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ABSTRACT

The paper discusses the design and prototype implementa-
tion of a QoS aware multimedia database system. Recent
research in multimedia databases has devoted little atten-
tion to the aspect of the integration of QoS support at the
user level. One common scenario which we are concerned
with connects a user through a visual interface to a multi-
tude of media object stores. The user demands satisfiabil-
ity of a set of quality parameter bounds specified at query
time or before (via user profile mappings). The user is not
aware of detailed low-level QoS parameters but rather spec-
ifies high-level, qualitative attributes on the media query.
Our proposed architecture to enable end-to-end QoS control,
the QoS-Aware Query Processor (QuaSAQ), is motivated by
query processing and optimization techniques in traditional
database management systems. The proposed solution relies
on mediation through several components (two of which are
the QoP Browser and Quality Manager) that enable search-
ing, locating, composing and presenting of multimedia ob-
jects with associated QoS constraints. In addition to an
overview of key research issues, this paper also presents some
of the proposed design solutions. One focus problem is how
to evaluate the alternative plans for serving QoS-enhanced
queries. We propose a novel cost model that explicitly takes
the resource utilization of plans and the current system con-
tention level into account. Experiments run on the QuaSAQ
prototype show significantly improved QoS and throughput
in media query processing.
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1. INTRODUCTION

As compared to traditional applications, multimedia ap-
plications have special requirements with respect to search
and playback with satisfactory quality. The problem of
searching multimedia data has received significant attention
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from researchers with the resulting development of content-
based retrieval for multimedia databases. The problem of
efficient retrieval and playback of such data (especially video
data), on the other hand, has not received the same level of
attention. From the point of view of multimedia database
design, one has to be concerned about not only the correct-
ness of query results, but the quality of the media objects (as
part of the query result) delivered to the users as well. The
set of quality parameters that describes the temporal/spatial
guarantees of media-related applications is called Quality of
Service (QoS) [26]. Guaranteeing QoS for the user requires
an end-to-end solution — all the way from the retrieval of
data at the source to the playback of the data at the user.
The Internet and the World Wide Web, both currently based
on quality over-provisioning schemes, shows QoS provision-
ing is not the main focus in network design. Similarly, op-
erating system (OS) support of QoS is not readily available
in most end-point systems. Nevertheless, quality critical,
real-time multimedia applications cannot be built on top of
plain TCP/IP network and general time-sharing OS.

In spite of the fact that research in multimedia databases
has covered many key issues such as data models, system
architectures, query languages, algorithms for effective data
organization and retrieval [11], little effort has been devoted
to the aspect of the integration of QoS support at the higher
levels. In the context of general multimedia system, research
on QoS has concentrated on system and network support
with little concern for QoS control on the higher (user, ap-
plication) levels. High-level QoS support is essential in any
multimedia systems because the satisfaction of human users
is the primary concern in defining QoS [2]. Simply deploying
a multimedia database system on top of a QoS-provisioning
system will not provide end-to-end user-level QoS. QoS spec-
ification and mapping on the user and application levels are
domain-specific problems. Therefore, current solutions on
the low-level QoS are not enough to meet the challenges
faced by individual applications. Moreover, such a solution
is unable to exploit the application level flexibility such as
the user’s acceptable range of quality, or notion of correct
results. For example, for a physician diagnosing a patient,
the jitter-free playback of very high frame rate and reso-
lution video of the patient’s test data is critical; whereas
a nurse accessing the same data for organization purposes
may not require the same high quality. Such information is
only available at the user or application levels.

We envision users such as medical professionals access-
ing these databases via a simple user interface. In addition
to specifying the multimedia items of interest (directly or



via content-based similarity to other items), the user speci-
fies a set of desired quality parameter bounds. The quality
bounds could be specified explicitly or automatically gen-
erated based upon the user’s profile. The user should not
need to be aware of detailed system QoS parameters but
rather specifies high-level qualitative attributes (e.g. “high
resolution”, or “CD quality audio”). Part of our research is
related to translating high-level user queries or actions into
queries with associated QoS and security parameters, unique
to each user. Thus a QoS-enabled database will search for
multimedia objects that satisfy the content component of
the query and at the same time can be delivered to the user
with the desired level of quality.

In this paper we discuss the design and prototype imple-
mentation of QuaSAQ — our QoS-aware multimedia database
system. We describe the major challenges to enabling end-
to-end QoS, and present our proposed solutions to these
problems. To the best of our knowledge, end-to-end QoS has
never been achieved in any other prototype system for multi-
media databases. We present experimental results from our
prototype system that establish the feasibility and advan-
tages of such a system for guaranteeing user-level QoS. Our
implementation builds upon the VDBMS prototype multi-
media database system developed by our group at Purdue
University [1]. VDBMS provides a rich set of mechanisms
to retrieve image and video data by content. It is built upon
the open-source Predator database system and the SHORE
storage manager. Among other enhancements, QuaSAQ ex-
tends VDBMS to build a distributed QoS-aware multimedia
DBMS with multiple copies of storage/streaming manager.
Our work builds upon system and network QoS provisioning
tools such as QualMan [17] and GARA [7].

To address the structure of a QoS-provisioning networked
multimedia system (NMS), four levels of QoS have been pro-
posed: user QoS, application QoS, system QoS and network
QoS [26, 19]. The specifications and semantics of QoS on
these levels are different. To achieve end-to-end control of
QoS in such heterogeneous, dynamic environments, all com-
ponents in the NMS must cooperate to provide real-time
service. These components include software and hardware
entities in the end systems as well as network routers along
the data delivery path. As the starting point of QoS con-
trol, user and application QoS interact with the lower levels
for resource guarantees and status feedback. One type of
such interactions is QoS translation or QoS mapping that is
generally done from high levels to low levels. QoS mapping
from low levels to high levels is either useless or infeasible.
Thus, QoS on system and network levels are internal entities
that users never need to be aware of.

Although an agreement on the set of most relevant QoS
parameters in multimedia databases is yet to be reached
among researchers, we consider a series of QoS parameters
in our research as shown in Table 1. User-level QoS is not
included in Table 1 since they are basically abstractions of
application QoS (Section 3.2.1).

QoS guarantees for individual requests and the overall
system performance are in most cases two conflicting goals
since the entire QoS problem is caused by scarcity of re-
sources. To approach this problem, we need to be able to
identify bottleneck resources and generate alternative execu-
tion strategies with different resource consumption features
for each request. Most of the research on QoS fails to ad-
dress the optimization of system performance. In this paper,

Table 1: Examples of QoS parameters in video
databases.

|| QoS Level | QoS Parameter ||
Application | Frame Width, Frame Height,
Color Resolution, Time Guarantee,
Signal-to-noise ratio (SNR), Security

System CPU cycles, Memory buffer,
Disk space, and bandwidth
Network Delay, Jitter, Reliability, Packet loss,

Network Topology, Bandwidth

we highlight the key elements of our proposed approach to
supporting end-to-end QoS and achieving high performance
in a multimedia database environment. The approach is mo-
tivated by query processing and optimization techniques in
conventional distributed databases.

The key idea of our approach is to augment the query eval-
uation and optimization modules of a distributed database
system (D-DBMS) to directly take QoS into account. To
incorporate QoS control into the database, user-level QoS
parameters are translated into application QoS and become
an augmented component of the query. For each raw media
object, a number of copies with different application QoS
parameters are generated offline by transcoding and these
copies are replicated on the distributed servers. Based on
the information of data replication and possible QoS adap-
tation options (e.g. frame dropping during playback), the
query processor generates various plans for each query and
evaluates them according to a predefined cost model. The
query evaluation/optimization module also takes care of re-
source reservation to satisfy low-level QoS. For this part,
we propose the design of a unified API and implementation
modules, that enable negotiation and control of the under-
lying system and network QoS APIs, thereby providing a
single entry-point to a multitude of QoS layers (system and
network).

The proposed solution is implemented using several com-
ponents that enable searching, locating, composing and pre-
senting multimedia objects with associated QoS constraints.
Each aspect of the overall process involves a set of complex
issues and the interaction between the components is par-
ticularly challenging. We present the most important ones
together with envisioned design solutions in this paper.

The major contributions of this paper are: 1) We propose
a query processing architecture for multimedia databases
for handling queries enhanced with QoS parameters; 2) We
propose a cost model that evaluates QoS-aware queries by
their resource utilization with consideration of the current
system status. To the best of our knowledge, this is the
first such effort; The cost model can be generalized into a
broader range of scenarios in the area of distributed systems;
and 3) We implement the proposed query processor within a
multimedia DBMS and evaluate our design via experiments
run on this prototype.

The paper is organized as follows. Section 2 deals with
the main issues encountered in the process of designing and
implementing the system. Section 3 presents the actual ar-
chitecture of the Quality of Service Aware Query Processor
(QuaSAQ). We also discuss details pertaining to the design
of individual components in the architecture. The prototype



implementation of QuaSAQ is detailed in Section 4. Section
5 presents the evaluation of the proposed QuaSAQ archi-
tecture. In Section 6, we compare our work with relevant
research efforts. Section 7 concludes the paper.

2. ISSUES

Building a distributed multimedia database system re-
quires a careful design of many complex modules as well as
effective interactions between these components. This be-
comes further complicated if the system is to support non-
trivial aspects such as QoS. Important research issues in-
clude: identifying and defining an acceptable set of user-level
quality parameters that match the requirements of real-time
distributed multimedia applications; mapping those param-
eters to lower-level definitions and enabling user control in
their specification; the plan generation for multimedia pre-
sentations; evaluation of the costs of generated plans; provi-
sioning the quality at all the underlying levels according to
high level user specs; displaying/presenting the multimedia
objects satisfying all QoS bounds.

Conceptually, a D-DBMS accepts a query over relations
that are distributed across multiple sites and translates it
into a sequence of operations to be performed at individual
sites so as to compute the answer to the query. This trans-
lation is based upon metadata that describes the character-
istics of the data, e.g. distribution, replication, existence of
indices, etc. The primary criterion for identifying the best
plan from among available alternatives is the cost estimate
of each plan. In order to extend this D-DBMS approach
to address the end-to-end QoS problem, several important
requirements have to be met. These include:

1. Smart QoS-aware data replication algorithms have to
be developed. Individual multimedia objects need to
be replicated on various nodes of the database. Each
replica may satisfy different application QoS in order
to closely meet the requirements of user inputs. In
other words, we trade storage space for runtime QoS-
related media transformation cost (e.g. transcoding).
The total number and choice of QoS of pre-stored me-
dia replicas should reflect the access pattern of media
content. Therefore, dynamic online replication and mi-
gration has to be performed to make the system con-
verge to the current status of user requests. Another
concern in replication is storage space. Ideally, the rel-
ative storage used for replication to that used for the
original media should be bounded by a constant.

2. Mapping of QoS parameters between different layers
has to be achieved. First of all, user-level qualitative
QoS inputs (e.g. DVD-quality video) need to be trans-
lated into application QoS (e.g. spatial resolution)
since the underlying query processor only understands
the latter. One critical point here is that the mapping
from user QoS to application QoS highly depends on
the user’s personal preference. This problem is likely
to be solved by the use of user profiles [8, 27]. Re-
source consumption of query plans is essential for cost
estimation and query optimization in QoS-aware mul-
timedia databases. This requires mapping application
QoS in our QoS-enhanced queries to QoS parameters
on the system and network level, which is a difficult
problem considering the dynamic system content and
heterogeneous platform configurations.

3. The search space of possible execution plans in the
QoS-aware multimedia database is of a very different
structure from that of a traditional D-DBMS. In the
latter, the primary data model for search space com-
prises a query tree due to the dominant cost of per-
forming joins. The query optimizer then explores the
space using strategies such as dynamic programming
and randomized search to find the “best” plan accord-
ing to a cost model [21]. In our system, various compo-
nents such as encryption, encoding, and filtering must
be individually considered in addition to the choice of
database server and physical media object. Depending
on the system status, any of the above components can
be the dominant factor in terms of cost. In the con-
text of our QoS-aware database, novel data structures
must be built to effectively model the search space and
process plans in the space. Specifically, the query gen-
erator should be able to efficiently prune the plans that
do not meet the user QoS requirements and traverse
the space for finding optimal plans.

4. A cost estimation model is needed to evaluate the gen-
erated QoS-aware plans. Unlike the static cost esti-
mates in traditional D-DBMS, it is critical that the
costs under current system status (e.g. based upon
current load on a link) be factored into the choice of
an acceptable plan. Furthermore, the cost model in
our query processor should also consider optimization
criteria other than the total time®, which is normally
the only metric used in D-DBMS. A very important
optimization goal in multimedia applications is sys-
tem throughput. Resource consumption of each query
has to be estimated and controlled for the system to
achieve maximum throughput and yet QoS constraints
of individual requests are not violated. If we consider
other factors such as real-world cost (monetary price)
of the query plans, the cost model becomes more com-
plicated.

5. Once an acceptable quality plan has been chosen, the
playback of the media objects in accordance with the
required quality has to be achieved. Generally, QoS
control in multimedia systems are achieved in two ways:
resource reservation and adaptation [26]. Both strate-
gies require deployment of a QoS-aware resource man-
agement module, which is featured with admission con-
trol and reservation mechanisms. There may also be
need for renegotiation (adaptation) of the QoS con-
straints due to user actions during playback.

Our research on QoS-aware databases is an attempt to
address all the above challenges. In the next section, we
present a framework for QoS provisioning in a distributed
multimedia database environment with the focus on our so-
lutions to items 3 and 4 listed above. For items 1, 2 and 5, we
concentrate on the implementation and evaluation of known
approaches within the context of multimedia databases. We
also propose new mechanisms to improve the current solu-
tions.

3. QUALITY-OF-SERVICE AWARE QUERY
PROCESSOR (QUASAQ)

1Sometimes response time is also used, as in distributed IN-
GRES.
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Figure 1: QuaSAQ architecture.

Figure 1 describes in detail the proposed architecture of
our QoS-aware distributed multimedia DBMS, which we call
Quality-of-Service Aware Query Processor (QuaSAQ). In
this section, we present detailed descriptions of the various
components of QuaSAQ.

Supporting QoS in the database framework will be en-
abled through the creation of the following major compo-
nents: a transcoder that generates replicas from the seed
copies of media objects; a offline QoS Sampler that per-
forms static QoS mapping; a QoP Browser front end that
appends quality information to user queries; an enhanced
Metadata Engine that contains media content as well as QoS
related metadata; a Plan Generator that creates alternative
execution plans based upon the user query augmented with
QoS, it also annotates the plan with low-level constraints for
each component based upon a translation of the user’s QoS
requirements; a runtime cost evaluator that calculates the
cost of the annotated plans based on a specific cost model; a
Composite QoS API that interfaces to each of the underly-
ing components to determine the current state of the system,
request, and reserve resources on behalf of plans; a transport
API and an plan ezecutor that together display the results
to the user using the resources that have been reserved for
the query plan.

3.1 Offline Components

The offline components of QuaSAQ provide a basis for the
database administrators to accomplish QoS-related database
maintenance. Two major activities, offline replication and

QoS sampling, are performed for each media object inserted
into the database. As a result of offline activities, relevant
information such as the quality, location and resource con-
sumption pattern of each replica of the newly-inserted ob-
ject is fed into the Distributed Metadata Engine and stored
as metadata.

3.1.1 Offline replication

The primary function of the offline components is to repli-
cate the original media data on the distributed database
servers. Unlike normal data replication operations, each
replica in QuaSAQ has different application-level QoS pa-
rameters. We call this QoS-specific replication and it is
accomplished by the offline transcoder. The use of repli-
cas provides flexibility in the QoS-enabled multimedia re-
trieval because the system can choose the copy with QoS
that are the closest to user requirements. It is also called
static adaptation in general multimedia system jargon. The
word “static” means that the adaptation is made before the
streaming session begins. An alternative to static adapta-
tion would be transcoding the raw media on-the-fly, which
may be constrained by resource availability at runtime.

Although storage space is usually not a bottleneck re-
source in a typical media streaming system, the extra disk
space used for static adaptation should not grow unbound-
edly. Apparently, there is an tradeoff between availability
and storage use. From empirical equations we derived to es-
timate the storage consumption of QoS-specific replication
(Section 3.1.3), we can estimate the storage occupation for
QoS-specific replication.



According to Figure 3a, the relative bitrate of a video
replica with one single reduced QoS parameter (e.g. spa-
tial resolution, temporal resolution, and signal-to-noise ratio
(SNR)) is expressed as:

B=aS"+bS*+¢S+d (1)

where By is the ratio of the bitrate of the generated video
over that of the original video, S is the ratio of change in
QoS (0 < S <1), and a,b,c,d are constants derived from
experiments. Suppose we replicate a media into N copies
by changing one QoS parameter (whose value falls into a
domain of range P), each of which has its S value. Without
any knowledge of the distribution of S in the queries that
access the media object, we can choose a series of QoS degra-
dation percentage values S; (i = 1,2,...,N) that cover the
domain of S uniformly, e.g. S; = % This limits the differ-
ence between the user-required QoS and that of any replicas
to be smaller than %. This difference can be resolved ei-
ther by renegotiation (Section 3.2.1) or online transcoding
(Section 3.4.1). The sum of the relative bitrate of all such

replicas can be obtained by:

N—1 N-—1
> B = > (aS} +bS} +cSi +d)
i=1 i=1

A iN? i

where B; is the bitrate for the i-th replica. The storage oc-
cupation can be easily calculated as TZ:ZN:E1 B; where T is
the playback time of the media. It is not hard to see that
the total relative storage use is O(N). In other words, the
storage needed for replication along one quality dimension
is linearly related to the number of copies made. Consider-
ing the existence of multiple QoS parameters, the situation
could be much worse. Only when NN is a small number can
we perform QoS-specific replication.

Since it is not affordable to produce more than a (small)
fixed number of copies for each object, the choice of qual-
ity parameters of these limited number of copies becomes
important. The main idea for solving this decision-making
problem is that the replication should reflect the access fre-
quency of individual combinations of QoS values. When the
media object is first inserted into the database, we can repli-
cate it to copies with a set of “standard” QoS according to
some convention (Table 2). For example, a video with reso-
lution of 352x240, 24bit color, and frame rate of 23.97fps is
often regarded as of “VCD quality”. An assumption here is
the tendency for people to ask for videos with such QoS.

3.1.2  Online replication

The initial set of replicas may prove to be the wrong guess
as time goes by. We need to modify the composition of the
QoS-specific replicas as we gain more knowledge on the ac-
cess pattern of queries on the domain of QoS parameters.
This is called Dynamic replication. Unlike traditional data
replication problem that only considers the availability of
the content of the data, the QoS-specific replication in multi-
media database has to consider the availability of the quality
of the data. An intensive study on QoS-specific replication
will be presented in a forthcoming paper. In this paper, we
only briefly introduce a two-level replication algorithm.

The algorithm consists of 2 stages: a content replication
stage and a quality replication stage. On the first stage,

Resolution (pixels)

360 340 323(210 300 280 260 240 220

2720 =360 2320 <300 280 -260 -240 <220

>30 | 185 120 | 297 168 | 2 45

? 24-30| 283 286 | 365 743 91
f
2

& 15-24| 205 | 191 | 343 | 381 698 76
£

&L 8-15 | 254 | 112 | 123 | 375 | 3 412 13

<8 |91 | 42 25 | 12 | 29 | 34 18 | 7

Figure 2: An illustrative 2-D QoS frequency table.

we use a threshold-based algorithm to determine the stor-
age allocated to a specific media object, as described in [?].
When the availability of a certain media object is below
the threshold, replication is triggered. The decision of what
quality replica to be produced is made on the second stage
of the algorithm. For this purpose, QuaSAQ needs to keep
an access frequency table. The table contains QoS sets re-
quested as well as the frequency of these QoS sets (starting
from some checkpoint). The space of all possible QoS sets
with n QoS parameters can be viewed as a n-dimensional
hypercube, in which each dimension can be divided into a
finite number of regions (assuming each QoS parameter has
finite number of discrete values). Figure 2 shows such a
space composed of 2 QoS parameters: resolution and color
depth. The cells in the hypercube are filled with frequen-
cies of requests to the QoS sets represented by the cell. We
put these frequencies in a sorted list. When a replication
is needed, we retrieve the cell from the head of the list and
replicate according to the QoS referred to by the cell.

3.1.3 QoS mapping

Translation of QoS between neighboring levels is an essen-
tial component of QoS-aware databases. In QuaSAQ, we are
mainly interested in the QoS translation from user level to
application level and application level to system level. The
QoS mapping between system and network levels is handled
by a Composite QoS API that takes care of QoS-related
resource management and scheduling (Section 3.5). The
mapping of user QoS to application QoS is accomplished by
user-specific profiles, as described in Section 3.2. This leaves
the translation of application QoS to system (resource) QoS,
which can be denoted as

Q:{q17q27...7qm}—>§:{r17r27...7rn}

if we consider m application QoS parameters and n system
resources. In other words, the purpose of the mapping is
to generate a resource vector R from a series of application
QoS inputs Cj This is a non-trivial problem due to the dy-
namically changing system load and heterogeneous platform
architecture.

There are two major QoS mapping strategies [27]: a static
table-driven method and a statistical sampling method. The
first solution involves building a table with different combi-
nations of application QoS and their relevant resource use
while mapping is performed by table lookups. The second
attempts to compose a mathematical function that handles
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Figure 3: Functions and experimental results for
mapping between spatial resolution to resources. a.
Bandwidth; b. CPU use.

mapping of all the possible values in the range of QoS param-
eters based on a number of mapping samples (Q, R pairs)
collected. The latter is more adaptive to QoS changes but
is less precise due to variations. One of the tools for the
sampling method are Spline functions [27]. In QuaSAQ,
we use an algorithm that takes advantages of both meth-
ods. When a new media and all its QoS-specific replicas
are inserted into the database, the QoS sampler records the
resource vector of these physical media by running a few
iterations of media playback. These data serve as entries
of a QoS mapping table as well as samples for computing
a general mapping function. This leads to a two-step QoS
mapping procedure at runtime: we first look up the QoS
mapping table; if there is no matching entry in the table,
we then use the mapping function to calculate the resource
vector. Both QoS mapping table and the mapping functions
are stored as metadata associated with each media object.
Translation of application QoS to different resources has
to be considered individually. The network bandwidth is
given by the bitrate of the media retrieved or the expected
bitrate of the media (generated by online transcoding) from
mapping functions. For the CPU cycles, we define a Period
and Peak Processing Time (PPT) for each job, as described
in [5]. For continuous media applications, the Period is gen-
erally the reciprocal of the number of frames per second
while the PPT is the CPU time needed within each period.

The CPU use of a media delivery job can thus be conve-
niently expressed as %. Two of the mapping functions
we derived are shown in Figure 3. The left graph repre-
sents the mapping from various resolution (other QoS un-
changed) to the bandwidth (bitrate) while the right graph
shows resolution to CPU usage. Both mappings are solved
as a polynomial function. The function for the left graph
is y = 0.42122% — 0.003122 — 1.4191x + 0.9898 while that
for the right graph is y = 38.1841z2 + 2.5341x + 9.1419.
With reservation-based QoS resource management, these
functions are found to be very accurate.

3.2 QoP Browser

The QoP Browser is the user interface to the underlying
storage, processing and retrieval system. It enables certain
QoP parameter control, generation of QoS-aware queries,
and execution of the resulting presentation plans. The main
entities of the QoP Browser include:

. The User Profile contains high-level QoP parameter
mappings to lower level QoS parameter settings as well
as various user related statistics acquired over time, en-
abling better renegotiation decisions in case of resource
failure.

. The Query Producer takes as input some user actions
(requests with QoP inputs) and the current settings
from the user profile and generates a query. As com-
pared to those of traditional DBMS, the queries gener-
ated in QuaSAQ are enhanced with QoS requirements.
We call them QoS-aware queries.

. The Plan Executor is in charge of actually running the
chosen plan, after initial QoS provisioning has taken
place. It basically performs actual presentation, syn-
chronization as well as run-time renegotiation of un-
derlying QoS parameters.

3.2.1 Quality of Presentation

From a user’s perspective, QoS translates into the more
qualitative notion of Quality of Presentation (QoP). The
user is not expected to understand low level quality pa-
rameters such as frame rates or packet loss rate. Instead,
the user specifies high-level qualitative parameters to the
best of his/her understanding of QoS. Some key QoP pa-
rameters that are often considered in multimedia systems
include: spatial resolution, temporal resolution or period,
color depth, reliability, audio quality, and monetary costs.
Before being integrated into a database query,the QoP in-
puts are translated into application QoS based on the in-
formation stored in the User Profile. For example, a user
input of “VCD-like spatial resolution” can be interpreted as
a resolution range of 320x240 — 352x288 pixels. The ap-
plication QoS parameters are quantitative and we achieve
some flexibility by allowing one QoP mapped to a range of
QoS values. Furthermore, the design of User Profile allows
for dynamical updates at runtime as well as through the use
of a statistical model, trained by live data.

A distinction is needed to differentiate between static and
dynamic QoP provisioning. In the first case, quality require-
ments are assumed to be stable in time and, in most cases,
no renegotiation process is needed. In the dynamic case,
QoS requirements can be modified and a renegotiation is
expected. Our focus is on mechanisms that support static



QoP but can be extended to support dynamic QoS. Another
scenario for renegotiation is when the user-specified QoP is
rejected by the admission control module due to low re-
source availability. Under such circumstances, a number of
admittable alternative plans will be presented as a “second
chance” for the query to be serviced.

Most of the definitions that have been proposed to the no-
tion of QoP in continuous media, including the one used in
our QuaSAQ design, are qualitative. One important weak-
ness of these qualitative formulations of QoP is their lack
of flexibility (i.e. low level processing does not take into ac-
count differences between users). For example, when rene-
gotiation has to be performed, one user may prefer reduction
in the temporal resolution while another user may prefer a
reduction in the spatial resolution. We remedy this by in-
troducing a per-user weighting of the quality parameters as
part of the User Profile. This process delivers additional ex-
pressive power in specifying parameters. In particular, the
weighting is also used in the renegotiation process. Given
the fact that weights are user defined as well as statistically
adjusted over time, this can be thought of as “user-tailored”
renegotiation.

On the application level, user-specific weighting can be
used to calculate the wutility of execution plans for QoS-aware
queries. Utility, a term first used in economics, is a measure
of human preference on alternatives towards the same goal
[16]. In the context of multimedia systems, utility can be
viewed as the user’s satisfiability of the media he/she re-
ceived. The utility of an alternative is generally expressed as
a real number through a wutility function. In our QoS-aware
multimedia DBMS, the following utility function can be used
to capture a user’s preference on an alternative query plan:

U(Q) = Zszz(Qz) (2)

where Cj = q1,92,...,qn iS a vector containing the val-
ues of all n QoS parameters, W; is the user-specific weight
(>-r Wi =1), and f; the utility function of a single QoS
parameter ¢. There are two ways to obtain the per-parameter
utility function f;: it can be an input from individual users
or from real world experiments on people’s perception of
media quality [6]. In QuaSAQ, the utility of QoS sets is an
important factor in query optimization (Section 3.4).

3.2.2 The query language.

Integrating QoS within a querying system also implies
query language level extensions in syntax as well as in se-
mantics. One choice is an extended version of SQL. An ex-
ample of such an extension may be a new QUALITY clause
that a user can add to each query. This clause captures
any specific quality requirements that should be maintained
when answering the query. One draft illustrative example
is:

SELECT vid: [s,el

FROM video:VidLibil

WHERE (vid, s, e) IN FindVideoWithObject( Someone )
QUALITY Resolution = High, Delay = Low

3.3 Distributed Metadata Engine

Metadata are descriptions of raw data items stored in a
database for the purposes of faster access, better manage-
ability and shareability of large sets of structured and/or

unstructured data [10]. In a multimedia DBMS, operations
such as content-based searching depend heavily, if not exclu-
sively, on the metadata of the media objects. As mentioned
in Section 2, we assume a distributed environment in which
video objects are stored in several locations. Each docu-
ment can have one or more instances and sub-components,
each with different representation characteristics. This re-
sults in more items in the metadata collection. Specifically,
we require at least the following types of metadata for a
QoS-enabled DBMS:

e Content Metadata: describe the content of objects to
enable multimedia query, search, and retrieval. In
QuaSAQ, a number of visual and semantic descriptors
such as shot detection, frame extraction, segmenta-
tion, and camera motion are extracted. For simplicity,
the content metadata of only one instance of each video
is extracted and stored in QuaSAQ.

o Quality Metadata: describe the quality characteristics
(in the form of application level QoS) of physical me-
dia objects. For our QoS-aware DBMS, the following
parameters are kept as metadata for each video object:
resolution, color depth, frame rate, and file format.

o Distribution Metadata: describe the physical locations
(i.e. paths, servers, proxies, etc.) of the media objects.
This includes object identifications (OIDs) of all repli-
cas of the same media. It records the OIDs of objects
and the mapping between media content (logical ob-
ject) and media file (physical object).

e (oS profile: describe the resource consumption in the
delivery of individual media objects. The data in QoS
profiles is obtained via static QoS mapping performed
by the QoS sampler. The QoS profiles are the basis for
cost estimation of QoS-aware query execution plans.

The Quality metadata and Distribution metadata will be
used in Quality Manager to identify and evaluate alternative
plans as well as initial translation of user-level QoP parame-
ters to low-level QoS parameters. An important design issue
is related to distributing vs. centralizing metadata. We dis-
tribute the metadata in locations that are close to the actual
objects enabling ease of use and migration. Caching is used
to accelerate non-local metadata accesses.

3.4 Quality Manager

The Quality Manager is the focal point of the entire sys-
tem. It is heavily integrated with the Composite QoS APIs
in order to enable reservation and negotiation. It has the
following main components:

3.4.1 Plan Generator

The Plan Generator is in charge of generating plans that
enable the execution of the query from the Query Producer.
It uses metadata retrieved from the Distributed Metadata
Engine in order to locate suitable target objects for each
query.

The Content Metadata is used to identify logical objects
that satisfy the content component of the query (e.g. videos
with images of George Bush or Sunsets). As described in
Section 3.1.1, a given logical object may be replicated at
multiple sites and further with different QoS. The plan gen-
erator determines which of the alternatives can be used to
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Figure 4: Illustrative plan generation in QuaSAQ.

satisfy the request and also the necessary steps needed to
present it to the user. The necessary information is stored
as Quality Metadata and Distribution Metadata.

The final execution of QoS-aware query plans can be viewed
as a series of server activities that may include retrieval, de-
coding, transcoding between different formats and/or quali-
ties, and encryption (we treat security as a form of quality).
Therefore, the search space of alternative QoS-aware plans
consists of all possible combinations of media repositories,
target objects, and server activities mentioned above. We
can model the search space as a universe of disjoint sets.
Each set represents a target media object or a server ac-
tivity whose possible choices serve as elements in the set.
Suppose we have n such sets A, Az,..., Ap, then an ex-
ecution plan is an ordered set ai,aq,...,an satisfying the
following conditions:

(1) m<mn;
(2) Va; (1 <i<m),FA;2a; (1<i<n);
(3) For any @ # j with a; € A and a; € A;, we have k # [.

The semantics of the above conditions are: (1) The total
number of components in a plan cannot exceed the number
of possible server activities; (2) All components in a plan
come from some disjoint set; and (3) No two components
in a plan come from the same set. The size of the search
space is huge even with the above restrictions. Suppose
each set of server activity has d elements, the number of
possible plans is O(n!d"). Fortunately, there are also some
other system-specific rules that further reduce the number
of alternative plans. One salient rule relates to the order of
server activities. For example, the first server activity should
always be the retrieval of a media object from a certain site,
all other activities such as transcoding, encryption have to
follow the the media retrieval in a plan. If the order of
all server activity sets are fixed, the size of search space
decreases to O(2"d").

Runtime QoS FEvaluation and Plan Drop. The Plan Gen-
erator described above does not check generated plans for
any QoS constraints but rather annotates the plan with an
initial translation of QoP. We can perform those verifica-
tions by applying a set of static and dynamic rules. First
of all, decisions can be made instantly based on QoS in the
query. For example, we cannot retrieve a video with resolu-
tion lower than that required by the user. Similarly, it makes
no sense to transcode from low resolution to high resolution.
It is easy to see that QoS constraints help further reduce the
size of search space by decreasing the appropriate set size d.

In practice, d can be regarded as a constant. Some of the
plans can be immediately dropped by the Plan Generator if
their costs are intolerably high. This requires QuaSAQ to
be aware of some obvious performance pitfalls. For example,
encryption should always follow the frame dropping since it
is a waste of CPU cycles to encrypt the data in frames that
will be dropped. Once a suitable plan has been discovered,
the Plan Generator computes its resource vector and feeds it
to the next component down the processing pipe-line ( Run-
time Cost Evaluator) until no more satisfying plans can be
generated. The reduced size of search space makes the enu-
meration and evaluation of all candidate plans feasible (Sec-
tion 5.2). In our experiments on a QuaSAQ prototype, we
generally evaluate 30 - 40 plans for each query.

1llustrative examples of plans. The path in solid lines
shown in Figure 4 represents a query plan with the fol-
lowing details: 1. retrieve physical copy number 1 of the
requested media from the disk of server B; 2. transfer the
media to server A; 3. drop all the B frames; 4. transcode
to MPEG1 format with certain target QoS; 5. encrypt the
media data using cipher 3. The dotted line corresponds to
a simpler plan: retrieve the same object and drop B frames,
no transcoding or encryption is needed. An even simpler
plan would be a single node in set Al, meaning the object
is sent without further processing.

3.4.2 Runtime Cost Evaluator

The Runtime Cost Evaluator is the main component that
computes (at runtime) estimated costs for generated plans.
It sorts the plans in ascending cost order and passes them to
the Plan Executor in the QoP Browser. The earliest plan in
this order that satisfies the QoS requirements will be used
to service the query. In a traditional D-DBMS, the cost of
a query is generally expressed as the sum of time spent on
CPU, I/O and data transferring. In other words, the to-
tal/response time is used as the only metric in cost estima-
tion. There are some major drawbacks in using this model in
the QoS-aware multimedia database. First of all, it fails to
consider the current status of the system resources thus the
cost prediction is imprecise. Secondly, the only optimization
is to minimize the number of I/Os (or the communication
cost in a distributed DBMS) in plan execution under such a
model. Other costs such as the shipping of query results to
client are ignored. This is correct for traditional databases
since the size of the query results are the same, regardless
of what plan is executed. However, this is not true for mul-
timedia databases where media delivery is also considered a
part of query processing. Finally, the search results (media
objects) are sent to the users in a streaming manner over
a significant amount of time in multimedia databases. The
total time for executing any query plans is exactly the same
since the streaming time for a media object is fixed 2. As
a result, processing time is no longer a valid metric for cost
estimation of the QoS-aware query plans.

In order to overcome the above problems, we propose
a cost model that focuses on the resource consumption of
alternative query execution plans. Multimedia delivery is
generally resource intensive, especially on the network band-

20ne exception is that the media can be downloaded in
shorter time given enough bandwidth. We may also consider
this as an option in QuaSAQ. However, media downloading
has limited use in multimedia systems due to its high band-
width consumption and limited buffer on the client side.
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width. Thus, to improve system throughput is an important
design goal of media systems. Intuitively, the execution plan
we may choose should be one that consumes as few resources
as possible and yet meets all the QoS requirements. Our
cost model is designed to capture the ‘amount’ of resources
used in each plan. The central part of any cost model is a
cost function that maps a plan to a real number. Because
there are various types of system resources to consider and
the relative importance of these resources are unknown, the
development of the cost function based on resource utiliza-
tion is not straightforward. Furthermore, the cost model
should also be valid for other global optimization goals such
as minimal waste of resources, maximized user satisfaction,
and fairness. Our ultimate goal is to build a configurable
query optimizer whose optimization goal can be configured
according to user (DBA) inputs. We then evaluate plans by
their cost efficiency that can be denoted as:

G

C(R)

where C is the cost function, R the resource vector of the
plan being evaluated, and G the gain of servicing the query
following the plan of interest. An optimal plan is the one
with the highest cost efficiency. The generation of the G
value of a plan depends on the optimization goal used. For
instance, a utility function can be used when our goal is
to maximize the satisfiability of user perception of media
streams [25]. A detailed discussion of the configurable cost
model mentioned above is beyond the scope of this paper. In
the following, we present a cost model that aims to maximize
system throughput.

3.4.2.1 Lowest Resource Bucket (LRB) model..
Suppose there are n types of resources we consider in eval-
uation of alternative plans of the QoS-aware queries. The
total amount of these n individual resources provided by
the system is Ri, Ra, ..., R,. In our algorithm, we build n

virtual resource buckets, each of which holds an individual
system resource. The total amount of resources are stan-
dardized into the height of the buckets. The latter is rep-
resented as a unitless quantity (e.g. percentage) and is the
same for all buckets. The buckets are filled when their rel-
evant resources are being used and drained when the re-
sources are released. Therefore, the height of the filled part
of any bucket i is the percentage of resource i that is being
used. For example, the filled part of bucket R2 in Figure
5d has height 42, which means 42% of Rs is occupied. The
cost evaluation is done as follows: for any plan p, we first
transform the items in p’s resource vector into standard-
ized heights related to the corresponding bucket (denoted as
T1,T2,...,Tn); we then fill the buckets accordingly using the
transformed resource vector and record the largest height
among all the buckets. The query that leads to the smallest
such maximum bucket height wins. The buckets are drained
to the original heights after each query is evaluated and will
only be filled when a plan is chosen to execute. In Figure 5,
the cost of three plans (a, b, c) are marked by dotted lines.
Putting them all together, we found the filled height of plan
2 is the lowest and plans 2 is chosen for execution. Formally,
the cost function used for the LRB model can be expressed
as

f(r17r27...7rn):m%X{Ui+ri} (3)

where U; is the current usage of resource i, r; is the amount
of resource i required for the plan, and R; is the total amount
of resource ¢ provided by the system. The input is the re-
source vector of the plan being evaluated.

The reasoning of the above algorithm is easy to under-
stand: the goal is to make the filling rate of all the buckets
distribute evenly. Since no queries can be served if we have
an overflowing bucket, we should prevent any single bucket
from growing faster than the others. This algorithm is not
guaranteed to be optimal, it works fairly well, as shown by
our experiments (Section 5.2).



3.5 QoS APIs

Proprietary QoS API awareness is not desired in higher
level components. The Composite QoS API hides imple-
mentation and access details of underlying APIs (i.e. sys-
tem and network) at the same time offering control to upper
layers (e.g. Plan Generator). One other handy advantage
of the unified API approach is the ability to easily man-
age and quickly implement it on top of various platforms
without necessarily having all the other QoS components in
place. The major functionality provided through the Com-
posite QoS APIis QoS-related resource management, which
is generally accomplished in the following aspects: 1.Admis-
ston control, which determines whether a query/plan can
be accepted under current system status. The Plan Gen-
erator uses this to identify the plans whose resource re-
quirements exceed availability; 2.Resource reservation: an
important strategy toward QoS control by guaranteeing re-
sources needed during the lifetime of media delivery jobs;
3.Renegotiation (adaptation) that are mainly performed un-
der two scenarios: a. evaluation and presentation of alter-
natives when the user QoS requirements cannot be satisfied;
b. change of QoS during the playback of media due to the
change of user inputs. The type of system resources con-
trolled depends on available releases of individual resource
managing software. In the most relevant QoS resource man-
agement studies [17, 7, 28], CPU, memory, disk, and network
bandwidth were considered for QoS control.

Transport API. It is basically composed of the underlying
packetization and synchronization mechanisms of continu-
ous media, similar to those found in general media servers.
The Transport API has to honor the full reservation of re-
sources. This is done through interactions with the appro-
priate reservation APIs as a part of the Composite QoS API.
To harness the QoS-enabled network as well as the same
layer of intermediate proxies, real-time stream media pro-
tocols such as RTP are needed to carry the data load of
the media. Upper level system components (e.g. the Plan
Ezecutor) have to find support for runtime parameter rene-
gotiation in order to adapt to the current status of the whole
system. This should also be accomplished by the Transport
API. The interface to some of the other server activities such
as encryption, transcoding, and filtering are also integrated
into the Transport API.

4. QUASAQ IMPLEMENTATION

We implement a prototype of QuaSAQ on top of the Video
Database Management System (VDBMS) developed at Pur-
due University [1]. Similar to VDBMS, the QuaSAQ devel-
opment is done using C++ under the Solaris 2.6 environ-
ment. Figure 6 shows the architecture of VDBMS enhanced
with the QuaSAQ prototype.

4.1 QuaSAQ and VDBMS

Developed from the object-relational database engine PREDA-
TOR? with Shore? as the underlying storage manager, VDBMS

is a multimedia DBMS that supports full-featured video op-
erations (e.g. feature-extraction, streaming) and complex
queries (e.g. content-based searching). The PREDATOR
[23] code covers DBMS components from user interface to
query processor and leaves concurrency and recovery issues

Shttp://www.distlab.dk /predator
“http://www.cs.wisc.edu/shore
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Figure 6: Architecture of QuaSAQ prototype.

to the underlying Shore libraries [3]. Most of the VDBMS
development was done by adding features to PREDATOR.
We extended the current version of VDBMS, which runs
only on a single node, to a distributed version by realizing
communication and data transferring functionalities among
different sites.

As shown in Figure 6, QuaSAQ augments VDBMS and
sits between Shore and PREDATOR in the query processing
path. In our QuaSAQ-enhanced database, queries on videos
are processed in two steps: 1. searching and identification
of video objects done by the original VDBMS; 2. QoS-
constrained delivery of the video by QuaSAQ [2]. To identify
storage items (raw video, indices, relations, etc.) throughout
the system, a 12-byte ID is assigned to each object accord-
ing to the Shore convention. In the original VDBMS, the
query processor returns such an object ID (OID), by which
Shore retrieves the video from disk. With the consideration
of QoS and replication of video data in QuaSAQ, the OIDs
returned by the original query processor only refer to the
video content but not the physical entity in storage since
multiple copies of the same video exist. These OIDs are
called the logical OID and those representing video replicas
the physical OID. In QuaSAQ, the mapping between logical
OIDs and physical OIDs are stored as part of the metadata
(Section 3.3). Upon receiving the logical object ID of the
video of interest from PREDATOR, the Quality Manager
of QuaSAQ annotates a series of plans for QoS-guaranteed
delivery and chooses one to execute. It communicates with
either QuaSAQ modules in remote sites or local Shore com-
ponent (depending on the plan it chooses) to retrieve the
video of interest. Note the sender of the video data is not
necessarily the site at which the query was received and pro-
cessed.

4.2 QuaSAQ Components
Most of the QuaSAQ components are developed by mod-



ifying and augmenting relevant modules in VDBMS (e.g.
client program, SQL parser, query optimizer). As described
in Section 3, the realization of QuaSAQ also depends on
the availability of some other software modules that are not
found in VDBMS.

Replicas for all videos in the database are generated using
a commercial video transcoding/encoding software Video-
Mach®. The choice of quality parameters is determined in
a way that the bitrate of the resulting video replicas fit
the bandwidth of typical network connections such as T1,
DSL, and modems (Table 2). To obtain an online video
transcoder, we modify the source code of the popular Linux
video processing tool named transcode® and integrate it into
the Transport API of QuaSAQ. The major part of the Trans-
port API is developed on the basis of a open-source media
streaming program’. It decodes the layering information of
MPEG stream files and leverages the synchronization func-
tionality of the Real Time Protocol (RTP) by encapsulating
video stream load into RTP packets. We also implemented
various frame dropping strategies for MPEG1 videos as part
of the Transport API.

The existence of QoS resource management (Composite
QoS APIs) that is capable of reservation, monitoring and
adaptation is the most important assumption in the design
of QuaSAQ. Resource QoS support can be achieved on two
levels: on the kernel of a QoS-enabled Operating System [28]
and on the application level (middleware) [18]. Although the
OS solution gives more efficient and accurate QoS support,
the middleware is easier to develop and deploy. To take ad-
vantage of such convenience, we build the Composite QoS
APIs using a QoS-aware middleware named GARA [7] as
substrate. GARA features a series of simple and unified
APIs and contains separate resource managers for individ-
ual resources (e.g. CPU, network bandwidth and storage
bandwidth). For example, the CPU manager in GARA is
based on the application-level CPU scheduler DSRT [4] de-
veloped in the context of the QualMan project [17]. The
management of network bandwidth is more complicated: it
requires not only the deployment of resource management
modules on the end-point systems but the participation of
network routers as well. QoS-aware network protocols are
generally the solution to this problem. In GARA, the Diff-
Srv mechanism provided by the Internet Protocol (IP) is
used.

5. EXPERIMENTAL RESULTS

We evaluated the performance of QuaSAQ in compari-
son with the original VDBMS system. The experiments are
focused on the QoS improvement/degradation in video de-
livery as well as system throughput. An important met-
ric in measuring QoS of networked video streaming tasks is
the inter-frame delay, which is defined as the interval be-
tween the processing time of two consecutive frames in a
video stream [4, 28]. Ideally, the inter-frame delay should
be the reciprocal of the frame rate of the video. Deviations
of the inter-frame delay from its theoretical value are gen-
erally compensated for by client-side memory buffers. The
larger the deviation, the larger the buffer needed. We also
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consider the packet loss rate as a metric in measuring QoS.
For the system throughput, we simply use the number of
concurrent streaming sessions and the reject rate of queries.

Ezxperimental setup. The experiments are performed on
a small distributed system containing three servers and a
number of client machines. The servers are all Intel ma-
chines (one Pentium 4 2.4GHz CPU and 1GB memory)
running Solaris 2.6. The servers are located at three dif-
ferent 100Mbps Ethernets, two of which are in the domain
of cs.purdue.edu and one in ecn.purdue.edu. Each server
has a total streaming bandwidth of 3200KBps. The clients
are deployed on machines with various hardware configura-
tions generally 2-3 hops away from the servers. Due to lack
of router support of the DiffSrv mechanism, only admission
control is performed in network management. A reasonable
assumption here is that the bottlenecking link is always the
outband link of the severs [22] and those links are dedicated
for our experiments. Instead of user inputs from a GUI-
based client program [1], the queries for the experiments are
from a traffic generator. Every synthesized query consists of
a destination (client) ID, an OID of a video to be streamed,
and the QoS requirements (We bypass the QoP stage since
the main purpose is to evaluate the Quality Manager and
QoS APIs). Our experimental video database contains 15
videos in MPEG1 format with playback time ranging from
30 seconds to 18 minutes. For each video, three to four QoS-
specific replicas are generated and fully replicated on three
servers so that each server has all copies. In our experi-
ments, we only utilized a thin client program that passively
receives video packets from the servers and collects statistics
about the received data.

5.1 Improvement of QoS by QuaSAQ

Figure 7 shows the inter-frame delay of a representative
streaming session for a video with frame rate of 23.97 fps.
The data is collected on the server side, e.g. the process-
ing time of a video frame is when it is first handled. The
server-side inter-frame delay is a good indication of the time-
liness of the pre-transmission video processing, or server
activities (Section 3.4.1). Only end-point system resources
should be considered here (no need to transfer videos be-
tween servers due to full replication). The left two graphs of
Figure 7 represent the result of the original VDBMS while
the right two graphs show those with QuaSAQ. We compare
the performance of both systems by their response to var-
ious contention levels. On the first row, streaming is done
without competition from other programs (low contention)
while the number of concurrent video streams are high (high
contention) for experiments on the second row.

Table 3: Statistics of Inter-frame and Inter-GOP
delays shown in Figure 7. Unit for all data is mil-
lisecond, S.D. = Standard Deviation.

Tested System & Inter-frame Inter-GOP
Contention Mean | S. D. | Mean | S. D.
VDBMS, Low 42.07 | 34.12 | 622.82 | 64.51
VDBMS, High | 48.84 | 164.99 | 722.83 | 246.85
QuaSAQ, Low | 42.16 | 30.89 | 624.84 | 10.13
QuaSAQ, High | 42.25 | 30.29 | 626.18 | 8.68

Under low contention, both systems (Fig 7a and 7b) demon-



Table 2: QoS of typical video replicas in QuaSAQ prototype.

Bit Rate | Color | Resolution | Frame Rate | Audio Sample
Target Standard | (KB/s) (bit) (pizels) (fps) Rate (Hz)
VCD (NTSC) 113 24 352x%240 29.97 44100
DSL 81 24 320200 29.97 32000
ISDN-2x 24 24 176x112 29.97 32000
z a. VDBMS, Low contention z b. VDBMS+QuaSAQ, Low contention
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Figure 7: Inter-frame delays on the server

strated timely processing of almost all the frames, as shown
by their relatively low variance of inter-frame delay (Table
3). Note that some variance are inevitable in dealing with
Variable Bitrate (VBR) media streams such as MPEG video
because the frames are of different size and coding scheme.
In our example with MPEG streams, the time needed to
handle I-frames is always longer than the following B and
P frames in each Group of Pictures (GOP). This is indi-
cated by the periodically appearing high lines in Figure 7a
and 7b. Such intrinsic variance can be smoothed out if we
collect data on the GOP level (Table 3). The compatible
performance of QuaSAQ and VDBMS shows that real-time
jobs such as video streaming, although scheduled as time-
sharing processes, can achieve good timeliness when there
are only minimal competitions. Under such circumstances,
deployment of QoS mechanisms has no advantage.
VDBMS shows very different behavior from the QuaSAQ-
enhanced database under high contention. Its variance of
inter-frame delays (Fig 7c) are huge as compared to those of
QuaSAQ (Fig 7d). Note the scale of the vertical axis in Fig-
ure 7c is one magnitude higher than that of all three other
diagrams. The reason for such high variance is poor guaran-
tee of CPU cycles for the streaming jobs. The job waits for
its turn of CPU utilization at most of the time. Upon getting
control over CPU, it will try to process all the frames that
are overdue within the quantum assigned by the OS (10ms in
Solaris). Therefore, VDBMS processes video in a chunk-by-
chunk pattern instead of frame-by-frame, as we can see from
the deep valleys in Fig 7c. Besides high variance, the aver-
age inter-frame delay is also big for VDBMS under high con-
tention (Table 3). Note the theoretical inter-frame delay for
the sample video is 1/23.97 = 41.72ms. Increased average
inter-frame delay is an obvious sign of QoS degradation: it
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side under different system contentions.

shows the lack of adequate resource (CPU) to handle all jobs
concurrently so that the total streaming time is longer than
expected. To the human user on the client side, this could
result in jitter/interruption during video playback. On the
contrary, QuaSAQ achieves similar performance when sys-
tem contention level changes. With the help of QoS APIs,
the CPU needs in QuaSAQ are highly guaranteed, result-
ing in timely processing of video frames on the end-point
machines.

Table 4: Statistics of Inter-frame delay and loss rate
on the client side. SD = Standard Deviation.

Inter-frame Delay Loss Rate
Tested Systems Accuracy | SD/Mean (%)
VDBMS 1.22 3.29 29.8
VDBMS+QuaSAQ | 1.002 0.633 0.012
VDBMS+QoS API 1.001 0.265 0.001

Client side QoS. Inter-frame delays are also collected and
analyzed on the client-side (Table 4). Unlike the server-
side data, client-side Inter-frame delay is a reflection of re-
source availability in both end-point systems and the net-
work. The latter can also be demonstrated by loss rate of the
UDP-based RTP packets for video streaming in the tested
systems. The data in Table 4 are collected in two client
machines from which details of 6 to 8 sample streams are
recorded. For a streaming session, the Accuracy is defined
as the ratio of the average to theoretical value of inter-frame
delays (see Table 3) while SD/Mean is the ratio of standard
deviation to the average. Data in each cell is the average of
the 6 to 8 sample streams. As compared to VDBMS, the



QuaSAQ-enhanced system achieves much better end-to-end
QoS, as shown by its high accuracy and low deviation. The
packet loss is also minimal, as a result of guaranteed network
bandwidth. The third system, denoted as VDBMS+QoS
API (details in Section 5.2), has very similar performance

to QuaSAQ.
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Figure 8: Throughput of different video database
systems. a. Concurrent sessions supported; b.
Number of accomplished sessions per minute.

5.2 System throughput

We compare the throughput of three different experimen-
tal systems: VDBMS, VDBMS with QuaSAQ, and VDBMS
equipped with Composite QoS APIs (Fig 8). In the last
system, only resource reservation and admission control are
performed in addition to basic VDBMS functionalities. The
same set of queries are fed into the three tested systems.
Queries are generated such that the access rate to each indi-
vidual video is the same and each QoS parameter (QuaSAQ
only) is uniformly distributed in its valid range. The inter-
arrival time for queries is exponentially distributed with an
average of 1 second. The original VDBMS obviously keeps
the largest number of concurrent streaming sessions (Fig
8a). However, the seemingly high throughput of VDBMS
is just a result of lack of QoS control: all video jobs were
admitted and it took much longer time to finish each job
(Table 3). To avoid an unfair comparison between VDBMS
and QuaSAQ, a VDBMS enhanced with QoS APIs is in-
troduced. The streaming sessions in both systems are of
high quality (Section 5.1). According to Figure 8a, through-
put for all three systems stabilize after a short initial stage.
QuaSAQ beats the “VDBMS + QoS API” system by about
75% on the stable stage in system throughput. This clearly
shows the advantages of QoS-specific replication and Qual-
ity Manager that are unique in QuaSAQ. The superiority
of QuaSAQ is also demonstrated in Figure 8b where we
interpret throughput as the number of succeeded sessions
per unit time. The throughput on stable stage of QuaSAQ
is shown to be about 100% and 37% higher than that of
VDBMS+QoS API and VDBMS, respectively.

We also evaluate our resource-based cost model (Fig 9).
We compare the throughput of two QuaSAQ systems using
different cost models: one with the Lowest Resource Bucket
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Figure 9: Throughput of QuaSAQ systems with dif-
ferent cost models. a. Concurrent sessions sup-
ported; b. Number of rejected queries

model and one with a simple randomized algorithm. The
latter randomly selects one execution plan from the search
space. The randomized approach is a frequently-used query
optimization strategy with fair performance. Without per-
formance being significantly better than that of the random-
ized approach, a newly-proposed cost model can hardly be
regarded successful. The queries are generated in the same
way as those in the previous experiment (Fig 8). It is easy to
see that the resource-based cost model achieves much better
throughput (Fig 9a). The number of sessions supported is
27% to 89% higher than that of the system with the ran-
domized method. The high system throughput caused by
the proposed cost model is also consistent with its low re-
ject rate shown in Figure 9b.

To thoroughly test the validity of the resource-based cost
model, we measure the throughput under various environ-
ments (Fig 10). In figure 10a, we decreased the total stream-
ing bandwidth of three servers to 1MBps. This makes the
network bandwidth a bottleneck resource at all times. In
figure 10b, the access pattern to media content becomes ex-
tremely skewed. Traffic are generated using an access model
called 90/10 where 90% of the requests ask for only 10% of
the media objects. The inter-arrival time of queries in figure
10c is 5 seconds instead of 0.5 seconds in previous experi-
ments. In figure 10d, we produce queries of more specific
QoS requirements by decreasing the range of QoP to QoS
mapping. As a result, the number of candidate plans for
each query is lowered. One common features of all these
treatments is that the flexibility in plan generation is re-
duced so that the advantages of our proposed model could
be masked. However, LRB still shows some improvement of
throughput over the randomized model. Not in one single
point is the number of sessions supported in LRB smaller
than that of the randomized model.

5.2.0.2 Overhead of QuaSAQ..

QuaSAQ is a light-weight extension to VDBMS. The through-

put data in Figure 8 already show that the overhead for
running QuaSAQ does not affect performance. The major
cost of QuaSAQ comes from the CPU cycles used for mainte-
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Figure 10: Throughput of QuaSAQ systems under
different environmental situations.

nance of the underlying QoS resource management modules.
The DSRT scheduler reports an overhead of 0.4 — 0.8ms for
every 10ms [5]. This number is only 0.16ms in the machines
we used for experiments (1.6% overhead). The CPU use for
QoS-aware query processing is on the order of milliseconds.
This reflects the cost for the construction and evaluation
of generally 30-40 plans for each query. Being a per-query
cost, it is overshadowed by the cost of DSRT. No network
resource is consumed in the tested system where only ad-
mission control is performed by the Composite QoS API.

6. RELATED WORK

Numerous research projects have been dedicated to the
theory and realization of QoS control on the lower (system,
network) levels [17, 7, 9, 28]. On the contrary, research
on user-level QoS has attracted less attention and left us
many open issues. In our QoS-aware distributed multimedia
database, we assume the low-level QoS functionalities are
given in the form of a Composite API. The Multimedia Sup-
port Infrastructure (MSI)® and Indiana Telemedicine Incu-
bator (ITI)° projects currently underway at Purdue Univer-
sity are examples of attempts at providing user-level quality

S$http://www.cs.purdue.edu/msi
http://www.cs.purdue.edu/iti

of service over collections of distributed multimedia reposi-
tories.

The software releases of QualMan [17] and GARA [7]
projects are the foundations upon which we build our low
level QoS APIs. In QualMan, access to shared resource is
controlled by a resource broker in a client/server model. For
any brokerage request, the client and server negotiate to-
wards a QoS contract and the server broker performs re-
source admission control. Then QoS contract is sent to rel-
evant resource scheduler for fulfillment. Unlike the strictly
reservation based and a focus on end-system QoS, GARA
gives more weight to resource adaptation and provides solu-
tions for network QoS by using the DiffSrv mechanisms over
IP.

Our goals are close in spirit to those of similar projects
at the University of Illinois [14, 13]. A key difference lies in
our database-centric approach versus the compiler and dis-
tributed objects approach. In our approach, QoS require-
ments are integrated into database queries. Based on a pool
of replicated media data with different quality characteris-
tics, the enhanced query processor (QuaSAQ) dynamically
generates multiple alternative plans that are evaluated at
run time. Our solution therefore trades greater flexibility in
finding good execution plans with increased run-time cost
in comparison to the approach of compiling a plan picked
by an application designer. We also show the validity of
a novel cost model based on each plan’s resource use. Us-
ing this model, QuaSAQ chooses plans that maximize sys-
tem resource utilization and also meet the QoS requirements
specified by the users.

The following pieces of work are directly related to our
QoS-aware multimedia DBMS. In [8], a QoS management
framework for distributed multimedia applications is pro-
posed with the focus of dynamic negotiation and transla-
tion of user-level QoS by QoS profiling. The same group
also presents a generic framework for processing queries with
QoS constraints in the context of conventional DBMS [29].
They emphasize the need to evaluate queries based on a
QoS-based cost model that takes system performance into
account. However, the paper lacks technical details on how
to develop these cost models. Nor does it provide any exper-
imental data for the validation of its methodology. A con-
ceptual model for QoS management in multimedia database
systems is introduced in [25]. In this paper, QoS is viewed
as the distance between an actual presentation and the ideal
presentation (with perfect quality) of the same media con-
tent. The metric space where the distances are defined con-
sists of n dimensions, each of which represents a QoS param-
eter. Utility functions are used to map QoS into a satisfaction
value, either on a single dimension or all QoS as a whole.
The paper also proposes a language for QoS specification.
Although the architecture of a prototype utilizing their QoS
model is illustrated, further details on implementation and
evaluation of the system are not discussed. Our work on
QoS differs from [25] in two aspects: we focus on the change
of query processing mechanisms in multimedia DBMS while
they are more inclined to QoS semantics on a general multi-
media system; we invest much effort in experimental issues
while they introduce only a theoretical framework.

The design and realization of QuaSAQ is motivated by
the high-level concepts sketched in a previous work [2]. The
main contribution of [2] is to specify QoS in video database
queries by a query language based on constraint logic pro-



gramming. They propose the content and view specifica-
tions of queries. The former addresses correctness while the
latter captures the quality of the query results. The pa-
per also discusses the modifications to current multimedia
DBMS design in order to accommodate the new feature of
QoS management. Similar to [25], the paper concentrates
on building a logical framework rather than the design and
implementation of a real-world system.

The idea of Dynamic Query Optimization [12, 20] is analo-
gous to QoS renegotiation in QuaSAQ. Both involve finding
a better plan in response to change of system status. How-
ever, the renegotiation process in QuaSAQ is more likely
to be triggered by change of user intention than resource
availability. Furthermore, traditional time-based cost mod-
els are used in the aforementioned studies while we build our
resource-based model in QuaSAQ. Other related efforts in-
clude: [30] studies cost estimation of queries under dynamic
system contentions; [24] discusses QoS control for general
queries in real-time databases; various dynamic replication
strategies in a video-on-demand environment are presented
and evaluated in [15].

7. CONCLUSIONS AND FUTURE WORK

We have presented an overview of our approach to en-
abling end-to-end QoS for distributed multimedia databases.
We discussed various issues pertaining to design and imple-
mentation of a QoS-aware query processor (QuaSAQ) with
the focus of novel query evaluation and optimization strate-
gies. As a part of the query processing scheme of QuaSAQ),
we presented a novel cost model that evaluates query plans
by their resource consumption. QuaSAQ was implemented
and evaluated on the context of the VDBMS project. Ex-
perimental data demonstrated the advantages of QuaSAQ
in two aspects: highly improved QoS guarantee and system
throughput.

We are currently in the process of implementing a more
complete version of QuaSAQ as part of our ongoing projects.
This includes efforts to add more resource managers in the
Composite QoS API, security mechanisms, and more refined
plan generator and cost models. The QuaSAQ idea also
needs to be validated on distributed systems with scales
larger than the one we deployed the prototype on. On
the theoretical part, we believe the refinement and analy-
sis of the resource-based cost model is a topic worthy of
further research. The extension of the applicability of our
cost model from video databases to more general multimedia
and database environments is also promising.
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