
1

Dynamic Buffer Management in Massively Parallel
Systems: A Case on GPUs
Minh Pham∗, Hao Li∗, Yongke Yuan†, Chengcheng Mou∗,
Kandethody Ramachandran∗, Zichen Xu‡ and Yicheng Tu∗

∗Department of Computer Science and Engineering, University of South Florida
4202 E Fowler Ave., ENB 118, Tampa, FL, U.S.A.

{minhpham, haoli1, chengcheng, ram, tu}@mail.usf.edu
†School of Economics and Management, Beijing University of Technology

100 Pingleyuan, Chaoyang District, Beijing 100124, China
yyk@bjut.edu.cn

‡Jiaxing Yunbao Scientific Co. Ltd.
3339 Linggongtang Rd, Suite 379, Nanhu District, Jiaxing, Jiangsu, China

zichenxu@outlook.com

Abstract—Massively parallel systems, such as Graphics Pro-
cessing Units (GPUs), are becoming increasingly important in
today’s data-intensive computing environments. Due to the high
level of parallelism, there are unique challenges in developing
system software on massively parallel hardware to efficiently
support a large number of parallel threads. One such challenge
is designing a dynamic memory allocator whose task is to
allocate memory chunks to requesting threads at runtime. A
traditional design of a memory allocator involves maintaining
a global data structure, such as a list of free pages. However,
the centralized data structure can easily become a bottleneck
in a massively parallel system. The bottleneck still exists when
multiple queues are maintained, as done in state-of-the-art
GPU memory allocation solutions. In this paper, we present
a novel approach for designing dynamic memory allocation
without a centralized data structure. At runtime, the threads
follow a random search procedure to locate free pages. We
develop mathematical models to demonstrate that our methods
achieve asymptotically lower latency than the traditional queue-
based design. Extensive experiments show consistency to our
mathematical models and demonstrate that our solutions can
achieve up to two orders of magnitude improvement in latency
over the best-known existing solutions.

I. INTRODUCTION

Recent development in the semiconductor industry features
an increasing number of processing cores on a chip, resulting
in massively parallel computing capability. For example, the
latest CPU products encapsulate up to 64 cores in one chip
(e.g., AMD Ryzen 3990X) [1]. The co-processor world goes to
an extreme on that by integrating thousands of thin cores into
one processor, with a salient example being modern Graphics
Processing Units (GPUs).

GPUs have become an indispensable component in today’s
high-performance computing (HPC) systems and have shown
great value in many compute-intensive applications. In addi-
tion, there is also a strong movement of developing system
software on GPUs, such as database management systems.
[43], [54], [60], [62], [63] Dynamic memory allocation on
GPUs was first introduced about ten years ago by NVIDIA

and many other solutions have been proposed since then [59].
Many GPU-based applications benefit from dynamic memory
allocation such as graph analytics [11], [58], data analytics
[6], [51], and databases [5], [26].

There are unique challenges in developing system software
on massively parallel hardware, mostly imposed by the need
to support a large number of parallel threads efficiently and
the architectural complexity of the GPU hardware. Dynamic
memory allocators in particular face challenges such as thread
contention and synchronization overhead, and multiple studies
[59] have proposed solutions to address these challenges.
Similar to traditional memory allocators, such solutions utilize
a shared data structure to keep track of available memory
units [59]. For example, the current state-of-the-art solution,
Ouroboros [57] uses a combination of linked-lists, arrays, and
queues to reduce thread contention and memory fragmentation
and was shown to outperform previous solutions in a recent
comparative study [59]. Nevertheless, we show in section II
that thread contention, synchronization overhead, and memory
overhead are still problematic with Ouroboros in many use
cases. In this paper, we argue that dynamic memory allocators
demand a complete rethinking in their designs such that: (1)
global states are avoided and (2) the search for free memory
units is done through statistical processes.

GPUs are designed to be high-throughput systems – its
performance depends on running a large number of parallel
threads. A modern CPU could run tens of threads simultane-
ously while it is common to see tens of thousands of active
threads in a GPU. This demands us to take a second look at
the classic design of a system’s memory manager. Specifically,
traditional memory managers maintain a global state (e.g.,
head and tail of a queue) to keep track of available memory
units. The MALLOC and FREE operations have to access such
states in a protected manner. The protection can be done via
a software lock (e.g., mutex), with a latency at the hundred-
millisecond level on CPU-based systems. [18], [35] Hardware-
supported mechanisms called atomic operations are widely

2

used to relieve such a bottleneck. However, while used in
GPUs, this strategy still carries excessively high overhead. Al-
though fast, atomic operations have to be executed sequentially
in case of conflicts – the large number of concurrent threads
in GPUs leads to a long waiting queue in atomic access to
global states.

Fig. 1. Average latency in accessing a global variable via atomic operations
in different NVidia GPUs.

Figure 1 reports the average latency of performing an atomic
operation against one global 32-bit integer under varying num-
ber of concurrent (active) threads. Clearly, the average latency
per thread grows linearly with the number of concurrent
threads. Furthermore, the latency is much higher than that of
CPUs. For example, we run the same code on an AMD EPYC
7662 CPU, the latency is only 23 clock cycles for one thread
and 1,262 clock cycles for 128 threads.

In this paper, we present a high-performance memory man-
agement framework for massively parallel hardware such as
GPUs. Unlike traditional wisdom that involves global states,
this is a fundamentally new solution that carries very little
overhead in allocating memory and is almost free for releasing
memory. Instead of keeping any global states explicitly, we let
the threads statistically infer the locations of available memory
units via a random algorithm. We develop analytical models to
demonstrate that our method achieves asymptotically shorter
latency than the state-of-the-art GPU memory allocators.

We also report a number of techniques to further improve
the performance of the random method. Specifically, we
present the use of bitmap to reduce the number of expected
steps needed to find a free page by a factor of 32 or 64; a page
sharing mechanism among neighboring threads that essentially
minimizes resource waste due to code divergence. Based on
those two techniques, we also develop an algorithm for serving
requests of multiple pages. The performance advantage of
our solutions are fully supported by extensive experiments. In
particular, in a unit-test environment, our solution was found
to deliver a speedup of up to two orders of magnitude over
the best existing solutions. To the best of our knowledge,
our development is the first GPU solution that achieves 10-
microsecond level latency in memory allocation.

Paper Organization: The remainder of this paper is organized
as follows: Section II sketches the background that includes
the technical foundation, the current state-of-the-art, and its
drawbacks; Section III introduces our memory management
framework, key algorithms, and the mathematical reasoning
for our framework; Section IV presents advanced techniques

with improved performance; Section V shows results of ex-
perimental evaluation (unit-tests) in comparison with the state-
of-the-art; Section VII surveys more relevant literature; and
Section VIII concludes this paper.

II. BACKGROUND

A. GPU Architecture

Although our work can be applied to other parallel hard-
ware, we focus on NVidia GPUs and the associated CUDA
programming language. The architecture of a typical NVidia
GPU is shown in Figure 3. A GPU card has multiple Streaming
Multiprocessors (SM) that each consists of tens of processing
cores. Each SM also contains a register pool (e.g., 256 KB)
and shared memory similar to L1 cache up to 96KB, which
are both strictly accessible only by threads running on that
SM. Starting at Volta architecture [39], L1 cache and shared
memory are merged together to provide a larger cache for an
SM. On board the GPU there are a certain amount (e.g., 24GB
for Titan RTX) of global memory, which can be accessed in
parallel by cores in different SMs. The bandwidth of global
memory can be as high as 1555 GB/s [52]. Global memory
communicates with main computer (host) memory through
PCIe with a bandwidth up to 32 GB/s [36].

GPU

CoreCore Core Core

.

.

.

.

.

.

.

.

.

.

.

.

Shared Memory / L1 Cache

Register File (16,384 x 32 bit)

.

.

.

Memory
Global

Memory
Host

SMM

SMM

SMM

Fig. 2. Architecture of a modern NVidia GPU

In the CUDA programming model, a function executed in
parallel on the GPU is called a CUDA kernel. A kernel can
be launched with a large number (e.g., millions) of concurrent
threads. We call all the threads in the kernel a grid, and the grid
is further divided into multiple blocks. Each block contains the
same number of threads and a block will be bound to a single
SM for execution. Within a block, CUDA always schedules
32 threads in a group called warp together for SIMD-style
execution. Thus, a warp : (1) is the basic execution unit in
CUDA; and (2) code divergence affects performance due to
the SIMD execution model. Although we can launch threads in
the millions, there are limited resources on board therefore the
thread blocks will have to take turns to be executed. In other
words, the maximum parallelism is achieved once we launch
the kernel with thread counts beyond tens of thousands [34].

B. Dynamic Memory Allocation in CPU-based Systems

Memory allocators on CPUs have been well studied since
the 1960s [56]. Some of the most popular mechanisms include

3

Sequential Fits (a single linked-list of all free pages), Seggre-
gated Free Lists, Buddy Systems (multiple memory pools of
power-of-two in size), Indexed Fits (page information indexed
in arrays), and Bitmapped Fits (page information indexed in
bitmaps). Popular implementations are the GNU malloc [21]
and the Hoard malloc [8], both of which use multiple arenas
for concurrent processing.

C. Dynamic Memory Allocation in GPU-based Systems

In CUDA, we often pre-allocate a certain amount of global
memory (via CUDAMALLOC function) to serve all runtime
memory needs of a GPU kernel. However, memory consump-
tion is unknown beforehand in many applications. This renders
either over-allocation or terminating the kernel due to lack of
memory. The typical approach [27] to deal with this problem
is to run the task twice: the first run is only for calculating
the output size, then the output memory can be precisely allo-
cated, and the second run will finish the task. This obviously
carries unnecessary overhead. Thus, a major challenge on GPU
systems is to dynamically allocate device memory for output
results without interrupting kernel execution. In 2009, NVidia
released a dynamic memory allocator for CUDA [40]. That
started a series of efforts on this topic, including XMalloc
(2010) [28], ScatterAlloc (2012) [48], FDGMalloc (2013) [55],
HAlloc (2014) [3], Reg-Eff (2015) [53], DynaSOAr (2019)
[47], and Ouroboros (2020) [57]. A recent comparative study
[59] showed that Ouroboros outperformed all aforementioned
methods in both allocation performance and space efficiency
and thus can be considered the state-of-the-art.

Fig. 3. Ouroboros Design: memory chunks are used to extend virtualized
queues upon allocation requests. Multiple queues are maintained, each serving
requests of different sizes

Similar to the Buddy Systems mechanism on CPU imple-
mentations, Ouroboros divides the managed memory region
into multiple queues, each serving a page size twice as large as
that of a previous queue. Instead of pre-allocating memory for
the queues, the concept of Virtualized Queues was introduced.
The main idea is that queues are dynamically stored on pages
in the pool and a new large page (chunk) is only allocated to
a queue when it actually needs more space. In this design, the
authors avoided pre-allocating memory for all the queues.

As a queue-based design, Ouroboros suffers from the long
latency in accessing queue states concurrently by using the
bulk semaphore described in [20]. Furthermore, Ouroboros’
design creates significant memory overhead when request sizes
are not close to and lower than the pre-determined sizes and
significant latency when there are many requests of similar
sizes. Figure 4 illustrate these issues. In this experiment, we
ran 5 programs with Ouroboros: (1) each thread allocates then
frees 4096B, (2) each thread allocates 4096B, (3) each thread
allocates 4100B, (4) each thread allocates 8192B, and (5) each
thread allocates varying sizes. We ran each program 100 times
on varying number of threads and calculate the average kernel
time.

Fig. 4. Ouroboros’ Performance under the five scenarios

Scenario (1) has the same setup as in Figure 9 in [59]
and our result is consistent with those presented. In this
setup, the first iteration takes a significantly long time to
allocate new pages for the queues, but after the free operation,
the freed pages are put into the populated queue and the
second iteration takes no time to get the free pages from
the queue. This situation is repeated for the remaining 98
iterations and makes the average kernel time artificially low.
In Scenario (2), we only performed allocation without freeing
to force Ouroboros to keep extending its virtualized queues.
As a result, average kernel time increased by up to 67 times
over Scenario (1). Furthermore, when profiling the program
with NVIDIA’s Visual Profiler, we found that allocating new
pages for the queues makes the kernel achieve only 8%
warp-efficiency, which is clearly unacceptable. Scenario (3)
increases the request size by only 4B and sees the average
kernel time double. Scenario (4) has the request size of 8192B
but virtually the same average kernel time as in Scenario (3).
This proves that the 4100B request size is put in the 8192B
queue and wasted 50% of the allocated space. The varying
request size in Scenario (5) seems to amplify these problems.

III. PARALLEL MEMORY MANAGEMENT FRAMEWORK

In this section, we present an efficient memory manage-
ment framework for GPUs. This section is divided into three
subsections.

A. Core Idea: Search for free pages by a random process

First, we divide the main memory on GPU into pages of
equal size. In the previous studies on CPUs and GPUs, mutex

4

Threads

Buffer Pool

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

1 2 3 4 5 6 7

Fig. 5. Demonstration of the RW-based page request algorithm. The path
visited by the same thread is colored the same. Blue pages are free, red pages
are occupied.

locks and queues are utilized to avoid Write After Write.
A small number of queues and mutex locks can become a
bottleneck in a GPU system when tens of thousands of threads
make a request at the same time. We need a better design to
fully release the parallel computing power of GPUs. To that
end, we propose a Random Walk (RW) algorithm that does
not depend on any global state to manage page allocation and
recycling. Instead of using a few mutex locks or queues on
global memory for the entire system, each page will have its
own mutex lock, i.e., once the used flag in a page is set, it
is considered not available. In requesting a page, each thread
will generate a random page ID. If the corresponding page is
free, the thread will get the page. Otherwise, the thread will
generate a new page IDs till it finds one free page. The main
idea is: we let all threads act independently and therefore there
is no need to wait in a queue for accessing a shared state.
This releases the parallel computing power of the GPU to
the greatest extent. Figure 5 shows an illustrative example of
how seven parallel threads get their free pages. Here the blue
squares represent free pages, and red ones represent occupied
pages. Each thread essentially repetitively generates random
page IDs till it finds a free page.

Detailed implementation of the RW-based algorithm can be
found in Algorithm 1. Note that in this paper, all pseudo-code
is presented from the perspective of a single thread, reflect-
ing the single-program-multiple-data (SPMD) programming
model for modern GPUs.

Even with the drawback of queue-based ideas, the advantage
of RW is still counter-intuitive: the traditional queue-based
methods allow for O(1) time in finding a free page while it
could take many steps for RW. However, although the number
of steps to get a free page can be big for some threads (e.g.,
5 steps for thread 2), the average number of steps is highly
controllable under most scenarios. Our analysis in Section
III-B will clearly show this.

Although there are no global variables, acquiring a free page
still needs an atomic operation (line 4 of Algorithm 1) because
two threads could try to grab the same free page at the same
time. For example, in Figure 5, threads 5 and 7 both request
page 8 in their first step. However, the atomic operation will
only grant access to one thread (e.g., thread 5) and the other
threads (e.g., thread 7) will continue its random walk. The
above is the only scenario in which two threads can conflict in

Algorithm 1: GETPAGE based on Random Walk
output: the ID of a free page

1: while True do
2: p ← random integer within [0, T)
3: if pages[p].used is false then
4: try to set pages[p].used to true
5: if Above is a success then
6: return p
7: end if
8: end if
9: end while

accessing protected data. Our analysis shows that this scenario
will happen with very low probability (Section III-B).

Another great advantage of our method is: the FREEPAGE
operation is almost free. Specifically, we only need to clear the
used bit of the corresponding page, without using any atomic
operations.

B. Performance Analysis

Now let us mathematically show how the Random Walk
(RW) design is better than the traditional LL-based methods.

1) Metrics for Performance Analysis: In general, latency
(of individual threads and all the threads) is an appropriate
metrics for evaluating the performance of memory manage-
ment mechanisms. However, the running time of a CUDA
program is affected by many factors, as show in our previous
work [34]. Instead, we propose the following two metrics:

1. Per-Thread Average Steps (TAS): the average number
of steps taken to find a free page for a thread. In
Algorithm 1, this is essentially the average number of
iterations executed for the while loop;

2. Per-Warp Average Steps (WAS): the average of the
maximum number of steps taken among all 32 threads
within a warp.

Both metrics are directly correlated to latency. While WAS
has a stronger correlation with latency than TAS, we achieve
more rigorous analysis of the latter. In CUDA, the basic unit of
execution is a warp – a group of 32 threads that are scheduled
and executed simultaneously by a streaming multiprocessor.
The entire warp will hold the computing resources until all
threads in it exited. In other words, the latency of a warp is the
maximum latency among all 32 threads in the warp. Without
detailed knowledge of the CUDA runtime engine, it is non-
trivial to develop an accurate model of the running time from
the steps of each thread takes. Our previous work [34] shows
that, by measuring the average steps a thread takes, we can
say the running time is roughly a linear function of per-thread
latency. We verified the effectiveness of the two metrics via a
large number of experimental runs (details skipped here due
to page limit). The results show that the correlation coefficient
between TAS and total running time is 0.9046, and that for
WAS is 0.962. Following the techniques described in [64], we
found that the confidence interval for the difference between
the two correlation coefficients is (0.0387, 0.1047). This shows
that WAS is a better indicator of total running time.

5

In the remainder of this paper, we use the following nota-
tions in our mathematical analysis :

• For any warp, let Xi(0 ≤ i ≤ 31) be the random variable
representing the number of steps taken until finding a free
page. TAS is the expected value of Xi, denoted as E(Xi);

• Let Y = max(Xi) be the max number of steps taken by
a thread to find a free page within a warp. WAS is then
the expected value of Y , denoted as E(Yi);

• T is the total number of buffer pages;
• A is the number of available buffer pages;
• N is the total number of concurrent threads.

2) Performance of Queue-Based Solutions: To get started,
we can first show performance of GETPAGE and FREEPAGE
in a queue-based solution. While one thread takes one step to
modify the protected data structure, other threads have to stall
for one step. Since N threads request to modify the protected
data structure at the same time, the processing queue would
have the length of N . We assume that a random thread would
have a random position on the processing queue. Then, Xi is
uniformly distributed on [1, N]. Therefore, TAS is:

E(Xi) =
N + 1

2
(1)

In order to find E(Y), we first find the cumulative distri-
bution function of Y :

P (Y ≤ y) = P (X0 ≤ y,X1 ≤ y, ..., X31 ≤ y)
= P (X0 ≤ y) · P (X1 ≤ y) · ... · P (X31 ≤ y)

=
(y
N

)32

Then the expectation of Y is:

E(Y) =

N∑
k=1

kP (Y = k)

=

N∑
k=1

k(P (Yj > k − 1)− P (Yj > k))

=

N∑
k=1

kP (Yj > k − 1)−
N∑

k=1

kP (Yj > k)

=

N∑
k=1

(k − 1)P (Yj > k − 1) +

N∑
k=1

P (Yj > k − 1)−

N∑
k=1

kP (Yj > k)

=

N∑
k=0

kP (Yj > k) +

N∑
k=1

P (Yj > k − 1)−

N∑
k=1

kP (Yj > k)

= 0P (Yj > 0) +

N∑
k=1

P (Yj > k − 1)

=

N∑
k=1

P (Yj > k − 1)

=

N∑
k=1

(1− P (Y ≤ k − 1))

=

N∑
k=0

(1− P (Y ≤ k))

=

N∑
k=0

(1− (
k

N
)32) = N −

N∑
k=0

k32

N32

This can be approximated by the Faulhaber’s [31] formula
as:

E(Y) = N −
N33

33 + N32

2 + 8N31

3 − 124N29

3 + ...

N32

= N − N

33
+

1

2
+

8

3N
− 124

3N2
+ ... ≈ 32

33
N (2)

Both metrics are linear to N. This is consistent with the
results shown in Figure 1. Maintaining multiple queues will
not wipe out the issue, it is easy to show that both TAS and
WAS are still linearly related to N .

3) Analysis of TAS: The process of acquiring a free page
by N parallel threads can be viewed as N parallel series
of Bernoulli trials. If there is only one thread requesting a
page, its Bernoulli trials have a constant probability of success.
When there are multiple threads, a thread’s Bernoulli trials will
have a decreasing probability of success over time.

To simplify the discussion, we treat the N series of
Bernoulli trials as if they are performed sequentially, i.e.,
one only starts after another has finished, and still achieve
the same results as the parallel process. This treatment is safe

6

because of two reasons. First, two parallel threads can totally
be performed sequentially if they do not cross path. Second,
if two threads cross path, the outcome should still be the same
as in the sequential case. For example, in Figure 5, thread 5
and thread 7 cross path at page 8, and the outcome is the same
as if thread 7 starts executing after thread 5. Furthermore, we
shall prove that the chance of two threads’ visiting a free page
at the same time is rare.

Before the first thread executes, there are A free pages out of
the total T pages. Therefore, the number of steps that the first
thread takes until finding a free page, X0, follows a geometric
distribution with p = A/T . Therefore,

E(X0) = 1/p = T/A

After the first thread finishes and before the second thread
executes, there are only A − 1 pages free. Therefore, the
number of steps taken until finding a free page, X1, follows
a geometric distribution with p = (A− 1)/T . Therefore,

E(X1) = 1/p = T/(A− 1)

Generalizing the above, the average number of steps taken
across all N threads is

E(Xi) =
1

N

N−1∑
j=0

T

A− j
=
T

N

N−1∑
j=0

1

A− j
=
T

N
(HA−HA−N)

where Hn =
∑n

k=1
1
k is the harmonic series.

We use the Euler-Mascheroni constant [10] to approximate
the harmonic series Hn ≈ γ + lnn. The expected average
number of steps is then approximated by

E(Xi) ≈ T

N
[(γ + lnA)− (γ + ln(A−N))]

=
T

N
ln

(
A

A−N

)
(3)

Unlike the queue-based solution with latency linear to N
(Eqs. (1) and (2)), Eq. (3) tells us that the value grows very
little with the increase of N . Specifically, under a wide range
of N values, the item ln(A

A−N) increases very slowly (in a
logarithmic manner), and the increase of E(Xi) will be further
offset by the inverse of N . The only situation that could lead
to a high number of steps is when A ≈ N , i.e., when there
are barely enough pages available for all the threads.

Eq. (3) has a linear growth with the increase of T , but in
practice, a larger T value also leads to an increase in A, which
would offset the growth by decreasing the logarithmic term.

The above analysis can be verified in Figure 6(a) where
we plot the value of formula (5) under different A and N
values with T = 1M . We chose five different A values ,
which correspond to 50%, 10%, 1%, 0.7%, and 0.5% of total
pages T . Note that the case of 0.5% is an extreme scenario –
when N = 5, 000, there is only one page available for each
thread – yet the E(Xi) values we calculated are still much
lower than that of the queue-based method.

Independence Among Threads: In the above analysis, we
made an implicit assumption that all the threads conduct the
random walk independently, i.e., their paths do not cross.
However, it is possible that multiple threads probe one free

Fig. 6. Change of TAS (a) and WAS (b) values under different N and A values
of the RW-based algorithm in comparison to that of Queue-based solution

page and try to atomically acquire it at the same time. Now
we show that the number of such collisions is extremely small.

This situation is analogous to the well-studied Birthday
Paradox problem: we have T birthdays (pages) and N people
(threads). In particular, the expected number of collisions is
N(N−1)

2T (see Eq. (2) in [44]). Here by “collision” we refer to
two threads’ getting the same p value (line 2 of Algorithm
1) at the same time. This number should be small in any
reasonable setup: with tens of GBs of global memory and
thousand-level parallelism in a modern GPU, we can safely
assume N << T . For example, with 1 million total pages and
5,000 concurrent threads, the expected number of collisions is
only 12.5. Furthermore, performance penalty due to atomic
operations exists only when the p-th page is free (i.e., line 4
of Algorithm 1). Therefore, the expected number of collisions
is further bounded by

N(N − 1)

2T
× A

T

4) Analysis of WAS: Deriving a closed-form for E(Y)
is difficult, but we can find an upper bound of E(Y) as
follows. We observe that during the process of N threads’
each getting a page, the probability of finding a free page
at any moment in the process is at least A−N

T . The reason
is that A is in the [A − N,A] range during the process.
Therefore, E(Xi) is upper bounded by E(X ′i) where X ′i
follows a Geometric distribution with probability p = A−N

T .
With that, the cumulative distribution function of X ′i is:

P (X ′i ≤ x) = 1− (1− p)x = 1−
(
T −A+N

T

)x

Since E(Xi) is upper bounded by E(X ′i), E(Y) is also upper
bounded by E(Y ′) where Y ′ = max(X ′i). The cumulative
distribution function of Y ′ is:

P (Y ′ ≤ y) = P (X0 ≤ y,X1 ≤ y, ..., X31 ≤ y)
= P (X0 ≤ y) · P (X1 ≤ y) · ... · P (X31 ≤ y)

=

(
1−

(
T −A+N

T

)y)32

7

Similar to the way we derive Eq. (2), the expectation of Y ′

is:

E(Y ′) =

∞∑
k=1

kP (Y = k)

=

∞∑
k=1

k(P (Y ′ > k − 1)− P (Y ′ > k))

=

∞∑
k=1

kP (Y ′j > k − 1)−
∞∑
k=1

kP (Y ′ > k)

=

∞∑
k=1

(k − 1)P (Y ′ > k − 1) +

∞∑
k=1

P (Y ′ > k − 1)−

∞∑
k=1

kP (Y ′ > k)

=

∞∑
k=0

kP (Y ′ > k) +

∞∑
k=1

P (Y ′ > k − 1)−

∞∑
k=1

kP (Y ′ > k)

= 0P (Y ′ > 0) +

∞∑
k=1

P (Y ′ > k − 1)

=

∞∑
k=1

P (Y ′ > k − 1)

=

∞∑
k=1

(1− P (Y ′ ≤ k − 1))

=

∞∑
k=0

(1− P (Y ′ ≤ k))

=

∞∑
k=0

[
1−

(
1−

(
T −A+N

T

)k)32]
Therefore, an upper bound of WAS E(Y) is

E(Y) <

∞∑
k=0

[
1−

(
1−

(
T −A+N

T

)k)32]
(4)

In Figure 6(b), we plot the calculated values of the RHS
of Eq. (4) with T = 1M . Obviously, this bound is larger
than E(Xi) (Figure 6(a)) under the same parameters. Same as
E(Xi), the bound of E(Y) is still significantly smaller than
the LL-based latency, even under small A/T values such as
0.7%. For the extreme case of A/T = 0.5%, we start to see
the bound climb higher than the E(Xi) value of the queue-
based method. This can be viewed as a drawback of the RW
method, and we will address that in Section IV-B.

IV. ADVANCED TECHNIQUES

The basic RW algorithm can be extended in several di-
rections. First, the memory allocation performance of RW
deteriorates when the the percentage of free pages is small.
This is caused by the large TAS values under a small A/T
ratio, and worsened by the gap between TAS and WAS
as a result of code divergence. In this section, we present
two advanced techniques that address the above two issues

(Sections IV-A and IV-B). Furthermore, such design allows
efficient implementation of functions that request memory of
an arbitrary size (Section IV-C).

A. A Bitmap of Used Bits

In each step of GETPAGE in the basic RW design, a thread
visits one page at a time,. As a result, it could take many
steps to find a free page, especially under a low A/T ratio.
To remedy that, we use a Bitmap to store all pages’ used
bits in consecutive (global) memory space. We can utilize
a GPU’s high memory bandwidth and in-core computing
power to achieve extremely efficient scanning of the bitmap
to locate free pages. For example, the Titan V has global
memory bandwidth of 650+GBps, and 3072-bit memory bus.
Meanwhile, the CUDA API provides a rich set of hardware-
supported bit-operating functions. In practice, the bitmap can
be implemented as an array of 32-bit or 64-bit integers (words)
so that we can visit a group of 32 or 64 pages in a single
read. Finding a free page now reduces to finding a word
from the bitmap that has at least one unset bit. Such an
algorithm (named RW-BM) can be easily implemented by
slightly modifying Algorithm 1, as presented in Algorithm 2.
The main benefit of RW-BM is much better performance over
RW, as shown in the following analysis.

Algorithm 2: GETPAGE based on RW-BM
output: the ID of a free page

1: while True do
2: p ← random integer within [0, T/w)
3: r ← Atomically set LockMap[p] to 1
4: P ← (r == 1)? 0xffffffff : BitMap[p]
5: f ← ffs(P)
6: set f th bit in BitMap[p] to 1
7: return p*w+f-1
8: end while

1) Performance of RW-BM: When there are A pages avail-
able, and we read w bits at a time, the probability of finding
a group with at least a free page is 1 − (T−AT)w. Therefore,
the expected number of steps for the first thread to find a free
page is 1

1−(T−A
T)w

. Following the same logic in deriving Eq.
(3), TAS becomes:

E(Xi) =
1

N

N−1∑
j=0

1

1− (T−A+j
T)w

(5)

Similar to the way we derived Eq. (4), we aim to find an
upper bound of WAS. E(Xi) is upper bounded by E(X ′i)
where X ′i follows a Geometric distribution with probability
1− (T−A+N

T)w. The upper bound of WAS becomes

E(Y) <

∞∑
k=0

[
1−

(
1−

(
T −A+N

T

)wk)32]
(6)

Comparing to Eq. (4), the new bound just added a factor
w to the power of the term T−A+N

T . The following theorem
shows the difference between these two bounds.

8

Theorem 1. Denote the upper bound of E(Y) for RW-BM as
V ′, and that for the basic RW algorithm as V , we have

lim
A→N

V ′ =
V

w
+
w − 1

2w

Proof. According to the Euler-Maclaurin formula [2]:

V ′ =

∞∑
k=0

f(k) =

∞∑
k=0

[
1−

(
1−

(
T −A+N

T

)wk)32]
≈
∫ ∞
k=0

f(k)dk +
f(0) + f(∞)

2

As N → A, f(0)→ 1 and f(∞)→ 0. Therefore,

lim
A→N

V ′ =
1

2
+

∫ ∞
k=0

[
1−

(
1−

(
T −A+N

T

)wk)32]
dk

=
1

2
+

1

w

∫ ∞
k=0

[
1−

(
1−

(
T −A+N

T

)wk)32]
dwk

=
1

2
+

1

w

∫ ∞
k=0

[
1−

(
1−

(
T −A+N

T

)k)32]
=

1

2
+

1

w

∞∑
k=0

[
1−

(
1−

(
T −A+N

T

)k)32

−1

2
]

=
w − 1

2w
+
V

w

Theorem 2. Denote the TAS E(x) for RW-BM as U ′, and
that for the basic RW algorithm as U , we have

lim
A→N

U ′ =
U

w
+
w − 1

2w

Proof. Proof is similar to the proof of Theorem 1.
The above theorems are encouraging in that TAS and the

WAS bound decreases by a factor up to w, i.e., 32/64 times as
small if we read a 32/64-bit word at a time from the bitmap.
More important, the advantage of RW-BM is the highest when
AN , which is an extreme case of low free page availability.

For each word in the used bitmap, we introduce a lock bit
and store in another bitmap called LockMap. This LockMap
is for the implementation of low-cost locks (Section IV-B).

RW-BM is memory efficient: a one-bit overhead is negligi-
ble even for page sizes as small as tens of bytes, and the total
size of the LockMap is even smaller.

B. Collaborative Random Walk Algorithm

As mentioned earlier, the basic RW design suffers from the
large difference in the number of steps for threads in a warp
to locate a free page. Our idea to remedy that is to have the
threads in the same warp work cooperatively – threads that
found multiple pages from the bitmap will share the pages to
others that did not find anything. This can effectively reduce
the longest steps of RW by the threads. The algorithm runs
at two steps: (1) the threads work together to find enough
free pages to serve all GETPAGE requests of the entire warp;
(2) the identified free pages are assigned to individual threads
according to their needs. All threads terminate at the end of
step (2), thus divergence is largely eliminated. As a result, we
will have the same TAS and WAS values.

1 3 4 5

P4, P5 P6P1, P2, P3

3 2 0 1 0f

0 0 3 5 5 6s

P1 P4 − P6 −b

1 − − − 4t’

P1 − − − P6B

− 1 4 − − −s

2

−

0

0

2

− − − −b

− − − − −t’

P1 P2 P4 P5 P6B P3

P3

1

−

− P2 P5 − − −b

− 1 − − 2 −t’

P1 P2 − P4 P5 P6B

− 2 − − − −s

t

Pages Found

P4

Fig. 7. Step-by-step (from top to bottom) changes of values of key variables
in 6 threads running the CoRW algorithm

Efficient implementation of the above idea is non-trivial.
The main challenge comes from the needs to keep track of
the found pages and distribute them to requesting threads in a
parallel way. The SIMD nature of warp execution also requires
minimization of code divergence. We design a Collaborative
Random Walk (CoRW) algorithm by taking advantage of
CUDA shuffle instructions that allow access of data stored
in registers by all threads in a warp. The design of CoRW
is sketched in Algorithm 3. Note that we use many CUDA
intrinsic function names in the pseudocode to highlight im-
plementation details, and we will explain what they compute
in the following text.

We first get a 32-bit string containing all threads that
participate in this process (line 2), from which we also obtain
the total number of pages requested (i.e., total number of active
threads) in this warp (line 3). After that we start finding and
allocating pages. First, each thread reads a random word of the
bitmap (line 6) denoted as BitMap[p], of which the number of
unset bits (free pages) is stored in a local variable f (line 9).
Note the use of LockMap here: we first try to set the value of
LockMap[p] to 1, this essentially locks the word BitMap[p]
and is done via a single atomic operation (line 7). A key
innovation here is: if the word was already locked by other
threads (when r = 1), we cannot use the word as a source
of free pages. Instead of idling, it will return a word with all
bits set, and continue the rest of the loop body acting as a
consumer of free pages.

We then conduct an exclusive prefix summation of all f
values and store the results in s (line 10). Finally, each thread
will assign the pages it found to other threads one by one,
starting from position (thread ID) s. Specifically, we use a
variable b to hold the current page to be assigned (line 12).
Following that, we need to ship b to the target thread s. This
is tricky in that the CUDA shuffle instructions only allow a
thread to copy data from another thread. Our solution is to
pass the contributor’s lane ID to the receiver’s t′ variable (line
13). Finally, the page ID in b can be copied and stored in
B (line 14). Figure 7 shows an illustrative example, in which
we have 6 threads requesting pages. Since threads 1, 2 and
4 found 6 pages altogether, we can serve all requests in one
round. Without CoRW, threads 0, 3, 5 will have to access the

9

bitmap again.
Our CoRW implementation is efficient because all data

(other than Bitmap[p]) are defined as local variables and
thus stored in registers. Furthermore, all steps (except reading
BitMap[p]) are done via hardware-supported functions with
extremely low latency. For example, finding the number of
set bits (popc) in a word can be done in 2 clock cycles, and
finding the first unset bit (ffs) in 4 cycles. Such latency is in
sharp contrast to reading the bitmap from the global memory,
which requires a few hundred cycles [4], [19].

Algorithm 3: Collaborative GETPAGE within a warp
input : w: word length, typically 32 or 64
output: ID of a free page acquired

1: t ← lane ID (0-31) of this thread
2: m ← activemask()
3: totalNeeds ← popc(m)
4: totalFound ← 0
5: while totalFound < totalNeeds do
6: p ← random integer within [0, T/w)
7: r ← Atomically set LockMap[p] to 1
8: P ← (r == 1)? 0xffffffff : BitMap[p]
9: f ← w − popc(P)

10: s ← exclusive prefix sum of all the f values
11: for i : 0→ max(f)− 1 do
12: b← ID of the i-th page found by this thread
13: t′ ← popc(ballot sync(s == t))
14: B ← shfl sync(b, t′)
15: s← s+ 1
16: end for
17: set corresponding bits in BitMap[p]
18: if r == 0 then
19: LockMap[p] ← 0
20: end if
21: totalFound + = reduce add sync(i)
22: end while
23: return B

C. Finding Multiple Consecutive Pages

An important extension is to request consecutive memory
of an arbitrary size, much like the MALLOC function in C.
This is very useful for applications in which threads obtained
its memory consumption after the kernel is launched. In fact,
our work on RW-BM and CoRW paved the way towards such
a procedure (which we name RW malloc). We still divide the
memory pool into small units of the same size and store the
used bits in a bitmap (we will discuss the choice of unit size
later). Thus, the problem of getting X bytes by RW malloc
reduces to getting n = dX/Se consecutive units where S is the
unit size. Following the RW design, threads scan the bitmap
in a parallel and random manner. Instead of a single unset bit,
we need to find n consecutive unset bits.

Our design of RW malloc follows the idea of CoRW.
However, instead of each thread’s reading a random word, all
(active) threads in a warp will read in consecutive words to

Region
BitMap

T0 T1 T2 T3

a

1

edcb

1643

BitMap
Region

T3T2T1T0

Finding free segments

start

length
K

Allocating segments

Fig. 8. An example of 4 threads running the RW malloc algorithm

form a large region (e.g., 2048 bits) of the bitmap. Then each
thread will scan a small part (e.g., one word) of the region to
find all consecutive unset bits (called free segments) in it. Free
segments running across two neighboring words will also be
connected. Critical information (e.g., starting position, length,
used or not) of all free segments are stored in a data structure
K. Finally, each thread will traverse K to find a free segment
that can serve its RW malloc request. A sketch of RW malloc
design is shown in Algorithm 4.

Due to the fast scanning of the bitmap, RW malloc inherits
the good performance of RW-BM, as multiple bits can be
visited at once. As compared to CoRW, the cost of RW malloc
is higher, as we cannot run all computation using intrinsic and
shuffle functions. However, since the main data K is stored
in shared memory, the overall performance is still orders of
magnitude higher than Ouroboros (Section V-B2).

In malloc-style allocations, in addition to latency, we also
need to consider utilization of memory. The size of the basic
memory unit, the page, is a key parameter that affects space
efficiency. As large pages may contain wasted space, we
prefer small page sizes. However, When S is too small, we
face the challenge of scanning large chunks of the bitmap,
leading to degraded RW malloc performance. Our solution is
to aggregate requests for small sizes within a warp and treat
the aggregated sizes as a single request. Once we have found
consecutive pages that fit the aggregated request, the allocated
space is then distributed to the original small request.

Limitation: Our RW malloc design practically set a cap on
the number of consecutive pages: n should be smaller than
the size of a bitmap region (e.g., 2048). Support of larger
allocations will be an interesting direction for future work.
However, we believe the current work has its value. With a
large number of threads on GPUs, the requested memory size
from each thread tends to be smaller than that in CPU systems.
Plus, the range of memory sizes supported in RW malloc sur-
passes that by Ouroboros, allowing a meaningful comparison
to the best current solution.

D. Clustered Random Walk

The basic setup provides a framework for us to implement
more advanced algorithms. To alleviate the fragmentation
problem and exploit the spatial property of the Bitmap, we
introduce a variation of RW called Clustered Random Walk

10

Algorithm 4: RW MALLOC

input : n, number of consecutive pages to find
input : w: word length, typically 32 or 64
output: the ID of the first free page

1: initialize array K in shared memory
2: t ← lane ID (0-31) of this thread
3: initialize totalNeeds and totalFound
4: while totalFound < totalNeeds do
5: if t == 0 then
6: p ← random integer within [0, T/w)
7: end if
8: P ← BitMap[p+t]
9: scan P to find all consecutive unset bits

10: concatenate last unset bit segment to the first one of
BitMap[p+t+1]

11: deposit all segments to K
12: synchronize threads in warp
13: for i : 0→ length of K do
14: if K[i].length >= n AND K[i].used == false then
15: Atomically set the bits of K[i] in BitMap
16: if Above is a success then
17: increment totalFound by 1
18: B ← K[i].start
19: end if
20: end if
21: end for
22: end while
23: return B

Fig. 9. Illustration of the CRW idea

(CRW). Intuitively, CRW is designed to distribute the free
pages into clusters of consecutive pages so that, if one page
was found free, its adjacent page(s) are likely to be free. A
visual demonstration is presented in Figure 9: all threads keep
drawing from their own free-page cluster. Threads 0, 1, and 3
still have free pages in their clusters, so they can quickly grab
one. Thread 2 runs out of free pages in its cluster and has to
perform a random walk to find a new cluster.

CRW using Bitmap is presented in Algorithm 5. We in-
troduce a thread-level local variable last free page, which
stores the ID of the last page obtained by that thread. With
that, the CRW algorithm simply stores the last page that each
thread has obtained and tries to return the adjacent page to
serve the next GETPAGE request. If the adjacent page is not
available, CRW calls the regular RW procedure to get a page.
Before returning a free page, we need to save the ID of the

newly-acquired page to last free page.
CRW has two advantages over RW. First, fragmentation is

reduced because used pages are clustered and free pages are
also clustered. Second, with a certain (high) probability we
can quickly get a page from last free page, thus saving the
time to continue the random walk, which is more expensive
than accessing last free page.

Algorithm 5: GETPAGE based on CRW
output: ID of a free page acquired

1: p = last free page + 1
2: i = p/32
3: j = p - i*32
4: if bit j on Bitmap[i] is 0 then
5: try to flip it to 1
6: if above is successful then
7: last free page = p
8: return p
9: end if

10: end if
11: p = getPageRandomWalk()
12: last free page = p
13: return p

1) Performance Analysis of CRW: During the lifetime of a
program that utilizes the CRW algorithm, acquired pages tend
to occupy consecutive space in the buffer pool. Therefore, at
any point, the buffer pool is divided into clusters of consecutive
occupied pages and consecutive free pages. This trend may
be broken with external fragmentation, i.e., irregular page-
freeing patterns that fragment a large cluster into many smaller
clusters. Analysis of CRW performance will be based on study
of spatial distribution of such clusters.

CRW can be implemented together with the Bitmap data
structure. However, to simplify the discussions in this section,
we ignore the effects on Bitmap on both CRW and RW. In
practice, the benefits of Bitmap are the same to both RW and
CRW.

2) Per-Thread Average Steps: Let X ′i be the random vari-
able that represents the number of steps taken until finding a
free page by using the CRW algorithm and Xi be that of the
RW algorithm. We can represent X ′i with Xi as:

X ′i =

{
1 with probability 1− p
1 +Xi with probability p

The two cases shown above represent the two branches in
Algorithm 5, lines 2-8 and lines 9-11, and p is the probability
that the page adjacent to the last free page is also free (i.e.,
branching into lines 9-11). It is easy to see that any moment
of X ′i is upper bounded by that of Xi. For example, the first
moment of X ′i is:

E(X ′i) = 1− p+ p(E(Xi) + 1) = 1 + p ∗ E(Xi)

according to the law of total expectation, and we have
E(X ′i) ≤ E(Xi) + 1. The equality is reached when p = 1.
Therefore, the key parameter for the analysis of E(X ′i) is p.

11

To formulate p, we need to introduce the concept of free-
page clusters. In a buffer pool of T pages, a cluster [a, b]
is a set of consecutive free pages, page a− 1 is occupied (or
a = 0), and page b+1 is also occupied (or b = T−1). Since the
algorithm tries to get consecutive pages by saving the last free
page that it obtained, a thread would keep drawing from one
cluster until that cluster is depleted, after which it performs
Random Walk to find a new cluster. Therefore, quantity p
is the same as the probability that a cluster is depleted in
the previous GETPAGE request, that is when a = b. We need
to mathematically characterize the system at two points in
time, the previous GETPAGE request and the current GETPAGE
request.

Let Mt−1 be the number of free-page clusters and a1,t−1,
a2,t−1, ..., aMt−1,t−1 be the (positive) sizes of the clusters
before the GETPAGE request at time t− 1. The sum of Mt−1
cluster sizes must be At−1, which is the total number of free
pages in the buffer pool at that moment:

a1,t−1 + a2,t−1 + ...+ aMt−1,t−1 = At−1

Similarly, before the current request:

a1,t + a2,t + ...+ aMt−1,t = At (7)

Note that in this , ai,t can be 0 and we do not update the
time index for Mt−1. The probability p = P (ai,t = 0) can be
calculated as follows.

p =
number of solutions to Eq. (7) where ai,t = 0

number of solutions to Eq. (7)

Eq. (7) is a simple linear Diophantine and its number
of solutions has been proven by using the stars-and-bars
representation [45] as follows. Suppose that there are At stars
and Mt−1 − 1 bars, an arrangement of the stars and bars is
equivalent to one solution of Eq. (7) where the number of stars
between two bars equals the value of one ai,t. For example,
let At = 10 be the number of stars and Mt−1 − 1 = 3 be the
number of bars. One possible arrangement of 10 stars and 3
bars is

∗| ∗ ∗|| ∗ ∗ ∗ ∗ ∗ ∗∗

This arrangement is equivalent to the solution a1,t = 1,
a2,t = 2, a3,t = 0, a4,t = 7 for Eq. (7) where At = 10 and
Mt−1 = 4. Note that there is no star between the second and
third bar, which is equivalent to a3,t = 0.

Following this logic, the total number of solutions to Eq.
(7) is the number of arrangements of At stars and Mt−1 − 1
bars, which is the number of ways to select Mt−1−1 positions
among At +Mt−1 − 1 positions to insert the bars (and thus
leave the remaining At position for the stars). The number
of ways to select Mt−1 − 1 positions among At +Mt−1 − 1
positions is: (

At

Mt−1

)
=

(At +Mt−1 − 1)!

(Mt−1 − 1)!At!

This is the total number of solutions to Eq. (7). Now we
find the number of solutions to Eq. (7) where one ai = 0.
Given one ai = 0, Eq. (7) becomes

a1,t + a2,t + ...+ aMt−1−1,t = At

Similar to the above, the total number of solutions to this
equation is (

At

Mt−1 − 1

)
=

(At +Mt−1 − 2)!

(Mt−1 − 2)!At!

Therefore, we have

p = P (ai,t = 0)

=
(At +Mt−1 − 2)!(Mt−1 − 1)!At!

(Mt−1 − 2)!At!(At +Mt−1 − 1)!

=
Mt−1 − 1

At +Mt−1 − 1

To simplify, we drop the time index:

p =
M − 1

A+M − 1
(8)

where A is the current number free pages and M is the number
of clusters before the previous GETPAGE request.

Following that, TAS is:

E(X ′i) = 1− p+ p(E(Xi) + 1)

= 1 +
M − 1

A+M − 1
× T

N
ln

(
A

A−N

)
(9)

When there are few large clusters, M → 1 and E(X ′i) → 1.
When there are many small clusters, M → T and E(X ′i)
approaches the E(Xi) value of the RW algorithm. Therefore,
under a circumstance where an irregular page-freeing pattern
breaks the space into many small clusters, we will see that the
performance of CRW converges to that of RW. This shows
that CRW is of significant intellectual and practical value as
it will always outperform RW.

In Figure 10, we plot the theoretical TAS values of the RW
(Eq. (3)) and CRW (Eq. (9)) algorithms under four scenarios
with different percentage of free pages. For each scenario, we
show the results of CRW using three different M values. In
all such cases, the TAS value of CRW is much smaller than
that of RW. Even under the situation of M = A (CRW3) and
0.5% free pages, RW is about twice as large as RW.

Fig. 10. Expected number of steps of CRW according to Eq. (9) under
different M values (CRW1: M = 0.01A, CRW2: M = 0.5A, CRW3: M = A)
and percentage of free pages in comparison to RW

12

3) Per-Warp Average Steps: Now we develop analysis of
CRW with the second metrics. The intra-warp max is Y ′i =
max(X ′0, X

′
1, ..., X

′
31). Since some X ′i are 1 and other X ′i =

Xi, Y ′i is the maximum of a number Q of random variable
Xi where Q ≤ 32:

Y ′i = max(X0, X1, ..., XQ)

The expectation of Y ′i , E(Y ′i), should be upper-bounded
by WAS of RW, E(Yi), because Yi is the maximum of 32
random variables Xi. Therefore, E(Y ′i) is also upper bounded
by E(Yi)’s upper bound, which is presented in (4). This means
that, with respect to the intra-warp max. steps, CRW is (upper)
bounded by RW. A closed-form estimate of E(Y ′i) is very
difficult to achieve analytically because Q itself is also a
random variable.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

In this section, we conduct experiments to evaluate the
performance of the RW-base algorithms. We perform four
sets of experiments to compare our methods with Ouroboros
in a unit-test setup. In all experiments, we configure both
Ouroboros and our systems to have a total of 10 GB in
memory pool and to serve the maximum request size of 8192B.
Each chunk in the Ouroboros system is 8192B large and
there are ten processing queues which process requests of
size 8192B, 4096B, 2048B, etc. We use the same Ouroboros
code and environment configurations as presented in [57] to
ensure a fair and meaningful comparison. On our side, we
evaluate three types of systems: basic Random Walk without
bitmap (RW), Random Walk with Bitmap (RW-BM), and
Collaborative Random Walk (CoRW). In RW-BM and CoRW,
we use 32-bit words for the Bitmap. We built all our code
under CUDA 11.4 and Linux Ubuntu 18.04 version. We
run all experiments in a workstation with an AMD Ryzen
Threadripper 1950X CPU, 128GB of DDR4 memory, and an
NVidia Titan V GPU. Unless specified otherwise, each data
point presented in all figures is the average of 100 experimental
runs with the same parameters.

Metrics: First, we measure the total running time of the
kernels in all experiments. In conformity with our analytical
work, our experiments also evaluate the following two metrics:
Per-Thread Average Steps (TAS) and Per-Warp Average Steps
(WAS). Since Ouroboros does not allow extraction of TAS
and WAS without a structural change, we implemented a
simple queue-based program to collect TAS and WAS data.
We implemented the queue on an array with a pointer to
the first element of the array. Threads need to use an atomic
operation to shift the first element pointer to obtain a page.
The number of steps in this implementation is measured based
on the position of the obtained page. For example, if a thread
obtains the fourth free page, we determine that it takes 4 steps
to obtain that page. The first three steps are stalls for some
other three threads to obtain the first three pages, and one
step for the mentioned thread to obtain the fourth page. The
number of steps in RW and CoRW kernels is measured by
the number of pages a thread has visited until it successfully

locks in a free page. TAS is measured by taking the average
of all step counts recorded. To calculate WAS, we first find
the maximum number of steps within each warp and then take
the average of these quantities among all warps.

B. Experimental Results

1) Performance of GETPAGE: First, we evaluate the per-
formance of the four programs in getting a single page.
Specifically, we develop a single GPU kernel whose only
task is to request a page from the memory buffer pool. The
equivalent in the Ouroboros system is a kernel that requests
256B for each thread because 256B is one of the page units.
We launch the kernel with various numbers of threads (i.e.,
changing the N value) and various numbers of free-page
percentage (i.e., changing the A value). The buffer pool has a
total of T=1M pages unless specified otherwise.

Figure 11 shows the three metrics measured from kernels
that call Ouroboros (simple queue in case of TAS and WAS),
RW, RW-BM, and CoRW. The simple queue was implemented
as described in subsection V-A. The four columns represent
scenarios with different free-page percentages. In each sce-
nario, we pre-set some pages as occupied so that the percent-
age of free pages before starting the kernels is 50%, 10%, 1%,
and 0.5%, respectively. Results from the first row shows that
our most advanced method CoRW outperforms Ouroboros by
more than an order of magnitude under most of the cases.
When there are less than 1% free pages, performance of our
methods start decreasing, but the CoRW still outperforms
Ouroboros by a big margin. Note that the 1% is a really
extreme case that is not expected to happen frequently in
applications – it means that after serving all the requests, there
are 0 pages left. Another observation is: the Ouroboros running
time increases with number of threads but our algorithm is
insensitive to that (except for the 0.5% free page case).

Results from the second and the third rows confirm the
validity of our theoretical results (i.e., Equations (3), (4), (5),
and (6)) First, the measured TAS values match the theoretical
results well. The theoretical upper bound of WAS matches
experimental results well even under 1% of free pages, in-
dicating the bounds are tight. The bound becomes loose as
the percentage of free page decreases to below 1% . Another
observation is that WAS is a better indication of the total
running time than TAS. Visually, the growth patterns of lines
in the 1st row of Figure 11 matches better with that on the
third row (WAS) than on the second row (TAS).

Figure 12 shows the ratio of RW over RW-BM in terms of
TAS and WAS. The smooth lines on the TAS plot is the ratio
of the numerical values of Eq. (3) over those of Eq. (5). Those
on the WAS plot are the ratio of the numerical values of Eq. (4)
over those of Eq. (6). As the free-page percentage decreases,
the ratio becomes bigger. When the percentage approaches
zero, both the theoretical ratios and the measured ratios are
very close to 32. This validates Theorem 1.

2) Performance of RW malloc: Second, we evaluate the
performance of our approach in allocating memory with vari-
ous sizes. Seven scenarios are tested: each thread requests 16B,
256B, 1024B, 4096B, 8192B, mix request sizes ranging from

13

Fig. 11. Performance of our unit-test kernel calling GETPAGE under different numbers of parallel threads and percentage of free pages. Displayed free
percentages are measured at the start of each kernel.

Fig. 12. Speedup of RW-BM over RW. Theoretical results are smooth lines
calculated by Eq. 3 and 5 for TAS and Eq. 4 and 6 for WAS.

4B to 8196B, and 4096B but immediately frees the allocated
space. The last scenario represents the same setting presented
in the survey paper [59]. In each scenario, we launch the kernel
with various numbers of threads and free-page percentage.
Since the largest request size that we need to support is 8192B,
we choose the page size of 256B (8192/32) to fit this maximum
size in the single word of the Bitmap.

Figure 13 presents the total kernel time of RW malloc
and Ouroboros in the seven scenarios. This figure shows
that RW malloc outperforms Ouroboros in allocating a wide
range of memory sizes. The improvement is up to 2 orders
of magnitude in the best cases where there are the most
number of parallel threads and most free memory units in the
system. The higher the concurrency is, the better RW malloc
performs than Ouroboros due to Ouroboros’ linear scaling.
RW malloc’s performance degrades as fewer memory units

are available. However, it is still much better than Ouroboros
in its worst scenario when there are almost no free pages
(note that logarithmic scale of Y-axis). The only case where
Ouroboros wins is when it immediately frees memory just
allocated. By this, Ouroboros hits a sweet spot - it does
not need to allocate new chunks nor extend the virtualized
queues. However, this is definitely an unrealistic scenario, as
buffers will normally be used before released. The difference
between RW malloc and Ouroboros in mixed-size allocation
is consistent throughout all size ranges, as demonstrated in
Figure 14.

For RW malloc, we also evaluated memory utilization. In
this experiment, we keep sending memory allocation requests
until a system reports an out-of-memory error. The memory
utilization rate is then calculated as the fraction between the
total allocated amount and the total amount of memory in
the system. This design is similar to the Out-Of-Memory
testcases in the survey paper [59]. We perform this experiment
with various unit sizes while maintaining the fairness between
Ouroboros and our system in terms of total memory and
maximum allocation size. For example, an Ouroboros’ chunk
size of 4096B is equivalent to the page size of 128B in
our system because both systems can support a maximum
allocation size of 4096B. Figure 15 presents the results of
the memory efficiency experiment. Both systems achieve very
good memory utilization rate when allocation sizes are some
power of two because these sizes fit perfectly into some
number of pages. This finding is consistent withthe Out-of-
Memory testcases in [59]. However, the CoRW/RW-BM sys-
tem significantly outperforms in other situations. The reason is
that our system allocates large memory chunks by aggregating

14

Fig. 13. Performance comparison between RW malloc and Ouroboros in allocating multiple pages at a time. From left to right: (1) allocate 16 bytes, (2)
allocate 256 bytes, (3) allocate 1024 bytes, (4) allocate 4096 bytes, (5) allocate 8192 bytes, (6) allocate mix sizes, (7) allocate 4096 bytes then free immediately.
Displayed free percentages are measured at the start of each kernel.

Fig. 14. Performance comparison between RW malloc and Ouroboros in
allocating mixed sizes.

small consecutive pages and thus has a finer granularity control
over the memory space. For example, to allocate 1050B, our
system rounds the size to 1280 (256*5) and allocates five
consecutive pages whereas Ouroboros has to round to 2048B
and allocates one page of that size.

VI. CASE STUDY

In this section, we report experimental results of GPU
programs with page acquisition needs served by our parallel
memory management APIs. As compared to unit-tests dis-
cussed in Section V, this gives us a approach to evaluate our
methods in real-world applications. In particular, we focus on
the join database operator implemented as part of a GPU-
based DBMS, in which a global dynamic memory pool is
maintained and shared by all GPU processes. The experimental
environment is the same as we described in Section V.

Join is arguably the most important relational operator.
Among the several types of join algorithms, we use a state-
of-art hash join designed for GPUs [46] as the foundation of
this case study. Based on the popular idea of radix hashing,
the algorithm includes three stages: partitioning input data,
building a hash table, and probing. We focus our discussions
on the probing stage because that is where our buffer manage-
ment APIs are needed (to allocate memory for output data).
After building histograms for hash values and reordering both
input tables in the first two stages, the probing will compare
tuples of the corresponding partitions of the two tables and

output one tuple whenever there is a match (Figure 16). We
modified the code from [46] such that, when a thread finds a
match, it will write the results to the current data page; when
the page is full, the thread will ask for another page by calling
GETPAGE.

We measured the end-to-end processing time of all stages
of the hash join code augmented by various GETPAGE im-
plementations: Ouroboros, RW, RW-BM, and CoRW. We also
include the original code used in [46] named Direct Output
Buffer (DO). The DO design assumes pages are never freed
therefore GETPAGE is done by simply incrementing a global
counter via atomic operations. DO is shown [46] to outperform
the double-computation solution by more than 25%.

We first run the code under different input table sizes from
16K to 10M tuples while fixing the total page number to
128M. By that, we achieve smaller percentage of free pages
with the increase of the data (table) size. Note that the data
size is roughly equal to the total number of threads.

According to Figure 17, by using Ouroboros, the join kernel
runs slower than others by a large margin.

The results show DO is slightly better than RW since
it only involves an atomicAdd operation. With the help of
bitmap implementation, our RW-BM and CoRW alogorithms
outperform DO in all cases and CoRW is the best among them
all.

In the second setup, we test different page sizes with
different algorithms. In order to explore the possibility of
different page size, we need a large enough buffer pool that
guarantees that the smallest number of pages (the largest page
size) can fulfill the total number of page requests. The data
size is fixed to 4M, and we allocate a total of 8GB space for
the buffer pool with all pages are free, the page size varies
from 32 bytes to 2KB. The results of choosing different page
sizes from 32 bytes to 2KB are shown in Figure 18. We do
not plot Ouroboros in time figure but we use it as the baseline
to show speedups of other algorithms.

Observing the results, we can see that Do is slightly better
than RW, RW-BM and CoRW outperforms DO, and CoRW is
the winner in all cases. We also notice that the performance
change of all the algorithms follow the same trend: the running
time decreases when page size increasing. But the reasons are
different. The processing time of DO decreases is because as

15

Fig. 15. Memory efficiency in four pairs of system settings: (1) Ouroboros 4096B chunk versus CoRW 128B page, (2) Ouroboros 8192B chunk versus CoRW
256B page, (3) Ouroboros 16384B chunk versus CoRW 512B page, and (4) Ouroboros 32768B chunk versus CoRW 1024B page

Partition R

Thread

Partition S

Writing Output

Matching Tuples

Page for Outputs

Page Link

Fig. 16. The Probing stage of GPU hash join

105 106 1070

10000

20000

30000

40000

50000

Pr
oc

es
sin

g
Ti

m
e

(m
s)

OuroBoros

105 106 107300
350
400
450
500
550
600
650
700 50% Free Pages

DO
RW
RW-BM
CoRW

105 106 107300
350
400
450
500
550
600
650
700 5% Free Pages

DO
RW
RW-BM
CoRW

Data Size

Fig. 17. Total running time of a GPU hash join program enhanced with
different buffer management mechanisms under different input table sizes

the page size increases, each thread will have more sufficient
space to output results, it will reduce the number of atomic
requests to get a page. While for RW-BM and CoRW, since
we measured the end-to-end time including memory allocation
and transferring time in the case study, the time and space of
using to allocate page maps (only related to total number of
pages) decreases that leads to the decline.

In summary, our page allocation mechanisms significantly

102 1030

200

400

600

800

1000

Pr
oc

es
sin

g
Ti

m
e

(m
s)

RW
DO
RW-BM
CoRW

102 1030

2

4

6

8

10

12

14

Sp
ee

du
p

RW
DO
RW-BM
CoRW

Page Size (byte)

Fig. 18. Total processing time (left) and speedup over Ouroboros (right) of
a GPU hash join program enhanced with RW, RW-BM, and CoRW under
different page sizes.

improved the state-of-art join code on GPUs. In comparison,
Ouroboros is not suitable for such use cases.

VII. RELATED WORK

Memory Management on GPUs: NVIDIA initially an-
nounced its dynamic memory allocator for GPUs in 2010. It
provides the usual malloc/free interface and can be called by
threads in a CUDA kernel. Unfortunately, very little informa-
tion is known about its internal design [59]. XMalloc [28] was
also introduced in 2010 and became the first non-proprietary
dynamic memory allocator for GPUs. Its main contribution is
the coalescing of allocation requests on the SIMD width for
faster queue processing. Allocations are served from a heap
that is segmented into blocks and bookeeping information is
stored in a linked-list. The linked-list is a major bottleneck
because a thread has to traverse through the list of memory
blocks when searching for a free one. ScatterAlloc [48] was
introduced in 2012 and addressed this bottleneck by scattering
the allocation requests across its memory regions. A hash
function is used to search for free regions; if the hash value
points to an allocated region, linear probing is used to find
the nearest free region. FDGMalloc [55] (2014) presents a
warp-level optimized approach that aggregates all requests in
a warp and chooses a leader thread to traverse through a
linked-list of free pages. Adinetz and Pleiter [3] proposed
Halloc in 2014; the main idea is to use a deterministic
hash function to traverse through memory chunks and to use
slab allocation to improve fragmentation. Vinkler and Havran
(2015) [53] proposed Register Efficient Memory Allocator
(RegEff). RegEff splits the bookeeping information into many
linked-lists. During allocation, a thread picks a linked-list and
traverse to find the first free chunk that is large enough for
the allocation. If the chunk is large enough according to a
maximum-fragmentation parameter, it is split into two chunks
during the allocation and the linked-list is updated.

Ourobors [57] (2020) is the latest development that intro-
duces the concept of virtualized queues. Similar to a traditional
memory allocator, Ouroboros divides its managed memory
region into chunks. Each chunk contains some metadata and a
number of smaller memory regions called pages. All chunks
have the same size and the size is fixed. Pages on the same
chunk also have the same size, but this size may differ across
chunks. The Ouroboros system cannot change the page size of
a chunk when the chunk is in used, but can reassign a different
page size to a chunk when it is completely free. The largest

16

page size is equal to the size of the chunk, i.e., the chunk only
has one page. Each chunk can have one of the three functional-
ities: ChunkIndex-chunk, PageIndex-chunk, and Queue-chunk.
ChunkIndex-chunks and PageIndex-chunks both hold pages
that can be allocated to programs; they only differ in the way
of managing the free operation. Queue-chunks, however, does
not hold memory regions that can be allocated to programs;
they act as a global state for holding information about free
pages/chunks and occupied pages/chunks. To reduce thread
contention and increase performance, the Ouroboros system
consists of multiple queues and each queue only handles pages
of the same size which is twice the page size of the next
smaller queue. For example, in a system where chunk size is
8192B and three queues are allowed, the three page sizes that
are managed by the three queues are 8192B (largest page size),
4196B, and 2048B. To address the issue of memory overhead
for managing the queues, the authors introduced Virtualized
Queues. The main idea of Virtualized Queues is that a new
chunk is only allocated to become a Queue-chunk when one of
the queues need more space and the physical memory address
of an element on a queue can be calculated from the virtualized
queue index. In this design of Virtualized Queues, the authors
avoided pre-allocating memory for all queues, which has a
large memory overhead because every queue needs to be
sufficiently large to be able to hold all the page indices in
the worst case. In a 2021 comparison study [59], Ouroboros
showed better performance and better fragmentation than all
the aforementioned allocators. Therefore, it can be considered
the state-of-the-art.

Memory Management on OS/DBMS: Memory manage-
ment on traditional (single-thread or low-concurrency) CPU-
based systems, let it be OS or DBMS, has been thoroughly
studied. On the OS side, Kilburn et al. [29] brought up the
idea of paging in Atlas system. Page sgementation was firstly
discussed by Dennisó et al. [15]. Then Corbató et al. [14]
supported page segmentation in their MULTICS system, which
is the first one who achieved that. On the DBMS side, early
work can be traced back to Stonebraker [49] that discussed
OS supports in the context of a DBMS. Effelsberg et al. [17]
discussed database buffer manager as a component of DBMS
and implemented it. Chou et al. [13] presented a DBMIN
algorithm to manage the buffer pool of an RDBMS. Chen et al.
[12] proposed a query execution feedback model to improve
DBMS buffer management. Brown et al. [9] introduced the
concept hit rate concavity and developed a goal-oriented buffer
allocation algorithm called Class Fencing.

Database Systems on GPUs: Besides individual data-
base tasks, much efforts are dedicated to database system
software design on GPUs. A queueing system that schedules
and merges CUDA kernels within one kernel to achieve task
parallelism was proposed by Guevara et al. [24]. To execute
a given query plan tree in post-order sequence, Yuan et al.
[62] developed a query engine that adopts a block-oriented
execution model on GPUs. Zhang et al. [63] proposed a
kernel-adapter GPU-based DBMS called OmniDB using a
hardware oblivious database kernel (qkernel) to maximize the
common functionality. To support concurrent query processing

on GPUs, Wu et al. [60] developed a compiler and runtime
infrastructure called RedFox to execute relational queries. Paul
et al. [43] implemented a novel pipelined query execution
engine called GPL for query co-processing on the GPU. Wang
et al. [54] proposed MultiQx-GPU to support concurrent query
processing by enabling GPU resource sharing among database
queries. Li et al. [33] developed a two-stage model towards
resource allocation to support heterogeneous queries. Quite a
few GPU-based DBMSs are developed in the academia [32]
and the commercial world [23], [30], [38], [41].

Synchronization Primitives on Parallel Systems: Atom-
icity and synchronization are well-known issues in a parallel
system [42]. At the system level, the implementation of syn-
chronization primitives were discussed in [22], [25], [37] and
a buffer framework was implemented in [16]. On the DBMS
side, Barve et al. [7] provides a framework for online prefetch-
ing and buffer management algorithms in parallel I/O systems.
However, none of them has dealt with the parallelism level
at the order of magnitude in thousands or tens of thousands,
which are normal on GPUs. Xiao et al. [61] introduce an inter-
block GPU communication via barrier synchronization. Stuart
et al. [50] revisited the design of synchronization primitives
and applied them to the GPU, including Spinlock and FA lock.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of buffer management
in highly parallel software systems, with a focus on GPU
systems. The main idea of our design relies on random
processes to locate free buffer pages and avoids maintaining a
centralized data structure that could become a major bottleneck
in a high-concurrency systems. Based on that philosophy, we
propose a memory page allocation design based on a Random
Walk (RW) mechanism. We have proven mathematically that
RW can significantly outperform any queue-based solution
under the vast majority of scenarios. RW shows its limitations
in extreme cases when free buffer pages are very rare. To
remedy that, we propose two advanced techniques: the first one
(named RW-BM) is based on the storage of page information
in a bitmap. This is shown to improve the latency of RW by
a factor of 32 or 64. The second one (named CoRW) involves
the sharing of free pages among neighboring threads which
can further lower the number of steps to find a page. We
also present our initial solution to the problem of allocating
multiple pages. The results from experimental unit-tests are all
consistent with the mathematical analyses. The results show
that our solutions outperform the best known GPU memory
allocator, Ouroboros, by more than two orders of magnitude.
Furthermore, we demonstrate a case study by integrating the
page allocation code into a state-of-the-art GPU-based hash
join algorithms and showing significant performance boost.

Our idea provides a framework that can be extended to
accommodate a wide range of algorithms to gain better
performance under different scenarios. More aggressive ran-
dom walk approaches can be designed and analyzed. The
RW malloc design still has its limitations, i.e., supporting very
large memory requests can be a interesting research topic.

17

REFERENCES

[1] AMD Ryzen™ Threadripper™ 3990X Processor.
[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables, pages 16,806,886.
New York: Dover Publications.

[3] A. V. Adinetz and D. Pleiter. Halloc: a high-throughput dynamic memory
allocator for gpgpu architectures. In GPU Technology Conference
(GTC), volume 152, 2014.

[4] Y. Arafa, A.-H. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz.
Low overhead instruction latency characterization for nvidia gpgpus,
2019.

[5] I. Arefyeva, D. Broneske, G. Campero, M. Pinnecke, and G. Saake.
Memory management strategies in cpu/gpu database systems: A sur-
vey. In International Conference: Beyond Databases, Architectures and
Structures, pages 128–142. Springer, 2018.

[6] T. Baroudi, V. Loechner, and R. Seghir. Static versus dynamic memory
allocation: a comparison for linear algebra kernels. In IMPACT 2020,
in conjunction with HiPEAC 2020, 2020.

[7] R. Barve, M. Kallahalla, P. J. Varman, and J. S. Vitter. Competitive
parallel disk prefetching and buffer management. In Proceedings of the
fifth workshop on I/O in parallel and distributed systems, pages 47–56,
1997.

[8] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard:
A scalable memory allocator for multithreaded applications. ACM
Sigplan Notices, 35(11):117–128, 2000.

[9] K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented buffer manage-
ment revisited. ACM SIGMOD Record, 25(2):353–364, 1996.

[10] T. Burić and N. Elezović. Approximants of the euler–mascheroni
constant and harmonic numbers. Applied Mathematics and Computation,
222:604–611, 2013.

[11] F. Busato, O. Green, N. Bombieri, and D. A. Bader. Hornet: An efficient
data structure for dynamic sparse graphs and matrices on gpus. In 2018
IEEE High Performance extreme Computing Conference (HPEC), pages
1–7. IEEE, 2018.

[12] C. M. Chen and N. Roussopoulos. Adaptive database buffer allocation
using query feedback. Technical report, 1998.

[13] H.-T. Chou and D. J. DeWitt. An evaluation of buffer management
strategies for relational database systems. Algorithmica, 1(1-4):311–336,
1986.

[14] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the
multics system. In Proceedings of the November 30–December 1, 1965,
fall joint computer conference, part I, pages 185–196, 1965.

[15] J. B. Dennis. Segmentation and the design of multiprogrammed
computer systems. Journal of the ACM (JACM), 12(4):589–602, 1965.

[16] I. Di Gennaro, A. Pellegrini, and F. Quaglia. Os-based numa opti-
mization: Tackling the case of truly multi-thread applications with non-
partitioned virtual page accesses. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages
291–300. IEEE, 2016.

[17] W. Effelsberg and T. Haerder. Principles of database buffer management.
ACM Transactions on Database Systems (TODS), 9(4):560–595, 1984.

[18] B. Falsafi, R. Guerraoui, J. Picorel, and V. Trigonakis. Unlocking energy.
In 2016 {USENIX} Annual Technical Conference ({USENIX}{ATC}
16), pages 393–406, 2016.

[19] M. Fang, J. Fang, W. Zhang, H. Zhou, J. Liao, and Y. Wang. Benchmark-
ing the gpu memory at the warp level. Parallel Computing, 71:23–41,
2018.

[20] I. Gelado and M. Garland. Throughput-oriented gpu memory allocation.
In Proceedings of the 24th symposium on principles and practice of
parallel programming, pages 27–37, 2019.

[21] W. Gloger. Wolfram gloger’s malloc homepage, 2006.
[22] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization

primitives for large-scale cache-coherent multiprocessors. In Proceed-
ings of the third international conference on Architectural support for
programming languages and operating systems, pages 64–75, 1989.

[23] D. Gray. Sqream technologies-removing limits of sql databases. data-
conomy, 2014.

[24] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron. Enabling task
parallelism in the cuda scheduler. In Workshop on Programming Models
for Emerging Architectures, volume 9, 2009.

[25] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating
system scheduling policies and synchronization methods of performance
of parallel applications. In Proceedings of the 1991 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages
120–132, 1991.

[26] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander. Relational query coprocessing on graphics processors. ACM
Transactions on Database Systems (TODS), 34(4):1–39, 2009.

[27] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander.
Relational joins on graphics processors. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 511–524, New York, NY, USA, 2008. ACM.

[28] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W.-m. Hwu. Xmalloc:
A scalable lock-free dynamic memory allocator for many-core machines.
In 2010 10th IEEE International Conference on Computer and Infor-
mation Technology, pages 1134–1139. IEEE, 2010.

[29] T. Kilburn, D. B. Edwards, M. J. Lanigan, and F. H. Sumner. One-level
storage system. IRE Transactions on Electronic Computers, (2):223–
235, 1962.

[30] Kinetica. Maximizing Data Analytics Price/Performance WITH GPU
ACCELERATION.

[31] D. E. Knuth. Johann faulhaber and sums of powers. Mathematics of
Computation, 61(203):277–294, 1993.

[32] H. Li, C. Mou, N. Pitaksirianan, R. Rui, Z. Nouri-Lewis, M. Eslami,
R. Sheng, S. Lei, J. Wang, and Y. Tu. Cheetahdb®: A system for high-
throughput database processing on gpus.

[33] H. Li, Y.-C. Tu, and B. Zeng. Concurrent query processing in a gpu-
based database system. PloS one, 14(4):e0214720, 2019.

[34] H. Li, D. Yu, A. Kumar, and Y. Tu. Performance modeling in CUDA
streams - A means for high-throughput data processing. In Big Data
(Big Data), 2014 IEEE International Conference on, pages 301–310,
Oct 2014.

[35] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient deterministic
multithreading. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 327–336, 2011.

[36] C. McGinnis. Pci-sig® fast tracks evolution to 32gt/s with pci express
5.0 architecture. News Release, June, 7, 2017.

[37] M. Moir. Practical implementations of non-blocking synchronization
primitives. In Proceedings of the sixteenth annual ACM symposium on
Principles of distributed computing, pages 219–228, 1997.

[38] T. Mostak. An overview of mapd (massively parallel database). MIT
Technical Report, 2013.

[39] NVidia. NVIDIA TESLA V100 GPU ARCHITECTURE.
[40] NVidia. CUDA C Programming Guide, March 2018.
[41] A. Ocsa. Sql for gpu data frames in rapids accelerating end-to-end data

science workflows using gpus. In LatinX in AI Research at ICML 2019,
2019.

[42] D. Padua. Encyclopedia of parallel computing. Springer Science &
Business Media, 2011.

[43] J. Paul, J. He, and B. He. Gpl: A gpu-based pipelined query processing
engine. In Proceedings of the 2016 International Conference on
Management of Data, pages 1935–1950. ACM, 2016.

[44] I. Pletnev, A. Erin, A. McNaught, K. Blinov, D. Tchekhovskoi, and
S. Heller. Inchikey collision resistance: an experimental testing. Journal
of cheminformatics, 4(1):1–9, 2012.

[45] J. J. Quinn and A. T. Benjamin. Proofs That Really Count: The Art of
Combinatorial Proof. The Mathematical Association of America, 2003.

[46] R. Rui and Y.-C. Tu. Fast equi-join algorithms on gpus: Design and
implementation. In Proceedings of the 29th International Conference
on Scientific and Statistical Database Management, SSDBM ’17, pages
17:1–17:12, New York, NY, USA, 2017. ACM.

[47] M. Springer and H. Masuhara. Dynasoar: a parallel memory allocator
for object-oriented programming on gpus with efficient memory access.
arXiv preprint arXiv:1810.11765, 2018.

[48] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg. Scatteralloc:
Massively parallel dynamic memory allocation for the gpu. In 2012
Innovative Parallel Computing (InPar), pages 1–10. IEEE, 2012.

[49] M. Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412–418, 1981.

[50] J. A. Stuart and J. D. Owens. Efficient synchronization primitives for
gpus. arXiv preprint arXiv:1110.4623, 2011.

[51] R. Team et al. Rapids: Collection of libraries for end to end gpu data
science, 2018.

[52] TechPowerUp. NVIDIA A100 PCIe, 2021.
[53] M. Vinkler and V. Havran. Register efficient dynamic memory allocator

for gpus. In Computer Graphics Forum, volume 34, pages 143–154.
Wiley Online Library, 2015.

[54] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang.
Concurrent analytical query processing with gpus. Proceedings of the
VLDB Endowment, 7(11):1011–1022, 2014.

18

[55] S. Widmer, D. Wodniok, N. Weber, and M. Goesele. Fast dynamic
memory allocator for massively parallel architectures. In Proceedings
of the 6th workshop on general purpose processor using graphics
processing units, pages 120–126, 2013.

[56] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. In International Workshop on
Memory Management, pages 1–116. Springer, 1995.

[57] M. Winter, D. Mlakar, M. Parger, and M. Steinberger. Ouroboros:
virtualized queues for dynamic memory management on gpus. In Pro-
ceedings of the 34th ACM International Conference on Supercomputing,
pages 1–12, 2020.

[58] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger.
faimgraph: high performance management of fully-dynamic graphs
under tight memory constraints on the gpu. In SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 754–766. IEEE, 2018.

[59] M. Winter, M. Parger, D. Mlakar, and M. Steinberger. Are dynamic
memory managers on gpus slow? a survey and benchmarks. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 219–233, 2021.

[60] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, and
S. Yalamanchili. Red fox: An execution environment for relational query
processing on gpus. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, page 44. ACM, 2014.

[61] S. Xiao and W.-c. Feng. Inter-block gpu communication via fast barrier
synchronization. In 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), pages 1–12. IEEE, 2010.

[62] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing
data warehousing queries on gpu devices. Proceedings of the VLDB
Endowment, 6(10):817–828, 2013.

[63] S. Zhang, J. He, B. He, and M. Lu. Omnidb: Towards portable and
efficient query processing on parallel cpu/gpu architectures. Proceedings
of the VLDB Endowment, 6(12):1374–1377, 2013.

[64] G. Y. Zou. Toward using confidence intervals to compare correlations.
Psychological methods, 12(4):399, 2007.

