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ABSTRACT

Quality is an essential property for multimedia databases.
In contrast to other database applications, multimedia data
can have a wide range of quality parameters such as spatial
and temporal resolution, and compression format. Users
can request data with a specific quality requirement due to
the needs of their application, or the limitations of their
resources. The database can support multiple qualities by
converting data from the original (high) quality to another
(lower) quality to support a user’s query, or pre-compute
and store multiple quality replicas of data items. On-the-fly
conversion of multimedia data (such as video transcoding) is
very CPU intensive and can limit the level of concurrent ac-
cess supported by the database. Storing all possible replicas,
on the other hand, requires unacceptable increases in storage
requirements. Although replication has been well studied, to
the best of our knowledge, the problem of multiple-quality
replication has not been addressed. In this paper we address
the problem of multiple-quality replica selection subject to
an overall storage constraint.

We establish that the problem is NP-hard and provide
heuristic solutions under two different system models: Hard
Quality, and Soft-Quality. Under the soft quality model,
users are willing to negotiate their quality needs, as opposed
to the hard quality system wherein users will only accept
the exact quality requested. The hard quality problem is
reduced to a 0-1 Knapsack problem and we propose an effi-
cient solution that minimizes the probability of request re-
jection due to unavailability of the requested quality replica.
For the soft quality system, an important optimization goal
is to minimize utility loss. We propose a powerful greedy al-
gorithm to solve this problem. Extensive simulations show
that our algorithm performs significantly better than other
heuristics. The algorithm is flexible in that it can be ex-
tended to deal with problems of distributed data replication
and changes of query pattern.
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1. INTRODUCTION

Quality is an essential property for multimedia databases.
In contrast to other database applications, multimedia data
can have a wide range of quality parameters such as spatial
and temporal resolution, and compression format. Quality-
aware multimedia systems [24, 19, 9] allow users to specify
the quality of the media to be delivered based on their practi-
cal needs and resource availability on the client-side devices
[18, 19]. The quality parameters of interest also differ by the
type of media we deal with. For digital video, the quality
parameters of interest include resolution, frame rate, color
depth, signal-to-noise ratio (SNR), audio quality, compres-
sion format, and security level [24]. For example, a video
editor may request a video at very high resolution when
editing it on a high-powered desktop machine, but request
the video at low resolution and frame rate when viewing it
using a PDA. Different encoding formats may be desirable
for different applications.

From the point of view of a video database, satisfying user
quality specifications can be achieved using two complemen-
tary approaches: i) store only the highest resolution copy,
and convert it to the quality format requested by the user as
needed at run-time; or ii) pre-compute each different qual-
ity that can be requested and store them on disk. When
the user query is received, the appropriate copy is retrieved
from disk and sent to the user. This first approach, often
called dynamic adaptation, suffers from a very high CPU
overhead for transcoding from one quality to another [18].
Therefore online transcoding is difficult in a multi-user envi-
ronment. Our experiments (Fig 1) run on a 2.4GHz Pentium
4 CPU confirm this claim: a MPEG1 video is transcoded at
a speed of only 15 to 60 frames per second. This corre-
sponds to 0.6 to 2.4 times of the entire CPU power if the
frame rate for the video is 25fps. We can see that CPU
power is the bottleneck if we depend on online transcoding.
As a result, many transcode proxy servers or video gateways
[1] with massive computing power have to be deployed. The
second approach, often called static adaptation, attempts to
solve the problem of high CPU cost of transcoding by stor-
ing precoded multiple quality copies of the original media on
disk. By this, the heavy demand on CPU power at runtime



is alleviated. We trade disk space for runtime CPU cycles,
which is a cost-effective trade-off since disks are relatively
cheap.
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Figure 1: Time for transcoding a 640x 480 MPEG1 video
to various resolutions.

Static adaptation systems are designed under the assump-
tion that either there is always enough storage space or user
requests concentrate on a small number of quality profiles.
However, this may not be true for a real-world multimedia
database. First of all, users vary widely in their quality
needs and resource availability [18]. This leads to a large
number of quality-specific copies of the same media content
that need to be stored on disk. Secondly, although cheap,
storage space is not free. This is especially true for com-
mercial media databases that must provide high reliability
of disk resources (which may be leased from vendors such as
Akamai). Therefore, although storage is cheap, the storage
requirements should not grow unboundedly. An analysis in
Section 3 shows the disk space needed to accommodate all
possible quality profiles could be intolerably high. There-
fore, the choice of which quality copies to store becomes
important and is the focus of this paper.
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Figure 2: Traditional (A) and quality-aware (B) data
replication.
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We view the selection of media copies for storage as a data
replication problem (Fig 2). Traditional data replication
focuses on placement of copies of data in various nodes in a
distributed environment [20]. Our quality-aware replication
of multimedia deals with data placement in a metric space of
quality values (termed as quality space). In the traditional
replication scheme, data are replicated as exact or segmental
copies of the original while the replicas in our problem are
multiple quality copies generated via transcoding. In this
paper, we present strategies to choose quality of replicas
under two different assumptions about user behaviors: Hard
Quality and Soft Quality. Under the hard quality model,
users must receive the exactly quality requested. If such a
quality is not already stored on disk, it must be generated
by transcoding from an available quality. If the resources
necessary for this transcoding are not available (e.g. due to

too many requests) then the request is rejected. In a soft
quality model, users are willing to negotiate the quality that
they receive and may be willing to accept a quality that is
close to the original request. Naturally, there is a loss in
utility for the user when he has to accept a different quality,
depending upon the difference in quality. In either model,
a request can be rejected if the system is overloaded (at the
CPU, disk, or network).

Important performance metrics for these systems include:
reject rate of requests, user satisfaction, and resource con-
sumption [4, 13]. Our data replication algorithms are de-
signed to achieve the lowest rejection rate, or highest user
satisfaction under fixed resource (CPU, bandwidth, and stor-
age) capacities. To the best of our knowledge, this is the
first work to study quality-aware data replication. We hope
our work will provide useful guidelines to system design-
ers in building cost-effective and user-friendly multimedia
databases. The major contributions of this paper are:

1. We analytically and experimentally show that the stor-
age cost of static adaptation is so high that typically
only a small number of replicas in the quality space
can be accommodated in disks;

2. In a hard quality-aware system where users are as-
sumed to be strict on quality requirements, we develop
a (near-optimal) replica selection algorithm that min-
imizes request reject rate;

3. We formulate the replica selection under a soft quality
model as a location problem with the goal of maxi-
mizing user satisfaction. We propose a fast greedy al-
gorithm with performance comparable to commercial
optimizers. An improvement to the greedy algorithm
is also discussed.

4. We extend the algorithms developed in 2. and 3. to
handle dynamic changes of query pattern. Our solu-
tions are fast and achieve the same level of optimality
as the original algorithms.

The remainder of this paper is organized as follows: we
first introduce the system model in Section 2; Section 3 dis-
cusses storage use of the replication process; we present our
replica selection algorithms in Sections 4, 5, and 6; Section 7
is dedicated to experimental results; related works are sum-
marized in Section 8; we conclude the paper by Section 9.

2. SYSTEM MODEL AND ASSUMPTIONS

We assume that the database consists of a collection of
servers that host the media content and service user queries.
For now, we consider a centralized, single server scenario.
The case of multiple, distributed servers is discussed in Sec-
tion 6. We list in Table 1 the notations that will be used
throughout this paper.

In our model, a server is characterized by the total amount
of the following resources available: bandwidth (B), storage
space (S), and CPU cycles (C). Among them, bandwidth
can be viewed as the minimum of the network bandwidth
and the I/O bandwidth. In modern media servers, network
bandwidth is most likely to be the bottleneck.

User requests identify (either directly or via a query) an
object to be retrieved as well as the desired quality require-
ments on m quality dimensions (¢ = {q1, g2, -.., ¢m }, termed
as quality vector). Each quality vector can thus be modeled
as a point (hereafter called quality point) in a m-dimensional



Table 1: Notations and definitions.

[ Symbol  Definition

System parameters

Number of media servers

Server bandwidth

Server storage space for storing media
Server CPU power

Number of media objects in the system
Request reject rate

Total number of quality points for media %
Total number of quality points for all media
Total query rate, f = 22/1:1 fr
Replica-specific parameters

~ZEv<Quw=

fr Query rate, number of requests per unit time

J73% Service rate, requests served per unit time

Ck CPU cycles per unit time for transcoding into
this quality point from original quality

b Bandwidth needed for streaming

Sk Storage space needed if a replica is placed

space. Generally, the domain of a quality parameter con-
tains finite number of values. For example, the spatial res-
olution of a video is an integer number of pixels within the
range of 192 x 144 (low-quality MPEG1) to 1920 x 1080
(HDTV). The total number of quality points for a specific
media object i is M; = [[7., |Qi;] where Qi; is the set of
possible values in dimension j for object i and Q;; need not
to be identical for all media objects. Note every quality
point is a candidate replica to be stored on disk.

Consider each possible quality, k, stored in the database.
We use the following parameters to model this object: fx,
Wk, Ck,Sk,bk. fr represents the query rate for this version
of the video. We assume that the query arrival is a Poisson
process with this arrival rate. The query processing duration
is assumed to follow an arbitrary distribution with expecta-
tion 1/ug. Note 1/ur may not be the same as the standard
playback time of the media as the users may use VCR func-
tionalities (e.g. stop, fast forward/backward) during media
playback. The last three parameters (c, sk, bx) correspond
to the usage of resources. They can be precisely estimated
from empirical functions derived by regression (see Section
3). Note ¢ is fixed as the transcoding cost only depends on
the target quality.

Upon receiving a request to a media, the server:

1) attempts to retrieve from disk a replica that matches
the quality vector ¢ attached to the request;

2) if the corresponding replica does not exist
transcodes a copy from a high-quality replica (by
consuming ¢ units of CPU);

3) rejects the request if not enough CPU is available.

If either 1) or 2) is performed, the retrieved/transcoded
media data is transmitted to the client via the network (us-
ing by units of bandwidth). The request is also rejected
if sufficient bandwidth is unavailable. We ignore the CPU
costs of non-transcoding operations as they are trivial com-
pared to transcoding costs and do not change with the spec-
ified ¢. In the above model, requests are either admitted or
rejected. In Section 5, we study a more flexible model where
users may compromise the original quality they specify.

2.1 Assumptions

In this paper, we assume that CPU is a heavily overloaded

Table 2: Total relative storage in a 3D space.
n 5 10 15 20 25
Storage | 20.23 | 117.7 | 354.8 | 755.9 | 1496.5

resource as a result of online transcoding requests. On the
other hand, system bandwidth is moderately overloaded.
Formally, we can say 3 o, % > Cand S0, % =pB
where p (p > 1) is a small number. This is reasonable due to
our discussion in Section 1 about CPU being the bottleneck
in our system model.

We assume that replicas are readily available. In practice,
all replicas can be precoded and archived on tertiary storage
and copied into disk when a replication decision is made.

3. STORAGE REQUIREMENTS FOR
QUALITY-AWARE REPLICATION

As mentioned in Section 1, it is often assumed in previous
works that enough storage is available for static adaptation.
Now we explore this assumption. Since a user can request
any of the possible qualities, an ideal solution is to store
most, if not all, of these replicas on disk such that only
minimal load is put on the CPU for transcoding. We show
that the storage cost for such a solution is simply too high.

We use digital video as an example throughout this paper.
According to [19], the bitrate of a video replica with a single
reduced quality parameter (e.g. resolution) is expressed as:

F = Fy(1 — RF) (1)

where Fjp is the bitrate of the original video, R is the percent-

age of quality change (0 < R < 1) from the original media,

and 3 is a constant derived from experiments (2 > 8 > 1).

Suppose we replicate a media into n copies with a series of

quality changes R; (i = 1,2,...,n) that cover the domain of
2

R evenly (i.e. R; = ). The sum of the bitrate of all copies
is given by:
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The corresponding storage requirement can be easily calcu-
lated as TFO# where T is the playback time of the media.
Note that the above only considers one quality dimension.
In [19], Equation (1) is also extended to three dimensions
(spatial resolution, temporal resolution, and SNR):

F:aFO(l—Rﬁ)(l—Rﬁ)u—Ré) (4)

where Ra, Rp, and Rc are quality change in the three di-
mensions, respectively. The constants of their transcoder(s)
are: « = 1.12, 8 = 1.5, v = 1.7, and § = 1.0. Using the
same technique of approximation by integration as used in
Equation (2), we can easily see the sum of all storage needed
for all n® replicas is TFOO(nS). To be more general, the rel-
ative storage (to original size) needed for static adaptation
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Figure 3: Change of video bandwidth with resolution
degradation.

is on the order of total number of quality points. The latter
can be represented as O(nd) where d is the number of and
n is the replication density along quality dimensions. Some
of the storage costs generated using Equation (4) are listed
in Table 2. For example, when n = 10, the extra storage
needed for all replicas is 117.7 times that of the original me-
dia size. No media service can afford to acquire hundreds of
times of more storage for the extra feature of static adap-
tation. Needless to say, we could have even more quality
dimensions in practice.

We have also experimentally verified the storage require-
ments for replication. We use the open-source video pro-
cessing tool named transcode * in these experiments. Figure
3 shows the relative video size when spatial resolution de-
creases by various percentages. The discrete points are the
resulting video sizes and curve A represents Equation (1).
In this graph, the areas under the curves can be viewed as
the total relative storage use. We also plot a straight line B
with function 1—1.25R to show the theoretical storage usage
based on Equation (3). The area of the triangle formed by
X, Y axles and line B is %, which is the same as that given
by Equation (3) since 3 = 2. The fact that the areas under
these three curves are very close to each other corroborates
our analysis in this section.

4. HARD QUALITY SYSTEMS

In this section, we discuss data replication strategies in
hard quality systems where users have rigid quality require-
ments on service. This means the users are not willing to
negotiate when the quality he specifies cannot be satisfied.
As mentioned in Section 1, the main idea of static adapta-
tion is to replicate original media into multiple quality copies
such that the demand on CPU decreases. In an earlier sec-
tion we have shown that it is impractical to store all possible
quality combinations. Therefore, the problem becomes how
to choose quality points for replication given finite storage
space C' such that system performance is maximized. Since
the non-availability of a requested quality results in the re-
jection of the request, we use the reject probability, P, as the
metric for performance evaluation. Let the output of the
replica selection algorithm be a vector (ri,r2,...,ra) with
0/1 elements (rr = 1 if replica k is to be stored in disk).
Formally, the replica placement problem is to

minimize P
subject to Zﬁl resE < S

1 http://www.theorie.physik.uni-
goettingen.de/~streich/transcode/

where fi, pr, sk, and cx values for each replica are given.

To approach the above problem, it is critical to derive
the relationship between P and the replica-specific values.
First of all, the reject probability of all quality points is a
weighted average of those of individual points:

M f 1M
3
P:ZZTPk:jkaPk (5)
k=1 Zuk=1Jk k=1
where Py is the reject probability of replica k. Suppose, by
applying our replication algorithm, the M quality points are
divided into two disjoint sets: a set A containing replicated
points and a set B with non-replicated points. Following
Equation (5), we have

P= %(fAPA + f5Pp) (6)

where fa = ZieA fi is the total request rate in set A, P4 =
ﬁ > kea JrPx is the reject probability of all requests from
A and fp, Pp are counterparts of fa, P4 in set B.

In our model, the admission of a request is determined
by the runtime availability of two resources: bandwidth and
CPU. If either one is insufficient to serve the request, the
request is rejected. So the reject probability for a set of
objects, say, those in set A, can be expressed as

Pa=PY + P — pio (7)

where PX’), PAC), and PXDC) are probabilities of the follow-
ing events happening to requests from set A: rejected by
bandwidth, rejected by CPU, and rejected by both CPU and
bandwidth. Note we cannot say PX’C) = PX’) ~P£\C) as the first
two events could be dependent on each other. Similarly, we
have the following for set B:

Ps =Py + Py — Py (8)

where P](Bb)7 Pl(;)7 and Pg)c) are defined according to requests
from set B.

As no rejection by CPU will occur when a replica is placed
in disk (Section 2.1), we have PAC) = 0, which leads to
PX’C) = 0 and thus P4 = PX’). Plugging this and Equa-
tion (8) into (6), we have

1 ) c
P= (fAP}f) +fB <P};> + Py — Py >)> (9)

We now establish the following theorem that will help ana-
lyze the above expression.

THEOREM 4.1. For a group of M Poisson-arrival requests
for replicas, if Zﬁl fﬁ% > C, P~ 1. All notations follow
the same definitions in Table 1.

PROOF. See Appendix A. [

In other words, Theorem 4.1 states that when the request
load put on a resource is far greater than the its capacity, the
reject probability is very close to 1. As discussed earlier in
Section 2.1, the CPU in our quality-aware system is exactly
such an overloaded resource. This gives Pl(;) ~ 1 and thus

P}(S,bc) ~ Pg). Revisiting Equation (9), we have
1 c 1
P ?(fAPX’) + fePY)) ~ ?(fAPX’) + /). (10)

Now we can see that, in order to get the smallest possible P,
we can maximize fa. In other words, we can minimize fp as



fa+ fB = f. By putting a replica k in set B, we have a net
increase of fi/f for P. But if it is put into A, the increase

of P will be discounted by Plgb). Thus, such a solution is

effective as long as PX)) < Pf;) ~ 1. This condition holds
true in our system: since bandwidth is critically loaded or
slightly overloaded (Section 2.1), the reject probability on
bandwidth is significantly smaller than 12.

The above analysis is nice in that it shows the selection al-
gorithm does not need to consider puy, ¢, and by even though
they play a role in determining P*) and P(® (Equation 19,
Appendix A). Now the problem becomes: how to get as
large (small) a fa (fB) value as possible given the storage
constraint S. This is obviously a 0-1 Knapsack problem.
A good heuristic is as follows: sort all possible replicas by
their request rate per unit size (fr/sx) and select those with
the highest such values till the total storage is filled — a
O(Mlog M) algorithm. In Appendix C, we prove that the
results obtained by such a heuristic are near-optimal when
S > si for all k € [1, M], which is a safe assumption.

5. SOFT QUALITY SYSTEMS

In hard quality systems, replicas of the same media ob-
ject are treated as independent entities: storing a replica
with quality ¢i does not help the requests to another with
quality ¢ as quality requirements are either strictly satis-
fied or the request is not served at all. However, human
users can tolerate some changes of quality [19] and the qual-
ity parameters specified by a user only represent the most
desirable situation he wants. If these parameters cannot be
exactly matched by the server, they are willing to accept an-
other set of qualities. The process of settling down to a new
set of quality parameters is called renegotiation. Of course,
the deviation of the actual qualities a user gets from those
he/she desires will have some impact on the user’s viewing
experience and the system should be penalized for that.

5.1 Utility Functions

We generally use utility to quantify user satisfaction on a
service received [16]. For our purposes, utility functions can
be used to map quality to utility and the penalty applied
to the media service due to renegotiation is easily captured
by wutility loss. As utility directly reflects the level of sat-
isfaction from users, it is the primary optimization goal in
quality-critical applications [13]. We thus set the goal of
our replica selection strategies to be maximizing utility. The
server operations shown in Section 2 needs to be modified
in soft quality systems. For simplicity, we assume the ‘rene-
gotiation’ process between client/server is instantaneously
performed on the server side based on a simple rule: in case
of a miss in step 1), the server always chooses a replica that
yields the largest utility for the request to retrieve.

Figure 4 shows various types of utility functions for a sin-
gle quality dimension. In general, utility functions are con-
vex monotones (Fig 4A) due to the fact that users are always
happy to get a high-quality service, even if the quality ex-
ceeds his/her needs [16]. This makes our replica selection a
trivial problem: always keep the one with the highest qual-
ity. However, in a more realistic environment, the cost of the
extra quality may be high as more resource have to be con-
sumed (Section 1) on the client side. Thus excessively high

2This is intuitively obvious yet a rigorous mathematical justifica-
tion [7] is non-trivial. See Appendix B for more details.
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Figure 4: Different types of utility functions.

quality negatively affects utility. Taking this into account,
we propose a new group of utility functions in quality-aware
media services: it achieves the maximal utility at a single
point ¢%***"® and monotonically decreases on both sides of
q?e*'¢ along the quality dimension (Fig 4B). Note the func-
tions do not have to be symmetric on both sides of g%,
The hard quality model in Section 4 can be viewed as a spe-
cial case: its utility function takes the value of 1 at ¢?¢¥"®
and 0 otherwise. The utility for a quality vector with mul-
tiple dimensions is generally given as a weighted sum of di-
mensional utility described above [13].

5.2 Data Replication as an Optimization

In this subsection we formally define the replica selection
problem in soft quality systems. Let us first study how to
choose replicas for one media object i. We then extend our
discussion to all V objects in Section 5.5.

The problem is to pick a set L of replicas that gives the
largest total wutility over time, which can be expressed as

U= Z]‘EJ fju(j7 L)

where J is the set of all M; points and u(j, L) is the largest
utility with which a replica in L serves a request for quality
j. Obviously, u(j, L) has maximum value when j € L. We
set u(j, L) to be a function of the distance between j and
its nearest neighbor in L (Section 5.1). Generally, u(j, L)
is normalized into a value in [0,1]. We weight the utility
by the request rate f; and the weighted utility is termed
as utility rate. The constraint of forming set L is that the
total storage of all members of L can not exceed S. We
name our problem the fized-storage replica selection (FSRS)
problem and it can be formulated as the following integer
programming;:

maximize 0. ;> fiu(d k)Yje (11)
subject to Y ones Xesk <8, (12)
Dokes Yir =1, (13)

Yir < X, (14)

Vi € {0,1}, (15)

X, €{0,1} (16)

where u(7j, k) is the utility value when a request to point k is
served by a replica in j, X} is a binary variable representing
whether k£ is replicated, Yj tells if j should be served by k.
Equation (12) shows the storage constraint while Equations
(13) and (14) mean all requests from k should be served by
one and only one replica. Here f;, sx, and S are inputs and
X for all k € J is the solution.

The FSRS problem looks similar to a group of well-studied
optimizations known as the wuncapacitated facility location
(UFL) problems [6]. Yet it is different from any known UFL



Algorithm GREEDY

Inputs: fi, s for all replicas, total storage S
Output: a set of selected replicas, list

1 storage «+ S, slist — (), k0

2 while k # —1 do

3 k «— ADD-REPLICA(storage, list)

4 storage < storage — sg

5 append k to slist

6 return list

ADD-REPLICA (s, slist)

1 ¢ =1, Vinaz <0

2 for each point k in the quality space do
3 if k & slist and s < s

4 U—0

5 for each point j in the quality space
6 U — U + MAXUTILITY(J, k, slist)
7 if U/sk > Vinaz

8 Vimaz +— U/Sk

9 i — k

10 return

Figure 5: The Greedy algorithm.

problems in that the storage constraint in FSRS is unique. A
close match to FSRS is the so-called p-median problem with
the same problem statements except Equation (12) becomes
> X = p, meaning only p (p < |J|) facilities are to be
built. As the p-median problem is NP-hard [10], we can
thus conclude FSRS is also NP-hard.

THEOREM 5.1. The FSRS problem is NP-hard.

PrOOF. The p-median problem is equivalent to finding
the set of replicas that yields the smallest loss of utility rate
in a quality space where s = 0 (J > 0) for all k and S = pd.
Thus the p-median problem is polynomial time reducible to
the FSRS problem and this concludes the proof. [

5.3 The Greedy Algorithm.

Like in the Knapsack problem, we can use a benefit/cost
model to analyze the quality of a replica k: the cost is obvi-
ously the storage sy, the benefit would be the gain of utility
rate of selecting k . What makes the problem more com-
plicated is that the benefit is not fixed: it depends on the
selection of other replicas. More specifically, the value of
point k is the total utility rate of the set of points it serves
and different selections of other replicas will affect the mem-
bership of this set of points. To bypass this difficulty, we
propose an algorithm (we call it Greedy) that takes guesses
on such benefits. The main idea is to aggressively select
replicas one by one. The first replica is assigned to a point
k that yields the largest AUy /sy value as if only one replica
is to be placed. We denote AUy /sy as the utility density of
replica k where AU, is the marginal utility rate gained by
replicating k. The following replicas are determined in the
same way with the knowledge of replicas that are already
selected. The utility density value represents our guess of
the benefit-to-cost ratio in replicating k. It should be noted
that this is different from choosing the replicas simply in
descending order of precomputed AUy /si because the AUy
changes depending upon which replicas have already been
selected and thus must be recomputed after each selection.

Figure 5 shows the pseudo-code of the Greedy algorithm.
GREEDY calls ADD-REPLICA continuously with a queue list

Step 1

OO

Candidate Set

©ooooceee.

Step 2

Figure 6: Replica replacement in Iterative Greedy.

holding the replicas selected so far. The algorithm termi-
nates when no more replicas can be added due to storage
constraints. The subroutine ADD-REPLICA is the core of
this algorithm: it selects a new replica given those chosen in
slist. 1t does so by trying all M; points in the quality space
(line 2) to look for the one that yields the largest utility
rate. Subroutine MAXUTILITY gives the utility from j to its
nearest replica in slist + k, which can be done in constant
time if we store the previous nearest replica for all j. The
two loops both have to run M; iterations therefore the time
complexity for Greedy is O(I Mf) for one media i. Here I
is the number of replicas eventually placed in list. In the
worst case when all points are selected, I = M;. In our stor-
age constrained system, I should be asymptotically smaller
than M;.

Effects of the type of utility functions. It is easy
to see that the shape of the utility functions affect the final
results of replica selection. Recall that we evaluate a replica
k by its > fiju(4, k)/sk value where j are the points k serves
(line 7 in ADD-REPLICA). If the utility drops very fast, a
replica can only collect utility from points that are extremely
close to it therefore the Greedy algorithm favors those with
high query rates in their close neighborhood. On the other
hand, if utility drops very slowly, we may overestimate the
utility rate of a point at early stages of Greedy. As a result,
the first few replicas chosen by Greedy tend to be those with
small s values since the utility rate of all candidates have
little difference at that moment. In Section 5.4, we propose
a solution to remedy this problem of Greedy.

The utility curves we have discussed so far are all mono-
tonically decreasing functions of distance (between two points).
However, our FSRS algorithm does not depend on any spe-
cial features (e.g. monotonicity, convexity) of the utility
functions. In fact, Greedy works for arbitrary types of util-
ity functions as long as the utility value between two points
is not affected by the replica selection process.

5.4 The rIterative Greedy Algorithm

Iterative Greedy algorithm attempts to improve the per-
formance of Greedy. We notice that at each step of Greedy,
some local optimization is achieved: the (K + 1)-th replica
chosen is the best given the first K replicas. The problem
is: we do not know if the first K replicas are good choices.
However, we believe the (K + 1)-th replica added is more
‘reliable’ than its predecessors because more global informa-
tion (existence of other selected replicas) is leveraged in its
selection. In this sense, the first replica is the most ‘unreli-
able’ one: it is chosen taking no such global information into
account. Based on this conjecture, we develop the Iterative
Greedy algorithm that iteratively improves the ‘correctness’
of the replicas chosen. Specifically, we repeatedly get rid of
the most ‘unreliable’ selected replica and choose a new one,
as illustrated in Fig 6. Note that the one that is eliminated
is also a candidate of the selection process.

The operations in Iterative Greedy are shown in Fig 7.
All replicas selected by Greedy are stored in a FIFO queue



Algorithm ITERATIVEGREEDY
Inputs: selected replicas slist, number of iterations I
Output: a modified list of replicas newlist
1 copy slist to newlist
2 Umaz < 0, storage < available storage
3 fori—O0tol
do k < head of slist
storage < storage + sy,
| «— ADD-REPLICA(storage, slist)
append [ to slist
update storage, U « total utility of slist
if Unae < U
10 Umaz <— U
11 copy slist to newlist
12 return newlist

© 00O Ut

Figure 7: The Iterative greedy algorithm.

slist. In each iteration, we dequeue slist and find one replica
(line 6) based on replicas remaining. The newly identified
replica is then added to the tail of slist. The same sub-
routine, ADD-REPLICA, is used to find new replicas. We
keep dequeuing slist and running ADD-REPLICA until [ it-
erations are finished. We record the set of replicas with the
largest utility rate as the final output. As ADD-REPLICA
runs in O(Mf) time, Iterative Greedy has time complexity
of O(IMf)7 which is the same as that of Greedy. The only
problem here is how to set the number of iterations I. Since
the primary goal of Iterative Greedy is to reconsider the se-
lection of the first few ‘unreliable’ replicas, we can set I to
be a fraction of that in Greedy.

5.5 Handling Multiple Media Objects

With very few modifications, both Greedy and Iterative
Greedy algorithms can handle multiple media objects. The
idea is to view the collection of V' physical media as replicas
of one virtual data object. The different content in the phys-
ical media can be modeled as a new quality dimension called
content. A special feature of content is its lack of adapt-
ability: any replica of the movie Matriz cannot be used to
serve a request to the movie Shrek. Assume all physical me-
dia have a quality space with M points, the FSRS problem
with V' media can be solved by simply running the Greedy
algorithm for the virtual media with V M points. Knowing
that there is no utility gain between two replicas with differ-
ent content, we only need to run the second loop (line 5) in
ADD-REPLICA for those with the same content. Thus, the
time complexity of GREEDY becomes O(IVMz).

Note some quality parameters for physical media objects
also lack adaptability. Video format is a good example.
Without degradation of bitrate, replication along these qual-
ity dimensions requires even more storage than adaptable
dimensions. However, it can reduce the time complexity of
GREEDY the same way as the content dimension does.

Another point is that we set a constraint of replicating
at least one copy for the video in Equation (13). In the
multi-object scenario, we can further relax or tighten this
constraint. To relax it, we allow zero replica being selected
for a video, modifying Equation (13) to >, . ; Y;x < 1. This
requires no changes to our algorithms. On the other hand,
the system administrator could also enforce the selection
of certain replicas (e.g. the original video). Again, our
FSRS algorithms can easily handle this: we just start run-
ning ADD-REPLICA with a list of all replicas that must stay

in storage. However, if we stick to the original constraint
but do not specify which replica to store for each video, the
problem becomes trickier as our algorithms may assign no
replica to videos with low query rates. The solution is to
start by selecting the smallest replica for all videos and run
Greedy. This guarantees one replica for each video but the
effects of the constraint are minimized. Unless specified oth-
erwise, the following extensions are based on a multi-video
environment with the relaxed constraint.

6. EXTENSIONS

In this section we address the problem of multiple dis-
tributed servers instead of the single centralized server con-
sidered thus far, and the problem of changes in the access
pattern for the various objects.

6.1 Distributed Data Replication

In Section 4 and 5 we discuss the strategies of quality-
aware data replication in a single server. Now we extend
the solutions to a distributed system with multiple servers.
Let us first investigate how the problem is changed when
we consider multiple servers in a hard quality system. Here
we assume user requests can be served by any one of the
N servers®. As we can see, the analysis we show in Section
3 still holds true and we can use Equation (10) to guide
our replica selection: the strategy is again to maximize fa.
When we obtain a set of replicas with the largest possible fa,
how to assign these replicas to IV servers becomes a problem.
Different methods may derive different Pjgb) values and we
want to minimize it. We can immediately relate this to a
load balancing problem with the goal of achieving uniform
reject probability in all servers. A more detailed justification
can be found in Appendix D.

We prefer a load balancing approach based on the idea of
resource pricing proposed in [2]. In this approach, we set a
price for the resource on which load is placed in each server.
The price is set to reflect the supply-demand relationship of
the resource. In our problem, the price for bandwidth can
be set to

Vbandwidn = N? /P (17)

where B’ is the load put on bandwidth so far. The replica
placement is accomplished by putting replicas one by one
into a server with the lowest cost. Note in our problem we
need to balance both storage and bandwidth. Therefore, the
cost of placing replica k in a server is:

Cost = spstorage + i_kbk¢bandwidth' (18)
k

Resource prices are updated upon placement of each replica
according to Equation (17). The advantages of this algo-
rithm are: server capacities do not have to be identical and
it is proved to be O(log N)-competitive [2].

Same strategy can be deployed to balance load under the
soft quality system model even though reject probability is
not the primary optimization goal.

6.2 Dynamic Data Replication

In previous sections we deal with the situation of static
data replication, in which access rates of all qualities do not

3If each server only handles requests from its local region, the
problem is not interesting as we only need to perform single-server
replication at each server.



change over time. The importance of studying static repli-
cation can be justified by two observations: 1. Access pat-
terns to many media systems, especially video-on-demand
systems, remain the same within a period of at least 24
hours [15]; 2. Conclusions drawn from static replication
studies form the basis of dynamic replication research [14].

In this section, we discuss quality-aware data replication
in an environment where access patterns change. There are
two main requirements to a dynamic replication scheme:
quick response to changes and optimality of results. Our
goal is to design real-time algorithms that match static repli-
cation algorithms in terms of result optimality.

6.2.1 Hard quality systems

Our replication strategy for hard quality systems is eas-
ily adaptable to dynamic situations: the replication deci-
sion is made by sorting replicas by their ny = fi /s, values.
When the query rate of a replica changes, we just reinsert
the replica into the sorted list and make decisions based on
its current position in the list. The algorithm is displayed
in Fig 8. Recall from Section 4, all replicas belong to either
the replicated set A or the non-replicated set B. In HARD-
DYNAREP, we set a bound 7 such that for any replica k, we
haven, >N < k€ Aandn, <7< k € B. HARDDYNAREP
is called when we detect a change of access rate for a replica
r. Replication decision is made based on comparison be-
tween the new 7, and the bound 7. The time complexity of
this algorithm is O( log M)

Algorithm HARDDYNAREP

Inputs: sorted list L of all replicas, 7, and a replica r
1 reinsert 7, into L

2 Case 1. f, increases

3 Case 1.1. r was replicated, do nothing

4 Case 1.2. r was not replicated

5 ifn. >n

6 do reset bound 7

7 Vk, if k € A and ng < 7, dereplicate k

8 replicate r

9 Case 2. f, decreases, operations are opposite to Case 1.

Figure 8: Hard quality dynamic replication algorithm.

6.2.2 Soft quality systems

Dynamic replication in soft quality systems is a very chal-
lenging task. The difficulty comes from the fact that the
access rate change of a single point could have cascading ef-
fects on the choice of many (if not all) replicas. We may have
to rerun the static algorithms (e.g. Greedy) in response to
such changes but these algorithms are too slow to make on-
line decisions. Fortunately, the Greedy and Iterative Greedy
algorithms we developed have some nice features that we
can exploit in building efficient, accurate dynamic replica-
tion algorithms. In this section, we assume that runtime
variations of access pattern only exist at the media object
level. In other words, the relative popularities of different
quality points for the same media object do not change. Al-
though this assumption is reasonable in many systems [15,
26], we understand a solution for more general situation is
meaningful and we leave it as future work.

Let us first investigate how ADD-REPLICA, being the core
of both Greedy and Iterative Greedy, selects replicas. The
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Figure 9: Replication roadmap.

history of total utility rate gained and storage spent on each
selected replica can be represented as a series of points in a
2D graph. We call the lines that connect these points in the
order of their being selected a Replication Roadmap (RR).
Fig 9 shows two examples of RRs plotted with the same
scale. First of all, we have the following feature of RR:

LEMMA 1. A Replication Roadmap is convez.

Proor. In a RR, the slope of the line connecting any two
consecutive points (e.g. rl and r2 in Fig 9) represents the
ratio of AU,z to sr2. As ADD-REPLICA always chooses a
replica with the largest AU/s value, the slopes of the lines
along the RR are thus non-increasing. [

We can also draw RRs for individual media objects. For
the same reason as in Lemma 2, single-media RRs are also
convex. In dynamic replication, replicas need to be re-
selected with respect to the new query rate of a media object.
Suppose the query rate f; of a medium ¢ increases by a fac-
tor § (6 > 0). This makes the slopes of all pieces in i’s RR
increase by §. What happens now is that we may consider
assigning extra storage to i as it reaches a position to use
storage more profitably than before. As storage is limited,
the extra chunk should come from another medium whose
slope in the last piece of RR is small. Take Fig 9 as an exam-
ple. Suppose we have fully extended RRs: all future replicas
are precomputed (empty dots in Fig 9) and we call the last
real replica the frontier of the RR. It buys us more utility
to advance A’s frontier (take storage) and move backwards
on B’s RR (give up storage). The beauty of this scheme is
that: we never need to pick up points far into or over the
frontier to make storage exchanges. The convexity of RRs
tells us that the frontier is always the most efficient point
to acquire/release storage. Based on this idea, we have the
following online algorithm for dynamic replication:

The algorithm consists of two phases: the Preprocess Phase
and Online Phase. In the first phase, we need to extend each
RR formed by Greedy or Iterative Greedy by adding all M;
replicas®. For all RRs, we put the immediate predecessor of
the frontier in a list called blist and the immediate successor
in a list called flist. Both lists are sorted by the slopes of
the segments stored. The Preprocess phase runs at O(VM 3)
time and it only needs to be executed once. The Online
Phase is triggered once we detect a change in query rate to
an object i. The idea is to iteratively take storage from the
end of blist until a new equilibrium is reached. The running
time of this phase is O(I log V) where [ is the number of
storage exchanges (line 9). In the worst case where most of

4n practice, we do not have to extend a RR to its full length if
we can bound the possible changes of query rates.



Algorithm SOFTDYNAREP
Preprocess Phase

1 run GREEDY or Iterative Greedy
2 for RRs of all V media objects

3 store the post-frontier segment in flist
4 store the pre-frontier segment in blist
5 extend RR

Online Phase

6 Case 1. f; increases

7  recalculate slopes of stored segments for i
8 update blist and flist (reinsertion)

9  while there is room to improve total U

10 do take storage from media j at the tail of blist
11 update frontiers of both 7 and j
12 insert pre/post-frontier segments of ¢ and j into blist and flist

13 Case 2. f; decreases, symmetric to Case 1

Figure 10: Soft quality dynamic replication algorithm.

i’s replicas are to be stored, we have I = O(MZ) The case
of query rate decrease is just handled in an opposite way to
what we have discussed above.

Optimality of SOFTDYNAREP. We claim that the on-
line phase of SOFTDYNAREP achieves the same quality in
the selected replicas as that by rerunning Greedy. A proof
can be found in Appendix E. In summary, Greedy essen-
tially recreates a list of all VM replicas (the system RR)
and selects the ones with the highest utility density values
to store. In SOFTDYNAREP, we break the list into V' small
lists (media-specific RR) and achieve the same utility den-
sity ordering by dealing with only the head (frontier) of each
list.

7. EXPERIMENTS

We study the behavior of various algorithms described in
previous sections by extensive simulations. We use traces
of 270 MPEG1 videos extracted from a real video database
as experimental data. For all replicas, we set their ux to
be their standard playback time. Some of the videos are
then transcoded into replicas of different spatial resolution
and frame rates using transcode (Section 3). Through these
transcoding steps, we generate empirical functions to esti-
mate the by, cx, and si values for all replicas. As real-world
traffic traces for quality-aware systems are not available, we
test various access patterns in our simulations. The simu-
lated video server possesses network bandwidth of 90Mbps
(dual T3 lines), four UltraSparc 1.2MHz CPUs, and variable
storage capacity (60 to 300G) for data replication. All the
above parameters are set to be close to those in a real-world
server. We run our experiments on a Sun Workstation with
a UltraSparc 1.2MHz CPU.

7.1 Results for Hard Quality Model

In this experiment, we compare our replica selection algo-
rithm (Section 4) to various heuristics under the hard quality
system model. The metric is the reject frequency measured
as the ratio of the total number of rejected requests to total
requests. The quality space is a 2-D space (resolution and
frame rate) with 15 to 20 values on each dimension (dif-
fers by each video object). Requests (with f = 10/sec) are
distributed in a Zipf pattern to all M replicas.

In Fig 11, we show the performance of three replica selec-
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Figure 11: Performance of various replica selection al-
gorithms in the hard quality model.

tion methods: our solution that chooses quality points by
their fi/sk values (Algorithm 1), an algorithm that chooses
by their CPU load over storage ,’:)’Z—Z’Z (Algorithm 2), and one
whose selection criteria is access rate (fx) only (Algorithm
3). The results confirm our analysis in Section 4. Algorithm
1 always gets the lowest reject probability (Fig 11I) as a re-
sult of its collecting the highest fa (Fig 111III). From Fig 1111
we can see that the rejection frequency on bandwidth is sig-
nificantly lower than 1. In these experiments, the recorded
total bandwidth loads (3_, . 4 fZik) range from 0.65 to 2.75
times of the total bandwidth of 90Mbps. However, the cor-
responding CPU loads needed for the same traffic are on the
order of hundreds of times of the total CPU power. This ex-
plains why the observed reject frequency on CPU (Fig 11IV)

is always higher than 0.999. As storage increases, P and P](BC)

decrease while PX’) and fa increase. Note when excessive
storage is used the decrease of P slows down as bandwidth
now becomes the bottleneck.

7.2 Results for Soft quality Model

In this section we present experimental results under the
soft quality model. We first evaluate the performance of
Greedy and Iterative Greedy algorithms in terms of optimal-
ity (Fig 12) and running time (Fig 13). In this experiment,
we set f to 3600 requests/hour so the utility rate is bounded
by 3600/hr. We compare our algorithms with three others:
1. the CPEX mathematical programming package®; 2. a
random algorithm; 3. a local algorithm that places repli-
cas in the hottest areas in the quality space. CPLEX is a
widely-used software for solving various optimization prob-
lems and is well-known for its efficiency. We tune CPLEX
such that the results obtained are within a 0.01% gap to the
optimal solution.

From Fig 12A, it is clear that our algorithms always find
solutions that are very close to the optimal. More details can
be found in Fig 12B where the relative U values obtained by
our algorithms to those by CPLEX are plotted. Utility rates
of solutions found by Greedy are only about 3% smaller than
the optimal values. The [terative Greedy cuts the gap by at

Sversion 8.0.1, http://www.cplex.com
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Figure 12: Optimality of replica selection algorithms.
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Figure 13: Running time of different replica selec-
tion algorithms.

least half in all cases: its solutions always achieve more than
99% of the optimal utility rate. The performance of both
algorithms is not affected by the increase of number of qual-
ity points. Nor is it affected by access patterns. We tested
different access patterns (e.g. Zipf, 20-80, and uniform) and
obtained similar results (data not plotted due to space lim-
itations). The solutions given by random and local are far
from optimal. Surprisingly, the local algorithm, which is sim-
ilar to our solution under the hard quality model (Section
4), performs even worse than the random algorithm. This
shows that it is dangerous to consider only local or regional
information in solving a combinatorial problem.

The running time of the above experiments are shown on
a logarithmic scale in Fig 13. CPLEX is the slowest algo-
rithm in all cases. This is what we expected as its target
is always the optimal solutions. Actually, we could only
run CPLEX for the five smaller cases due to its long run-
ning time. Both Greedy and Iterative Greedy are 2-4 orders
of magnitude faster than CPLEX. It takes them about 200
seconds to solve the selection of 30 videos in a quality space
with 500 points. This is good enough for an offline algo-
rithm. We will present the running time of their online
versions in Section 7.3.

Effects of utility functions. We test our algorithms
with four types of utility functions: hard quality, financial,
Manhattan distance, and minimum penalty. They are or-
dered by the speed of utility loss as a function of distance
in the quality space. Fig 14 shows the frequency of quality
points chosen by Greedy in a 20 x 20 space for a total num-
ber of 30 videos. Larger numbers on X, Y axes mean lower
quality. We can see that utility functions significantly affect
the choice of replicas. For hard quality and financial whose
utility drops very fast, the replicas are evenly distributed
in the quality space. For the other two utility functions,
Greedy selects more replicas with lower quality. A salient
problem is that for over 20 videos, Greedy picks the lowest
quality replica (19, 19). This confirms our discussion in Sec-
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Figure 14: Frequency of replicas chosen in a 20 x 20
quality space.
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Figure 15: Frequency of replicas chosen by Iterative
Greedy in a 20 x 20 quality space.

tion 5.3: with overestimated utility rates, smaller replicas
are always chosen first. The situation is improved by the
Iterative Greedy algorithm. Fig 15 shows the distribution
of replicas after running Iterative Greedy with the same set
of inputs. The high peaks on points (19, 19) disappear and
total utility rate increases by about 2%.

One thing to point out is that the solutions found by
Greedy are almost optimal if we use hard quality and finan-
cial types of utility functions. [terative Greedy has no ad-
vantages under this situation. Our explanation to this is: by
utilizing fast utility-dropping functions, we are making the
FSRS problem a lot easier to solve. Recall (Section 5) that
the major difficulty of solving FSRS comes from the combi-
natorial effects among replicas in collecting utility. However,
the above utility functions tend to make replicas more iso-
lated as they can only collect utility locally.

7.3 Load Balancing and Dynamic Replication

We study replica selection in a multi-server environment
under the hard quality model. Experimental setup is the
same as that described in Section 7.1 except the simulator
contains 10 identical servers. We compare the performance
of three strategies: load balancing by resource pricing (Sec-
tion 6.1), load balancing by Bandwidth-storage ratio (BSR)
[5], and random assignment of load. Fig 16A shows the re-
sults of load balancing using the metric of standard deviation
normalized by the mean of loads. The pricing strategy has
slightly better performance than BSR. The random method
generates highly unbalanced load distribution. The effect
of load balancing on reject rate is presented in Fig 16B:
the random method performs the worst while pricing only
has marginal advantages over BSR. From this experiment
we conclude that load balancing is needed. However, it is
not clear which load balancing strategy is better and further



investigation on this is beyond the scope of this paper.
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Figure 16: Performance of load balancing methods.

We also test our dynamic replication algorithm for the soft
quality model for its optimality and speed. We simulate a
system for a period of time during which events of query rate
changes of media objects are randomly generated. We allow
the query rate of videos to increase up to 20 times and to
decrease down to 1/10 of the original rate. We first compare
the total utility rate of the selected replicas between the on-
line phase of SOFTDYNAREP and Greedy. In all cases, the
replicas selected match exactly with those found by the mod-
ified Greedy discussed in Appendix E thus the utility rates
are always the same between two solutions. As shown in
Fig 17A, the replicas selected by SOFTDYNAREP have utility
rates that are consistently within 99.5% of that by the orig-
inal Greedy algorithm. In this experiment of 270 videos and
a 20 x 20 quality space, the running time of SOFTDYNAREP
for each event is on the order of 10™* seconds while ADD-
REPLICA needs to run about half a hour to solve the same
problems. The main reason for SOFTDYNAREP’s efficiency
is the small number of storage exchanges. In Fig 17B, we
record such numbers for each execution of SOFTDYNAREP
and very few of these readings exceeds 15. This shows that
our algorithm is suitable for making real-time decisions.
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Figure 17: Performance of SOFTDYNAREP.

8. RELATED WORK

Quality support in media delivery in response to hetero-
geneous client features and environmental conditions has at-
tracted a lot of attention [19, 18]. However, data replication
under storage constraints has not been investigated. FEf-
forts to build quality-aware media systems include [19, 18,
9]. In [24], quality-aware query processing is studied in the

context of multimedia databases. They extend the query
generation/optimization module of a multimedia DBMS to
handle quality in queries as a core DBMS functionality. T'wo
other related works in multimedia databases discuss quality
specification [3] and quality model [25]. None of the above
deals with replication of copies with different qualities.

The traditional data replication problem has been stud-
ied extensively in the context of web [23, 22], distributed
databases [20, 17], and multimedia systems [15, 26]. The
web caching and replication problem aims at higher avail-
ability of data and load balancing at the web servers. Simi-
lar goals are set for data replication in multimedia systems.
What differs from web caching is that disk space and I/O
bandwidth are the major concerns in multimedia systems.
A number of algorithms are proposed to achieve high ac-
ceptance rate and resource utilization by balancing the use
of different resources [26, 5, 8]. Unlike web and multimedia
data, database contents are accessed by both read and write
operations. This leads to high requirements on data consis-
tency, which often conflict with data availability. Due to
resource constraints, data consistency can sometimes only
be enforced loosely. [21] presents a parametric algorithm
to control the tradeoffs between data precision and perfor-
mance under such an approximate data replication scheme.

Another important issue is dynamic replication of data.
Access frequency to individual data items are likely to change
in most environments. The goal is to make the replica-
tion strategy quickly and accurately adapt to changes and
achieve optimal long-term performance. Wolfson et al. [27]
introduced an algorithm that changes the location of repli-
cas in response to changes of read-write patterns of data
items. The interactions between query optimization and
data cache utilization in distributed databases are discussed
n [12]. They found that to take advantages of cached data,
it is sometimes necessary to process individual queries using
‘sub-optimal’ plans in order to reach higher system perfor-
mance. In [14] and [4], video replication/de-replication is
triggered as a result of changes of request rates.

9. CONCLUSIONS

In this paper, we study the problem of selecting quality-
specific replicas of media data. This problem is generally
ignored in multimedia database research due to the over-
simplified assumption that storage space is abundant. We
demonstrate by analysis and experiments that this is not the
case if the system is to adapt to user quality requirements
with reasonable granularity. We provide solutions to the
problem under two different system models. In the discus-
sions on a hard quality system model, we conclude the query
rate and storage of individual replicas are the most critical
factors that affect performance. We also propose a greedy
algorithm to solve the replica selection problem on a soft
quality system model. Experiments show that the solutions
found by our algorithm are within 3% of the optimal. An
advanced version of this algorithm further reduces that to
1%. A derived online algorithm provides an elegant solution
to an important subproblem of dynamic data replication.
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APPENDIX
A. THEOREM 4.1

ProoF. The CPU requests from different replicas can be
viewed as competitors for a shared resource pool with finite
capacity C. The reject probability is studied by a general-
ization of the famous Erlang loss model [7]. The main idea
is to analyze the occurrence of resource occupation states
denoted as 77 = (n1,n2, - ,nn) where ng is the number of
requests to replica k currently being serviced. According to
[11], the reject probability of any replica k is

M 1 (fk\"k
P, = Znesk Hk:l ng! (Mk) (19)

M 1 (fk\"
ZﬁES Hk:l n_kl(ﬁ) :

where S, = {1 : C — ¢ < Zﬁilnkck < C}and S = {ni:
2113:1 nrcr < C} are two sets of states. The states in Sy
are those at which a request to replica k will be rejected (as
there are less than ¢ units of resource available) while S is
the collection of all possible states.

Due to the discrete feature of the states, it is very difficult
to discuss the characteristics of Equation (19). Fortunately,
Gazdzicki et al. [7] gives the following asymptotic approxi-
mation to Equation (19):

P, =(1-

e"*) (14 0(1)) (20)

where 7 is the unique solution to the following equation:

M
Z 2K cpe™ = C. (21)
k=1 Mk



Putting (20) into (21)7 we get

Since C' < Zk 1 fﬁc"

jas 1+

k=1

from the above equation we have

kack _ kack
k=1 k=1

The only solution to let the above hold true is 7 +IZ k(1) ~ 1
for all k. This means P, ~ 1 as P, can never exceed 1.
Immediately, from Equation (5), we get P~ 1. [

B. REJECTPROBABILITY UNDER DIFFER-
ENT LEVELS OF RESOURCE CONGES-
TION

In addition to Equation (19), the reject probability to a
shared resource is also approximated as follows [7]:

Case 1. Let A\ = i—i When the resource has light load,

i.e. Ziw:l Akcr < C, the class-specific reject probability is

P = erde1@_4_ (ﬂ) (1+o(1)). (22)

2ro \ 1 —e™?

Case 2. When the resource has critical load, i.e. ny:l AkCr =

C, P becomes
2
Pi=4/= & ~(1+0(1). (23)

In equations (22) and (23), 7 is defined in Equation (21).
Other relevant quantities are defined as follows:

i. d is the greatest common divisor of c¢i1,cz,...,cun;
ii. €= < —[£] where [a] denotes the largest integer such
that [a] < a;

iii. 1(C)=71C—3Yr,

iv. o2 =

Ak (eTCk — 1);
]kw:l )\kckzeTCk .
We first show the reject probability P in light load and
critical load situations are asymptotically smaller than 1.
THEOREM B.1. In our multimedia database system, when
there are critical load on a resource, P = O(\/E)

PROOF. In this case, 7 = 0 and ¢"°* = 1. From Equation

2
(23), we have A\, P? = 3%7 which leads to
k=1 k

M 2

> MePP=Z. (24)
™

k=1

To get the upper bound for P = %kaP]€7 we use the
method of Lagrangian multipliers with the following opti-
mization function

L:kapk—qb(Z%Pf—%)

where ¢ is the Lagrangian multiplier. We discuss how Py
may affect the bound of P glven all fr and pg. The condition
for maximality is thus g5~ = 0,Vk. This is the same as

fre — 2¢&Pk =0, Vk.
o

Immediately, we get P, = g—(’; as the condition for achieving

the upper bound. Plugging this into Equation (24), get

2¢:\/%.

Let 0 = > frupn, we have P, = py
mal situation. Therefore, the maximum value of P can be
expressed as

1 1 2 20
:?kapk: ?kauk\/;:’lw—ﬁ-

It is easy to see that § < f?
2. 0O

,/% under the opti-

in our system, we have P <

It is easy to see that the reject rate in Case 1 is asymp-
totically smaller than that in Case 2. Now let us turn to
the overloading situation (i.e. > Axcyp > C). It is difficult,
if not impossible, to show the monotonicity of P as a func-
tion of the total load. In the following paragraphs, we show
that P increases with the increase of total load by making
some reasonable assumptions about the query patterns to
replicas.

The replica-specific reject probability under the overload-
ing situation is represented in Equation (19). We can see
that 7 < 0 in this case. For the convenience of discussion,
we use v = —7 > 0 instead. In considering the change of
P with total load C' = >~ Arpcr > C, we assume that to-
tal load change is only caused by the increase of resource
requests by each and every traffic class. In other words,
the parameters fr and pi are fixed for requests to all repli-
cas. What we are interested in is: when all ¢ increase, how
does P change? This assumption is totally reasonable in
our model with queries accessing two resources: bandwidth
(moderately loaded) and CPU (heavily loaded).

When the load increases as all ¢, change, it is easy to see
that 7 increases. From Equation (20), we have

LM
= 7 ka(l
k=1

For each k, fx (1 — e”’c’“) increase as both « and ¢, increase.
As a result, P also increases.

e*WCk).

C. OPTIMALITY OFAHEURISTICALGO-
RITHM TO SOLVE 0-1 KNAPSACK

As illustrated in the graph above, the Knapsack has size
L, Y axle represents the value density (denoted as v). The
Knapsack is filled with objects with the largest v. It is easy
to see that, if all L storage is filled, the solution is optimal as
any other plan will decrease total value. If there is a unfilled
region with size I, we can fill it with the largest density v’
among the unselected objects. This generates an infeasible
solution but it gives an upper bound of the optimal total



value: 9 = Q +[v" where € is the area of the shaded region.
Here [v' can be viewed as the gap between our solution and
the optimal value. When L >> I, we have lv' < 9.

D. LOAD BALANCING IN DISTRIBUTED
DATA REPLICATION

Suppose set A contains certain number of replicas and
they are to be placed on N servers. Denote the total query
rate in server i as f; and reject probability as Pl-(b). Imme-
diately, we have fa = Zf\r:l fi and PX’) = ﬁ Zil Pl-(b).
In distributed replication, we have the problem of minimiz-
ing PX’) given fa, which can be solved by using Lagrangian
multipliers with the following solution:

0 [ N
8_f<2fipi(b)—¢(2fi_fA)) =0, Vf; (25)
fNi=1 i=1

where ¢ is a Lagrange multiplier. For any %, the LHS of
Equation (25) is Pi(b) — ¢. Thus, we get the following con-
dition of minimality

PO =p® —...=p® =y (26)

Theoretically, it is not clear how to achieve uniform Pi(b)
in our case. Little et al. [15] proved that, when requests
have the same bandwidth requirements, the above condition
is achieved when all servers have the same load. Here we
conjecture that this is still true in our system where requests
have heterogeneous bandwidth requirements. We verify it

by experiments.

E. OPTIMALITY OF SOFTDYNAREP

To show the quality of replica selection of SOFTDYNAREP
is as good as that of rerunning GREEDY, it is necessary to
investigate more details of the algorithm. Line 9 to line 12
of Fig 10 can be represented in Fig 18. There are two loops:
in the outer loop (line 3), we choose the replica (r¢) on the
head of flist and try to find a list (victims) of replicas on
the tail of blist from where storage can be taken via the
inner loop (line 6). The list victims has to be formed as the
size of 1o can be larger than that of one single victim replica
r1. The subroutine EXCHANGE basically dereplicates those
in victims and replicate ro. The inner loop terminates when
enough storage is found for 7o or we reach a replica whose
utility density is greater than that of 7o (line 11). The latter
case also terminates the outer loop (as k > 0).

Now we compare the replica selection of SOFTDYNAREP
and Greedy. From discussions in Section 6.2.2, we under-
stand that the global RR changes as the query rates of in-
dividual replicas change and GREEDY (implicitly) rebuilds
the global RR. Essentially, Greedy selects those replicas with
the largest utility density on the global RR, similar to the
solution for 0-1 Knapsack shown in Appendix C. We first
consider a modified version of Greedy with a subtle difference
from the one represented in Fig 5: we replicate items along
the global RR till we encounter the first replica k&’ that can-
not be accommodated by the available storage (equivalent to
l in Appendix C). The original Greedy algorithm is smarter
than this: it will try to fill [ with replicas with lower utility
density than k’. Thus, the replicas selected by the modi-
fied Greedy is a consecutive chunk of the global RR (from
the beginning to the one prior to k) while those selected by

1 storage < available storage

2 k—0,j«<V-1

3 while k<0

4 do  ro « flistlk]

5 victims «— ()

6 while storage < size of replica rg

7 do 7y <« blist[j]

8 if o and r1 belong to the same video
9 je—j—1

10 continue

11 if utility density of r1 > utility density of rg
12 k—k+1

13 rollback blist to its status on line 6
14 break

15 else append 71 to victims

16 update and sort blist

17 if storage > size of replica rq

18 EXCHANGE (ro, victims)

19 update and sort both flist and blist

Figure 18: Selection of replicas for storage exchange in
SorTDYNAREP.
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Figure 19: Replica selection upon query rate change.

the original version may have holes in it. Due to the reason
discussed in Appendix C, the total utility rate achieved by
this modified version is only slightly smaller than that of the
original version. We have the following lemma showing that
the replica selection by SOFTDYNAREP is at least as good
as the modified Greedy:

LEMMA 2. With the same replica-specific inputs and change
of query rate of a specific video, if a replica is selected by
the modified version of Greedy, it is also selected by SOFT-
DYNAREP.

PROOF. Let us first study the change of the global RR
before and after the query rate change. In Figure 19, the
global RR is represented as an array of replicas sorted by
descending order of utility density. We know that Greedy
selects replicas from the left to the right till no storage is
available. We draw a line called boundary between those that
are replicated and those that are not. We consider the case
of query rate increase of an object v. As a result of query rate
increase, some replicas of v (represented as shaded boxes)
will move toward the left in the array of replicas and a new
boundary will be formed. However, the relative order of
all replicas of v does not change. Therefore, there are two
types of selected replicas by the modified Greedy algorithm
after the change: 1). those that were not selected before the
change, and 2). those that were selected before the change.
We prove SOFTDYNAREP selects the corresponding replicas



in both cases:

Case 1. Without loss of generality, we consider a replica k
of v that moves across the boundary in Greedy. The selection
of k can be achieved by one of two means: 1. the storage
left before the change is greater than sx; 2. storage is taken
from replicas with utility density smaller than that of k. It is
easy to see that k will be the head of flist in SOFTDYNAREP.
In the former case, we directly go to line 17 in Fig 18 and
replicate k. For the second situation, a list of replicas are
chosen to give up their storage to k (loop in line 6). As long
as there are enough storage from those with smaller utility
density, k£ will be replicated.

Case 2. The replicas considered in this case can be di-
vided into two categories:

Case 2.1. Replicas whose utility density is greater than that
of k (e.g. those in region So in Fig 19). These replicas are
not affected by SOFTDYNAREP as we never sacrifice such
replicas for & (line 11, Fig 18).

Case 2.2. Replicas whose utility density is smaller than that
of k (e.g. those in region Sp in Fig 19). These replicas are
part of region S before the query rate change. One nice
feature of the modified Greedy is that all replicas chosen
is a consecutive chunk in the list. To accommodate k, S
is simply cut into two consecutive regions S; and Sz. In
SOFTDYNAREP, the same the list victims is also a consec-
utive chunk as it is formed by always choosing the replica
with the smallest utility density, starting (backwards) from
the end of S. Furthermore, it ends as long as enough stor-
age is found thus everything in S; will not be included in
victims.

The case of multiple replicas crossing the boundary and
decrease of query rate would not complicate the above ar-
gument. [



