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ABSTRACT
Query processing in Data Stream Management Systems (DSMSs)
has to meet various Quality-of-Service (QoS) requirements.
In many data stream applications, processing delay is the
most critical quality requirement since the value of query
results decreases dramatically over time. The ability to re-
main within a desired level of delay is significantly hampered
under situations of overloading, which are common in data
stream systems. When overloaded, DSMSs employ load
shedding in order to meet quality requirements and keep
pace with the high rate of data arrivals. Data stream appli-
cations are extremely dynamic due to bursty data arrivals
and time-varying data processing costs. Current approaches
ignore system status information in decision-making and
consequently are unable to achieve desired control of qual-
ity under dynamic load. In this paper, we present a quality
management framework that leverages well studied feedback
control techniques. We discuss the design and implementa-
tion of such a framework in a real DSMS - the Borealis
stream manager. We introduce the concept of virtual queue
length by which the delays of current incoming data can be
effectively controlled. Our data management framework is
built on the advantages of system identification and rigor-
ous controller analysis. Experimental results show that our
solution achieves significantly fewer QoS (delay) violations
with the same or lower level of data loss, as compared to
current strategies utilized in DSMSs. It is also robust and
bears negligible computational overhead.

1. INTRODUCTION
Applications related to processing of data streams have

attracted a great deal of attention from the database com-
munity. With great social/economical interests, these appli-
cations flourish in a number of fields such as environment
monitoring, system diagnosis, financial analysis, and mo-
bile services. Unlike traditional data that are mostly static,
stream data are produced continuously (e.g. from a sensor
network) and are generally too large to be kept in storage
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after being processed. Furthermore, most queries against
stream data are persistent queries that continuously output
results as they are produced. Thus, data stream process-
ing brings great challenges to DBMS design: it imposes a
data-active, query-passive DBMS model instead of the data-
passive, query-active model for traditional DBMSs [2]. In
recent years, a number of Data Stream Management Sys-
tems (DSMSs) have been developed [2, 1, 14, 9].

Query processing in DSMSs has to meet various quality1

requirements [2]. Similar to those in other real-time applica-
tions [22], quality in DSMSs describes the timeliness, relia-
bility, and precision in data processing and service delivery.
Important quality parameters in DSMSs include: processing
delay, data loss ratio, sampling rate, etc. A salient feature of
data stream management is the real-time constraints associ-
ated with query processing. In many applications of DSMS,
query results are required to be delivered before either a firm
(e.g. tracking of stock prices) or soft (e.g. network monitor-
ing for intrusion detection) deadline. Therefore, processing
delay is the most critical quality parameter in these appli-
cations. On the other hand, users may accept query pro-
cessing at different levels of accuracy as a result of lost or
incomplete data [23, 26]. This provides us with optimiza-
tion opportunities to trade those quality parameters (e.g.,
loss ratio, sampling rate) that are less important for shorter
delays in case of congestion.

It is difficult to provide delay guarantees in a DSMS due
to physical resource limitations and the unpredictable pat-
tern of resource usage by streams. In practice, a DSMS
could easily accommodate hundreds or even thousands of
streams. Delay requirements may be violated even with
careful query optimization and admission control, which are
the first line of defense against overloading and generally
based on static estimations of each stream’s resource con-
sumption. The runtime fluctuations of application resource
usage (e.g. bursty arrivals) may cause temporary conges-
tion that interferes with real-time data processing. Under
this situation, we need to dynamically adjust application be-
havior by reducing its non-critical quality parameters. For
example, we can increase data loss rate by load shedding [26]
or reduce the window size for windowed operations [4]. We
call such adjustment of application parameters adaptation.

1In this paper , the words ‘QoS’ and ‘quality’ are used inter-
changeably.



Streaming data are intrinsically dynamic in terms of their
bursty arrival patterns and ever-changing tuple processing
costs [32, 24]. Thus, it is important to have an adaptation
mechanism that promptly adjusts application behavior in
response to changes of system and input status [4]. The
adaptation architecture should promptly detect the change
of quality by continuously monitoring the system and deter-
mine whether adaptation should be performed.

While maintaining processing delays under an appropri-
ate level, degradation of other quality should also be con-
trolled. For example, we can always achieve low delays by
constantly discarding most of the load. However, query ac-
curacy decreases unnecessarily due to excessive load shed-
ding. It would be desirable to achieve low delays while min-
imizing data loss. Attempting to solve this problem, cur-
rent DSMSs employ simple and intuitive strategies to make
important adaptation decisions such as the time and mag-
nitude of load shedding. For example, the following load
shedding algorithm is used (explicitly) in Aurora [26] and
(implicitly) in STREAM [6].

1 for every T time units
2 if measured load L is greater than CPU capacity L0

3 do shedding load with amount L − L0

4 else allow L0 − L more load to be admitted

Figure 1: Load shedding algorithm in Aurora

The idea behind this algorithm is: QoS degrades when the
load injected into the system is higher than its processing
capacity. In dealing with overloading, we only need to make
the input load smaller than capacity L0. However, in a
dynamic environment where the input rate keeps changing,
this approach may either make the DSMS unstable (i.e., QoS
deviates unboundedly from the desirable value) or overreact
by discarding too much load. In Section 4.3.2, we elaborate
on this issue.

To remedy the above problems in a systematic way, how-
ever, is not trivial. Firstly, we need to understand the na-
ture of the DSMS’s response to changes of inputs. Specifi-
cally, a quantitative model that describes how adaptation of
stream behavior affects quality (delay) is needed. Secondly,
our adaptation algorithm should be robust, meaning that
its performance should not be affected by patterns of load
fluctuations and cost variations. Another challenge is the
design of the monitoring process: it should be light-weight
and still able to effectively capture changes of status.

In this paper, we present our approach to address the
above challenges. Our solution takes advantage of proven
techniques from the field of control theory. Feedback control
is extensively utilized in the fields of mechanical, chemical
engineering, and aeronautics to deal with systems that bear
dynamics that are hard to model [13]. In this work, we
view quality-driven load shedding in DSMS as a feedback
control problem and solve it with a controller designed from
a dynamic DSMS model we develop. Specifically, this paper
makes the following contributions:

1. We develop a dynamic model to describe the relation-
ship between average tuple delays and input rate of a
DSMS. From this model, we propose the idea of con-
trolling the somewhat unmeasurable delay signal by
manipulating the number of outstanding data items;

2. We design a controller to make load shedding decisions
via rigorous analysis of the system model. By exploit-
ing results from control theory, our design achieves
guaranteed system performance;

3. We implement and evaluate our load shedding frame-
work on a real DSMS. By working on a real system, we
achieve better understanding of the DSMS model and
obtain more convincing results supporting the validity
of our approach; and

4. We identify several problems that are unique in the
control of DSMS load shedding and propose system-
specific strategies to solve to these problems.

The rest of this paper is organized as follows: we compare
our work with related research efforts in Section 2. Section 3
describes the basic DSMS model and problem formulation.
Details of our feedback control framework are presented in
Section 4. We show experimental results in 5 and conclude
the paper in Section 6.

2. COMPARISON TO RELATED WORK
Current efforts on DSMSs have addressed system archi-

tecture [7, 14], query processing [12, 15], query optimization
[28], and stream monitoring [33]. Relatively less attention
has been paid to the development of a unified framework
to support QoS. An important issue related to QoS con-
trol in DSMSs is the development of scheduling policies for
query operators. Two relevant efforts present scheduling al-
gorithms that minimize tuple delays [8] and runtime memory
consumption [5].

Research on QoS control was first motivated by the real-
time requirements of multimedia applications. Most of these
efforts emphasize system and network level resource man-
agement, which is provided as a service of the operating
system [31] or a middleware [21]. The system maps QoS
requirements of applications to resource use (system QoS)
and QoS control is accomplished by regulating resource al-
location to individual applications.

Load shedding has been extensively utilized to deal with
overloading in DSMSs [26, 6, 25]. Ref [6] discusses load
shedding strategies that minimize the loss of accuracy of ag-
gregation queries. To increase accuracy of arbitrary queries,
a data triage approach that exploits synopses of the dis-
carded data is proposed in [25]. In the LoadStar system [10,
11], statistical models are utilized to maximize the qual-
ity of stream mining results when load shedding has to be
performed. Earlier work on QoS-driven load shedding in
the context of the Aurora [26] DSMS (now evolving to the
Borealis project [3]) is closely related to our study in this
paper. In [26], three critical questions about load shedding
are raised: when, where, and how much to shed. To answer
these questions, Aurora checks system load periodically and
triggers shedding when excessive load is detected. A precom-
puted Load Shedding Roadmap (LSRM) that holds possi-
ble shedding plans is used to determine where to shed load.
Given the amount of total load to shed, the LSRM finds the
best plan to accomplish this such that system utility loss
is minimized. The utility is calculated from data loss ratio
only.

The Aurora/Borealis work focuses more on the question
‘where to shed load’ (i.e., construction of LSRM) than the
questions of ‘when’ and ‘how much’. As shown in Fig. 1, it



uses a heuristic to determine the amount of load shedding
and handles processing delays implicitly. The system does
not provide information about how the monitoring period T
is set. In this paper, we concentrate on the control of de-
lay QoS under heavy fluctuations/bursts and time-varying
processing costs of data inputs, which are common in data
stream applications. For this purpose, we need to find a so-
lution that is different from the Aurora load shedder shown
in Fig. 1. In other words, our work aims to provide better
answers to the questions of when and how much to shed load
under a highly dynamic environment. Our solution can also
be used to guide quality adaptation mechanisms other than
load shedding. In addition to statistical shedding that dis-
cards tuples randomly, [26] also explores semantic shedding
that chooses victim tuples based on a cost/utility analysis
of query operators.

Control-theoretic approaches have been used to solve var-
ious problems in the areas of networking [18], real-time sys-
tems [20], multimedia [19] and event notification [30]. Our
work differs significantly from these efforts: first, we address
different problems with a different system to be controlled.
For example, [20] focuses on deadline misses in a real-time
resource scheduler and [19] discusses precision in a video
tracking application. While the event notification system in
[30] uses DBMS as building blocks, its control target is to
balance load across multiple CPUs. Control theory is basi-
cally a collection of many mathematical tools for analyzing
system features and designing controllers towards guaran-
teed performance. Therefore, application of control theory
to different problems and systems are not straightforward
as the choice of appropriate control techniques are essential.
Controller design and performance depend heavily on the
dynamic model of the system of interest. Derivation of such
models is generally non-trivial and involves various tech-
niques for different systems. In a word, the results in above
studies give little insights on how our problem can be solved
as distinct systems and control targets are involved. Second,
we raise several DSMS-specific issues in this paper (Section
4.5) and provide solutions to these problems. From a control
theory viewpoint, these issues bring new challenges that are
never before addressed in traditional control applications.

We have presented the idea of control-based load shed-
ding in a short paper [27] where we found that even a crude
controller outperforms the load shedding method based on
static estimations of system status. However, we only val-
idate our idea with a simulator and a simple controller in
[27] therefore the real challenges of QoS control in real-world
systems (i.e., major contributions of this paper shown in
Section 1) are not addressed.

3. DSMS MODEL, PROBLEM DESCRIPTION,
AND NOTATIONS

In this paper, we study load shedding under a push-based
query processing model, which is a generalization of those
of the STREAM [4] and Aurora [2] stream managers. In
this model, each query plan consists of a number of opera-
tors connected to form a branched (e.g., I and III in Fig 2A)
or unbranched (e.g., II in Fig 2A) execution path. Multiple
queries form a network of operators so that they can share
computations. Multi-stream joins are performed over a slid-
ing window whose size is specified by the application either
in number of tuples or time. Data from a stream can en-
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Figure 2: A general system model of DSMS.

ter any number of entry points in the query network. Each
operator has its own queue to hold unprocessed inputs and
a scheduler determines the processing order of operators at
runtime.

With respect to a data tuple, processing delay is defined as
the time elapsed since it arrives at the network buffer of the
query engine till it leaves the query network.2 For example,
data from stream source S1 in Fig. 2A departs either after
being discarded by the filter operator 4 or entering an output
stream after operator 11. For data that could enter multiple
execution paths, we can choose the longest path to record
its departure time (e.g., 2-6-9-11 or 3-7-10-12 for S2 data in
Fig. 2A). Processing delay consists of CPU time spent to
execute the operators and time spent in queues.3 We target
a system where data tuples arrive in a dynamic pattern such
that future data rates are unpredictable. Furthermore, the
expectation of per-tuple CPU cost changes over time. Varia-
tions in CPU cost arise from changes in factors such as query
network structure (due to addition/deletion of queries), and
operator selectivity [26]. In this paper, we assume such vari-
ations happen less frequently than the fluctuations of data
arrival rates. We believe this is a reasonable assumption as
none of the above factors would change abruptly.

To reverse the increase of processing delays due to over-
loading, the DSMS can perform any of the following adap-
tations: (i) load shedding: discard unprocessed data tuples
by placing filters either in the data source or at the entry
points to the query network; (ii) reducing sampling rate:
save costs by changing the frequency of data tuple genera-
tion at stream sources; and (iii) modifying operator features
such as window size of join operators. Although our solution
should also work for (ii) and (iii), we focus on load shedding
in this paper.

Our quality-driven load shedding framework allows the
system administrator to specify a target delay time yd. The
goal is to maintain the average processing delay of data tu-
ples that arrive within a small time window T (we will dis-
cuss more about the choice of T later) to be under yd. We
accomplish this by dynamically dropping load from the sys-
tem in case of overloading. The problem is how to derive

2Here we ignore network delays. This can be justified by
the use of networks where transmission delays are either
effectively controlled or significantly smaller than our control
target.
3This implies that CPU power is the bottleneck, which is
a reasonable assumption [26]. We understand that limited
memory could result in blocking of data processing. How-
ever, this should have little effect on our problem because
our goal is to control overloading so that the system runs in
a zone without such nonlinearities.



the right time and amount of load shedding such that data
loss is as low as possible. The selection of shedding locations
is not a focal point of this study. However, our framework
is designed to work with current strategies that construct
shedding plans such as the current load shedder in Borealis.
We consider the following metrics in evaluating the adapta-
tion strategy:

• Delay Violations, which is the primary goal of the con-
trol. Specifically, we record both the accumulated delay
violations (i.e.,

P

y− yd for all data tuples whose pro-
cessing delay y > yd), and total delayed tuples, which
is the total number of tuples whose delays are longer
than yd;

• Maximal Overshoot: the longest delay violation (i.e.,
y − yd) recorded. This metric captures transient state
performance; and

• Data Loss Ratio: the percentage of data tuples dis-
carded. This can be viewed as the cost of performing
load adaptation.

Symbols used throughout this paper are listed in Table 1.

Table 1: Notations and symbols.
Symbol Definition z-domain

k discrete time index -
T control period -
yd target value for delays -
H CPU power for query processing -
y processing delay Y (z)

fin data input rate Fin(z)
fout data output rate Fout(z)
u controller output U(z)
v desired data input rate -
c per-tuple processing cost -
q number of outstanding tuples Q(z)

C(z) controller transfer function C(z)
G(z) system (DSMS) transfer function G(z)

4. FEEDBACK CONTROL-BASED LOAD
SHEDDING FRAMEWORK

In this section we present our quality adaptation frame-
work with the objective of maintaining processing delays.

4.1 Overview
The term control generally refers to the operations to ma-

nipulate particular feature(s) (i.e., output signal) of a pro-
cess by adjusting inputs into the process. The main compo-
nents of a feedback control system form a feedback control
loop, as shown in Fig 3. The controlling operations of the
feedback control loop are performed as follows: a monitor
measures the output signal of the plant, which is the process
to be controlled. The measurements are sent to a controller.
The controller compares the value of the output signal with
a target value and maps the control error, i.e., difference be-
tween the output signal and the target, to a control signal.
An actuator adjusts the behavior of the plant according to
the control signal. The goal of the control operations is to
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Figure 3: The feedback control loop.

overcome the effects of system and environmental uncertain-
ties named disturbances. Readers interested in more details
on control theory can refer to [13].

The above general model can be translated into a con-
crete model that serves as a blueprint for our load shedding
framework. We still use Fig. 3 to illustrate this. Note that
the shaded boxes represent new components that are not
found in any existing DSMSs. The plant to be controlled is
the query engine of the DSMS and the actuator is the exist-
ing load shedding algorithm that adjusts load injected into
the plant. In addition, we have a monitor that measures the
output signal and a controller to generate the control signal.
The unpredictable arrival patterns and processing costs are
all treated as disturbances. In this loop, the output signal
is the processing delay of tuples, denoted as y and the con-
trol signal (i.e., controller output and system input) is the
desirable incoming data rate u.

We can easily see that the most critical part of the con-
trol loop is the controller, which determines the quantity
of the input signal (to DSMS) based on the control error.
The beauty of control theory is that it provides a series of
mathematical tools to design and tune the controller in or-
der to obtain guaranteed performance under disturbances.
In the following, we discuss the design of our feedback con-
trol, which consists of two phases: system modeling (Section
4.2) and controller design (Section 4.4). We use the open-
source Borealis data stream manager [3] as our experimental
system. The query engine of Borealis is derived from the
Aurora system [2].

4.2 System Modeling
An accurate mathematical model of the plant is of great

importance to control system design. In this study, the
model we are interested in is one that describes the rela-
tionship between the delay time y and the incoming data
flow rate fin. Due to the complexity of the controlled sys-
tem, we may not be able to derive a model solely based on
rigorous analysis. In this case, we can use system identifica-
tion techniques to study system dynamics experimentally.

First of all, the expectation of per-tuple processing cost
c can be precisely estimated in the current Borealis system.
Readers can refer to Section 4.2 of [26] for details. For the
purpose of system modeling, we treat c as a constant and
relax this assumption in Section 4.5.

The current version of Borealis uses a round robin pol-
icy to schedule operators and place intermediate results in
waiting queues of individual operators. These queues ex-
tract input in a first-in-first-out (FIFO) manner therefore
we see no priorities assigned to tuples as a result. Let us
first consider an ideal situation: all tuples in the network
share the same query paths and the system has the same
inflow and outflow rates. If there are q outstanding data
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tuples in the query network when a tuple A enters, the total
processing delay of A is

y = (q + 1)c (1)

The reason for this is: when A sits in the queue of any
operator, it will not be processed until all of the q tuples are
cleared from that queue. If the execution path of A consists
of n operators, a total number of nq+n operators would have
been executed by the system when A is finished. The cost of
the n operators in a path is c therefore the total cost becomes
(q + 1)c. Among the total time of qc + c, qc is time spent in
waiting queues and c is the processing time of A itself. In
other words, it is equivalent to processing tuples as a whole
(rather than by operators) in the order they arrive. The
outstanding tuples can be regarded as entries in a virtual
FIFO queue with length q.

In practice, we cannot use Eq.(1) to model delay time of
individual tuples because the real execution paths for differ-
ent tuples are different. For example, if a tuple is discarded
by a selection operator in the early part of its possible path,
it has a shorter delay as compared to one that passes the
selection box (and goes further in the query network). For-
tunately, instead of delay time y of single tuples, we are
interested in the average delay time of a series of tuples ar-
riving in a period of time.4 Let us denote the length of this
period, which is called control period or sampling period, as
T and the average delay of tuples within the kth period as
y(k). We propose the following generalization of Eq.(1):

y(k) =
c

H
[q(k − 1) + 1] (2)

where H is a constant named headroom factor. i.e., the
fraction of processing power used for query processing. We
always have H < 1 as resources must be consumed for run-
ning the operating system and other maintenance tasks. The
intuition behind Eq.(2) is: we can study data tuples with
execution paths of the same length in a group. The same
reasoning to generate Eq.(1) holds true for each such group:
a tuple A will not leave the network until all other tuples in
its group (that entered the network before A) are processed.
Taking a weighted average of all such groups, each of which
can be described by Eq.(1), we get a form that is close to
Eq.(2). As the above is an intuitive result, we need to verify
it by experiments.

Eq.(2) leads to a system model for Borealis as shown in
Fig. 4. The incoming data flow fin less the data processing
rate fout is accumulated in the virtual queue. Therefore the
queue length at the end of period k, q(k), is equal to the
integration of fin − fout at all times up to the k-th period.

4To guarantee delays for individual tuples, real-time sched-
ulers [17] are generally deployed. Interestingly, in our sys-
tem, if we can guarantee average delays, those for individual
tuples can also be well maintained as the round robin policy
is a ’fair’ policy.
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Eq.(2) becomes:

y(k) =
c · T

H

X

i<k

[fin(i) − fout(i)] +
c

H
.

Model verification. The verification of the dynamic model
is done experimentally in accordance of system identifica-
tion techniques. We feed the Borealis system with synthetic
data streams having various arrival patterns and record re-
sponses in terms of delay time y. To set the cost factor c
to a constant, we construct a Borealis query network with
a number of (14 in this case, details omitted due to space
limitations) operators, each of which has a fixed CPU cost.
Then we generate stream data whose values follow uniform
distributions to fix the selectivity of all filtering operators.
By doing these, the average CPU cost of the query network
becomes stable. In Fig 5, we report system responses to
a stream whose arrival rates follow a step function of time
(i.e., rate starts at very low and jumps to a high value at
the 10-th second, as shown in Fig. 5A). It is shown in Fig.
5B that, when fin is less than 190 tuples per second, all
data can be processed immediately and a constant process-
ing delay is observed. This implies that the per-tuple CPU
cost is approximately 1000.0/190 = 5.26ms as 190 can be
viewed as the threshold load that equals the CPU processing
capacity (i.e. fin = fout = 190 assuming H = 1). On the
other hand, when fin exceeds 190/s, i.e., more data enter-
ing the system than the CPU can handle, data accumulates
in the virtual queue and delay y keeps increasing. This is
strong evidence of the existence of the integration part in
the proposed model. Fig. 5C shows the changing rate of y
(calculated by ∆y = y(k)−y(k−1)). The fact that ∆y con-
verges quickly to a stable value means that there is either
no other dynamics or unknown dynamics with insignificant
effects in the proposed model.

To further verify the model and determine the model pa-
rameter, we compare the real y(k) values measured and the
calculated y(k) values based on our system model (Eq.(2)).
We collect q(k) values at runtime for the calculation of y(k).
The results of experiments using the same step inputs as be-
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fore are plotted in Fig. 6. According to Fig. 6A, the values
given by our model fits the real data very well for all three
choices of H. However, if we magnify the difference between
calculated and real values (Fig. 6B), we can see that, with
a H = 0.97, modeling errors are far less than the other two
values of H.

We also tested the system with sinusoidal inputs and sim-
ilar results are obtained and are plotted in Fig. 7. In this
set of experiments, the incoming data flow rate fin changes
sinusoidally within the range of [0, 400]. Small, periodical
modeling errors can be seen. This means there are proba-
bly unknown dynamics that our model fail to capture. This
is not surprising due to the complexity of the Borealis sys-
tem. As we shall see later, feedback controllers, if properly
designed, have the power to reduce the effects of modeling
errors, especially those that impose small errors such as the
one we observe here.

Model transform. For the convenience of control analysis,
we transform Eq.(2) to a model in the z-domain:5:

Y (z) =
c

H
Q(z) =

c · T

H(z − 1)

ˆ

Fin(z) − Fout(z)
˜

(3)

where Y (z), Q(z), Fin(z) and Fout(z) are z-transforms of
signals y(k), q(k), fin(k) and fout(k), respectively. The
transfer function of the (Borealis) system in Fig. 4 is:

G(z) =
c · T

H(z − 1)
. (4)

5The z-transform is a mathematical tool that transforms
difference equations to algebraic equations [13], similar to
the Laplace transform used for differential equations.

From now on, all control-related analysis will be performed
in the z-domain.

4.3 Why feedback control?
Before going into the design of controller, we briefly dis-

cuss the basic ideas of feedback control theory and identify
some of the problems of non-feedback-control strategies.

4.3.1 Open-loop vs. closed-loop
The unique feature of feedback control is that the out-

put signal is used (as feedback) in generating the control
signal. As there exists a complete loop (Fig. 9B) in the
system block diagram, feedback control is also called closed-
loop control. In contrast, strategies such as the one shown
in Fig. 1 are open-loop control: system output or state in-
formation is not used in the controller, therefore it forms an
open loop from the reference value to the system output, as
shown in Fig. 9A. Here r is the reference input or desired
system output, y is the actual system output, a is the sys-
tem model, dm, di and do represent modeling error, input
disturbance and output disturbance. Relating this to our
problem, the fluctuations of data arrival rates are modeled
as input disturbances and the variable processing costs (c)
as modeling errors.
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Figure 9: Block diagrams of generic open-loop (A)
and closed-loop (B) control systems.

In an ideal case, when there are no model uncertainties
(i.e. dm = 0), no input or output disturbances (i.e. di =
do = 0), the best open-loop controller would be 1/a given
the nominal system model a. This is because we have y =
r 1

a
a = r, hence the output signal is exactly the reference

value. However, in the real world, there are always modeling
errors and input/output disturbances, therefore the open-
loop system output y is:

y =

„

r

a
+di

«

(a+dm)+do = r+r
1

a
dm+(a+dm)di+do (5)

From (5), it is obvious that the open-loop system output
is subject to modeling error dm, input disturbance di and
output disturbance do, and there is no way to reduce their
effects. On the other hand, in a closed-loop system where the
feedback controller K is also designed based on the nominal
system model a, we have

[(r − y)K + di](a + dm) + d0 = y,

and the system output y becomes

y =
K(a + dm)

1 + K(a + dm)
r+

(a + dm)

1 + K(a + dm)
di+

1

1 + K(a + dm)
do

If the controller K is chosen large enough, i.e. K >> 1
and K(a + dm) >> 1, the closed-loop system output y is
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Figure 8: Different cases in which open-loop control has poor performance.

approximately:

y ≈ r +
1

K
di +

1

K
do (6)

It is obvious that the effects of modeling error dm, input and
output disturbances di and do can be reduced by a factor of
1/K.

The above simple examples show why closed-loop control
is better than open-loop control. In summary, the main
advantage of closed-loop control over open-loop is the re-
duction of the effects of modeling error, input and output
disturbances therefore it can be exploited in solving our load
shedding problem.

4.3.2 Problems of current load shedding solution
As mentioned earlier, the current Aurora method for dy-

namic load shedding is open-loop in nature: it uses a preset
threshold L0 to adjust the incoming data flow. When the
incoming data flow L is more than L0, L − L0 amount of
data will be discarded. Using our notations, assuming con-
stant processing cost c, L can be replaced by fin. Thus, the
amount of data to be shed in the k-th sampling period S(k)
is

S(k) = fin(k) − L0 (7)

where L0 is the preset threshold generally set as the pro-
cessing capacity of the CPU. As fin(k) is not predictable at
the beginning of period k, we have to use an estimated value
such as fin(k − 1). The algorithm shown in Fig. 1 would
result in the following queue length

q(k) = q(k − 1) − L0 + [fin(k) − S(k)]

= q(k − 1) + fin(k) − fin(k − 1), (8)

and average delay time

y(k) = q(k) · c = [q(k − 1) + fin(k) − fin(k − 1)]c. (9)

In other words, the queue length at the kth period is equal
to the previous queue length q(k−1) less the processed data
L0 plus the incoming data with amount fin(k) − S(k).

Based on above analysis, we shall see that the open-loop
control suffers from poor performance as detailed in the fol-
lowing examples (see Fig. 8 for illustrations).

Example 1. Instability when incoming data rate increases
monotonically. During certain period of time, the incoming
data rate may keep increasing as shown in Fig. 8A. This
is very typical in dynamic environments. In this case, the
shed factor S(k) is not sufficiently large because it is derived
from the incoming data rate fin(k−1). According to Eq.(8),
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Figure 10: Control system block diagram.

the number of outstanding data tuples will keep growing be-
cause fin(k) − fin(k − 1) > 0 for all k in the period. As a
result, system output y also increases unboundedly.

Example 2. Convergence to wrong value in response to
step changes. As illustrated in Fig. 8B, when the incoming
data rate undergoes a step change from La to a much larger
value Lb, queue length will increase by Lb − La. If the in-
coming rate stays on Lb, no further increase of queue length
will occur and system output y(k) stabilizes. However, y(k)
could converge to a value that is higher than the target value
yd. And the system is unable to self-correct the deviation
due to its open-loop nature (i.e., controller does not know
the actual system output).

Example 3. Unnecessary data loss. When the incoming
data rate changes from a stable small value La to a higher
value Lb that is slightly greater than L0, the algorithm will
discard data with amount of Lb − L0 (Fig. 8C). However,
more data should be allowed to enter the DSMS because
the queue is almost empty before the change. In this case,
although the delay time y(k) is smaller or better than the
expected target value yd, the extra data loss is unnecessary.
Again, the reason for this is that the controller does not
know the actual system output.

The above three cases do not occur just in the Aurora
method. Any open-loop method where the system output
does not play any role in the control could face the same or
similar problems.

4.4 Controller design
In Section 4.3.2 we demonstrated the shortcomings of open-

loop solutions. However, even with the system model, it is
still not clearly how to use system output to make control
decisions and problems such as the one in Example 1 may
still exist. In this section, we discuss how to design con-
trollers with guaranteed performance. We start this section
by introducing our basic design of controller and continue
with Section 4.5 to address some DSMS-specific challenges.
The basic control scheme is illustrated in Fig. 10, where
yd is the preset reference value for delay time, e = yd − y



is the error signal, and u represents the controller output
(with the same unit as inflow rate fin). The meaning of u
is: the increase of the number of outstanding tuples (i.e.,
size of the virtual queue) allowed in the next control period.
Therefore, we denote v = u + fout as the desired data flow
rate to the database as fout tuples will leave the queue. C(z)
is the controller transfer function.

4.4.1 Design based on pole placement
For a dynamic system, continuous or discrete, one can use

system poles to determine its dynamic characteristics. Sys-
tem poles are the roots of the denominator polynomial of
the transfer function and zeros are the roots of the numer-
ator polynomial. The location of the system poles can tell
how fast the system responds to an input and how well the
response would be. For example, if a discrete time system
has a pole on the real axis between 0 and 1, the system re-
sponse would not oscillate; if it has an pole outside of the
unit circle, the system becomes unstable. The relationship
between the location of the system poles and the system
response can be found in any control textbook such as [13].

Pole placement design, one of the most important con-
troller design techniques, is to add additional poles and/or
zeros into the closed-loop system so that the closed-loop sys-
tem may have desired performance. If a raw system G(z) =
B(z)
A(z)

has poles as the roots of A(z) = 0, the closed-loop sys-

tem, after adding a feedback controller C(z) = N(z)
D(z)

, has a

closed-loop transfer function C(z)G(z)
1+C(z)G(z)

= N(z)B(z)
D(z)A(z)+N(z)B(z)

.

Hence the closed-loop system has poles as the roots of D(z)A(z)+
N(z)B(z) = 0. Clearly, the system poles have been moved
from A(z) = 0 in the raw system to D(z)A(z)+N(z)B(z) =
0 in the closed-loop system. System performance can be sig-

nificantly improved by correct selection of C(z) = N(z)
D(z)

.

The closed-loop performance is evaluated by the speed
and smoothness, or convergence rate and damping, of sys-
tem’s response to disturbances. The closer the system poles
are to 0, the faster the system response. Although it is theo-
retically possible to set the closed-loop poles at 0 and make
the system respond very fast, it is practically not a good
idea due to the large control authority needed for fast re-
sponse. In our case, it means that if we want the system
respond too fast, we may sometimes have to shed a lot of
data.

System damping is another important metric to evaluate
closed-loop performance. It determines how smooth the sys-
tem response is. Smaller damping means more severe oscilla-
tion, which is not desirable. When damping is less than 0.7,
there exist visible oscillations in the system step response;
when damping is bigger than 1, there is no oscillation in
the system response but the system response becomes slow.
Usually we choose the damping between 0.7 and 1.

With the above considerations, we develop the following
feedback controller. The detailed design procedure can be
found in Appendix A.

u(k) =
H

cT
[b0e(k) + b1e(k − 1)] − au(k − 1) (10)

where a, b0, and b1 are controller parameters that can be
easily solved from Eq.(18) and Eq.(19) in Appendix A.

Handling time-varying characteristics of the plant. As
time goes by, the average processing cost also changes. Let
us denote the per-tuple cost at period k as c(k). As our cur-
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Figure 11: Control system with estimated feedback.

rent controller is designed assuming constant c, we introduce
modeling errors to the closed-loop by allowing c to change
over time. As mentioned in Section 3, we assume the value
of c(k) changes slowly over time, at least compared to mov-
ing of data arrival rates. Under this situation, we normally
believe the system is still stable with the existing basic con-
troller. Due to its closed-loop nature, the controller should
be able to compensate for the effects of such dynamics. Our
experimental results (Section 5.1) provides strong evidence
favoring this claim. We leave a systematic solution to handle
fast-changing c as future work.

4.5 DSMS-specific issues
Whereas the Borealis system model seems to have a simple

dynamic structure (Eq.(3)), the control of the system is far
from trivial. In addition to the basic controller design, we
also have to address the following practical issues.

4.5.1 Unavailability of real-time output measurement.
Accurate measurements of system output in real-time is

essential in control system design. Unfortunately, this re-
quirement is not met in our system because the output signal
is the delay time. The output measurement is not only de-
layed, but also delayed by an unknown amount (the amount
is the output itself!). To be more specific, the output signal
of our controller should be the delay of tuples that have just
entered the system when we calculate u(k). However, at
time k, we can only measure the delay of those that entered
the system some time ago. This is a very interesting chal-
lenge to control theory as it does not exist in conventional
control systems where the controlled signal can always be
measured when we need it.

Given the output signal is not measurable when it is needed,
can we derive it from the current system status? The answer
is ‘yes’ and it comes right from the system model. We can
easily modify the Borealis system to accurately record the
number of outstanding data tuples (virtual queue length)
q(k). This can be done by just counting all the inflow/outflow
tuples. We already know that at any time, c(k) values can be
accurately estimated. Therefore, instead of using a measure-
ment of delay y as the feedback signal, we use an estimation
of y that is derived from Eq.(2):

ŷ(k) = q(k)
c(k)

H
+

c(k)

H
. (11)

It is natural that Eq.(11) adds estimation errors to the
closed-loop. We denote the estimation error as ỹ = y − ŷ.
Fortunately, our controller is still found to be robust by the
following argument. When estimated output ŷ is used as
feedback signal, the original control system becomes the one
shown in Fig. 11. The output of the closed loop system is



hence described by:

Y (z) =
C(z)G(z)

1 + C(z)G(z)
Yd(z) −

C(z)G(z)

1 + C(z)G(z)
Ỹ (z) (12)

The closed-loop system is still stable as long as ỹ is bounded,
which is always true. The Yd term in Eq.(12) shows that the
output of the closed-loop system still tracks the target ref-
erence signal with designed damping and convergence rate.
However, the accuracy is compromised due to the introduc-
tion of estimation errors, as represented by the Ỹ term in
Eq.(12).

4.5.2 Load shedder (actuator) design
Given the desired data flow rate v(k) obtained from the

controller, the task of the load adaptor is to cut the incoming
data stream (with rate fin) such that the the actual number
of tuples accepted into the system is close to v(k). In this
paper, we investigate two different ways to accomplish this.

A straightforward way to implement the load shedder is
to manipulate the number of data tuples entering the DSMS
query network. In other words, we treat the Borealis system
as a blackbox by not shedding load within the network. For
this purpose, we set a shedding/filtering factor α (0 ≤ α ≤
1) to all the data streams. When Borealis receives a tuple,
it flips an unfair coin with head probability 1 − α. A tuple
is accepted only when the coin shows head. At the end of
period k, α should be determined as follows:

α = 1 − [v(k)/fin(k + 1)]. (13)

However, fin(k + 1) is unknown when we calculate α. We
use its value in the current period fin(k) as an estimation.

Although the above load shedder is simple and works per-
fectly for the purpose of controlling delays given input v, it is
not used in real-world systems such as Borealis. In Borealis,
load can be shed from any queues in the query network.
Using the network in Fig. 2 as an example, we can drop
tuples in front of any combination of operators from 1 to
12 while the aforementioned load shedder only allows shed-
ding before operators 1, 2, and 3. This difference, however,
does not conflict with our system model (therefore controller
design). Our model says y(k) depends on q(k)c, which is ba-
sically the outstanding ‘load’ in the queue. Shedding only
intact tuples (outside the network) or partially processed tu-
ples (in the network) makes no difference: the same ‘load’ is
being discarded and y(k) depends on how much load is left
in the queue. Given the v(k) generated by our controller,
we know that new load with amount La = v(k)c(k + 1) can
enter the DSMS during the next period k + 1. However,
the outstanding tuples carry a load of Lq = q(k)c(k) and
incoming streams carry a load of Li = fin(k + 1)c(k + 1),
which is approximated by fin(k)c(k). Therefore, load with
amount of Ls = Lq + Li − La is to be shed. Pass the Ls

value to the Borealis load shedder, it will find the best plan
to bring down the total load by Ls.

4.5.3 Determination of the control period T

The sampling period is an important parameter in digital
control systems. An improperly selected sampling period
can deteriorate the performance of the closed-loop. In our
setup, we consider the following two issues in selecting T :

1. Nature of disturbances. In order to deal with distur-
bances, our control loop should be able to capture the mov-
ing trends of these disturbances. The basic guiding rule for

this is the Nyquist-Shannon sampling theorem [29]. A fun-
damental principle in the field of information theory, the
theorem states that: when sampling a signal, the sampling
frequency must be greater than twice the signal frequency
in order to reconstruct the original signal perfectly from the
sampled version. In our setup, this means the control period
should be at most half of the width of the spikes in input
rate (as we assume average processing costs changes more
slowly). In practice, a sampling frequency that is one order
of magnitude larger than the input signal frequency is often
used for signal reconstruction. Therefore, a high sampling
frequency is preferred to capture the time-varying properties
of the system and input data.

2. Uncertainties in system signals. In our problem, the
output signal y(k) and processing cost c(k) are defined as
the statistical expectations of a series of tuples. Taking such
expectations can eliminate uncertainties brought by the het-
erogeneity of individual tuples. A larger sampling period
(low sampling frequency) is preferred as more smoothing ef-
fects can be expected. For example, when tuple processing
cost is in the order of milliseconds, setting T to a fraction
of one second level would give us tens to a few hundreds
of samples to approximate the real values of y(k) and c(k).
For higher sampling frequencies, we get fewer samples to
estimate y(k) and may encounter estimation errors.

We need to make a tradeoff between the above two factors
in choosing the right sampling period.

5. PERFORMANCE EVALUATION
We implemented a controller and a monitoring module in

the Borealis data manager6 based on our design. As the
current release of Borealis does not include the load shed-
der presented in [26], we also built our own load shedder.
The load shedder we built allows shedding from the queue
and randomly selects shedding locations. In other words,
it is more general than the first load shedder we discuss in
Section 4.5.2 but lacks the optimization towards non-delay
parameters found in the Borealis load shedder.
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Figure 13: Traces of synthetic and real stream data.

We test our control-based framework with both synthetic
and real-world stream data. The real data are traces of re-
quests to a cluster of web servers provided by the Internet
Traffic Archive.7 In this dataset, each record contains a
timestamp that shows when the request arrived. The syn-
thetic data are generated in such a way that the number of
data tuples per control period follows a long-tailed (Pareto,
to be specific) distribution [16]. The skewness of the arrival
rates is regulated by a bias factor β. The traces of a Pareto
stream with β = 1 as well as the web access data are plotted

6http://nms.lcs.mit.edu/projects/borealis/
7dataset LBL-PKT-4, http://ita.ee.lbl.gov
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in Fig. 13. We can see that the fluctuations in the ’Pareto’
data are more dramatic than in the ‘Web’ data.

We also use synthetic traces to simulate the variations
of per-tuple cost c. We first generate the cost variations
following a Pareto distribution and then modify the trace
by adding ‘circumstances’ to it. For example, in the trace
plotted in Fig. 14, we have a small peak at the 50th second,
a large peak with a sudden jump (starting from the 125th
second), and a high terrace with a sudden drop (250th to
350th second). The same network for system identification
(Section 4.2) is used for experimental studies.

We compare our control-based framework (referred to as
CTRL hereafter) with the following two approaches:

• AURORA: the algorithm utilized in the current Au-
rora/Borealis system, as shown in Fig. 1. At the k-
th control period, the measured load L is fin(k − 1).
To deal with variable per-tuple cost, we define L0 =
H/c(k − 1). This method represents the current best
solution in load shedding in DSMSs;

• BASELINE: a simple feedback control-based method:
it takes system status (i.e., q(k), c(k) in our case) into
account in making decisions. Specifically, v(k) is ob-
tained from the system model (Eq.(11)): the target
value of yd would allow ydH/c(k) outstanding tuples,
therefore u(k) = ydH/c(k) − q(k) more tuples can be
added to the queue. Consequently, we get v(k) =

u(k) + fout(k) = −q(k) + ydH

c(k)
+ TH

c(k)
. As c(k) is un-

known, we estimate it with c(k − 1). This method is
used to test the importance of controller design.

In all the experiments we report in this section, we set
target delay value yd to 2000 milliseconds unless specified
otherwise. We run all tests for 400 seconds. For CTRL, the
controller parameters value identified by our analysis are:
b0 = 0.4, b1 = −0.31, and a = −0.8. Any set of parameters
that are solutions to Equations (18) and (19) are supposed

to have the same performance. This is verified by our tests
with other set of parameters (details skipped). Following the
experiments shown in Fig. 6, we set H to 0.97. The control
period is set to 1000 milliseconds. Going back to Fig. 13, we
see that most of the bursts in both traces last longer than a
few (4 to 5) seconds therefore a sampling period smaller than
two seconds is preferred according to the sampling theorem.
The change of costs c in Fig. 14 has peaks with widths
on the order of tens of seconds (with some exceptions) thus
one-second period is definitely sufficient. We also test the
systems with different choices of T and yd.

5.1 Experimental results
We first compare the long-term performance of CTRL

with that of the two other algorithms. In Fig.12, we plot
the ratios of all four metrics measured (i.e, totals in the
400-second period) from the AURORA and BASELINE ex-
periments to that of CTRL. For example, when injected with
the same ‘Web’ data stream, Fig. 12A shows that AURORA
rendered 205 times more total delay violations than CTRL
and BASELINE had 23 times. Similar results were obtained
in total delayed tuples (Fig. 12B) and maximal overshoot
(Fig. 12C). Note all data points for CTRL are 1.0 in Fig.
12. The data loss ratio for all methods are almost the same
with AURORA losing slightly fewer tuples (0.986 for ‘Web’
and 0.987 for ‘Pareto’). It is easy to see that, for both real
(‘Web’) and synthetic (‘Pareto’) data inputs, CTRL is the
easy winner in the three delay-related metrics with almost
the same amount of data loss. The BASELINE method, as
a feedback solution, has worse performance than CTRL but
it also beats AURORA.

To better understand the above long-term results, we show
the transient performance of all three methods by plotting
y(k) values measured at all control periods in Fig. 15. We
can see that, as expected, almost all output in CTRL is
very close to the target value of two seconds. For BASE-
LINE and AURORA, we can observe peaks that are large in
both height and width. Such peaks are the results of either
fluctuations of arrival rate or changes of c (e.g., those at
about 50th second and 125th second, and the high terrace
starting from the 230th second). Note the first two peaks of
c also have impact on the CTRL system: average delay in-
creases beyond two seconds. However, with the design goal
of fast convergence and high damping, the controller in the
CTRL system can quickly bring the system back to a stable
state thus large peaks of y are avoided. The high terrace
has almost no effect on CTRL. This is because the value
of c increases gradually before the terrace. Our controller
can capture and compensate for this kind of gradual change
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Figure 15: Performance of different load shedding
methods.

while the open-loop system cannot (i.e., Example 2 in Sec-
tion 4.3.2). From Fig. 15, we can fairly conclude that the
design goal of our controller (Section 4.4.1) is achieved.
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System robustness. In the above experiments, the AU-
RORA method has poor stability: tuple delays increase all
the time. A question one might ask is: can we remedy the
problem by using a smaller L0 value (recall the algorithm
in Fig. 1) such that more data can be discarded? In our
setup, this means the same as changing the H value (even
though H = 0.97 is proved to be correct in Section 4.2) as
we define L0 to be H/c. Fig. 16 shows the results of the AU-
RORA method under both real and synthetic data inputs
using a smaller H value of 0.96. For the ‘Web’ data inputs,
the system is still unstable. Surprisingly, no delay violations
can be observed for the ‘Pareto’ inputs. However, the price
for this is huge: it costs 37% more data loss than CTRL
(small graph in Fig. 16). This result shows the poor robust-
ness of open-loop solutions: it is hard to tune the system as
performance depends heavily on the pattern of inputs.

To further study the robustness of the three methods, we
test them using data streams with different levels of bursti-

ness. Specifically, we feed the systems with synthetic data
streams with bias factors β of 0.1, 0.25, 0.5, 1, 1.25, and 1.5.
The smaller the bias factor, the more bursty the input. In
Fig. 17, we show the change of all four metrics with respect
to the bias factor. All numbers plotted are relative to the
corresponding value measured in the case of β = 1.5. As
the input stream becomes more bursty, very little difference
can be observed in CTRL (Fig. 17A) while the changes in
AURORA (Fig. 17B) are much more dramatic. The per-
formance of BASELINE is not significantly affected by the
bias factor as well (data not shown).
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mance.

In Fig. 18 we show how different load shedding methods
respond to changes of target value yd at runtime. In these
experiments, we set yd to be 1000 milliseconds initially and
change it to 3000 milliseconds at the 150th second and then
to 5000 milliseconds at the 300th second. We can see that
CTRL converges to the new target values very quickly. Fur-
thermore, system stability is not affected by the target value.
The AURORA method does not respond to the changes of
yd at all as it is open-loop. When yd changes, it takes the
BASELINE method very long time to converge to the new
target value. We use ‘Web’ data inputs for the experiments
in Fig. 18 and using ‘Pareto’ data gives similar results.
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Figure 18: Responses to change of target value.

Effects of control period. In Section 4.5.3, we discussed
the general rules on choosing the right sampling period. We
test these rules by running experiments with nine different
sampling periods ranging from 31.25 to 8000 milliseconds
with the CTRL system and ‘Web’ data stream. In Fig.
19, every data point is the ratio to the lowest correspond-
ing metric in all nine tests and the x-axis has a logarithmic
scale. For example, the smallest accumulated delay viola-
tions were recorded under T = 500ms and this value is about
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40 times as high when T = 4000ms. Obviously, the magni-
tude and frequency of delay violations increase desperately
when T is beyond four seconds. As expected, a shorter con-
trol period is preferred. This confirms our discussion about
the sampling theorem in Section 4.5.3. When T becomes
too small, performance degrades. The best region seems to
be [250, 1000] in these experiments (see small graph in Fig.
19). Similar results are obtained for the ‘Pareto’ data in-
puts. One thing to point out is: in all experiments with T
smaller than 4000ms, CTRL outperforms BASELINE and
AURORA with similar difference shown in Fig. 12.

Computational overhead. The operation of our controller
only involves several floating point calculations at each con-
trol period. In our experimental platform with a Pentium 4
2.4GHz CPU, this time is only about 20 microseconds. This
is trivial because the control period is set to be (at least) on
the order of hundreds of milliseconds.

5.2 Discussion
From the above experiments, we believe our load shedding

framework based on a feedback control gives better quanti-
tative guidance to how load shedding should be performed.
We see that CTRL is the winner in all delay-related metrics.
We achieve this by employing a number of techniques. The
first lesson we learn from this study is: a thorough under-
standing of system dynamics is extremely useful in dealing
with control-like problems. The idea of controlling delay
through virtual queue length provides big advantages over
the AURORA method. By applying simple rules derived
from the model, the BASELINE method achieves far better
performance than AURORA. Decisions based on controller
design is another plus for our method. With guaranteed
convergence, our controller avoids large and long-time devi-
ations from the desired output while the BASELINE method
suffers from such deviations.

An important feature of the control-based solution is its
robustness. Note that we only use standard inputs to vali-
date the system model and controller tuning is accomplished
by mathematical reasoning exclusively. In other words, no
training data is needed and performance can be guaranteed
for a wide range of inputs. On the contrary, tuning of other
methods can be ad hoc, as evidenced by the dependence
of open-loop solutions on the pattern of data inputs. We
have reasons to believe that even the current system model
(Fig.4) can be used for DSMSs other than Borealis: we no-
ticed (via experiments) that modifying the query network
only changes a parameter (c) but not necessarily the struc-

ture of the model. It is highly possible that the model is still
applicable to a wide range of scheduling policies that do not
consider tuple priorities. Further investigations are needed.
In the CTRL system, the only thing that’s subject to in-
put/internal uncertainties is the control period T . However,
the proper choice of T requires very little information about
such uncertainties (i.e., signal frequency), which is generally
available. For a wide range of T values, the CTRL method
still beats the other two algorithms.

6. CONCLUSIONS AND FUTURE WORK
This paper argues for the importance of managing data

processing delays in data stream management systems. Vio-
lations of delay are generally caused by system overloading.
Load shedding and other adaptation strategies have been ex-
ploited to compensate for degraded delays under overload-
ing. We noticed that the strong dynamics such as bursty
arrival pattern of data stream applications require an adap-
tation strategy with excellent transient-state performance
(e.g., fast convergence to steady state), which most of the
current works in this area fail to provide. We proposed a
load shedding framework that leverages various techniques
from the field of control theory. We started by developing
a dynamic model of a steam management system. We then
construct a feedback control loop to guide load shedding
through system analysis and rigorous controller design.

We have implemented our design and performed extensive
experiments on a real-world system - the Borealis stream
manager. It is evident that our approach achieves bet-
ter performance in terms of reduced delay violations over
current strategies that do not consider system status in
decision-making. The control-based strategy is also robust
and light-weight. Finally, we believe our explorations can
give rise to many opportunities to conduct synergistic re-
search between the database and control engineering com-
munities to extend our knowledge in both fields.

Immediate follow-up work includes more experiments on
the Aurora load shedder and more dramatic changes of per-
tuple costs (resulting from structure change of the query
network, for example). The idea is to use adaptive con-
trol techniques to capture the internal variations of the sys-
tem model and provide better control over the whole sys-
tem. Our control-based framework can also be extended in
a few directions. First of all, there is still room to improve
the quality model: we could provide heterogeneous quality
guarantees for streams with different priorities; and multi-
ple quality dimensions can be supported at the same time
by introducing a multi-in-multi-out control model. Com-
bining stochastic methods such as Kalman Filters with our
controller design would yield more powerful adaptation algo-
rithms. Although we did not go into prediction strategies of
time series in this paper, we understand that it is a promis-
ing direction that is worth serious consideration. We are
currently investigating the potential of control theory in a
number of other topics in DBMS research such as query re-
optimization and dynamic resource allocation in traditional
databases.
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APPENDIX

A. CONTROLLER DESIGN BASED ON POLE
PLACEMENT

In this study, we set the desired convergence rate to three
sampling periods. This means the system, in response to
dynamics, would converge to 1 − 1

e
≈ 63% of the desired

value in 3 control periods and to 98% in 12 periods. We
set the system damping to 1 and set the desired closed-loop
poles to be on the real axis, at 0.7. Thus, the desired closed-
loop characteristic equation (CLCE) is:

(z − 0.7)2 = z2 − 1.4z + 0.49 = 0 (14)

According to Eq.(4), we have a first-order system. Thus,
the controller C(z) will have one pole and its generic format
[13] is

C(z) =
H(b0z + b1)

cT (z + a)
(15)

where b0, b1, and a are controller parameters. Therefore, the
closed-loop transfer function (CLTF) becomes

C(z)G(z)

1 + C(z)G(z)
=

b0z + b1

z2 + (a − 1 + b0)z + (−a + b1)
(16)

and the actual closed-loop characteristic equation (CLCE)
is

and z2 + (a − 1 + b0)z + (−a + b1) = 0. (17)

Matching the above CLCE to its desired form shown in
Eq.(14), we get the following (Diophantine) equation:

z2 + (a − 1 + b0)z + (−a + b1) = z2 − 1.4z + 0.49 (18)

At the steady state, the CLTF should have a static gain that
equals one, meaning we want the output y to be exactly the
same as yd. This results in the following equality:

b0z + b1

z2 + (a − 1 + b0)z + (−a + b1)

˛

˛

z=1
= 1 (19)

Solving Equations (18) and (19), one can obtain the con-
troller parameters a, b0, and b1.

In summary, the above design results in a closed loop sys-
tem having two poles, both of which are on the positive real
axis at 0.7.

Now we can generate the control signal u. Let U(z) and
E(z) be the z-transforms of u and error e, respectively. Ac-
cording to Fig. 10, e is the input and u is the output respect
to the controller, we have

U(z) = C(z)E(z) =
H(b0z + b1)

cT (z + a)
E(z).

Multiplying both sides by (z+a)cT

z·H
, we get

U(z)
cT

H
+

acT

H
U(z)z−1 = b0E(z) + b1E(z)z−1.

By inverse z-transformation, the above leads to the solution
for u as follows:

u(k) =
H

cT
[b0e(k) + b1e(k − 1)] − au(k − 1).


