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ABSTRACT
Frequent subgraph mining (FSM) from graphs is an active sub-
ject in data mining research, and is gaining momentum with the
popularity of applications such as social networks and the web.
One major challenge in FSM is the development of support mea-
sures, which are basically functions that map a pattern to its fre-
quency count in a database. Current state-of-the-art in this topic
features a hypergraph-based framework for modeling pattern oc-
currences which unifies the two main flavors of support measures:
the overlap-graph based maximum independent set measure (MIS)
and minimum image/instance based (MNI) measures. For the pur-
pose of exploring the middle ground between these two groups
and guiding the development of new support measures, we present
sufficient conditions for designing new support measures in hyper-
graph framework. Furthermore, we utilize the sufficient conditions
to generalize MI for designing user-defined linear-time measures.
Furthermore, we introduce a new polynomial-time support mea-
sure, called maximum independent subedge set (MISS) measure to
fill the gap betweenMIS andMI in terms of computation complexity
and support count. To the best of our knowledge, MISS is the first
non-relaxation polynomial-time support measure that is close to
MIS in the counts returned. We further showMISS’s advantage over
other support measures derived from linear programming relax-
ations. Experiments conducted on real-world graph datasets show
that MISS returns significantly smaller counts than MI, and similar
or smaller counts as other relaxation-based measures. Bounding
theorems among all relevant support measures are also presented
in this paper.
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1 INTRODUCTION
The field of graph mining has attracted a lot of attention with
applications in social networks, the web, and aviation maps. One of
the important problems is frequent subgraph mining (FSM), which
aims to identify frequent patterns for the purpose of studying trend
or locating hotspots. In such efforts, an essential component is the
support measure of the given pattern, i.e., the frequency the pattern
appears in the graph database. In this paper, we report our recent
work related to support measures in the single-graph setting, in
which the database is only one (often large) graph.

Defining support measures is a non-trivial matter. First of all,
a support measure has to satisfy the so-called anti-monotonicity
property, which states that the frequency of a pattern should not
exceed that of any of its subpatterns. This rule is essential to the
majority of FSM algorithms because they rely on it to safely prune
infrequent patterns from a tree structure to save time. Other facts to
consider include computational cost and intuitive frequency counts.

The first anti-monotonic support measure is called the maxi-
mum independent set based (MIS) support [25]. The main idea of
MIS is to count maximum number of independent instances of a
pattern from a data structure named overlap graph. While provid-
ing an intuitive count, MIS shows a major drawback in its lack
of efficient algorithms – it is proved to be NP-hard that makes
MIS infeasible to compute in even moderately sized graph datasets.
Based on the technique of vertex images, another type of support
measure named the minimum-image-based (MNI) support [10] was
designed. As another anti-monotonic support, MNI is linear-time
computable. However, MNI falls short in intuitiveness - it could
arbitrarily overestimate the frequency of a pattern. This is due to its
lack of consideration of topological structure of the query pattern.

While the above measures are developed under different math-
ematical underpinnings, it is natural to ask the question whether
there is an universal foundation for designing and profiling support
measures in FSM. In addition to satisfying mathematical curios-
ity, it carries high practical value to develop a framework, within
which we can compare existing measures and see different levels of
tradeoff between efficiency and intuitiveness. One urgent task is to
develop new support measures that sacrifice efficiency in exchange
of higher intuitiveness. It is also necessary to develop new support
measures to cater to the heterogeneous needs of FSM applications.
Different users may have different types of experimental data and
treat data features and pattern significance differently. Therefore, it
is highly desirable if there is a framework that allows users define
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their own support measures while enjoying same/similar guaran-
tees on counts and computing time.

Our recent work [20] introduced a general framework based
on the concept of occurrence and instance hypergraph to model
many support measures. In this framework, MIS is shown to be
equivalent to a maximum independent edge set (MIES) support,
and MNI can be directly interpreted as a special case of the so-
called minimum-instance-based measure (MI). Under this frame-
work, MNI and MIS/MIES can be naturally seen as the upper and
lower bounds of the frequency spectrum among state-of-the-art
measures. Moreover, another measure called the minimum vertex
cover measure (MVC) is derived as an ultimate version of MNI. MVC
is also connected with MIS through the concepts of dual hyper-
graph. Polynomial-time linear programming relaxations of MIES
and MVC, denoted as RMIES and RMVC, stand in-between MIS and
MVC in terms of count value. Bounding theorems that compare the
frequency counts returned by aforementioned support measures
(given the same inputs) are given as:

MIS = MIES ≤ RMIES = RMVC ≤ MVC ≤ MI ≤ MNI (1)

Contributions: In this paper, we report important new discoveries
that further completes the hypergraph-based approach.

First, for thorough investigation of various support measures in
the hypergraph framework, we study basic principles for designing
support measures. Specifically, we present sufficient conditions for
any function to be anti-monotonic so that it can be admitted as
a support measure. Such conditions provide a strong guideline in
developing new support measures.

Second, as applications of the sufficient conditions, we present:
(1) a general version of the MI-flavored support measures, and (2) a
new support measure to showcase the effectiveness of such theoreti-
cal guidelines. The discovery of the new support measure, which we
namedmaximum independent subedge set (MISS) support, is
an exciting breakthrough by itself. Note that computing MIS/MIES
andMVC are NP-hard, and that for MI andMNI are linear. Naturally,
one would ask if there exist support measures between MIES/MVC
andMI/MNI in terms of computational complexity and counts. Such
measures would be highly valuable as they provide another level
of tradeoff between intuitiveness and efficiency. RMIES and RMVC
are such measures however their computational complexity is still
of high-order polynomial. MISS fills the aforementioned gap: it is
proved to be anti-monotonic, returns counts between MIS and MI,
and can be computed in low-order polynomial time. To the best
of our knowledge, it is the first non-relaxation polynomial-time
support measure that is close to MIS. Experiments conducted on
different real-world graph datasets verify our theoretical conclu-
sions and show that MISS returns significantly smaller counts than
RMVC in many cases.

Other Related Work: A number of research work investigated
support measures in a single graph via various approaches: overlap-
graph based measures [11, 14, 19, 25, 26, 28] and minimum-image-
based measure [10]. A sufficient and necessary condition was given
in overlap-graph framework [25], however it is fundamentally dif-
ferent from our hypergraph approach. In particular, it cannot de-
scribe minimum image/instance measures such as MNI and MI.

2 PRELIMINARIES
In this section, we introduce basic notations and concepts to de-
scribe the problem and the necessary background.

2.1 Labeled Graphs
The graph considered in this paper is vertex-labeled graph, which
is simply referred to as graph hereafter. In all figures of this article,
we represent the label of a vertex by the shade.

Definition 1. A (undirected) labeled graph

G = (VG ,EG , λG )

consists of a set of vertices VG , a set of edges EG ⊆ VG × VG :=
{(u,v ) |u,v ∈ VG , u , v} and a labeling function λG : VG → Σ that
maps each vertex of the graph to an element of the alphabet Σ.

In this paper, we write graph G = (VG ,EG , λG ) as G = (VG ,EG )
when there is no ambiguity.

Definition 2. A graph S = (VS ,ES , λS ) is a subgraph of G =
(VG ,EG , λG ), ifVS is a subset ofVG and ES is a subset of EG and for
all v ∈ VS , λS (v ) = λG (v ).

Definition 3. A pattern p = (Vp ,Ep , λp ) is a labeled graph we
use as a query against another graph.

Definition 4. Let P be a graph pattern, and p a subgraph of P ,
denoted by p ⊆ P . We call p a subpattern of P , and likewise, we call
P a superpattern of p.

After knowing copies of pattern p exist in data graph G, we are
focused on how many times it appears in G . For that, we first need
to define the concepts of occurrence and instance of the pattern in
the data graph.

Definition 5. Given a pattern p and a data graphG, an occur-
rence f is an isomorphism (an edge-preserving bijection between the
vertex sets of two graphs) between pattern p and a subgraph of G.
That is to say f is also a subgraph isomorphism from p to G.

Definition 6. Given a patternp and a data graphG , a subgraph S
ofG is an instance of patternp inG when there exists an isomorphism
between p and S .

2.2 Overlap Concepts and Support Measure
The purpose of defining support measure is to count the appear-
ances of a pattern p in a data graph G. The definition of support
measure is given below:

Definition 7. A support measure of pattern p in data graphG
is a function σ : G ×G → R+, which maps (p,G ) to a non-negative
number σ (p,G ).

Naturally, onewould pick the number of occurrences or instances
of a pattern as support measure. Unfortunately, such choices violate
the anti-monotonicity rule [19, 25]. For example, in Fig. 1, pattern p
has four occurrences f1, f2, f3, f4 in data graph, but its superpattern
P1 has five occurrences f ′1,1, f

′
1,2, f

′
1,3, f

′
2 , f
′
3 .

Definition 8. A support measure σ of pattern p in G is anti-
monotonic if for any pattern p and its superpattern P , we have
σ (p,G ) ≥ σ (P ,G ).
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Definition 9. Vertex overlap: A vertex overlap of occurrences
f1 and f2 of pattern P = (VP ,EP ) in data graph G = (V ,E) exists if
vertex sets f1 (VP ) and f2 (VP ) intersect, that is, f1 (VP ) ∩ f2 (VP ) , ∅
where fi (VP ) = { fi (v ) : v ∈ VP }, i = 1, 2. A vertex overlap of instances
S1 = (VS1 , ES1 ) and S2 = (VS2 ,ES2 ) of pattern P exists if vertex sets
of S1 and S2 intersect, that is, VS1 ∩VS2 , ∅.

In this paper we consider two occurrences “overlap” when they
overlap at one or more than one vertex.

MIS [25] is the first non-trivial anti-monotonic support measure.
It is essentially the count of non-overlapping (independent) pattern
occurrences (instances) .

An anti-monotonic and linear-time computable support, called
minimum image based support (MNI) is shown in [15]. The main
concept behindMNI is image, which is an existence of a vertex in the
pattern (called node hereafter) in the data graph, and the minimum
distinct vertex image count is used as the support measure.

Our recent work [20] developed a framework that unifies all
existing measures (including both MIS and MNI), and provides a
foundation for introducing and analyzing new support measures.
This framework is built on the concept of hypergraph.

Definition 10. Assume that pattern p = (Vp ,Ep ) hasm occur-
rences { fi }1≤i≤m , the occurrence hypergraph of p in G is defined
as Hp = (V ,E) where V = ∪1≤i≤m fi (Vp ), and E = {ei }1≤i≤m , each
ei = fi (Vp ). In other words, hypergraph vertex set V is the collection
of all pattern node images, and each edge ei is a collection of pattern
node images mapped by occurrence fi . For each ei , a label fi is given
to distinguish it from others.

For example, in Fig. 1, occurrence hypergraphs of p and P are
shown asHp andHP . Each edge ei inHp corresponds to occurrence
fi , i = 1, 2, 3, 4. InHP , edges e ′1,1, e

′
1,2, e

′
1,3, e

′
2, e
′
3 correspond to f ′1,1,

f ′1,2, f
′
1,3, f

′
2 , f

′
3 respectively. Note that an edge in a hypergraph

(called hyperedge) could contain more than two vertices.
Although defined in the overlap graph, MIS can be mapped to

the MIES support defined in the hypergraph space [20], which uses
the maximum independent occurrences as frequency count.

Another important measure defined in [20] is the minimum
instance based support measure MI.

Definition 11. Given a pattern p = (Vp ,Ep ), a data graph G =
(V ,E), let T be a transitive node subset in a subgraph of pattern p,
the collection of all such T is denoted as T = {T }. The minimum
instance based support (MI) of p in G is defined as

σMI (p,G ) = min
T ∈T

c (T ),

where c (T ) is the count of images of node set T under all occurrences
of p in G.

3 A SUFFICIENT CONDITION FOR
ANTI-MONOTONICITY

As mentioned earlier, sufficient conditions can reveal key factors of
support measures and help design desired new support measures.
In this section, we give sufficient conditions for verifying the anti-
monotonicity of a candidate support measure. The idea is that, if
we can find a series of operations on occurrence hypergraph Hp of
pattern p which transform it to occurrence hypergraph HP of its
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Figure 1: An example of occurrence hypergraphs generated from
two patterns over a data graph. Occurrences and hyperedges of the
superpattern are marked red

superpattern P , and if a non-negative function σ is non-increasing
under these operations, then this function is anti-monotonic and
thus admissable as a support measure.

In this paper, we propose three operations to convert occurrence
hypergraph of a pattern p = (Vp ,Ep ) to that of its superpattern
P = (VP ,EP ). Without loss of generality, we consider pattern p and
its superpattern P in the case where P has one more edge than p.
There are two scenarios: (i) VP = Vp and EP = Ep ∪ {u,v} where
u,v ∈ Vp = VP . The extra edge of P connects existing pattern nodes
u,v . (ii) VP = Vp ∪ z and EP = Ep ∪ {u, z} where u ∈ Vp , z ∈ VP .
The extra edge of P connects existing pattern nodeu and extra node
z. For a pattern p and its superpattern P , we say an occurrence f of
p can extend if in scenario (i) there exists an edge { f (u), f (v )} in
data graph; or in scenario (ii) there exists a vertex z′ in data graph,
which has the same label as node z and edge { f (u), z′} is in data
graph, hence there exists an occurrence f ′ of P that is identical
to f on VP . We say an edge e in Hp can extend to e ′ in HP if the
corresponding occurrence f can extend to f ′. For instance, in Fig. 1,
f2 and e2 can extend. For a node set T ⊆ Vp , the image of T under
f and f ’s corresponding edge e is the vertex set f (T ) = { f (v )}v ∈T .

Conversion Procedure:We have the following procedure to con-
vert Hp into HP .

Step (1): Delete all edges that cannot extend.
Assume that Hp = (V ,E), E ′ ⊆ E is the set of edges that cannot

extend, we delete each edge e ∈ E ′ from hypergraph Hp . After this
operation, we obtain a new hypergraph named HDel and every
edge e in it can extend. For example, in Fig. 2, edge e4 cannot extend
and it is deleted from Hp .

In scenario (i) mentioned earlier, p and P have the same set of
pattern nodes, each e can represent a superpattern occurrence f ′,
we shall label e with f ′ then the conversion is completed. Otherwise,
in scenarios (ii) the conversion is still not accomplished, because P
has an additional node z than pattern p. Each edge e shall extend
to one or more edges e ′ with an additional vertex.

Step (2): Replace each e by extended edges, which do not overlap
at newly added vertex in them.

Assume that HDel = (V ,E), E = {ei }1≤i≤n , each ei extends to ni
edges {e ′i, j }1≤j≤ni , where ni ≥ 1. For each 1 ≤ j ≤ ni , we create a
vertex zi, j with the same label as pattern node z, and get extended
edge e∗i, j = ei ∪ zi, j . Next, we replace ei by E∗i = {e

∗
i, j }1≤j≤ni . Note

that e∗i, j is different from e ′i, j in vertex zi, j . All zi, j created are
mutually different in vertex number but have the same label as z



CSE-TR18-002, January 2018, Tampa, Florida J. Meng et al.

Hp

D
el

==⇒

HDel

Ext
==⇒

HExt

M
er

==
⇒

HP

4

5

6

8

9

10

4

5

6

8

9

1′

2′
3′

3′′

4

5

6

7′

8

9

1

2
3

4

5

6

7

8

9

e1

e2

e3

e4

e1

e2

e3

e∗1,1

e∗1,2
e∗1,3

e∗3

e∗2

e′1,1

e′1,2
e′1,3

e′3

e′2

Figure 2: Three operations transform Hp to HP as shown in Fig. 1

A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 3: Different scenarios in which pattern p extends to super-
pattern P . Blue edge denotes an occurrence of patternp and red edge
represents an occurrence of superpattern P

since they are images of z. The purpose is to ensure extended edges
do not overlap at newly added vertices. After this operation, we
obtain a new hypergraph named HExt .

For instance, in Fig. 2, pattern node z is v3, edge e1 = {4, 5} is
replaced by {e∗1,1 = {4, 5, 1

′}, e∗1,2 = {4, 5, 2
′}, e∗1,3 = {4, 5, 3

′}}, vertices
1′, 2′, 3′ are distinct but have the same label (color gray) as v3.

Step (3): Replace newly added vertices by z’s images in data
graph G.

For 1 ≤ i ≤ l , 1 ≤ j ≤ ni , edge e∗i, j corresponds to f ′i, j , and the
image of z under f ′i, j is f ′i, j (z) in G. We replace zi, j by f ′i, j (z) in
edge e∗i, j to get e ′i, j . After this operation, we obtain HP .

In Fig. 2, v3’s image under f ′1,1 is 1 in data graph, hence in e∗1,1
we replace vertex 1′ by 1 to obtain e ′1,1. We also replace 3′ and 3′′

by 3 for the same reason. In Step (2), distinct vertices 1′, 2′, 3′, 3′′
are temporarily created to avoid “overlap.” Now some of them are
replaced by the same vertex, it is visualized as we “merge” vertices
together, e.g., 3′ and 3′′ are merged into one vertex 3. Now we give
formal definition of these operations and notions as follows.

Definition 12. For a pattern p, Pattern Hypergraph Space
H (p) is defined as the collection of Hp and the derived hypergraphs
HDel and HExt in the Conversion Procedure from Hp to an HP .

Definition 13. Edge Deletion operationDel (Hp ,p, P ,G ) deletes
edge e that cannot extend from hypergraph Hp .

Assume the following operations are for p and P in scenario (ii)
when VP = Vp ∪ z.

Definition 14. Edge Extension operation Ext (HDel ,p, P ,G )

replaces every edge ei in HDel by E∗i = {e∗i, j }1≤j≤ni , as defined in
Step (2) of the conversion procedure.

Definition 15. Vertex Merge operationMer (HExt ,p, P ,G ), in
each edge of HExt , replaces the image of z by the image of z in data
graph G under the corresponding occurrence, as defined in Step (3) of
the conversion procedure.

Hence the Conversion Procedure follows three operations in the
strict order of Del , Ext and Mer . Now let us show that the above
procedure always works for any p, P , and G.

Theorem 1. The occurrence hypergraph Hp is transformed into
HP by following the above Conversion Procedure.

Proof. We shall show that every edge in Hp is converted, and
every edge in HP is generated and generated once.

First, let us take a look at different scenarios when the occur-
rences of pattern p extend to occurrences of P (Fig. 3).

1) Consider a single occurrence, there are two scenarios:
Case A1: it cannot extend,
Case A2,A3: it extend to one or more occurrences of P .

2) Consider pairwise occurrences, there are six scenarios that
are categorized by “overlap”:
I : Occurrences are independent (do not mutually over-
lap) before extension:
Case B1: some of them cannot extend
Case B2: they remain independent after extension,
Case B3: some of them overlap at newly added vertices.

II : Occurrences overlap at one or more than one vertex
before extension:
Case C1: some of them cannot to extend,
Case C2: they do not overlap at newly added vertices.
Case C3: some of them overlap at newly added vertices.

Although there are many scenarios, we shall show how effective
the proposed three operations can handle them all.

The Del operation will handle the cases A1,B1,C1, it deletes
occurrences that cannot extend. All the remaining edges can extend.

There are multiple cases of “overlap” before and after extension.
The proposed Ext operation handles cases A2,A3,B2,C2, in which
extended edges do not overlap at new vertices.

For the cases in which extended edges overlap at new vertices
theMer operation transforms B2,C2 to B3,C3 by replacing distinct
vertices with the same vertex.

Hence we conclude that the proposed procedure is suitable for
covering all extension scenarios and every edge in Hp is deleted
or replaced. On the other hand, because we extend each edge ei
in HDel in all possible ways (ni ways) and every edge in HP must
be an extension from some edge in Hp , thus every edge in HP is
obtained. If there are two different edges e1, e2 in Hp extend to
the same e ′ in HP , then their corresponding occurrences f1, f2, as
restriction function of the same f ′ on Vp , must be identical. Hence
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we get e1 = e2, this is a contradiction. Therefor every edge e ′ ∈ HP
is generated only once. This completes the proof. □

Nowwe present our main theorem, which becomes obvious once
we established the above results.

Theorem 2. (Sufficient Conditions) In hypergraph framework,
for a pattern p, a superpattern P who has one more edge that p, and
data graph G, a non-negative function σ (p,G ), as a restriction of
function σ (H ,p,G )(where H ∈ H (p)) on Hp , is an anti-monotonic
support measure if σ (H ,p,G ) is non-increasing under of these three
operations Del , Ext ,Mer in the sense that:

(1) σ (Hp ,p,G ) ≥ σ (HDel ,p,G ), σ (HDel ,p,G ) ≥ σ (HDel , P ,G ),
(2) σ (HDel ,p,G ) ≥ σ (HExt , P ,G ),
(3) σ (HExt , P ,G ) ≥ σ (HP , P ,G ).

Proof. In the Conversion Procedure,Hp is transformed toHDel

by Del , then to HExt by Ext , then to HP by Mer . If σ (H ,p,G ) is
non-increasing under these operations, then in scenario (i) σ (p,G )

= σ (Hp ,p,G ) ≥ σ (HDel ,p,G ) ≥ σ (HDel , P ,G ) = σ (P ,G ); in sce-
nario (ii) σ (p,G ) = σ (Hp ,p,G ) ≥ σ (HDel ,p,G ) ≥ σ (HExt , P ,G ) ≥
σ (HP , P ,G ) = σ (P ,G ). Hence σ (p,G ) is anti-monotonic. □

Intuitively, the sufficient conditions say that when the number
of occurrences decreases, or occurrences extend, or occurrences
overlap at more vertices, a function should not increase to qualify
as a support measure.

3.1 Verification of Sufficient Conditions
In fact, all existing support measures in hypergraph framework are
defined in such a boarder sense like σ (H ,p,G ), that means they can
work on not only one Hp , but also on uniform hypergraphs derived
from Hp , e.g., HDel ,HExt . All of them can be verified to satisfy the
sufficient conditions in Theorem 2. Such measures include MI (see
section 4), MVC, MIS/MIES, RMVC and RMIES.

We first define MVC, MIES, RMVC, and RMIES in hypergraph
framework, then show that they are non-increasing under these
three operations, so that we obtain their anti-monotonicity accord-
ing to Theorem 2.

Definition 16. Given a pattern p and a data graph G, in hyper-
graph framework, for any H ∈ H (p), a function σ (H ,p,G ) is defined
as the size of minimum vertex cover of H and a minimum vertex
cover (MVC) support of p inG , as a restriction of σ on Hp , is defined
as the size of minimum vertex cover of Hp .

Theorem 3. The MVC support measure is anti-monotonic.

Proof. We shall verify that σ is non-increasing under Del , Ext ,
andMer in Theorem 2.

Denote the collection of minimum vertex cover of a hypergraph
H byMVC (H ). The size of aM ∈ MVC (H ) is denoted as a(H ).

After Del , HDel ⊆ Hp , edges in HDel are also in Hp , thus any
M ∈ MVC (Hp ) that covers all edges in Hp can cover all edges in
HDel . That is to say the size ofM is greater or equal to that of any
M ′ ∈ MVC (HDel ). Hence the first inequality in (1) of Theorem
2 is satisfied. In scenario (i) because Vp = VP , the edges are the

same vertex sets. Hence the second inequality in (1) of Theorem 2
is satisfied.

After Ext , because any edge in HExt contains an edge in HDel

as a subset, we have anyM ∈ MVC (HDel ) that covers all edges in
HDel can cover all edges in HExt . Hence we obtain the inequality
(2) in Theorem 2.

BecauseVP = Vp ∪ z and z < Vp , the operationMer only replace
vertices that are related to z’s images which are not part of images of
Vp , we conclude that afterMer , the images ofVp under edges inHP
are the same of that ofVp underHExt . Thus anyM ∈ MVC (HExt )

that covers all edges in HExt can cover all edges in HP . It implies
that the size ofM is greater or equal to that of anyM ′ ∈ MVC (HP ).
Therefore the inequality (3) in Theorem 2 is satisfied. Nowwe obtain
the anti-monotonicity ofMVC (p,G ). □

Definition 17. Given a pattern p and a data graph G, in hyper-
graph framework, for any H ∈ H (p), a function σ (H ,p,G ) is defined
as the size of maximum independent edge set of H and amaximum
independent edge set (MIES) support of p inG , as a restriction of σ
on Hp , is defined as the size of maximum independent edge set of Hp .

Theorem 4. The MIES support measure is anti-monotonic.

Proof. We shall check if σ is non-increasing under Del , Ext ,
andMer in Theorem 2.

Denote the collection of maximum independent edge set of a
hypergraph H byM (H ). The size of anM ∈ M (H ) is denoted as
mies (H ). Thus we haveMIES (p,G ) = σ (Hp ,p,G ) =mies (Hp ).

After Del , HDel ⊆ Hp , edges in HDel are also in Hp . For any
M ∈ M (HDel ), it is also an independent edge set in Hp . It implies
thatmies (Hp ) ≥mies (HDel ). Hence we get σ (Hp ,p,G ) =mies (Hp )

≥mies (HDel ) =σ (HDel ,p,G ), the first inequality in (1) of Theorem
2 is obtained. In scenario (i) because Vp = VP , after Del , every
e ∈ HDel can represent an occurrence f of p and at the same
time f ’s extension occurrence f ′ of P . Therefore σ (HDel , P ,G ) =
mies (HDel ) = σ (HDel ,p,G ), which means the second inequality
in (1) of Theorem 2 is satisfied.

After Ext , any edge e ′ in HExt is extended from an edge e

in HDel as a subset. Therefore for an M ∈ M (HDel ), say M =
{e ′i }1≤i≤n , each e

′
i is extended from ei inHDel . Apparently {ei }1≤i≤n

is an independent edge set inHDel , which implies thatmies (HDel )

≥ mies (HExt ). Hence σ (HDel ,p,G ) =mies (HDel ) ≥ mies (HExt )
= σ (HExt , P ,G ), we obtain the inequality (2) in Theorem 2.

Assume M ∈ M (HP ) and M = {e ′i }1≤i≤n . In each edge e ′i , if
we replace image of z by the image of z under ei in HExt , it is
also an independent edge set in HExt . It implies thatmies (HExt )
≥ mies (HP ). Hence σ (HExt , P ,G ) = mies (HExt ) ≥ mies (HP ) =
σ (HP , P ,G ). Therefore the inequality (3) in Theorem 2 is satisfied.
Now we obtain the anti-monotonicity ofMIES (p,G ). □

We now formally define the standard linear programming relax-
ation versions of the MVC and MIES measures. We shall show that
they are both anti-monotonic in the sense of the three operations.

Definition 18. Given a pattern p and a data graph G, in hy-
pergraph framework, for any H ∈ H (p), where V = {vi }1≤i≤n and
E = {ei }1≤i≤m , a function σ (H ,p,G ) is defined as the solution of
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linear programming relaxation of minimum vertex cover problem on
H :

σRMVC (p,G ) = min
∑
v ∈V

x (v ) (2)

subject to
∑
v ∈ei

x (v ) ≥ 1 ei ∈ E

0 ≤ x (v ) ≤ 1 v ∈ V

and the polynomial-time relaxed MVC (RMVC) support measure
of pattern P in graph G, as a restriction of σ on Hp , that is

σRMVC (p,G ) = min
∑
v ∈Vp

x (v ) (3)

subject to
∑
v ∈ei

x (v ) ≥ 1 ei ∈ Ep

0 ≤ x (v ) ≤ 1 v ∈ Vp

Theorem 5. The RMVC support measure is anti-monotonic.

Proof. We shall verify that σ is non-increasing under Del , Ext ,
andMer .

After Del , HDel = (VD ,ED ), HDel ⊆ Hp , edges in HDel are also
in Hp , and VD ⊆ Vp . Let x∗ be the solution of equation (3) for
Hp . Since VD ⊆ Vp , if we let x∗∗ = x∗ for v ∈ VD and x∗∗ = 0, for
v ∈ Vp −VD then

∑
v ∈ei x

∗∗ (v ) ≥ 1, ei ∈ ED . Hence we have x∗∗
is greater or equal to the solution of

σ (HDel ,p,G ) = min
∑
v ∈VD

x (v ) (4)

subject to
∑
v ∈ei

x (v ) ≥ 1 ei ∈ ED

0 ≤ x (v ) ≤ 1 v ∈ VD

Hence the first inequality in (1) of Theorem 2 is satisfied. In scenario
(i) because Vp = VP , it is obviously that the second inequality in (1)
of Theorem 2 is satisfied.

After Ext , because any edge inHExt = (VE ,EE ) contains an edge
in HDel as a subset, we haveVD ⊆ VE , and for e ∈ ED , there exists
e ′ ∈ EE such that e ⊆ e ′. We have

σ (HExt , P ,G ) = min
∑
v ∈VE

x (v ) (5)

subject to
∑
v ∈ei

x (v ) ≥ 1 ei ∈ EE

0 ≤ x (v ) ≤ 1 v ∈ VE

Let x ′ be the solution of equation (4) for HDel . Since VD ⊆ VE ,
if we let x ′′ = x ′ for v ∈ VD and x ′′ = 0, for v ∈ VE − VD then∑
v ∈ei x

′′(v ) ≥ 1, ei ∈ EE . Hence we have x ′ is greater or equal to
the solution of equation (5). Hence we obtain the inequality (2) in
Theorem 2.

Let x∗ be the solution of equation (4) for HExt . After Mer , for
1 ≤ i ≤ l , 1 ≤ j ≤ ni , edge e∗i, j corresponds to f ′i, j , and the image
of z under f ′i, j is f

′
i, j (z) in G . We replace zi, j by f ′i, j (z) in edge e∗i, j

to get e ′i, j . LetA = { f ′i, j (z) : 1 ≤ i ≤ l , 1 ≤ j ≤ ni }, for u ∈ A, and let
Bu be the collection of all vertices that are replaced by u, and u∗ =
max{x∗ (v ) : v ∈ Bu∪u}. Forv ∈ VP and , define x∗∗ (v ) = u∗ forv ∈
A and x∗∗ (v ) = x∗ (v ) forVP −A. Hence x∗∗ satisfies all inequalities
in (4), and

∑
v ∈VE x

∗ (v ) ≥
∑
v ∈VP x

∗∗ (v ) min
∑
v ∈VE x (v ). It gives

rise to σ (HExt , P ,G ) ≥ σ (HP , P ,G ) Therefore the inequality (3) in
Theorem 2 is satisfied. Now we obtain the anti-monotonicity of
RMVC (p,G ). □

Likewise, the integrability conditions of maximum independent
edge set problem can be relaxed to a linear programming formula-
tion and another polynomial-time support.

Definition 19. Given a pattern p and a data graph G, in hy-
pergraph framework, for any H ∈ H (p), where V = {vi }1≤i≤n and
E = {ei }1≤i≤m , a function σ (H ,p,G ) is defined as the solution of
linear programming relaxation of

σ (H ,p,G ) = max
∑
e ∈E

y (e ) (6)

subject to
∑

e contains vi

y (e ) ≤ 1 ∀vi ∈ V

0 ≤ y (e ) ≤ 1 ∀e ∈ E.

the polynomial-time MIES support measure of pattern p in graph
G is defined as

σRMIES (p,G ) = max
∑
e ∈Ep

y (e ) (7)

subject to
∑

e contains vi

y (e ) ≤ 1 ∀vi ∈ Vp

0 ≤ y (e ) ≤ 1 ∀e ∈ Ep .

Theorem 6. The RMIES support measure is anti-monotonic.

Proof. After Del , HDel = (VD ,ED ), we have HDel ⊆ Hp and
ED ⊆ Ep . Let y∗ be the function that achieves σ (HDel ,p,G ),

σ (HDel ,p,G ) = max
∑
e ∈ED

y (e ) (8)

subject to
∑

e contains vi

y (e ) ≤ 1 ∀vi ∈ VD

0 ≤ y (e ) ≤ 1 ∀e ∈ ED .

Since ED ⊆ Ep , if we lety∗∗ (e ) =y∗ (e ) for e ∈ ED andy∗∗ (e ) = 0, for
e ∈ Ep − ED then

∑
e contains vi y

∗∗ (e ) ≤ 1, vi ∈ Vp . Thus we have
σRMIES (p,G ) ≥ y∗. Hence the first inequality in (1) of Theorem 2
is satisfied. In scenario (i) because Vp = VP , it is obviously that the
second inequality in (1) of Theorem 2 is satisfied.

After Ext , because any edge inHExt = (VE ,EE ) contains an edge
in HDel as a subset, we haveVD ⊆ VE , and for e ′ ∈ EE , there exists
only one e ∈ ED such that e ⊆ e ′. We let y′ be the function that
achieves σ (HExt ,p,G ), then

σ (HExt ,p,G ) = max
∑
e ∈EE

y (e ) (9)

subject to
∑

e contains vi

y (e ) ≤ 1 ∀vi ∈ VE

0 ≤ y (e ) ≤ 1 ∀e ∈ EE .

Since e ′ ∈ EE , there exists only one e ∈ ED such that e ⊆ e ′, if we
let y′′(e ) =

∑
e⊂e ′ y

′(e ′) for e ∈ ED then
∑
e contains vi y

′′(e ) ≤ 1,
vi ∈ VD . Hence we have σ (HDel ,p,G ) is greater or equal to the
solution of equation (9). Hence we obtain the inequality (2) in
Theorem 2.
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Let y∗ be the function that achieves σ (HP , P ,G ),

σ (HP , P ,G ) = max
∑
e ∈EP

y (e ) (10)

subject to
∑

e contains vi

y (e ) ≤ 1 ∀vi ∈ VP

0 ≤ y (e ) ≤ 1 ∀e ∈ EP .

After Mer , for 1 ≤ i ≤ l , 1 ≤ j ≤ ni , edge e∗i, j corresponds to f ′i, j ,
and the image of z under f ′i, j is f

′
i, j (z) inG . We replace zi, j by f ′i, j (z)

in edge e∗i, j to get e ′i, j . For zi, j , we have
∑
e contains zi, j y (e ) ≤ 1 is

y (e∗i, j ) ≤ 1. After replacement there could be more than one edge
e that contains f ′i, j (z). Hence

∑
e contains f ′i, j (z ) y (e ) ≤ 1 implies a

smaller solutiony (e ). This gives rise toσ (HExt , P ,G ) ≥ σ (HP , P ,G )
Therefore the inequality (3) in Theorem 2 is satisfied. Nowwe obtain
the anti-monotonicity of RMIES (p,G ). □

3.2 Discussions
The Del , Ext andMer operations give us deep insights on support
measures. In Fig.2, the example illustrates how Hp transforms into
HP . We think they reveal critical characters of support measures.
• When converting Hp to HP , Del deletes occurrences that
cannot extend. We shall see that the count of edges in HDel

is smaller than that ofHp , which coincides with our intuition
that less occurrences will have less frequency count.
• In scenarios (ii), one edge e can extend to one or multiple
edges. The number of edges increases, but support measure
should be non-increasing under Ext operation because the
extended edges overlap at vertices of e . Another intuition is
that they still have the same “overlap”, count should not
increase.
• In scenarios (ii) a new pattern node is added, the extension
may result in more “overlap”, hence support measure should
be non-increasing underMer operation. Hence support mea-
sure is related to “overlap,” the more “overlap” among
occurrences, the smaller the count is.

Compared with overlap-graph framework sufficient and nec-
essary condition, our sufficient condition is straightforward and
intuitive. In the overlap-graph framework, clique traction and edge
removal operations handle overlap between occurrences while in
hypergraph framework we have Ext , and Mer handles overlap
and partial overlap between occurrences. In order to transform
overlap graphs, a five-step algorithm is designed. Our method of
transformation from Hp to HP only involves three steps. Ext ex-
tends occurrence without “overlap” at new vertices.Mer operation
deals with the “overlap” later. We shall point out that occurrence
hypergraph as uniform hypergraph is not a general hypergraph.
A k-uniform hypergraph framework is able to show that MVC
measure is k-approximable, it also shows that any edge cannot
intersect with more than k mutually independent edges. Hence the
technique used in overlap graph to prove the necessary condition
of add vertex add () operation in [25] cannot be applied here.

In addition to the results in Section 3.1, we can also show that
invalid measures such as number of occurrences violate some of
the sufficient conditions. For example, the number of occurrences
is not anti-monotonic because it increases under Ext operation –
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Figure 4: Four possible ways interactions among five molecules
(nodes) can occur in a particular molecular interaction network.
Connections between the triangular subgraph (v1, v2, v3) and the
one-edge subgraph (v4, v5) could change over time. To interpret
such patterns, hypergraphmodels are adopted [22] as shown on the
right: two node subsets are formed to capture the stable interactions

one occurrence of pattern p can extend to multiple occurrences
of its superpattern P , e.g., f1 extends to f ′1,1, f

′
1,2, f

′
1,3 as shown in

Fig. 1. With such, it becomes natural to ask whether the sufficient
conditions we developed are also necessary. Our conjecture is that
they are also necessary, yet it is still an open problem whether we
can prove necessary conditions for monotonicity in the hypergraph
framework.

That being said, in this paper we focus on current sufficient
condition and in the next section, we shall show how to use this
sufficient condition as guidance to construct new anti-monotonic
support measures.

4 NEW POLYNOMIAL SUPPORT MEASURES
After obtaining sufficient conditions for anti-monotonicity of sup-
port measures, in this section we show how we utilize it for finding
new support measures that are efficient and effective.

4.1 Generalized Linear Time Support Measures
One aspect of studying support measures is that users could empha-
size application/data-specific information (e.g., pattern structure,
dataset features) in developing their graph mining applications.
Therefore, it is reasonable to include such information in develop-
ing support measures suitable for various needs. One example (Fig.
4) comes from the field of systems biology, where hypergraphs are
used to capture the uncertainty (dynamic changes) that is inherent
in gene-gene networks [22]. In such cases, researchers should have
the option of forming appropriate node subsets (instead of a fixed
one such as the transitive node subset used in MI) to obtain reason-
able pattern frequency. After investigating the MI measure with
respect to the three operations in Theorem 2, our conclusion is that
we can design various linear-time support measures in a general
framework that ensures anti-monotonicity.

We first revisit the MI measure by mapping the design rationale
to the proposed sufficient conditions. Note that MI uses the mini-
mum count of node set images under occurrences as the frequency
count - the function c (T ) returns the number of set T ’s images un-
der occurrences. ForH ∈ H (p), we can define cH (T ) as the number
of images of T under all edges in H . It is non-increasing under Del
which deletes edges and images of set T . It is also non-increasing
under Mer which merges vertices in images of set T . Therefore,
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the count function c (T ) makes MI anti-monotonic under Del and
Mer . However, itself does not guarantee anti-monotonicity under
Ext (this is why the number of occurrences or instances cannot be
used as support measures). Since occurrences can usually extend to
multiple superpattern occurrences, if we let MI take the minimum
among counts of node setT ’s images, and anyT of pattern p should
be considered when calculating its superpattern P support. In such
a way, we ensure the support is non-increasing under Ext . Follow-
ing the above reasoning, we can generalize MI-flavored support
measure as follows.

Definition 20. Given a pattern p and a data graph G, in hy-
pergraph framework, for any H ∈ H (p), a function σ (H ,p,G ) is
defined as σ (H ,p,G ) = minT ∈Tp cH (T ), and a general minimum
instance based (GMI) support of p inG , as a restriction of σ on Hp ,
is defined as

GMI (p,G ) = min
T ∈Tp

cHp (T ), (11)

whereTp is a collection of node subsets in patternp, cH (T ) and cHp (T )
are the counts of images of T under edges in H and Hp , respectively.

Theorem 7. (Sufficient condition forGMI)GMI is anti-monotonic
if the following condition

Tp ⊆ TP , for any p ⊆ P , (12)

is satisfied.

Proof. After Del , HDel ⊆ Hp , HDel has fewer edges than Hp
thus for any T ∈ Tp we have cHp (T ) ≥ cHDel (T ). Hence the first
inequality in (1) of Theorem 2 is satisfied. In scenario (i) because
Tp ⊆ TP , we get minT ∈Tp cHDel (T ) ≥ minT ∈TP cHDel (T ). Hence
the second inequality in (1) of Theorem 2 is satisfied.

After Ext , for any T ∈ Tp , cHDel (T ) = cH Ext (T ). Because Tp ⊆
TP we haveminT ∈Tp cHDel (T ) ≥minT ∈TP cH Ext (T ), which implies
the inequality (2) in Theorem 2.

After Mer , for any T ∈ TP that does not contain z, their im-
ages remain the same hence cH Ext (T ) = cHP (T ). For T ∈ TP that
contains z, cH Ext (T ) ≥ cHP (T ). Thus we have minT ∈TP cH Ext (T )
≥ minT ∈TP cHP (T ). Therefore the inequality (3) in Theorem 2 is
satisfied. Now we obtain the anti-monotonicity of GMI (p,G ). □

Going back to the example in Figure 4, for any superpattern
P of triangular subgraph (v1,v2,v3), according to Theorem 7, we
can have T = {v1,v2,v3} included in TP and make sure Tp ⊆ TP to
design a GMI that is suitable for counting these types of patterns.
Such techniques are meaningful in many other applications (e.g.,
social network, protein structures, and image classification) that
deal with noisy data, dynamic dataset, or graphs generated from
fast approximate algorithms [8, 9, 12, 18].

To sum up, we extend the minimum image approach into hyper-
graph subedge approach to develop new MI variants. We believe
that hypergraph subedge approach is a valuable method for such
explorations, because it is flexible and can be tailored for pattern
nodes and other features.

4.2 New Low-Order Polynomial Time Support
Within the hypergraph framework we have defined/redefined a se-
ries of support measures including the MIS/MIES andMNI [20]. MIS

and MNI represent the two main categories of support measures yet
they stand on far ends of computing efficiency and overestimation
of pattern frequency. Without considering application-specific re-
quirements, users prefer the intuitive MIS that returns the number
of independent occurrences (smallest counts among all measures
mentioned in this paper). However, it is not practical to compute
the NP-hard MIS for even moderately sized inputs. On contrary to
that, the MNI has linear complexity but can return an arbitrarily
large count for a pattern [10]. According to Eq. (1), the MVC and
MI we developed fill in between MIS and MNI, providing more
options for the efficiency/intuitiveness tradeoff. Linear program-
ming relaxations of MIS and MVC further reduce the frequency
counts and only require polynomial time to compute. Our goal is
to design a highly-scalable support measure that returns frequency
counts closer to MIS as compared to the relaxed version of MVC
(RMVC). Note that RMVC is still not scalable - the best solution is
an interior-point-method algorithm which runs at O (n3.5L) com-
plexity, where n is the number of vertices and L is the number of
bits in the input [17].

Our newmeasure is derived from an in-depth investigation of the
sufficient conditions together with GMI and MIS, MIES, MVC mea-
sures. Revisit the analysis of GMI =minT ∈Tp cHp (T ), in which count
function c (T ) and the min function ensure GMI is non-increasing
under operations Del andMer ; the design of TP makes GMI non-
increasing under Ext . We can find a function whose count is closer
to MIES than c (T ). Consider the fact that MIES counts only indepen-
dent occurrences andMIES (T ) ≤ MVC (T ) ≤ c (T ), we shall choose
MIES as the starting point. This is important, because it means
that the subedge version of MIES will most likely be bounded by
GMI/MI/MNI which are subedge version of MVC.

In the next step, we need to design Tp . The maximum indepen-
dent edge set problem (i.e., maximum matching problem) under
k-uniform hypergraphs is NP-hard in general. However, under k
= 2, the occurrence hypergraph edges contain only two vertices,
the problem of counting MIES is equivalent to the famous maxi-
mum matching problem which is solvable in polynomial time [21].
Note that for k ≥ 3, the problem becomes NP-hard again [16].
Our solution is to break the hypergraph edges into two-vertex
subedges to reduce complexity. Therefore we choose Tp = {T },
where T = {u,v},u,v ∈ Vp , and this meets the requirement of The-
orem 7. As a result, the designed measure should be non-increasing
under Ext . In addition, the reason we use the set of all node pairs
{u,v} instead of Ep is that sometimes occurrences can overlap on
vertices that are not connected by any pattern edges (see Fig. 5).

Following the above ideas, we propose a maximum independent
subedge set (MISS) measure. This new support measure is also
supported by the following observation: if two hypergraph edges
are independent to each other (i.e., no vertex intersections), any
subedges (subsets) within these two edges should also be indepen-
dent. We hereby develop a formal definition of the MISS measure
and conduct rigorous analysis on its features.

Definition 21. Given a pattern p and a data graph G, in hy-
pergraph framework, for any H ∈ H (p), a function σ (H ,p,G ) is
defined as σ (H ,p,G ) = minw ∈Wp dH (w ), and the maximum in-
dependent subedge set (MISS) support measure, as a restriction
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Figure 5: An example of FSM problem, in which MISS = MIS = 1,
and any GMI ≥ 2

of σ on Hp , is defined as

σMISS (p,G ) = min
w ∈Wp

dHp (w ), (13)

whereWp = {{u,v} : u,v ∈ Vp }, dHp (w ) and dH (w ) are the size of
maximum independent edge set of images of w under edges of HP
and H respectively.

An example of MISS is given in Fig.5. The red edges are images
of node pair {v1,v3} (which is not a pattern edge), blue edges rep-
resent images of node pairs (pattern edges) {v1,v2} and {v2,v3}.
d ({v1,v3}) = 1.d ({v1,v2}) =d ({v2,v3}) = 2, thusMISS =min{1, 2, 2}
= 1. On the other hand, we go through all combinations of node
subsets, all their image counts ≥ 2, thus any GMI is at least 2.

Anti-monotonicity:We shall show that this new support measure
satisfies the anti-monotonicity requirement.

Theorem 8. The MISS support measure is anti-monotonic.

Proof. After Del , forw ∈Wp , we use {IH (w )} and {MH (w )} to
denote the collections of independent edge sets andmaximum inde-
pendent edge sets of images ofw under edges in H ∈ H (p), respec-
tively. Because HDel ⊆ Hp , for anyw ∈Wp , we conclude that any
MHDel (w ) is also an IHp (w ). Hence dHp (w ) ≥ dHDel (w ). Now we
obtain the first inequality in (1) of Theorem 2. In scenario (i) because
Wp = WP , we have minw ∈Wp dHDel (w ) ≥ minw ∈WP dHDel (w ).
Hence the second inequality in (1) of Theorem 2 is satisfied.

After Ext , for anyw ∈Wp , we get dHDel (w ) = dH Ext (w ). Since
Wp ⊆ WP , we have minw ∈Wp dHDel (w ) ≥ minw ∈WP dH Ext (w ),
which implies that the inequality (2) in Theorem 2 is satisfied.

After Mer , for any w ∈ WP that does not contain z, dH Ext (w )
= dHP (w ). Forw ∈WP that contains z, dH Ext (w ) ≥ dHP (w ). Thus
we haveminw ∈WP dH Ext (w ) ≥ minw ∈WP dHP (w ), and it gives rise
to inequality (3) in Theorem 2.

To conclude, the sufficient conditions of Theorem 2 are satisfied,
MISS is anti-monotonic.

Another proof that follows similar intuition and ideas behind
Theorem 2 but does not explicitly depend on the sufficient condi-
tions is given below:

Given pattern p = (Vp ,Ep ) and its superpattern P = (VP ,EP ) in
data graph G. Assume that there arem occurrences { fi }1≤i≤m of
pattern p, and they can be extended to l occurrences { f ′i }1≤i≤l of P .
SinceVp ⊆ VP , we haveWp ⊆WP by definition. For anyw ∈Wp ⊆

WP , because each f ′i is extension of some fj , we have { f ′i (w )}1≤i≤l
⊆ { fi (w )}1≤i≤m . Hence if we denote the cardinalities of maximum
independent edge set of { f ′i (w )}1≤i≤l and { fi (w )}1≤i≤m as df ′ (w )

and df (w ) respectively, we have df ′ (w ) ≤ df (w ).

σMISS (P ,G ) = min
w ∈WP

df ′ (w ) by definition

≤ min
w ∈Wp

df ′ (w ) because ofWp ⊆WP

≤ min
w ∈Wp

df (w )

= σMISS (p,G ) by definition.

Hence we obtain the anti-monotonicity of MISS.
□

Computational Complexity: As mentioned earlier, we expect
MISS to be polynomial-time computable, here is a formal proof.

Theorem 9. The MISS support measure is of polynomial time
complexity in the number of pattern occurrences.

Proof. By definition,σMISS (p,G ) = minw ∈Wp dHp (w ). Assume
p hasm occurrences { fi }1≤i≤m . For w ∈Wp , the images of w are
{ fi (w )}1≤i≤m , because each fi (w ) contains two vertices, they can
be viewed as general graph edges. According to [21], there exists
fast O (

√
nm) algorithm for finding maximum independent edge set

(maximum matching) in general graphs, where n is the number of
vertices andm is the number of edges in general graphs. For p that
has k nodes, andHp that has n vertices andm hyperedges, there are
k (k−1)

2 node pairs inWp . Thus the complexity of finding dHp (w ) is
O (
√
nm) for eachw ∈Wp . The number ofw ∈Wp is fixed (in terms

of k), hence MISS is also polynomial-time computable. □

An important note is, MISS can be implemented inO (
√
nm) time,

as compared to the O (n3.5L) time needed for computing RMVC.

Bounding Theorems:We study the frequency counts returned by
MISS in comparison to other support measures. We first compare
MISS with MIES, which is equivalent to MIS.

It is clear that if two hypergraph edges e and e ′ do not overlap
then subedges (subsets) of e do not overlap with that of e ′. Hence
MIES is a lower bound of MISS, that is, σMIES (p,G ) ≤ σMISS (p,G ).
The MISS measure is derived from maximum independent edge
set, while GMI, MI and MNI are rooted at the minimum image
based idea. This confirms the finding in our previous work [20] that
MIES/MIS is the natural lower bound of support measures defined
within the hypergraph framework. On the other hand, it is critical
to study whether MISS is bounded by GMI support measures - the
value of MISS will be questionable if it finds larger counts than GMI
as the latter is of linear complexity.

Theorem 10. For pattern p in data graph G, we have

σMISS (p,G ) ≤ σGMI (p,G ).

Proof. Assume that pattern p hasm occurrences { fi }1≤i≤m in
data graph G. We shall show that this inequality is true for any
σGMI (p,G ) = minT ∈T cHp (T ) with T = {T }, where T is a subset
of Vp .

Case I: If T contains only one node u. Since in this paper we
consider patterns containing more than one node, we can find
another nodev to form a node pairw ′ = {u,v}. Assume amaximum
independent edge set of w’ images under all occurrences is I =
{ fi (w

′)}1≤i≤l = {{ fi (u), fi (v )}}1≤i≤l , where l ≤ m. It follows that
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σMIES ≤ σRMVC ≤ σMVC ≤ σGMI

≤
σMISS

≤

Figure 6: Bounding theorems among relevant measures

{ fi (u)}1≤i≤l are a set of distinct vertices. Hence dHp (w
′) ≤ cHp (T ),

and σMISS (p,G ) = minw ∈Wp dHp (w ) ≤ dHp (w
′) ≤ c (T ).

Case II: If T contains two or more nodes, for any two nodes
u,v ∈ Vp , letw ′ = {u,v}. Assume a maximum independent edge set
of their images is I = { fi (w ′)}1≤i≤l , where l ≤ m. Because fi (w

′)
⊆ fi (T ), 1 ≤ i ≤ l , and fi (w

′) ∩ fj (w
′) = ∅, for i , j, we obtain

that fi (T ) and fj (T ) are pairwise different for 1 ≤ i, j ≤ l and i , j .
Hence, we have

σMISS (p,G ) = min
w ∈Wp

dHp (w ) ≤ dHp (w
′) = l = |{ fi (T )}1≤i≤l |

≤ |{ fi (T )}1≤i≤m | = cHp (T ).

Putting all together, we have σMISS (p,G ) ≤ cHp (T ) for any T ∈
T . To conclude, σMISS (p,G ) ≤ minT ∈T cHp (T ) = σGMI (p,G ). □

Theorem 10 tells us that no matter how the node subsets in a pat-
tern are formed in a GMI, theMISS count is always smaller. This also
means that MISS provides a new level of efficiency-intuitiveness
trade-off in the domain of anti-monotonic support measures - MISS
will not overestimate pattern frequency as much as MI does under
the cost of longer computing time. With such results, the current
spectrum of support counts with all measures mentioned in this
paper is shown in Fig. 6.

Note that there is no bound between MISS and RMVC/MVC.
However, MISS is found to be very close to MIS (thus smaller than
RMVC) in most cases. First, in special cases where the pattern only
contains one edge (two nodes), MISS values are found to be identical
to MIS/MIES and smaller than RMVC.

Theorem 11. When pattern p is a one-edge pattern, MISS is iden-
tical to MIS, hence MISS ≤ MVC.

Proof. When pattern p is a one-edge pattern, say the only edge
is w ′ = {u,v}, then σMISS (p,G ) = minw ∈Wp dHp (w ) = dHp (w

′) =
σMIES (p,G ). Because σMIES (p,G ) ≤ σRMVC (p,G ), we conclude
that σMISS (p,G ) ≤ σRMVC (p,G ) □

Second,MISS are smaller than RMVC inmost scenarios, as shown
by experiments running on real graph datasets (Section 5).

In summary, we believe the discovery of MISS is a major mile-
stone in the exploration of support measures: MISS is the first
non-relaxation support measure that is close to MIS yet requires
only (low-order) polynomial time to compute.

5 EXPERIMENTS
As most of the findings in this paper are supported by rigorous
proof, our experimental evaluations focus on the actual perfor-
mance of MISS in comparison to other support measures, especially
the RMVC measure that provides the best tradeoff between effi-
ciency and frequency counts so far. MISS is of even lower complex-
ity than RMVC but there exists no bounds between the frequency
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Figure 7: Distribution of the sizes (in terms of number of edges in
a pattern) of patterns studied in all datasets

Table 1: Graph datasets used in our experiments

Dataset Total Edges Total Vertices Description
Chicago [13] 1,467 1,298 Transportation
FAA [1] 2,615 1,226 Routes Database
Stelzl [23] 6,207 1,706 Protein network
Figeys [3] 6,452 2,239 Protein network
Vidal [4] 6,726 3,133 Protein network
Chess [2] 65,053 7,301 Results of games
Brightkite [5] 214,078 58,228 Friendship Graph
Facebook [6] 817,035 63,731 Friendship Graph

Table 2: Runtime parameters for processing the datasets in
our experiments

Dataset Frequency Cutoff Total Patterns studied
Chicago 5 133
FAA 10 1,634
Stelzl 20 143
Figeys 40 230
Vidal 25 2323
Chess 270 562
Brightkite 1000 304
Facebook 2000 164

counts returned by those two. For that, we implemented a frame-
work to compute relevant supportmeasuresmentioned in this paper.
As input the framework takes a pattern, and a list of its occurrences
in the data graph in the form of DFScode [29], which represents the
DFS lexicographic order of the pattern. We obtain occurrences by
using DistGraph Framework [24]. We implemented the following
support measures: MNI, MI, MISS, RMVC, andMIS. In particular, we
implemented RMVC by using the Interior Point Optimizer (IPOPT)
[27], which is one of the most efficient codes of interior-point al-
gorithms. We run all of our experiments in a workstation running
Linux (Ubuntu 14.04 LTS) with an Intel Xeon E5-2640 v2 CPU and
64GB of DDR3 1333-MHz memory. Our source code is available on
GitHub https://github.com/napath-pitaksirianan/GraphMining.
Data Graphs:We use 8 different datasets for our experiments as
shown on Table 1. All datasets are collected from real-world appli-
cations and acquired from the well-known KONECT [7] website.
Patterns: To generate patterns, we set a frequency cutoff according
to MNI (being the largest support measure) for the data graph. We

https://github.com/napath-pitaksirianan/GraphMining
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Figure 8: Distribution of the relative values of MISS to MI and RMVC for all patterns visited in different datasets
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Figure 12: Distribution of the relative values of MIS to MISS for all patterns visited in different datasets

report four measures (i.e., MI, MISS, RMVC, and MIS) for EVERY
pattern in the dataset with an MNI value higher than that cutoff.
The cutoff is set to a relatively small number to ensure we study
a large number of patterns therefore the workload is not biased
towards particular patterns. Such cutoff numbers as well as the
sizes of patterns we study in our experiments are shown in Table 2
and Figure 7.

5.1 Experimental Results
For comparison purposes, we present counts returned by MISS in
relation to those returned by other measures as follows:

R =
σMISS − σA
σB − σA

(14)

whereA is another measure whose counts serve as the lower bound,
and B the higher bound. Thus, an R value close to 1 (0) means that
MISS value is close to that of B (A). We present the results for all
frequent patterns we encountered in each dataset.

We first show the distribution of the R values among all consid-
ered patterns in relation to that of MI (higher bound) and RMVC
(lower bound) in Figure 8. First of all, there is no case in which MISS
is larger than MI, verifying Theorem 6. For a significant portion of
the patterns, MISS is the same as (i.e., R = 0) RMVC. Furthermore,

we see even more cases in which MISS is smaller than RMVC, as
shown by a single column marked with “<” in Figure 8. For the
cases in which MISS is larger than RMVC, the R value is small,
with almost all of them under 0.5. We also show the percentage of
pattern that MISS value is the same as MI value in the figure.

The relative values of MISS to MI and MIS are also plotted in the
same way in Figure 9. Due to the exponential running time of MIS,
we only obtained MIS values in 5 datasets (i.e., FAA, Vial, Chicago,
Figeys, and Stelzl). According to Figure 9, for most of patterns in
the Chicago, Figeys, and Stelzl datasets, MISS is very close to MIS
while for FAA and Vial datasets, the R value spread out in a larger
range. However, in a large portion of the patterns we observed that
MISS equals to MIS (i.e., R = 0). Again, We show the percentage of
pattern that MISS value is the same as MIS value in the figure.

Figures 8 and 9 show the relative values in the range of two
baseline measures. While it demonstrates how close MISS is to
either baseline, there is a lack of insights on how the absolute values
of different measures differ. For that purpose, we also present the
relative values of MISS to a target measure directly as follow:

R′ =
σA
σB

(15)
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The R′ value shows the relative value of A to B. R′ can represent
how far the values are different in terms of their absolute values.

We show the R′ values between MISS to MI and MISS to RMVC
in Figures 10 and 11, respectively. First, as shown in Figure 10, it
is clear that MISS is not only smaller than MI in all cases, it differs
from MI by a large margin (i.e., up to 80%, and 20% on average
among all datasets). On the other hand, MISS is similar to RMVC
in most cases, but there are more cases in which MISS is smaller
than those in which RMVC is smaller. There are significant number
of cases in which the MISS value is less than half of RMVC. In the
rare cases of MISS > RMVC, the MISS value is never more than 40%
larger than RMVC.

We also plot the R′ value of MIS to MISS in Figure 12. As a
general observation, the R′ value is skewed towards larger values
in the range [0, 1.0], meaning that for most cases, MISS is not much
larger than MIS. Note there are also many cases in which MIS
equals MISS (i.e., R′ = 1), especially in the Chicago dataset – this is
the same as shown in Figure 9. Only in extremely rare cases MISS
is twice as large as MIS (i.e., R′ = 0.5). In short, all such results
demonstrate that MISS is very close to MIS, which is generally
regarded as themost intuitivemeasure (without application-specific
considerations). As MIS/MIES represents the lower bound of all
hypergraph-based measures, it is inevitable to have a gap between
MIS/MIES and others. Therefore, our goal is to minimize that gap,
and we have achieved that goal by showing a much smaller gap
than that between MIS/MIES and RMVC. Here we have to again
mention the major difficulty in dealing with MIS: we only obtained
the MIS for a subset of the patterns visited due to its extremely long
computing time.

Computational Efficiency: We also report the computational
time of generating the support measures in Figure 13, with a single
point representing a single pattern. We report time for all patterns
with up to 100,000 occurrences each. We do not record the time
for computing the pattern occurrences, as that is the same for
all measures. As expected, the time for generating MISS is much
shorter than that for RMVC. The difference between MISS and the
linear-time MI in terms of running time is insignificant.

In summary, MISS outperforms RMVC in computational time
and returns frequency counts that are closer to the intuitive MIS.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we present sufficient conditions for support mea-
sures within a hypergraph framework. With insights gained from
such sufficient conditions, we develop new time-efficient support
measures and provide theoretical and experimental evaluations for
them. In particular, we introduce and analyze GMI, a general form
for all minimum instance based support measures. We point out the
flexibility of this support for practical use cases in counting frequent
patterns. We also introduce the first non-relaxation polynomial-
time frequent support measure named MISS which fills the gap
between the NP-hard MIES/MIS and linear-time computable MI
and MNI measures. For that, we believe this is a significant break-
through in the topic of support measures in FSM. Experiments on
real-world datasets show the effectiveness of the new MISS support
measure. By checking a large number of patterns in 8 different
real graph databases, we found that MISS significantly outperforms
the best-known polynomial measure RMVC in running time and
returns counts closer to MIS.

There are still a lot of opportunities for future research under
the hypergraph framework. Some ideas include: (1) find and prove
necessary conditions for support measures; (2) more established
graph combinatorics theorems can be incorporated into existing
efforts in designing support measures; (3) methods other than hy-
pergraph subedges can be developed for reducing time-complexity
of current NP-hard support measures; (4) if certain support mea-
sures are absolutely needed while they have NP-hard or high-order
polynomial time complexity, parallel computing becomes a viable
solution; (5) The increasing interest in web and social networks
has heightened the need for future research on support counting
techniques that handle dynamic and streaming graph data sets.
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