table when involving previous decision. Following our discus-
sions in Section III-B, we should use a three-dimensional table
since there are three variables to be considered: the n kernels,
total blocks ranging 0 to B, and total warps ranging 0 to W .
The main task of the algorithm is to compute the value of a
cell (i, b, w) in this table, where i is the kernel number, b is
the block number of kernel i, and w is the warp number of
kernel i, respectively. Here cell value (i, b, w) stands for the
minimum total shared memory used of any subset of kernels 0
to i under targeted block number b and targeted warp number
w. The key feature of the algorithm is that we only need to
consider local choices in the table. In particular, the following
result helps us drastically reduce the complexity of the table.

Theorem 1. For a particular kernel i, if bi is fixed, an optimal
choice of wi can be obtained as wi =

⌈
ci

32bi

⌉
.

Proof. Note that to satisfy Eq. (14), wi must be greater than
or equal to

⌈
ci

32bi

⌉
. Also, the smaller wi, the smaller left-hand-

side of Eq. (13). So, it would be optimal to set wi =
⌈

ci
32bi

⌉
.

Hence, in the remainder of this paper, we simply set
wi =

⌈
ci

32bi

⌉
when bi is available. Moreover, our dynamic

programming algorithm can be simplified into a form similar
to that for the general knapsack problem. Specifically, let
V [i, b, w] be the objective value considering up to i-th kernel
with total b blocks and W warps. The Bellman equation is

V [i, b, w] = minbi=1,...,B{V
[
i− 1, b− bi, w − wibi

]
+ sibi}

where si is shared memory usage per block of kernel i. Note
that whenever b or w causes the solution infeasible, we will
set the corresponding V to ∞.

Details of the algorithm to solve our problem can be seen as
pseudocode in Algorithm 1. After we compute all the entries
of V , V [n,B,W ] will contain the minimum shared memory
use achieved by the solution. Meanwhile, another array P
holds the solutions to the sub-problems and P [n,B,W ] is
our solution. With the principle of optimality carried in the
general knapsack problem, the correctness of the algorithm is
shown as follows.



Algorithm 1: The Dynamic Programming Algorithm
1: for b← 0 to B do
2: for w ← 0 to W do
3: V [0, b, w]← 0
4: P [0, b, w]← φ
5: end for
6: end for
7: for i← 1 to n do
8: V [i, 0, 0]←∞
9: P [i, 0, 0]← φ

10: end for
11: for i← 1 to n do
12: for b← 1 to B do
13: Qb ← V

[
i− 1, B − b,W − wb] + sib

14: end for
15: V [i, b, w]← minb=1,...,B{Qb},

/* denote optimal b as b∗ */
16: P [i, b, w]← P

[
i− 1, B − b∗,W − wib

∗] ∪ (i, b∗)
17: end for

Theorem 2. Algorithm 1 terminates with an optimal solution,
i.e., the value of V [n,B,W ] is optimal.

Proof. We prove the theorem via induction.
(1) When there is one kernel (n = 1), we have

V [1, 1, w] = min{V [1, 1− 1, w],

V [0, B − 1,W − w] + s1}
= min{∞, 0 + s1} = s1

For V [1, 1, w], we get the optimal value s1.

V [1, 2, w] = min{V [1, 2− 1, w],

V [0, B − 2,W − w] + 2s1}
= min{s1, 0 + 2s1}

For V [1, 2, w], we can get the optimal value by comparing
V [1, 1, w] and 2s1.

V [1, B,w] = min{V [1, B − 1, w],

V [0, B −B,W − w] + s1B}

If we know the optimal value of V [1, B − 1, w], we can
get the optimal value of V [1, B,w] by comparing V [1, B −
1, w] and 0 +B × s1. Deriving it one by one, we can get the
optimal value of V [1, 1, w], then value of V [1, 2, w] based on
V [1, 1, w], · · · , and value of V [1, B,w] based on V [1, B −
1, w]. Thus for each b from 1 to B, we get the optimal value.
(2) When there are two kernels (n = 2), we have

V [2, 1, w] = min{V [2, 1− 1, w],

V [1, B − 1,W − w] + s2 × 1}
= min{∞, V [1, B − 1,W − w] + s2}
= V [1, B − 1,W − w] + s2

From Step (1) we know V [1, B−1,W −w] has an optimal
value, so V [2, 1, w] has the optimal value.

V [2, 2, w] = min{V [2, 2− 1, w],

V [1, B − 2,W − w] + s2 × 2}
= min{V [2, 1, w], V [1, B − 2,W − w] + 2s2}

Also from step (1) we know V [1, B − 2,W − w] has an
optimal value, and V [2, 1, w] has optimal value based on above
proof. By comparing V [2, 1, w] and V [1, B−2,W−w]+s2×2
we can get the optimal value of V [2, 2, w].

V [2, B,w] = min{V [2, B − 1, w],

V [1, B −B,W − w] + s2 ×B}

Same as in step (1), we derive it one by one, we can get the
optimal value of V [2, 1, w], then value of V [2, 2, w] based on
V [2, 1, w] and V [1, B−1,W−w], · · · , and value of V [1, B,w]
based on V [2, B − 1, w] and V [1, B − B,W − w]. Thus for
each b from 1 to B, we can get the optimal value.
(3) The same approach shown in step (2) can be applied to
cases n = 3 and beyond, and this concludes the proof.

Time and space complexity: The complexity is clearly
determined by the size of the dynamic programming table,
which is O(nBW ). In practice, both n and B are small
integers (i.e., n ≤ 32 and B ≤ 16 in the latest version of
CUDA) thus this algorithm will have negligible cost. Similarly,
the pre-processing stage takes O(nBW ).

B. Algorithm of Batch-optimization model

The 3D-BPP is a hardly NP-hard problem, to our knowl-
edge no one has present an exact algorithm for it. We have
developed a solution by applying classic Gilmore and Gomory
algorithm [4] [5] after transforming this problem into a cutting
stock problem. While the Gilmore and Gomory algorithm only
deals with 1D bin-packing, we follow its philosophy of using
column generation approach and decomposing our model into
a master problem (cutting stock) and a sub-problem (pricing
problem).

Our model (Eq. (16) to Eq. (22)) contains k! symmetric
solutions and there are many binary variables, that makes
problem extremely hard. To make this problem simpler, we
can transform it to a cutting stock problem: instead of focusing
on which kernel is put in a particular part of a batch, we look
at possible patterns used to put in a batch. The question is
then changed to focus on how many times a particular pattern
is used:

Minimize Z =
∑

j xj (23)
subject to

∑
j Pijxj ≥ di,∀i (24)
xj ≥ 0 (25)

In this model, i is the number of same kernels, j is the
number of different types of patterns. xj stands for number of
jth pattern that has been used, Pij stands for cutting pattern



Algorithm 2: The Column Generation Algorithm
1: Initialize patterns
2: repeat
3: Substitute patterns into master problem Eq. (23), find

π
4: Solve sub-problem Eq. (26), get new pattern
5: Add new pattern to master prbolem
6: until
7: zsub ≥ 0

that ith kernel used in jth pattern, di stands for demands of
kernel i.

It is natural to consider Simplex Algorithm as the solution
[15]. However, there are 2i − 1 patterns of the required i
kernels [16]. Even if we had a way to generate all patterns, it
is difficult to contain all variables into the algorithm. Thus for
each iteration of in the Simplex Algorithm, we need to find
the most negative column [5]. By defining a new sub-problem,
we are able to find it.

Minimize zsub = 1−
∑

i πiPij (26)
subject to

∑
i Pijwi ≤W (27)

subject to
∑

i Pijri ≤ R (28)
subject to

∑
i Pijsi ≤ S (29)
Pij ∈ Z+ (30)

Here, πi stands for the average demands of kernel i in this
round of Simplex Algorithm. The sub-problem is a pricing
problem as well as a three-dimensional knapsack problem, we
can use dynamic algorithm similar to our algorithm in section
IV-A and the complexity is O(nWRS). Hence, the Column
Generation Algorithm for solving our pre-processing model
can be seen in above Algorithm 2.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Benchmark

We run all experiments in a workstation with an Intel
E8400 CPU@3.0GHz, 8 GB of DDR3 1333MHz memory, one
300GB Seagate ST33204 hard disk, and one NVidia GeForce
GTX TITAN X graphics card. The machine runs Ubuntu 14.04
OS and CUDA version 6.5.

In the experiments of simplified model, we compare the
performance of our solution with two baselines:
(1) sequential execution of kernels, this simulates the be-

havior of a typical HPC resource schedulers where each
application is treated as an independent process. In this
setup, kernel parameters are set according to our previous
work [7] to ensure best single-kernel performance;

(2) concurrent execution of kernels with randomly assigned
kernel parameters. Since our work is the first one in
dealing with multi-kernel resource management, this is
best setup we can think of as a ”simple” solution.

As to the benchmark, we build a kernel pool that consists of
13 real kernels, 11 of which are from NVidia CUDA libraries
[17] and two are from our previous work [18]. We put each
kernel to an individual CUDA stream. We generate workload
in two different ways: (1) fixed set: we preorder all the 13
kernels and pick kernels following this order. Specifically, if
there are m CUDA streams to fill, we put one kernel into each
stream following the kernel order. After each kernel is put into
a stream, we start from kernel 1 to fill the remaining streams
till all streams are filled. (2) random set: we randomly pick a
series of kernels to fill the CUDA streams. As compared to the
fixed set, the random set simulates a more natural workload
but may bring extra challenges due to higher uncertainty in
workload composition. Each experiment runs 400 times, and
a different combination of kernels is picked in each run. To be
consistent to the assumptions made in our modeling process,
we only run those combinations of kernels in which a feasible
solution can be found. The total number of threads and the
shared memory consumption are fixed for each kernel.

B. Experimental Results and Discussions of Simplified Model

Since we have proved (Section IV-A) that our algorithm will
find the solutions with the largest number of active threads,
discussions on experimental results will be focused on total
running time of the workload. However, we want to first point
out that in all experimental runs our solutions did reach the
highest thread concurrency without an exception.

First, let us compare the performance of running kernels
under workloads generated in the fixed set. In Fig. 6, we can
see that, by applying our model, the minimum speedup against
sequential execution (‘sequential’ hereafter) of 31 stream and
16 streams are 4.16x and 3.90x, respectively; the minimum
speedup against concurrent execution with random kernel pa-
rameters (‘random’ hereafter) of 31 stream and 16 streams are
1.44x and 1.39x, respectively. Our model beats sequential in
all cases while random some times finds solutions with better
performance. Since our model targets maximum concurrency
instead of actual total running time, it is not surprising that
this has happened. While we admit this is a limitation of our
approach, we also want to study the extent of such a limitation.
Fig. 7 shows the distribution of the speedup against random:
in 5.75% of all cases random finds better solutions under
31 streams, while this increases to 7.25% under 16 streams.
Taking a closer look at such cases, we found that they also
reached the highest kernel concurrency. Obviously, the lack of
a deterministic relationship between concurrency and running
time is the main reason for such results.

Now let us study the performance of our model under
workloads generated by picking a random subset of the 13
kernels (random set). Such results are presented in Figure 8.
We can see that the maximum and average speedup is not
much different from what we found in the fixed set workloads.
The main problem, however, is that the percentage of cases in
which the random solution finds better solutions increases: in
31 streams, this number is 14.5% and it further increases to
20.75% in 16 stream experiments. By plotting the distribution
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Fig. 6. Speedup over sequential and random solutions and the ratio of cases
in which our solution shows better performance than random. Workloads are
generated as a fixed set

 0

 5

 10

 15

 20

 25

0.7-0.8

0.8-0.9

0.9-1.0

1.0-1.1

1.1-1.2

1.2-1.3

1.3-1.4

1.4-1.5

1.5-1.6

1.6-1.7

1.7-1.8

1.8-1.9

1.9-2.0

>2.0

F
re

q
u

e
n

c
y
(%

)

Speedup

31 streams
16 streams

Fig. 7. Distribution of the speedup of our model against random in running
workloads generated as a fixed set

of the speedups in Fig. 9 and comparing it with Fig. 7, it
is clear that more cases fall into the low speedup range for
the random set experiments. Notably, there are quite a few
cases come with speedup of only 0.7 - 0.9, especially for
the 16 stream case. To further explore the reason, we looked
at the resource consumption patterns of the kernels in both
the fixed set and random set experiments. We found out that
the latter, by picking only a subset of the 13 kernels, renders
more kernels with similar (or identical) demand on different
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Fig. 8. Speedup over sequential and random solutions and the ratio of cases
in which our solution shows better performance than random. Workloads are
generated as a random set
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TABLE I
SYNTHETIC KERNELS PARAMETERS

Kernels I II III IV V

Register Number 8 16 24 32 40

Shared Memory 24576 12288 6144 4608 1536

resources (i.e., with bars of similar height in Fig. 2). As
a result, the kernels all have similar resource use patterns
and the random algorithm has a better chance in finding a
good solution (i.e., Knapsack problem becomes easier with
homogeneous items). When the number of CUDA streams is
smaller, this becomes a more serious problem. In contrast to
that, the fixed set experiments chose all kernels and show very
different resource consumption patterns. This leads to much
fewer optimal solutions (e.g., Knapsack problem becomes
harder with heterogeneous items) and the advantage of our
approach is shown in more cases. To verify such a hypothesis,
we developed a workload that consists of five kernels with
arbitrarily irregular resource consumption patterns (Table I).
The kernel uses small number of registers has large amount
shared memory usage, and vice versa. By this, we intentionally
narrow down the subset of optimal/good solutions in the search
space. The experimental results support our hypothesis (Fig.
11): among the 1,000 runs, our solution wins in 957 cases, and
most of the other cases show a speedup within (0.9, 1.0). The
average speedup among all cases is 1.43x and the maximum
speedup reaches 3.78x as shown in Fig. 10.

C. Experimental Results and Discussions of batch-
optimization Model

In the experiments of batch-optimization model, we use
four sets of different setups as in Table II shown. Set A
and B are simply executed in sequential and concurrent order
respectively without using any of our models, Set C is executed
in concurrent order with just applying our kernel-optimized
model, Set D is executed in concurrent oder with using both
our batch-optimized model and kernel-optimized model. We
compared Set D with three other sets. As to the benchmark, we
use the same kernel pool and randomly pick 39, 52, 65 kernels
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Fig. 10. Results of running workloads generated from synthetic kernels as a
random set
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from synthetic kernels as a random set

TABLE II
BATCH-OPTIMIZATION MODEL EXPERIMENT SETS

Experiment Set Description

S Sequential running with random batch assignment
and random launching parameter

CR Concurrent running with random batch assignment
and random launching parameter

CO Concurrent running with random batch assignment
and optimized launching parameter

BO Concurrent running with optimized batch assignment
and optimized launching parameter

(the multipliers of our total kernel numbers), and each sets
have run 200 times. To show our batch-optimization model
can indeed decrease the number execution batches, we did
synchronization after each batch finishes running.

We want to prove our model works when dealing with large
number of kernels that cannot fit in an MP, discussions on
experimental results will also be focused on total running time
of the workload.

We can see from Fig. 12 that, by applying both our
batch-optimization and kernel-optimization models, the aver-
age speedup against sequential execution (‘S’ hereafter) of
39, 52, 65 streams are 6.05x, 6.44x, and 6.50x, respectively;
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Fig. 12. Speedup over Set S, CR, and CO and the ratio of cases in which
our solution (Set BO) shows better performance than CR and CO

 0

 5

 10

 15

 20

0.8-0.9

0.9-1.0

1.0-1.1

1.1-1.2

1.2-1.3

1.3-1.4

1.4-1.5

1.5-1.6

1.6-1.7

1.7-1.8

1.8-1.9

1.9-2.0

>2.0

F
re

q
u

e
n

c
y
(%

)

Speedup

39 streams
52 streams
65 streams

Fig. 13. Distribution of the speedup of our solution (Set BO) against Set CR

the average speedup against random execution without ap-
plying any of our models (‘CR’ hereafter) of 39, 52, 65
streams are 1.43x, 1.45x, and 1.47x, respectively; the average
speedup against random execution with only applying kernel-
optimization model (‘CO’ hereafter) of 39, 52, 65 streams are
1.33x, 1.40x, and 1.39x, respectively. The minimum speedup
over S of 39, 52, 65 streams can achieve 4.72x, 5.07x,
and 5.17x, respectively. Our solution beats S in all cases
dramatically, while CR and CO some times find solutions
with better performance. By plotting the distribution of the
speedups in Fig. 13 and Fig. 14, we can see there are only a
few cases falling into the section “0.8-0.9” and “0.9-1.0”. Note
that our solution almost beats CO in all cases, the percentage
of winning cases against CO is 99%, 100%, and 100% for
39, 52, 65 streams, respectively. This is reasonable because in
our kernel pool, the execution time of kernels will change with
different launching parameters chosen. Plus, our models do not
directly target running time. With the help of NVidia’s Visual
Profiler [17], we can guarantee our model achieve maximum
concurrency and run for minimum number of batches.

VI. RELATED WORK

Push-based Database Systems: In traditional DBMSs,
the cost of I/O is expensive since its pull-based architecture
needs to load data repeatedly. Sharing data among concurrent



 0

 5

 10

 15

 20

 25

 30

 35

0.8-0.9

0.9-1.0

1.0-1.1

1.1-1.2

1.2-1.3

1.3-1.4

1.4-1.5

1.5-1.6

1.6-1.7

1.7-1.8

1.8-1.9

1.9-2.0

>2.0

F
re

q
u

e
n

c
y
(%

)

Speedup

39 streams
52 streams
65 streams

Fig. 14. Distribution of the speedup of our solution (Set BO) against Set CO

queries using a common I/O stream has become popular in
database community. Harizopoulos et al. [19] enables dynamic
operator sharing with an on-demand simultaneous pipelining
I/O system (OSP). Ramen et al. [20] implemented a system
called Blink that runs every query based on a table scan. Frey
et al. [21] designed an efficient join algorithm called cyclo-join
to process queries under a distributed environment through a
ring-structured network. Unterbrunner et al. [22] proposed a
distributed relational table design called Crescando that uses
shared scan to process data stream on multi-core machines.
Another sharing data approach was studied in [23], which is
based on a data-sharing model in both record and column
disk storage. More recently, Arumugam et al. [1] developed
a truly push-based system called DataPath, in which queries
are pushed to processors and all the operations share data.
This kind of push-based DBMS becomes the new trend in
developing data management systems.

GPGPU and databases: We focus on GPU as the platform
because it provides much more computing power and lower
energy consumption than modern CPUs. Actually, the GPGPU
movement started a long time ago [24]. The advanced comput-
ing model such as CUDA [25] and OpenCL [26] accelerates
its spread. According to [27], there are more than 60,000
technical papers published annually in the field of GPGPU. It
is very clear that it becomes a popular computational platform
in many application domains [28], [29]. The data management
community has also done a lot of work on improving database
performance using GPUs. GPU-based algorithms for comput-
ing major relational operators were developed by Govindaraju
et al. [30], who reported dramatic performance improvement
over a compiler-optimized SIMD implementation with up to
40 times speedup. Bakkum et al. [31] implemented a subset
of command processors based on the open-source database
named SQLite to achieve GPU acceleration. Sitaridi et al.
[32] proposed a bank optimization solution for improving data
access performance on GPU memory. It focused on resolving
the conflict issues when using shared memory on GPUs in
order to fully utilize the bandwidth of shared memory therefore
enhancing performance. And there are some work about
improving join algorithms on GPU. He et al. [33] implemented

novel relation join GPU algorithms that obtained 2-7X better
performance as compared to CPU-based algorithms. Kaldewey
et al. [34] implemented some join processing algorithms on
GPUs, and they got a 50% performance boost over CPU
implementations of the same algorithms. Ran et al. [35]
revisited He’s algorithm after seven years under modern GPU
architecture and achieved up to 20X speedup over the CPU-
based join algorithms.

GPGPU and modeling: Besides database community, peo-
ple who want to further explore potential of GPU begin to
do modeling on it based on their different research domain,
although there is only few of them. Xu et al. [36] proposed
a GPU-accelerated simulation model for high-fidelity network
systems. Baghsorkhi et al. [37] presented an analytical model
to predict the performance of GPU applications with the
help of an abstract interpretation method called work flow
graph. Hong et al. [38] proposed an analytical model that
estimates the execution time of programs running on GPUs
and an improved version [39] later. The model estimates the
number of parallel memory requests via analysis of program
behavior and instructions. The same research group [40] also
developed an empirical power model for GPUs. Kerr et al.
[41] introduced a model based on Hong’s analysis to predict
relative performance of the same applications running on
GPUs and CPUs. However, all above modeling efforts focused
on single-kernel tasks on GPUs and single-kernel modeling
efforts are not readily applicable to simultaneous multi-kernel
scenarios. Moreover the modeling methods mentioned above
either require extra effort to achieve accurate prediction or
focus on a specific domain that is not applicable to our
problem. This is also the motivation to conduct our research
in this paper.

Other work also address multi-tasking in GPUs. With the
help of Dynamic Parallelism in CUDA (a feature enables the
developer to launch parallel work on a GPU), Krieder et al.
[42] proposed an execution model and run-time system called
GeMTC to decompose kernels into warp-level and integrated
with Swift language. This proposal requires rewriting user
kernels (i.e., decomposing into warp-level units) while kernels
are treated as atomic units in our scheme based on CUDA
streams. Wang et al. [43] adopted Kernel preemption (a
technique that can swap the context of a kernel on one SM
with the context of a new kernel) and developed a dynamic
sharing mechanism named Simultaneous Multikernel (SMK)
by improving resource utilization to boost performance. This
technique is meant to be implemented in the GPGPU runtime
system and only evaluated in a simulator while our strategy
runs at the middleware level and is fully tested in a real system.
It would be interesting to compare the performance if SMK
is implemented in CUDA in the future.

VII. CONCLUSIONS

With very high parallel computing capacity, GPUs have
become an integrated part of today’s HPC systems and found
applications in many scientific and computing domains. Man-
agement of large-scale scientific data has seen push-based



query engine design as the main approach in dealing with
the I/O bottleneck. By feeding shared data streams to multiple
concurrent queries, such systems removed the bottleneck from
I/O to computation, making GPUs a suitable platform for
running the query engine. A key challenge in the imple-
mentation of such systems is to support concurrent tasks.
Task parallelism feature (i.e., the CUDA stream) provided
by CUDA can be leveraged to meet such challenges. The
objective of this study is to allocate resources to concurrent
CUDA kernels by configuring their runtime parameters for
the purpose of maximizing system performance. We develop
an integer programming kernel-optimization model to describe
such a problem and a batch-optimization model to deal with
a more general scenario that kernels are too many to execute
in one batch. We design both algorithms of the two models
for solving the optimization with proved correctness and high
efficiency.
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