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Abstract—Support for efficient spatial data storage and re-
trieval have become a vital component in almost all spatial
database systems. While GPUs have become a mainstream
platform for high-throughput data processing in recent years,
exploiting the massively parallel processing power of GPUs is
non-trivial. Current approaches that parallelize one query at
a time have low work efficiency and cannot make good use
of GPU resources. On the other hand, many spatial database
applications are busy systems in which a large number of queries
arrive simultaneously. In this paper, we present a comprehensive
framework named G-PICS for parallel processing of a large
number of spatial queries on GPUs. G-PICS encapsulates efficient
parallel algorithms for constructing a variety of spatial trees
with different space partitioning methods. G-PICS also provides
highly optimized programs for processing major spatial query
types, and such programs can be accessed via an API that could
be further extended to implement user-defined algorithms. While
support for dynamic data inputs is missing in existing work, G-
PICS implements efficient parallel algorithms for bulk updates
of data. Furthermore, G-PICS is designed to work in a Multi-
GPU environment to support datasets beyond the size of a single
GPU’s global memory. Empirical evaluation of G-PICS shows
significant performance improvement over the state-of-the-art
GPU and parallel CPU-based spatial query processing systems.
In particular, G-PICS achieves double-digit speedup over such
systems in tree construction (up to 53X), and query processing
(up to 80X). Moreover, tree update procedure outperforms the
tree construction from scratch under different levels of data
movement.

I. INTRODUCTION

Spatio-temporal data has become a critical element in a
broad range of applications such as geographic information
systems, mobile computing, scientific computing, and as-
trophysics. Due to the high data volume and large query
quantities, support for efficient spatial data storage and query
processing has become a vital component in such systems.
Popular spatial queries are spatial point search, range search,
within-distance search, and k-nearest neighbors (kNNs) [1],
[2]. Previous work has also demonstrated the great potential
of parallel computing in achieving high performance query
processing [3], [4]. However, if parallelism is adopted without
spatial data indexing in query processing, the performance gain
obtained will fade away quickly as data size increases [5], [6].

Over the last decade, many-core hardware has been widely
used to speed up high-performance computing (HPC) applica-
tions. Among them, Graphical Processing Units (GPUs) have
become a mainstream platform [7]. Spatial query processing
on GPUs has also attracted much attention from the research
community. Related work in this topic [8]–[10] focuses on
parallelizing one search query at a time on GPUs. In [8],
a GPU-based spatial index called STIG (Spatio-Temporal

Indexing using GPUs) based on kd-tree is presented. In [10], a
framework called GAT (GPU-accelerated Framework for Pro-
cessing Trajectory Queries) is developed to support processing
trajectory range queries and top-k similarity queries on GPUs.
GAT is based on a quadtree-like index and cell-level trajectory
representations. In [9], another variation of quadtree called
Scout is developed to support spatio-temporal data visualiza-
tion on GPUs. With plausible innovations, the above systems
successfully demonstrated the potential of GPU-based spatial
indexing, and also generated abundant opportunities for further
research. This paper aims at a more comprehensive spatial
indexing framework with even better performance and support
of functionalities beyond query processing. In particular, we
address the following issues.

a) High Performance in Tree Construction and Query
Processing: In all the aforementioned work, a spatial tree
consists of intermediate nodes, and a set of leaf blocks to store
the spatial data records in consecutive memory locations. A
two-step spatial query processing strategy is adopted in such
work: (1) all leaf blocks are searched in a brute-force manner
to identify those that satisfy the search conditions; and (2) all
data points in the identified leaf blocks are examined to deter-
mine the final results. It is not easy to achieve a high degree of
parallelism in the first step using traditional logarithmic tree
search, especially when higher levels of the tree are visited.
Hence, they adapt a data parallel solution for the first step on
GPU, in which all the leaf blocks are transferred to GPU and
scanned in a brute-force manner. However, by scanning all leaf
nodes, such an approach is inefficient as it literally changes
the total amount of work (work efficiency) from logarithmic
to linear (Figure 1). Although they take advantage of the
thousands of GPU cores to process leaf nodes concurrently, the
speedup can be quickly offset by the growing number of leaf
nodes in large datasets. In GAT, to achieve a logarithmic work
efficiency, the first step is done on CPU by using a quadtree-
based filtering method. Then, only the leaf blocks identified
in the first step are transferred to GPU, and the second step is
parallelized on GPU. Although the overall query processing
performance is improved in GAT, it still suffers from the
overhead caused by transferring the intersecting leaf blocks to
GPU global memory thus has much room for improvement.

b) Handling Data Updates: An essential element that is
missing from existing work is the support of data updates.
In such work, the tree is constructed in host memory and
transferred to GPU’s global memory. In large datasets, building
a tree is costly, and furthermore, the overhead of transferring
data from CPU to GPU is significant. For static data, it is not
an essential issue as tree construction and transferring is a one-
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Fig. 1: Traditional tree search versus parallel linear search against
all leaf nodes

time cost. However, almost all location-based services involve
dynamic data. Without explicitly handling tree updates as in
existing work, the tree will have to be rebuilt and transferred
to the GPU every time there is update of data.

c) Multi-GPU Support: With today’s data-intensive ap-
plications, efficient support for datasets that cannot fit into
the GPU’s global memory is necessary. To address that, GAT
[10] uses a memory allocation table (MAT) to keep track of
the leaf blocks residing in global memory. Therefore, before
a query is launched on GPU, the MAT is first checked to
see if queries’ intersecting leaf blocks are in global memory.
If not, such blocks have to be copied to global memory
before query processing. In case the global memory does not
have enough capacity for new leaf blocks, following a LRU
swapping strategy, some leaf blocks are swapped out from
global memory to make capacity for new blocks. Therefore,
each time the overhead of transferring data from host memory
to GPU memory is added to query processing. Thus, an
essential step towards developing high performance spatial
query processing in large datasets, is to reduce such overhead.

d) Multi-Query Optimization: In existing approaches, by
processing one query at a time, optimization opportunities
among different queries in a workload are wasted. For exam-
ple, in the second step of the search, since each query scans
a list of leaf nodes to find their data records, the same data
record can be accessed many times by different queries in a
workload. Consequently, the program easily hits a performance
ceiling due to congestion of global memory while other
high performance resources are either insufficiently utilized
or largely unused (e.g., shared memory). Another drawback
of these approaches is that query processing cannot proceed
without CPU intervention.

It is well-known that many location-based applications are
busy systems with very high query arrival rate [11], [12].
For example, in scientific simulations such as molecular and
astrophysical simulations, millions of spatial queries such as
kNNs and range searches are issued at every step of the
simulation [13]. Therefore, there are optimization opportu-
nities in co-processing concurrent queries. In [14], GAT is
extended to support processing more than one query at a time
by parallelizing each individual input query using the solution
introduced in GAT. However, in this approach the number of
queries that can be run simultaneously is limited to those that

Fig. 2: Overview of G-PICS framework

their intersecting leaf blocks can fit in GPU global memory.
Therefore, the degree of parallelism is low and this approach
cannot be used in query processing systems with high query
arrival rate.

A. Overview of Our Approach

In this paper, we present the G-PICS (GPU-based Parallel
Indexing for Concurrent Spatial data processing) framework
for high performance spatial data management and concurrent
query processing. G-PICS is implemented as an extensible
software package that supports various types of spatial trees
under different hardware (GPU) specifications. Query process-
ing approach in G-PICS bears logarithmic work efficiency for
each query yet overcomes the problem of low parallelism.
Therefore, instead of parallelizing a single tree-search oper-
ation, our strategy is to parallelize multiple queries running
concurrently. Batched query processing, due to the effective
sharing of computing resources, has been heavily studied in the
database field [15]–[17], and large-scale web search on GPUs
[18]. The batch query processing approach in our solution
achieves task parallelism on GPUs, allowing each thread to
run an individual query. A search query can therefore be done
in logarithmic steps. Because each query carries roughly the
same work and is independent to others, it is easy to justify
the use of parallel hardware.

G-PICS encapsulates all the key components for efficient
parallel query processing within GPU with little CPU inter-
vention. It includes highly efficient parallel algorithms for
constructing a wide range of space partitioning trees based on
user-input parameters. For example, users can choose to build
trees with different node degrees and node partitioning method
(e.g., space-driven or data driven). G-PICS provides APIs
for processing major spatial queries including spatial point
search, range search, within-distance search, and kNNs. Such
APIs enable efficient development of more complex spatial
data retrieval algorithms and applications. Figure 2 shows an
overview of G-PICS framework.

G-PICS processes a group of spatial queries at a time,
with each query assigned to a thread. Similar to existing
work, query processing is accomplished in two steps. In the
first step, following a traditional tree search approach, the
leaf node(s) that contain the resulting data of each query
are identified. However, instead of retrieving all the resulting
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data, we only register each query to its corresponding leaf
nodes. In the second step, following a query-passive design,
the data in each leaf node is scanned only once and distributed
to the list of queries pre-registered with that leaf node. The
highly-organized access to data records yields great locality
therefore can make good use of GPU cache. Meanwhile, all
the accesses to the global memory are coalesced. We conduct
comprehensive experiments to validate the effectiveness of G-
PICS. Our experimental results show performance boosts up
to 80X (in both throughput and query response time) over
best-known parallel GPU and parallel CPU-based spatial query
processing systems. The G-PICS tree construction algorithms
remarkably outperform the best-known parallel GPU-based
algorithms – speedup up to 53X is reported. Moreover, tree up-
date procedure outperforms the tree construction from scratch
even under very high rate of data movement (up to 16X). G-
PICS takes advantage of multiple GPU cards in a system to
support large datasets with good scalability – by increasing
the number of GPUs, we observe almost linear speedup.

B. Paper Organization

In Section II, we review other related work; in Section III,
we introduce the tree construction algorithms developed in G-
PICS; in Section IV, we present query processing algorithms
in G-PICS; in Section V, we elaborate our algorithms to sup-
port data updates; in Section VI, we evaluate the performance
of G-PICS, and in Section VII, we conclude the paper.

II. OTHER RELATED WORK

In the past decade, GPUs are used to speed up compu-
tational tasks in many application domains. In the database
field, GPUs are used to implement relational operators such
as aggregates [19] and join [20]. Significant speedups were
reported as the result of integrating GPUs with databases in
processing spatial operations [21].

The needs of many applications require efficient data stor-
age and retrieval via spatial indexes (space-partitioning trees)
such as quadtree, and k-d tree [22]. Space-partitioning trees
are hierarchical data structures in which a certain space is
recursively divided into subregions. There are two groups of
space-partitioning trees: data-driven, and space-driven. In the
data-driven scheme, space partitioning is based on the input
data, versus in space-driven the partitioning is only based on
the space-specific rules. Selection of the appropriate space-
partitioning tree for indexing the input data highly depends on
the input data type and the search applications. For example,
due to the highly balanced aspect ratio in space-driven parti-
tioning trees, these trees are highly qualified for a large number
of applications such as proximity searches, and range searches.
In addition, space-driven partitioning trees are well-suited for
indexing the uniformly-distributed or dynamic datasets [23].
Moreover, space-driven partitioning trees are shown to be
highly compatible with parallel architecture especially GPUs
[24], [25]. On the other hand, data-driven partitioning trees
can be easily balanced (logarithmic depth) which is optimized
for indexing highly skewed datasets.

Early work on GPU-based spatial indexes focused on com-
puter graphics applications [26]–[28], with an aim for efficient

TABLE I: User-specified parameters for tree construction

Parameter Meaning

N total number of input data
NP node degree (number of disjoint partitions)
MH maximum tree height (number of levels)
MC maximum number of data items in a node

triangle partitioning. In most existing work about spatial query
processing on GPUs, spatial indexes are constructed on CPU
and shipped to GPU for query processing. There are few
work that focused on building the tree structure on GPUs.
In [25] an algorithm for parallel construction of Bounding
Volume Hierarchies (BVHs) on GPUs was developed. Point-
Region (PR) quadtrees are simplified variations of BVHs in
2-D space. The idea introduced in [25] was later used in
[29]–[31] to convert the PR quadtree construction on GPUs
to an equivalent level-by-level bucket sort problem – quadtree
nodes are considered as buckets and input data points are
sorted into the buckets based on their locations at each level.
K-d tree is a data-driven data structure, which is generally
constructed level-by-level by dividing data points in each node
into two partitions based on the median value of a chosen
dimension. The dimensions in the data domain are chosen
in a round-robin fashion at consecutive levels of the tree. In
[32] a parallel algorithm for k-d tree construction on GPUs is
presented, in which at each node the median value is selected
by sorting the data points in the developing dimension using
the CUDA Thrust library. However, sorting does more work
than necessary for finding the median value [33], and performs
poorly in dynamic datasets. There is no previous work targeted
parallel data updates on spatial trees.

A preliminary version of this paper can be found in [34].
In this paper, we: (1) propose a new parallel data-driven
partitioning tree construction algorithm on GPUs, (2) develop
a more efficient algorithm for handling data updates comparing
to the solution introduced in [34], and (3) extend the tree
construction, query processing, and data update procedures to
the Multi-GPU environment.

III. TREE CONSTRUCTION IN G-PICS

As discussed earlier, in previous work, the tree is usually
constructed in host memory and then transferred to GPU for
query processing. Due to the limited CPU computing power
and memory bandwidth, the cost of building the tree on host
memory is high. Moreover, the overhead of transferring the
tree from host to GPU is significant - with its microsecond-
level latency and 10GB/s-level bandwidth [35], the PCI-E bus
is the weakest link in the entire GPU computing platform.
Therefore, the first step towards enabling G-PICS for efficient
spatial query processing lies in efficiently building a tree data
structure within the GPU. In G-PICS, we provide support
for building space-driven, and data-driven partitioning trees.
Moreover, G-PICS supports tree construction for datasets
whose sizes are bigger than a single GPU’s global memory.

G-PICS is a general framework that supports any space
partitioning tree that decomposes the space recursively to
generate a fixed number of disjoint partitions each time. To
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Fig. 3: An example of quadtree construction in G-PICS with MC = MH = 3. Auxiliary arrays with the length equal to the maximum
number of nodes in a full tree are allocated on GPU and deleted when the tree construction is completed

construct a space partitioning tree, a user only needs to provide
several parameters as inputs to G-PICS, and such parameters
are summarized in Table I. If data points in a node exceeds
MC, that node is partitioned into NP equal-sized child nodes.
The decomposition continues until there is no more node
to partition, or MH of the tree is reached [36] (stopping
criteria). Nodes that got partitioned are link (internal) nodes,
and others are leaf (data) nodes. G-PICS implements both
space-driven and data-driven space partitioning methods to
allow construction of a wide range of trees: with space-driven
partitioning we can build point-region (PR) quadtree, region
quadtree, PM quadtree, PMR quadtree, MX-PR quadtree, fixed
grid, and point-region k-d tree [36], [37]. On the other hand,
the data-driven partitioning allow users to build spatial k-d
trees and other variants of Binary Space Partitioning trees. By
changing the quantity NP, we will get trees with different
degrees (e.g., degree 4 for quad-tree).

A. Space-driven Partitioning in Tree Construction

In space-driven partitioning trees, the space decomposition
is totally independent to the dataset. For example, a PR
quadtree is a type of trie, in which each link node has at
most four children. If data points in a node exceeds MC,
that node is partitioned into four equal-sized child nodes. The
decomposition continues until the stopping criteria are met.
There are unique challenges in the construction of space-driven
partitioning trees on GPUs. First, to achieve high efficiency,
our solution requires good utilization of GPU resources, espe-
cially the large number of cores. The traditional way for such
is done by parallelizing the nodes’ partitioning process level
by level [29], [30]. Clearly, this approach suffers from low
parallelism, especially when building top levels of the tree.
Second, the total number of non-empty nodes in such trees
is generally not known in advance. This is a major problem
in GPUs as dynamic memory allocation on the thread level
carries an extremely high overhead [20]. The easiest solution
to tackle this problem, which was adapted in previous work

Algorithm 1: Space-driven Tree Construction Routine
Var: splitNum (number of nodes to be partitioned) ← 1,

Cnode (array to keep current node for data points) ← 0,
Curlevel (current level developing in the tree) ← 1

1: Split[0] ← True
2: while Curlevel < MH and splitNum > 0 do
3: Curlevel++;
4: Tree-Partitioning on GPU;
5: update splitNum
6: end while
7: Node-Creation on GPU;
8: Point-Insertion on GPU;

[29]–[31], is to nevertheless allocate memory for empty nodes.
This results in inefficient use of (global) memory, which is of
limited volume on GPUs, and becomes more crucial when
dealing with skewed datasets. Finally, the main design goal of
G-PICS trees is to allow efficient query processing. Hence,
placing data points in a leaf node in consecutive memory
locations is necessary, as it allows coalesced memory access
in a data parallel program.

a) Overview of G-PICS Tree Construction: To address
above challenges, we propose a top-down parallel algorithm
on GPUs that achieves a high level of parallelism in the tree
construction process. Furthermore, our approach avoids empty
node expansion, and guarantees coalesced memory access in
processing the data points in a leaf node.

G-PICS handles empty nodes by delaying the actual node
memory allocation until the exact number of non-empty nodes
in the tree is determined. In particular, in the beginning,
it is assumed that the tree is a full tree according to its
MH – in a full quadtree all the intermediate nodes in the
tree have exactly NP children. Let us use a full quadtree
(Figure 3) as an example. The maximum number of nodes
in such a tree (NP=4) with height of H can be calculated as∑i=(H−1)

i=0 4i = (4H−1)/(4−1) = (4H−1)/3. Each node in a full
quadtree has an ID, which is assigned based on its position in
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Algorithm 2: Tree-Partitioning on GPU
Global Var: Input (array of input data points)
Local Var: t (Thread id)

1: for each Input[t] in parallel do
2: if Split[Cnode[Input[t]]] == True then
3: Cnode[Input[t]] ← find position of Input[t] in the

children of Cnode[Input[t]]
4: Lcnt ← atomicAdd(Counter[Cnode[Input[t]]], 1)
5: if Lcnt == MC+1 then
6: Split[Cnode[Input[t]]] ← True
7: end if
8: end if
9: end for

the tree. Starting from the root node with the ID equals to zero,
and allocating the directions based on the children location
(ranging from 0 to 3), an ID for each node is determined as
follows: Nodeid = (Parentid ∗ 4) + direction + 1, in which
Parentid is the ID of the node’s parent.

The main idea behind G-PICS tree construction is a new
parallel algorithm that maintains a high level of parallelism by
novel workload assignment to GPU threads. Instead of binding
a thread to a tree node which was adapted in previous work
[29]–[31], each GPU thread is assigned to one input data
point. By that, the process of locating the node to which each
point belongs is parallelized. Each thread keeps the ID of such
nodes and such IDs are updated at each level till a leaf node is
reached. The tree construction (Algorithm 1) is done in three
steps: Tree-Partitioning, Node-Creation, and Point-Insertion.

b) Tree Construction Routines: The Tree-Partitioning
kernel (Algorithm 2) is launched with N threads, with each
thread working on one data point. Starting from the root node,
each thread finds the child node to which its assigned point
belongs, saves the child node ID, and increments the counter of
the number of points in the child node. Since such counts (i.e.,
counter array) are shared among all threads, we use atomic
instructions to modify the counts and maintain correctness.
When the counts are updated, if a node’s data count exceeds
MC and MH of the tree has not been reached yet, the
corresponding value in the split array will be set, meaning the
node should be further partitioned. Upon finishing operations
at one level (for all threads), the following information can
be seen from auxiliary arrays: current node array indicates
the nodes to which data points belong, node counter array
reflects the number of data points in each node, and split array
indicates if each node has to be partitioned. If there are nodes
to be partitioned, the same kernel is launched again to develop
the next level of the tree. For example, in Figure 3, there are
two nodes – N2 (with 5 points) and N3 (with 7 points) – to be
partitioned when second level of the tree is built. The kernel
is relaunched with three new auxiliary arrays, the length of
which corresponds to the number of the child nodes of only
N2 and N3. Likewise, counter and split values of the nodes
in this level are updated. This routine will continue until the
stopping criteria are met. Our approach maintains a high level
of parallelism by having N active threads at all times.

The Node-Creation kernel (Algorithm 3) is called to create

Algorithm 3: Node-Creation on GPU
Global Var: lea fdatalist (array to store leaf nodes data)
Local Var: t (Thread id)

1: for each non-empty NodeID[t] in parallel do
2: create node NodeID[t]
3: if Split[NodeID[t]]== False and Counter[NodeID[t]]

> 0 then
4: Allocate point memory in lea fdatalist
5: end if
6: end for

Algorithm 4: Point-Insertion on GPU
Local Var: t (Thread id)

1: for each Input[t] in parallel do
2: insert Input[t] to lea fdatalist [Cnode[Input[t]]]
3: end for

the actual non-empty nodes in the tree. Having finished the
previous step, the following information is known: each point
has the leaf node to which it belongs, the total number of non-
empty nodes in the entire tree with their types (leaf or link),
and the total number of points in each leaf node. Therefore, the
required information for creating the nodes (in a parallel way
and without wasted space) is known. Consequently, the Node-
Creation kernel is launched with as many active threads as the
number of non-empty nodes, each thread creates a non-empty
node. While building nodes, memory for each leaf node’s data
list is allocated in consecutive memory locations. In Figure 3,
the total number of non-empty nodes is 12 (while the full
quadtree has 21 nodes).

The Point-Insertion kernel (Algorithm 4) is called to insert
the input data points to the tree. Having this setup, all the
points in each leaf node are saved in consecutive memory
locations. The input data points in a quadtree have two
dimensions (x and y). To ensure coalesced memory access
in query processing, the data lists should be saved using two
arrays of single-dimension values rather than using an array of
structures which holds two-dimensional data points. The final
quadtree structure built using the aforementioned algorithm
is shown in Figure 4, in which each leaf node points to the
beginning of its data list in the leaf nodes data list array.

c) Cost Modeling: The total cost of tree construction can
be evaluated as follows:

C = CT + CI + CP (1)

Link Node

Leaf Node

3 13 1 6 4 7 10 2 11Leaf nodes data list

 

5 12 0 9 8 14 15

Fig. 4: Final quadtree built based on the data inputs in Figure 3
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where CT , CI , and CP are the costs of Tree-Partitioning,
Node-Creation, and Point-Insertion, respectively. Let N be the
number of data points, and n the number of tree nodes, then,
CT = O(N log N), CI = O(n), and CP = O(N). Although
CT is of higher complexity, it is not the main bottleneck in
practice. Instead, although CP has a linear complexity, it is the
dominating cost in tree construction. This is because Point-
Insertion requires concurrent writes into the leaf node’s data
list, and this should be done via atomic instructions to ensure
consistency. Atomic instructions are known to bear a large
overhead. For example, our experiments show that on average
60 to 70 percent of the tree construction time is spent on the
Point-Insertion kernel.

B. Data-driven Space Partitioning

Space decomposition is done based on the spatial distri-
bution of the data to be indexed. A salient example is the
spatial k-d tree, where each link node divides the space
into two partitions (left and right subtrees) using a splitting
hyperplane. Each link node in the tree is affiliated with one
of the k-dimensions in the input dataset, with the hyperplane
perpendicular to that dimension’s axis. For instance in a node
with "y" axis as splitting axis, all points in the left subtree
have "y" values smaller than those in the right subtree. The
splitting plane are chosen following a round-robin fashion. To
ensure the tree is balanced, it is required that the pivot value
for splitting be the median value of the coordinate values in
the axis used to develop the splitting plane in each node. We
face the following challenges in building data-driven trees.
First, similar to space-driven partitioning trees, existing work
[32] parallelizes the node’s partitioning process by assigning
each node to one GPU thread, and this causes low parallelism
in building higher levels of a tree. Second, the median value
for partitioning in each node is usually selected by sorting
the data points based on the splitting axis [32]. Sorting is not
an efficient way for finding the median value, as the entire
sorted list is not required. Again, placing data points belonging
to a leaf node in consecutive memory locations is required.
Empty node expansions is not an issue in such trees since the
partitioning is done based on the input data.

a) Overview of our approach: The key innovation is a
parallel approach for finding the median value of a list of
values without sorting. In order to find a median value in an
unsorted list, data points in that list are organized into mul-
tiple continuous buckets using a range-based histogramming
approach. The histogram is designed in a way to divide the
input range of data lists into H histogram buckets. Each input

data point (Input[i]) is assigned to one histogram bucket based
on its location using a linear projection as follows:⌊

(H − 1)
(max − min)

(Input[i] − min)
⌋

(2)

where max and min are the maximum and minimum value in
the input list, respectively. Each bucket has a counter showing
the number of points belonging to that bucket. By assigning
the points to histogram buckets, the bucket that contains the
median value can be determined based on the buckets’ counter
values. Thus, only that bucket will be sorted in order to find
the median value. This approach eliminates extra candidates
for sorting. In order to assign points to histogram buckets, each
data point in a list is assigned to one GPU thread to find the
bucket to which it belongs. Obviously, this approach achieves
a high level of parallelism.

The main bottleneck lies in updating the counter values for
each bucket by concurrent threads. To avoid race condition,
atomic instructions have to be used for such updates yet atomic
instructions are executed in a sequential manner. For that, we
adopt an output privatization technique for outputting the his-
togram buckets’ counters. Specifically, private copies of bucket
counters are stored in on-chip cache called shared memory to
be accessed by a subset of the threads. The private copies of
the histogram are combined into the global histogram. After
generating the final histogram output, the bucket that has the
median value can be identified by reduction of counter values
– median should divide the input list into two lists with equal
size. Consequently, just the points in that bucket need to be
sorted to find the median value. We implement two strategies
for such sorting. If the number of points in that bucket are
small enough to fit into shared memory, the sorting is done in
shared memory using an efficient in-place fast shared memory
sorting [38]. If the size of the input list is larger than shared
memory, the sorting can be done using fast Radix sort libraries
available in CUDA libraries such as Thrust or CUDPP. After
sorting the points in the determined bucket, the median value
in the input list is determined (Figure 5).

b) Tree Construction Routines: G-PICS k-d tree con-
struction follows a level-by-level approach on GPUs to max-
imize the level of parallelism. At higher levels of the tree,
every node in the developing level is assigned to a GPU
thread, which launches another kernel using CUDA dynamic
parallelism to perform the node partitioning. To partition a
node, the median value in the developing dimension’s axis is
determined following the approach mentioned earlier. Having
determined the median value, points can be organized into
the sub-list (left and right) to which they belong. However,
moving data points into sub-lists is not in-place, and consists
a lot of atomic operations in global memory to find the next
available pointer in each sub-list. To tackle such issue, in
each GPU block, two private counters are defined in shared
memory. Using the private counters, the total number of points
belonging to each sub-list in each block is determined. Then,
the private counters are used to increment the global counters
in global memory. After moving data points to the sub-lists,
nodes can be created. If the stopping criteria are met, a node
is a leaf node; otherwise it is a link node and should get split
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Fig. 6: Constructing the second level of the quadtree in Figure 3 using four GPUs

in building the next level of the tree. On the other hand, in
the lower levels of the tree, the same approach is followed,
however, each node that has to get partitioned is assigned to
one GPU block for partitioning.

C. Tree Construction in Multiple GPUs

So far we assume that the entire tree plus all the data can fit
into one GPU’s global memory. For datasets with size beyond
that, multiple GPUs should be used. The main challenge is
to minimize data synchronization and communication among
GPUs. For example, in order to determine whether a node
should be split, summation of the auxiliary array values from
all GPUs is required. Traditional wisdom adopts a CPU
master approach [39] by using the CPU to perform such
synchronization and communication. Specifically, all GPUs
send their local copies of run-time parameters to the host
CPU, and the CPU conducts a parallel reduction to get the
global value and send the results back to the GPUs. However,
this approach requires a lot of communications to transfer the
parameters between all GPUs and CPU through PCI-E bus,
which has low bandwidth and high latency. In addition, due to
limited parallel computing resources, the reduction operation
is much slower on the CPU. To overcome such limitations,
we take a GPU master approach, in which one GPU becomes
the central control, and all other GPUs send their local copies
to the master GPU to conduct parallel reduction.

In addition, to minimize the communication cost, data trans-
fer and in-core computation should be overlapped whenever it
is possible. For that purpose, we adapt a GPU mechanism
called CUDA streams to allow concurrent kernel function
execution (Figure 7). Specifically, we simultaneously launch
several CUDA streams containing GPU kernel calls via several
OpenMP threads, and the data transferring is done using
asynchronous direct GPU-To-GPU data transfer. In all the
algorithms in this paper, whenever it is possible CUDA streams
and asynchronous direct GPU-To-GPU data transfer are used
to transfer data among GPUs.

a) Tree Construction Routines: Tree construction is still
done in three steps. Since the input dataset size is bigger than
one GPU’s global memory, the input dataset should be split
into multiple sets based on the number of available GPUs in
a Multi-GPU cluster, and each set is assigned to one GPU.
Each GPU in a work-set can work independently on finding
enclosing node for points in its partition on the tree level
being developed (Algorithm 2). However, in order to determine

Without CUDA Streams
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Fig. 7: Transferring Counter and Split arrays in Figure 3 via CPU
master to four other GPUs comparing to GPU master approach with
three CUDA streams, each containing two kernels on master GPU

whether the tree construction needs to proceed on building the
next level of the tree, the nodes’ data point counters should
be updated based on the total sum of the counter values in all
GPUs for that level. To this end, each GPU keeps a local copy
of the node ID array, counter array, and split array. Then, after
building each level, the corresponding global counter value for
each node in that level is updated with sum of the values from
each GPU using the GPU master approach (Figure 6).

The node creation kernel is launched on the master GPU
(Algorithm 3). Since in such design all leaf node’s data list
cannot be stored in one GPU card, leaf node’s data lists are
allocated in consecutive memory locations on the available
GPUs. Each leaf node on the master GPU keeps track of the
physical memory location of its data list.

To insert the input data points to the data lists, each data
point should be located in the same GPU global memory
as its data list. Data points in each GPU that do not meet
this condition, are grouped together based on the GPU to
which they belong, and are copied to their corresponding
GPU – using multiple CUDA streams and direct GPU-To-
GPU data transfer in parallel. Then, the Point-Insertion kernel
(Algorithm 4) is launched on each GPU to insert data points to
their data lists. In the final quadtree structure, each leaf node
points to the beginning of its data list in the leaf nodes data
list array stored on one GPU global memory in a cluster.

D. Automated Code for Choosing the Partitioning Tree

We have presented parallel algorithms for building different
types of tree structures within GPUs. It is clear that a suitable
tree structure should be chosen based on the input dataset
attributes and ultimate search applications on such dataset.
For new users with G-PICS supported search applications,
it may be challenging to choose a suitable tree structure. In
our framework, we give two options to the user for choosing



TECHNICAL REPORT 19-002, JUNE 2019 8

N9 N10

N11 N12

N13 N14

N15

 N1 

P1

P2

P3

P4

P5

P6

P7

P8
P9

P10

P11

P12

P13 P0

 
 

q2

q1

q3

N1

N9 N10 N11 N12 N13 N14 N15

q1

q1 q1

q2

q2 q2

q2 q2

q3

q3

q3

Query list attached to a leaf node

q1q2q3

Input query list (QL)

N4 P14

P15

N4

q2

q3

q3

Fig. 8: An example of registering range search queries into the query
lists of leaf nodes

the tree structure: (1) user can select the type of the tree to
index the input dataset; (2) we encapsulate an algorithm in our
framework that based on the user inputs determines the best
tree structure for indexing the input dataset. To support the
second option, our framework requires the following inputs:
(1) estimation of input dataset size; (2) data distribution; (3)
data type and number of dimensions; and (4) most common
search applications on the input dataset. Based on such infor-
mation, our framework selects the most appropriate indexing
data structure, and number of GPUs for indexing the user input
dataset.

IV. G-PICS QUERY PROCESSING

As mentioned earlier, G-PICS supports the following types
of spatial queries: (1) spatial point search, which retrieves data
associated with a point in the data domain, (2) range search,
which finds a set of data points intersect with a query shape
object, (3) within-distance search, which retrieves objects
within a specific distance from the search query, and (4) k-
nearest neighbors, which retrieves k closest objects to a query
point. G-PICS query processing algorithm is independent from
the index structure (e.g., space-driven or data-driven).

A. Query Processing Algorithms in G-PICS

A typical spatial query is processed in two steps: (1)
identification of leaf nodes satisfying the search conditions;
and (2) examining the identified nodes to determine the final
output data points. G-PICS is designed to process multiple
spatial queries running concurrently. To this end, in the first
step, using the traditional tree search is necessary to achieve
logarithmic work efficiency. Recall that in the second step,
reading the data records from GPU global memory is the main

Algorithm 5: Leaf-List-Processing on GPU
Local Var: b (Block id), t (Thread id), M (number of points in

leaf[b]), lqL (query list for leaf[b]), sL (leaf[b] data list)
1: if lqL > 1 then
2: sL ← load lea fdatalist [leaf[b]] to shared memory in parallel
3: else
4: sL ← lea fdatalist [leaf[b]] from global memory
5: end if
6: for each lqL[t] in parallel do
7: for i = 1 to M do
8: d ← computeSearchFunction(lqL[ j], sL[i])
9: if d meets the search condition then

10: Add sL[i] to the Output list of lqL[ j]
11: end if
12: end for
13: end for

bottleneck, as the same data record can be accessed many
times by different queries in a workload. To tackle these issues,
G-PICS introduces a push-based paradigm for the second step
of query processing. Specifically, a query list is attached to
each leaf node for saving the list of queries intersecting that
leaf node for processing. In the first step of query processing,
queries intersecting with a leaf node are registered in the query
list attached to that leaf node. In the second step, queries in
each list are processed together to minimize accesses to global
memory, and take advantage of the other available low-latency
memories on GPUs. Two GPU kernels are designed to perform
query processing: Leaf-Finding, and Leaf-List-Processing.

a) Step I - Query Registering: For each leaf node, we
maintain a query list, which contains IDs of all queries whose
outputting data can be found in that leaf node. In the Leaf-
Finding kernel, each thread takes one query from QL, and
finds the leaf node(s) that intersect with the query search key
value or range. Then, registers that query to its intersecting leaf
nodes. Figure 8 shows an example of such queries registering.

b) Step II - Leaf Node Processing: The Leaf-List-
Processing kernel is launched with as many GPU blocks (i.e.,
a group of threads) as the number of leaf nodes. Then, each
registered query in the query list is assigned to one thread in
that block. In order to output the results, all the queries in a leaf
query list have to read the data records in that leaf node and,
based on their query types, perform the required computation.
Therefore, in each GPU block, if the number of registered
queries is greater than one, all the data points belonging to
the leaf node assigned to that GPU block are copied from
global memory to shared memory. Shared memory is much
faster than global memory - its access latency is about 28
clock cycles (versus global memory’s 350 cycles) [40]. The
copying from global memory to shared memory is not only
parallelized, but also coalesced because points in each leaf
node are saved in consecutive memory locations. Using this
strategy, the number of accesses to each leaf node data lists in
global memory are reduced to one. This is in sharp contrast
to the traditional approach that retrieves each leaf node once
for each relevant query. Having copied all the points in each
leaf node data list to shared memory, each active thread in
that block takes one query from the query list attached to its
corresponding leaf, calculates the Euclidean distance between
that query point and all the points in that leaf node (located
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in shared memory), and outputs those that satisfy the search
criteria. This step is shown in Algorithm 5.

c) Query-Specific Implementation Details: The point
search, range search, and within-distance search are imple-
mented following the 2-step approach in a straightforward
way: in the first step, a within-distance search retrieves the
leaf nodes falling within a specific distance from the search
key; a range search retrieves the leaf nodes intersecting with
the query range; a point search retrieves the leaf node that
contains the query search key. Then in the second step of the
search, data lists in the identified leaf nodes from the first
step are examined to output the final results. The kNNs in
G-PICS is treated as a within-distance search followed by a
k-closest selection from the within-distance search result set.
The within-distance search is initialized with a radius based
on the input distribution and k. If the number of output items
for a query is less than k, the within-distance search will be
performed again with a larger radius.

d) Outputting Results: A special challenge in GPU com-
puting is that, in many applications, the output size is unknown
when the GPU kernel is launched. Examples of such in G-
PICS are the number of output results in a typical window
range, or within-distance query. In CUDA, memory allocation
with static size is preferred - in-thread dynamic memory
allocation is possible but carries a huge performance penalty
[20]. A typical solution is to run the same kernel twice: in
the first round, output size is determined. In the second run,
the same algorithm will be run again and output written to
the memory allocated according to the size found in the first
round. In G-PICS, we utilize an efficient solution introduced
in our previous work [41], which allows our algorithms to
compute and output the results in the same round for those
categories of queries that their output size is unknown in
advance using a buffer management mechanism. In this design,
an output buffer pool with a determined size is allocated. The
allocated memory is divided into pages of a particular size. In
order to record the location of the first available page in the
buffer pool, a global pointer (GP) is kept. Each thread gets
one page from the buffer pool and outputs its results to that
page. It also keeps track of its own local pointer to the next
empty slot within that page. Once a thread has filled a page
completely and has more results, it will get a new page from
the buffer pool by increasing the GP using the GPU atomic
add operation. Using this solution, conflicts among threads is
minimized because the GP is updated only when a page is
completely filled (Figure 9).

e) Extensible Framework: G-PICS can be extended to
support other spatial data retrieval algorithms and applications.
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Fig. 10: Example of updating a quadtree with MC = 3 and MH = 3

For example, in our previous work [34], we extend G-PICS
to support a special type of spatial join named the 2-body
constraints problem, which retrieves all pairs of objects that
are closer than a user-specified distance (d) from each other.
In the first step of this search, each leaf node registers itself to
the query list of all other leaf nodes with distance less than or
equal to d. Then, in the second step of the search all matching
pairs within those leaf nodes are retrieved and outputted.

B. G-PICS Query Processing in Multiple GPUs

In Section III, we mentioned that the tree structure for large
datasets is stored on one GPU’s global memory (master GPU),
and the leaf nodes’ data are stored in multiple GPUs. Since
the tree structure is stored on the master GPU, the first step of
query processing is done on the master GPU. Then, the second
step is parallelized using multiple GPUs. Query processing for
such datasets is done in three steps as follows:

a) Step I - Query Registering: The Leaf-Finding kernel is
done on the master GPU using the same approach mentioned
in single GPU approach.

b) Step II - Copying query lists: In order to retrieve
the final results, the query lists should be transferred to the
corresponding GPUs where their intersecting leaf nodes’ data
lists are stored. The query list transferring is again done using
multiple GPU streams and direct GPU-To-GPU transfer.

c) Step III - Leaf Node Processing: To process the
registered queries in the query list of the leaf nodes on
each GPU, the Leaf-List-Processing kernel (Algorithm 5) is
launched with as many GPU blocks as the number of leaf
nodes stored on that GPU to output the query results.

V. TREE UPDATES IN G-PICS
G-PICS provides an efficient parallel update algorithm to

support dynamic datasets on GPUs. Data movement may
change the tree structure - it can be viewed as a deletion
followed by an insertion. Both operations are costly because
dynamic memory allocation at kernel runtime carries an ex-
tremely high overhead on GPUs, especially when there are
group movements. At the end of each move, a data point
can either stay in the same leaf node, or move into another
node (red points in Figure 10). After processing all updates,
the number of points in some leaf nodes may exceed MC.
Consequently, if MH has not reached, the nodes should
be partitioned, and points in them moved to their children
(N1). Alternatively, neighboring leaf nodes could lose data
points and should be merged together (N9, N10, N11, and N12).
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Moreover, in space-driven partitioning G-PICS trees, empty
nodes are not materialized; therefore, there may be cases
that points move into an empty node (P10) that needs to be
materialized on-the-fly (N16).

The easiest solution is to build the tree from scratch.
However, this solution is inefficient in that all the data will
be processed regardless of the amount of data movement.
Therefore, our goal is to design an update procedure with
running time proportional to the intensity of data movement.

A. Bulk Updates in G-PICS

We design a bottom-up parallel algorithm on GPUs to
bulk update the tree under both data-driven and space-driven
partitioning mechanisms. This, again, reflects our strategy of
concurrent processing of queries except now a query is an
update. At first, the new position of all the input data points
are checked in parallel to see if they moved out from their
last-known leaf node. If there is at least one movement, the
tree structure should be updated accordingly. Several GPU
kernels are designed to update the tree in parallel on GPU as
follows: Movement-Check, Leaf-Finding, Node-Partitioning,
Node-Merging, and Leaf-Lists-Update. Two counters, and two
lists are added to each leaf node to keep track of points moved-
in or moved-out during the update procedure. The work-flow
of the entire tree update procedure is shown in Figure 11.

The Movement-Check kernel checks if each data point
has moved out from its last-known leaf node. This kernel is
launched with N threads. Each thread takes a point, and checks
if the point has moved out from its last-known leaf node. In
case of a movement, the corresponding thread adds the point
to the list of moved data points (Moved_List), and update the
counters and lists associated with the last-known leaf node.

The Leaf-Finding kernel is called if Moved_List is not
empty. This kernel is launched with as many threads as the
number of points in Moved_List. Each thread finds the new
leaf node its assigned point moved in, and updates the relevant
counters and lists associated with that leaf node. If updating
the number of points in a leaf node makes it qualified for
partitioning, that node is added to the node_split list. In case
of moving to empty nodes in space-driven partitioning trees,
new nodes are first created in parallel, and afterwards points
are added to the newly-created nodes.

With a non-empty node_split list, the Node-Partitioning
kernel is called to split the nodes in parallel. There are two
groups of points that may belong to such nodes: points that
previously belonged to those nodes and did not move out,
and points from Moved_List that moved to those nodes. We
call them Candidate_Points. To maximize the efficiency in
moving points from the partitioned nodes to the data list of the
newly-built child nodes, only Candidate_Points are checked.

On the other hand, while some nodes are to be partitioned,
there may be other nodes that have to be merged. Except
the leaf nodes that get partitioned, other leaf nodes have
the potential of getting merged. The Node-Merging kernel
considers those leaf nodes by checking the sum of the counters
of sibling leaves. If the total number of points in those nodes
become less than or equal to MC, they are added to the
node_merge list. Siblings in this list are merged together, and
their data points moved to their parent, which becomes a new
leaf. The algorithm of moving points in these nodes is similar
to the one in Node-Partitioning kernel.

To update the leaf nodes’ data lists, a data point can
be reinserted form scratch, as done in our previous work
[34]. However, this approach does more work than necessary,
especially under low data movement – any data movement
would cause the entire data list rebuilt, which is the dominant
cost. To increase efficiency, a memory allocation method for
the data lists with the aforementioned page-based mechanism
is designed as follows: first the leaf nodes that are affected by
update procedure are identified. Then, only the data lists in
those nodes are updated by calling Leaf-Lists-Update kernel,
which assigns each leaf node to a GPU block. If in a leaf
node the number of moved-in points is greater than moved-
out points, then a new page is allocated to store the points
moved into that node.

a) Cost Modeling: The total cost of update procedure
can be expressed as:

C = CM + CL + CV + CD (3)

where CM is the cost of running Movement-Check, CL the
cost of Leaf-Finding, CV the cost of updating the tree nodes,
and CD the cost of updating leaf nodes’ data list. If α is the
percent of points that moved out from their last-known leaf
nodes, β is the percent of modified tree nodes, and γ is the
percent of leaf nodes whose data lists have modified as the
result of the update, we have CL = O(αN log N) and CV =

O(βn) in both updating approaches, which are proportional to
level of data movement. However, CD = O(γαN) in paging
approach, and CD = O(N) non-paging approach. As discussed
in Equation (1), CD is the dominating cost. Since this cost is
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proportional to the level of data movement in paging approach,
it is expected that this approach shows better performance.

B. Tree Updates in Multiple GPUs
We also modified the bulk update procedure to support

updates in multiple GPUs. To that end, the tree node structure
(not including the data lists) replicates into all the available
GPUs in the cluster. A local copy of counters and lists for
keeping track of the movements are assigned to each copy
on each GPU. Then, the new positions of points are sent to
the GPUs to start the update procedure. Beside the kernels
mentioned in the single GPU environment, two other kernels
are designed to fulfill the task in Multi-GPU environment:
Node-Counter-Updating, and Data-Points-Transferring.

The Movement-Check kernel is launched on each GPU with
as many threads as the number of points assigned to that GPU
followed by Leaf-Finding kernel call if Moved_List is not
empty. To update the total number of points that moved in/out
of a node, the local counter values are transferred to the master
GPU for parallel reduction. Then, the Node-Counter-Updating
kernel is called on the master GPU for updating the actual
counter values in each node, and updating the node_split list.

The Node-Creation, Node-Partitioning and Node-Merging
kernels are executed on the master GPU if the prerequisites
for calling those kernels are satisfied. Then, finding the new
location for points in the modified nodes is done using the
GPUs where the data lists are stored.

Having finished all these steps, the data lists can be updated.
As neighboring leaf nodes’ data lists are most likely stored
in the same GPU, data movement can be handled without
communications between two GPUs. However, if there are
points that move to a leaf node residing in another GPU, they
will be transferred to corresponding GPUs using Data-Points-
Transferring kernel before updating the leaf nodes data lists.
Then, Leaf-Lists-Update kernel is called to update the data
lists. This can be done using the page-based or reinsertion
mechanism mentioned in the single-GPU approach.

VI. EXPERIMENTAL EVALUATIONS

In this section, we present empirical evaluation of G-PICS
performance. For that, we implemented a CUDA version of
G-PICS including algorithms for processing the following
search queries: window-based range, within-distance, kNNs,
and point search. We conduct experiments on a workstation
running Linux (Ubuntu 16.04 LTS) with an Intel Core i9-
7920X 2.90GHz CPU with 12 cores, 64GB of DDR4 3200
MHz memory, equipped with four Nvidia Tesla P100 GPU
cards with 16GB global memory in each card. All imple-
mentations in G-PICS and evaluation benchmarks are highly
optimized in terms of efficient use of registers, choosing the
best block size in each GPU kernel. Such optimizations are
done according to our previous work in GPU kernel modeling
and optimization [42]. All the experiments are conducted over
a real dataset [43] generated from a large-scale molecular
simulation study of a lipid bi-layer system. 1 In the following

1The data contains coordinates of 268,000 atoms recorded over 100,000
time instances. We superimpose the coordinates of different time instances to
generate data of an arbitrary (large) size for experimental purposes.
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text, we report and analyze the absolute and relative total
processing time (i.e., speedup) used for processing supported
algorithms within G-PICS over various baseline programs.

A. Tree Construction in G-PICS

In such experiments, only the tree construction time is
measured and compared. The parallel quadtree construction
codes introduced in [29] and [30] are not publicly available.
We implemented the algorithms following their descriptions.
However, such algorithms showed very poor performance
(G-PICS achieves more than 1000X speedup). Due to very
low level of parallelism and inefficient memory use, the
above academic code can hardly represent the state-of-the-
art. Consequently, to have a more meaningful evaluation,
we compare G-PICS tree construction with the parallel tree
construction developed by Nvidia [31]. Nvidia code does not
work for very large datasets, therefore, number of input data
points in this experiment is limited to the ones that we can
run using Nvidia. G-PICS kdtree construction performance is
evaluated by comparing with parallel kdtree construction based
on sorting all data points using the CUDA Thrust library [32].

Figure 12 shows the G-PICS quadtree and kdtree construc-
tion time, and speedup over comparative programs. As shown,
G-PICS quadtree clearly outperforms the Nvidia ([31]) code
(up to 53X) in all cases. By increasing the number of input
data points, G-PICS speedup increases, and it remains constant
at very large input datasets. While building the tree in G-PICS,
if MH is reached, a leaf node could accommodate more points
than MC. Under the same situation, the Nvidia code crashes.
Moreover, G-PICS does not materialize the empty nodes,
while Nvidia suffers from empty node expansion. Likewise,
G-PICS kdtree construction beats the tree construction using
sorting (up to 15X) in all cases.
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Fig. 14: Speedup (Top row: Step I only; Middle: Step II only; Bottom: Total time) of G-PICS over M-STIG, M-GAT, and P-CPU in
processing 1,000 to 4,000,000 concurrent queries against a 16.5M-point database
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B. Spatial Query Processing in G-PICS

STIG and GAT are not designed to support concurrent query
processing for large number of queries. Queries have to be
put into a queue and processed one after another. Therefore,
for processing multiple queries using those solutions, input
queries should be stored in a list. Then, while the list is
not empty, one query is extracted from the list and paral-
lelized on GPU. Consequently, the total processing time for
each query is the sum of its processing time on GPU, and
its waiting time in the list. For each query, the longer its
index distance from the beginning of the list, the longer its
total processing time. Consequently, the performance speedup
achieves by parallelism is quickly offset by increasing the
number of queries. For example, for processing 1000 queries
using this approach G-PICS gains a performance speedup of
5000X and 180X over STIG and GAT, respectively. Such
speedup shows a dramatic upward trend by increasing the
number of input queries – with 10k queries, G-PICS speedup
reaches 15000X and 500X over STIG and GAT, respectively.
In addition, in GAT, leaf node blocks are copied to global
memory, when they are accessed for the first time, which
increases the processing time –such time is not considered
in the above speedup comparison. STIG and GAT are not
designed to support concurrent query processing for large
number of queries. Therefore, for processing multiple queries
using those solutions, input queries should be stored in a
list. Then, while the list is not empty, one query is extracted
from the list and parallelized on GPU. Consequently, the total
processing time for each query is the sum of its processing
time on GPU, and its waiting time in the list. For each query,
the longer its index distance from the beginning of the list, the
longer its total processing time. Consequently, the performance
speedup achieves by parallelism is quickly offset by increasing
the number of queries. For example, for processing 10K
queries using this approach G-PICS gains a performance
speedup of 250X over STIG. Such speedup shows a dramatic
upward trend by increasing the number of input queries –
with 50k queries, G-PICS speedup over STIG reaches 1000X.
In addition, in GAT, leaf node blocks are copied to global
memory, when they are accessed for the first time, which
increases the processing time. For a meaningful evaluation, we
compare G-PICS with the following three baseline algorithms:
(1) a parallel CPU algorithm (P-CPU) implemented based on
OpenMP. Note that P-CPU is highly optimized, and performs a
parallel traditional tree search in Step I of query processing to
bear the logarithmic work efficiency. Additional techniques for
improving the P-CPU performance using OpenMP are applied
including: choosing the best thread affinity for the thread
scheduler, best thread scheduling mode, and best number of
active threads; (2) M-STIG and (3) M-GAT, which are task
parallel GPU programs for processing multiple queries at a
time developed following the descriptions in STIG [8] and
GAT [14]. Specifically, in Step I of query processing, M-GAT
performs a parallel tree search on the CPU. Therefore, M-
GAT performs the same as P-CPU in Step I for processing
multiple queries concurrently. Then, the list of intersecting
leaf nodes for queries are transferred to GPU. In Step II

of the search, M-GAT parallelizes each query separately on
GPUs. Hence, M-GAT performs the same as M-STIG in Step
II for processing multiple queries concurrently. As the query
processing is done in two steps, the total running time and
that in each step (Step I and II) are compared. Note that the
total time is end-to-end query processing time. This includes
the time to ship query list into and the query results out of the
GPU. This allows a fair comparison to P-CPU, which does not
have such CPU-to-GPU transmission costs. The experiments
in this section are run under different data sizes ranging from
16.5M to 256M points, which are indexed by a quadtree with
MC and MH equal to 1024 and 14, respectively. Due to space
limit, we only present the results of 16.5M and 256M datasets
simulating a regular and very large spatial database. The query
processing performance is evaluated under different numbers
of concurrent queries (up to 4M). Since the output size of a
typical range search and within-distance search is unknown in
advance, we use the buffer pool solution discussed in Section
IV for outputting the query results in G-PICS, M-GAT and
M-STIG.

The absolute processing time of queries in G-PICS is shown
in Figure 13. Since kNNs in G-PICS is done using within-
distance searches followed by k closest selections in the
within-distance search results, the processing time of Step
II in kNNs is the sum of the processing time to perform
both of these operations. We implement the same selection
kernel for finding kNNs in G-PICS and M-STIG. For all 4
types of queries in both Steps, the processing time increases
linearly with the number of concurrent queries. However, the
time for running Step II dwarfs that for Step I therefore
contributes more to the total processing time. Figure 14
shows the performance speedup of G-PICS over P-CPU, M-
GAT, and M-STIG in processing different search queries. The
logarithmic tree search in Step I noticeably outperforms the
brute-force leaf search under all circumstances (more than
100X average speedup). The performance speedup over M-
GAT and P-CPU in Step I is less remarkable (up to 20X)
comparing to those over M-STIG. Such performance boost
over M-STIG is certainly in conformity with the advantage
of logarithmic tree search. Since there is less computation
involved in processing Step I of the point search queries (each
query just intersects with one leaf node), the speedup reaches a
very high level (up to 300X). Generally, Step II speedup of G-
PICS is not as high as that in Step I (up to 46X). It starts with
a small number under low concurrency, then increases linearly
with the number of input queries, and levels off afterwards.
Such an increase of speedup is the result of using shared
memory for holding data – the savings caused by caching are
higher with more queries. When the shared memory bandwidth
is fully utilized, the speedup levels off. As Step II dominates,
the trends of speedup in total running time are similar to those
found in Step II – even by considering the cost of transferring
outputs back to CPU, G-PICS outperforms P-CPU remarkably.

a) Performance under very large dataset: To study G-
PICS performance in handling very large datasets, we gen-
erated a dataset of 256M data points following the same
data distribution in the 18M dataset. Note that dataset with
such a size is the largest our algorithm can handle in the
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Fig. 16: Speedup in query processing time under low concurrency and data size 16.5M (Top row: Step I only; Middle: Step II only; Bottom:
Total time) of G-PICS over M-STIG, M-GAT, and P-CPU
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P100 card. We again indexed the data in a region quadtree
constructed by G-PICS. The performance of G-PICS query
processing algorithms are evaluated over the same baselines,
and such results are presented in Figure 15. First, the speedup
in Step I over M-STIG becomes much bigger as compared
to the smaller dataset — it reaches 1,000X for the point
search and about the same level for the other queries. This
is understandable - the total work increases linearly with data
size in M-STIG and only logarithmically in G-PICS. For the
point search the difference is more obvious as each search
intersects with only one leaf node. The performance speedup
in this step over P-CPU followed the same trend as in the
smaller dataset. Second, the speedup in Step II over M-STIG
becomes smaller, reaching a level of 5-6X as compared to the
40X in Figure 14. The reason is because we used the same
exact queries — when data gets bigger, average output size
for each query increases accordingly. Therefore, the impact
of sharing leaf nodes’ data lists through shared memory in
Step II becomes less significant comparing to M-STIG. On
the other hand, the speedup over P-CPU is more significant in
within-distance, range, and kNN search. This is because each
query intersects multiple leaf nodes in their Step II of query
processing, and cache miss is more common in the CPU as
the processed data gets bigger. The Point search query, on
contrary, just intersects with one leaf node thus P-CPU is
more efficient. In addition, P-CPU follows the same design
as G-PICS, therefore, fewer queries share the same leaf nodes
data lists. Consequently, reading leaf nodes data lists becomes
more costly in P-CPU comparing to G-PICS and M-STIG that
take advantage of high bandwidth of GPU global memory. By
looking at the total time speedup, again, it roughly follows
the trends of Step II. In summary, G-PICS is still a few times
more efficient than all the baselines.

b) Performance with the GeoLife Dataset:: We further
evaluate the performance of G-PICS spatial query processing
over GeoLife [44], which is a real-world trajectory dataset
containing a total of 24.9M 2D coordinates. The speedup of
G-PICS in spatial query processing using this dataset over the
same baselines is shown in Figure 18. The results are very
similar as those seen in Figure 14, with a speedup of G-PICS
increases with concurrency level and reaches double-digit in
processing all four types of queries. The only experiment that
shows a different trend is for the kNN queries: the speedup
increases more dramatically as compared to their counterparts
in Figure 14, and reaching a higher value in the range of 20X
to 40X. Since GeoLife dataset holds the trajectory points for
trips, finding closer objects is much faster comparing to the
other dataset.

c) Performance under low concurrency: Although G-
PICS is designed for query processing systems with high
query arrival rate, we still run experiments to evaluate the
performance of G-PICS under low concurrency. Such results
with the 16.5M-point dataset are shown in Figure 16. In Step
I, the logarithmic tree search speedup in G-PICS over the
brute-force leaf search in M-STIG is more remarkable under
lower concurrency comparing to higher concurrency. Global
accesses to the GPU global memory are cached in L2 cache
inside the GPU. By increasing the number of queries, the hit

rate for reading leaf nodes data through the cache increases.
Therefore, this results in a slight improvement in brute-force
leaf search accessing time in Step I. Considering Step II
performance in G-PICS, if the number of registered queries
in a leaf node is small, the performance speedup achieved
using accessing leaf nodes’ data lists through shared memory
is not considerable – note that if there is one registered query
in a leaf node, reading leaf nodes’ data lists is done through
global memory. Therefore, G-PICS speedup in Step II over
M-STIG and M-GAT under low concurrency fluctuates based
on query distribution in leaf nodes. However, due to its highly
efficient Step I, G-PICS still outperforms M-STIG by at least
8X. On the other hand, having small number of threads, we
are not able to fully utilize the GPU resources while that is
not an issue for CPU code. Therefore, G-PICS Step I speedup
over P-CPU and M-GAT is small. For the same reason, in
Step II under very low concurrency, P-CPU performs better
than G-PICS. However, by increasing the number of registered
queries in each leaf node in Step II, the speedup of G-PICS
over P-CPU increases.

Low concurrency results for the 256M-point dataset are
shown in Figure 17. The effects of large data size on low
concurrency performance are similar to those on high concur-
rency. However, Step I speedup becomes much bigger over
M-STIG. Such speedup reaches to 10,000X for point search
as each query at most intersects with one leaf node, and for
each query a large number of leaf nodes should be searched
in brute force manner. For Step II, the speedup is much higher
over P-CPU, and is kept above 1X over M-STIG. Due to the
great achieved speedup in Step I of point search, the total
speedup for this query over M-STIG is much more significant
(144-467X) comparing to the other queries and those under the
16.5M dataset (shown in Fig. 16). As data becomes large but
the concurrency is low, the effects of Step II on total running
time becomes much smaller therefore the total time speedup
is only determined by that of Step I.

C. Tree Update Performance in G-PICS

To evaluate the performance of the tree update procedure,
we change the positions of a certain percentage of the input
data points to new randomly-generated positions. Then, the
tree is updated accordingly. To measure the performance,
the percent of the input data point that moved out from
their last-known leaf nodes is captured. Then, the time it
takes to update the tree is compared with that of building
the tree from scratch using G-PICS tree construction code
(we refer to it as Scratch hereafter). Figure 19 shows the
speedup of the tree update algorithm using paging and non-
paging approaches over Scratch. For both approaches, G-PICS
outperforms Scratch. As we expected, with the increase of the
intensity of data movement, the update performance decreases.
Furthermore, the paging approach outperforms non-paging
approach remarkably, even under very high level of movement.
The experimental results are in compliance with update cost
in Equation 3, which confirms the dominating cost in paging
approach is proportional to the intensity of data movement.
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Fig. 18: Speedup (Top row: Step I only; Middle: Step II only; Bottom: Total time) of G-PICS over M-STIG, M-GAT, and P-CPU in
processing 1,000 to 4,000,000 concurrent queries against the GeoLife dataset
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Fig. 19: G-PICS update performance over Scratch
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Fig. 20: Speedup of G-PICS tree construction using GM over using
CM and Nvidia code in a Multi-GPU system

D. G-PICS Performance in a Multi-GPU Environment

We evaluate our multi-GPU algorithms with a focus on
performance scalability. For that purpose, we use a dataset
that can fit into one GPU’s global memory but distribute it to
multiple GPUs. The experiments are conducted by using one
to four GPUs.

1) Tree Construction: As discussed in Section III, we can
build the tree in G-PICS via a GPU master (GM) or a
CPU master (CM) approach. As expected, the GM approach
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Fig. 21: G-PICS Multi-GPU search query processing Speedup over
single GPU
shows much better performance than CM (Figure 20, left).
GM shows at least a 2.5X speedup over CM under all
numbers of GPUs. Figure 20 (right) shows the performance
of GM over the Nvidia single GPU tree construction code
[31]. With increasing sizes of input data, the performance
speedup over Nvidia becomes more remarkable. In addition,
the performance of G-PICS increases with more GPUs used,
indicating good scalability.

2) Spatial Query Processing Performance: Results related
to the performance of spatial query processing algorithms
under multiple GPUs are shown in Figure 21, in which we
plot the speedup of the algorithm running on 2 - 4 GPUs
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Fig. 22: G-PICS Multi-GPU update performance over Scratch

over that of a single GPU. In such experiments, we gain per-
formance by distributing the computational workload to more
GPUs while at the same time introducing data transmission
overhead. A speedup higher than 1X is achieved when the
gain overshadows the overhead. When two GPUs are used,
the speedup is close to 1.5X for within-distance, kNNs, and
range search queries while it goes slightly below 1X for point
search. This is because the demand for in-core computation for
the point search is low thus the communication cost dominates.
However, when three or four GPUs are used, the performance
increases significantly for all four query types. With four
GPUs, the speedup reached 3.4X for within-distance, 3.5X
for kNNs, 3.3X for range search, showing an (almost) linear
scalability. For reasons mentioned above, the largest speedup
for point search is only about 2X. In all query types, the
speedup increases slightly or stays the same with the increase
of the number of input queries.

3) Tree Update Performance: To measure the efficiency
of multi-GPU tree updates in G-PICS, both paging and non-
paging approaches are implemented and performance are eval-
uated against Scratch under the same set-up, e.g. tree update
performance under four GPUs is measured against Scratch
using four GPUs. According to Figure 22, the paging approach
outperforms the non-paging approach using Multi-GPU with a
similar trend as a single GPU. This is again in compliance with
the update cost in Equation (3). Due to high communication
cost among multiple GPUs, the multi-GPU update procedure
is less scalable than query processing algorithms.

4) Scalability to larger data: We also demonstrate that by
using multiple GPU cards, we are able to handle much larger
datasets. Figure 23 shows such experiments for processing two
million input queries in G-PICS using multiple GPU cards.
As mentioned in Section IV, query processing in G-PICS
using multiple GPU cards is done in three steps: (1) query
registering on the master GPU, (2) copying query lists from
the master GPU to other GPUs, and (3) leaf nodes’ data lists
processing and outputting the results on each GPU. Query
registering is done on the master GPU using logarithmic tree
search; therefore, by increasing the input dataset size, this
cost increases in a logarithmic manner. Since the number of
input queries is fixed, the cost of copying the query lists
from the master GPU to other GPUs using multiple CUDA
streams and direct GPU-To-GPU transfer does not change by
increasing the input data size. However, the fewer the number
of GPU cards, the higher the cost of transferring those lists
to each GPU. This is because each GPU holds more leaf
nodes’ data lists. Considering the cost of leaf nodes’ data
lists processing, in point search queries, this cost does not

increase a lot by increasing the input dataset – each query
just intersects with one leaf node. Therefore, query processing
time in processing point search queries follows a logarithmic
increase by increasing the input dataset size. However, in other
query processing types (range search, within-distance search,
and kNNs), the same query range is used for all datasets.
Therefore, increasing the input dataset size leads to increase in
the volume of data to be processed, and accordingly increase in
the output size for each query. Consequently, query processing
time in those queries follows a linear increase by increasing
the input dataset size. On the other hand, by adding more GPU
cards, query processing time decreases linearly. Therefore, by
adding more GPU cards, not only processing larger datasets is
possible, but also linear speedup in terms of query processing
performance is achieved. Thus, we can conclude that query
processing algorithms within G-PICS scale very well across
multiple GPU cards.

VII. CONCLUSIONS

In this paper, we advocate the adaptation of GPUs in
spatial query processing, especially in applications dealing
with concurrent queries over large input datasets. Existing
work in this topic show low work efficiency and cannot
make good use of GPU resources. To that end, we present a
GPU-based Parallel Spatial Data Indexing framework for high
performance spatial data management and concurrent query
processing. G-PICS provides new tree construction algorithms
on GPUs, which achieves a high level of parallelism and
shows a performance boost of up to 53X over the best-known
parallel GPU-based algorithms. Moreover, G-PICS introduces
a new batch query processing framework on GPUs to tackle
the low work efficiency and low resource utilization existing
in current one-query-at-a-time approaches. G-PICS supports
the processing of major spatial query processing, and shows a
great performance speedup over the best-known parallel CPU-
based and GPU spatial processing systems (up to 80X). In ad-
dition, G-PICS provides an efficient parallel update procedure
on GPUs to support dynamic datasets which outperforms the
tree construction from scratch by up to 16X. Furthermore, all
algorithms within G-PICS work in Multi-GPU environments to
support large datasets beyond the capacity of global memory.
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