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ABSTRACT
Quality is an essential property for multimedia databases.
In contrast to other database applications, multimedia data
can have a wide range of quality parameters such as spatial
and temporal resolution, and compression format. Users
can request data with a specific quality requirement due to
the needs of their application, or the limitations of their
resources. The database can support multiple qualities by
converting data from the original (high) quality to another
(lower) quality to support a user’s query, or pre-compute
and store multiple quality replicas of data items. On-the-fly
conversion of multimedia data (such as video transcoding) is
very CPU intensive and can limit the level of concurrent ac-
cess supported by the database. Storing all possible replicas,
on the other hand, requires unacceptable increases in storage
requirements. Although replication has been well studied, to
the best of our knowledge, the problem of multiple-quality
replication has not been addressed. In this paper we address
the problem of multiple-quality replica selection subject to
an overall storage constraint.

We establish that the problem is NP-hard and provide
heuristic solutions under two different system models: Hard-
Quality, and Soft-Quality. Under the soft-quality model,
users are willing to negotiate their quality needs, as opposed
to the hard-quality system wherein users will only accept
the exact quality requested. The hard-quality problem is
reduced to a 0-1 Knapsack problem and we propose an effi-
cient solution that minimizes the probability of request re-
jection due to unavailability of the requested quality replica.
For the soft-quality system, an important optimization goal
is to minimize utility loss. We propose a powerful greedy al-
gorithm to solve this problem. Extensive simulations show
that our algorithm performs significantly better than other
heuristics. The algorithm is flexible in that it can be ex-
tended to deal with problems of distributed data replication
and changes in query pattern.
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1. INTRODUCTION
Quality is an essential property for multimedia databases.

In contrast to other database applications, multimedia data
can have a wide range of quality parameters such as spatial
and temporal resolution, and compression format. Quality-
aware multimedia systems [10, 23, 24, 26, 30] allow users to
specify the quality 1 of the media to be delivered based on
their practical needs and resource availability on the client-
side devices [23,24]. The quality parameters of interest also
differ by the type of media we deal with. For digital video,
the quality parameters of interest include resolution, frame
rate, color depth, signal-to-noise ratio (SNR), audio quality,
compression format, and security level [30]. For example,
a video editor may request a video at very high resolution
when editing it on a high-powered desktop machine, but
request the video at low resolution and frame rate when
viewing it using a PDA. Different encoding formats may be
desirable for different applications.

From the point of view of a video database, satisfying user
quality specifications can be achieved using two complemen-
tary approaches2: i) store only the highest resolution copy,
and convert it to the quality format requested by the user as
needed at run-time; or ii) pre-compute each different quality
that can be requested and store them on disk. When the
user query is received, the appropriate copy is retrieved from
disk and sent to the user. This first approach, often called
dynamic adaptation, suffers from a very high CPU overhead
for transcoding from one quality to another [23]. Therefore
online transcoding is difficult in a multi-user environment.
Our experiments run on a Solaris machine (with a 2.4GHz
Pentium 4 CPU and 1 GB of memory) confirm this claim:
a MPEG1 video is transcoded at a speed of only 15 to 60
frames per second (fps) when the CPU is fully loaded by the
transcoding job. This corresponds to 60 - 240% of the entire
CPU power if the frame rate for the video is 25 frames per
second (fps). We can see that CPU power is the bottleneck if

1Here quality refers to user-level QoS. In this paper, the words
QoS and quality are used interchangeably.
2Another possible approach, which is not considered in this pa-
per, is to use multilayered coding standards (MCS), which encode
media into a base layer and multiple enhanced layers. QoS is
provided by choosing what and how much data in the enhanced
layers are delivered. An attractive alternative to the methods of
transcoding and caching, MCS, however, will not totally replace
them because it is only adapted by some coding formats such
as MPEG4. Plus, the number of qualities MCS provides is still
limited.
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Figure 1: Time for transcoding a 640 × 480 MPEG1
video to various (lower) resolutions.

we depend on online transcoding. Current state-of-the-art
CPU design and transcoding techniques may increase the
speed by a factor of two to four, but it still does not solve
the problem. As a result, many transcode proxy servers or
video gateways [1] with massive computing power have to
be deployed. The second approach, often called static adap-
tation, attempts to solve the problem of high CPU cost of
transcoding by storing precoded multi-quality copies of the
original media on disk. By this, the heavy demand on CPU
power at runtime is alleviated. We trade disk space for run-
time CPU cycles, which is a cost-effective trade-off since
disks are relatively cheap.

Existing static adaptation systems are designed under one
or both of the following assumptions: 1) user requests con-
centrate on a small number of quality profiles3; and 2) there
is always enough storage space. However, these are not true
for real-world multimedia databases. First of all, users vary
widely in their quality needs and resource availability [23].
This leads to a large number of quality-specific copies of the
same media content that need to be stored on disk. Sec-
ondly, although cheap, storage space is not free. This is es-
pecially true for commercial media databases that must pro-
vide high reliability of disk resources (which may be leased
from vendors such as Akamai). Therefore, although storage
is cheap, the storage requirements should not grow unbound-
edly. An analysis in Section 4 shows the disk space needed
to accommodate all possible qualities could be intolerably
high. Therefore, the choice of which quality copies to store
becomes important and is the focus of this paper.

We view the selection of media copies for storage as a
data replication problem (Fig. 2). Traditional data replica-
tion focuses on placement of copies of data in various nodes
in a distributed environment [25]. Our quality-aware repli-

3As a result of 1), many media service providers offer quality
options based on the client-side devices’ processing capabilities.
For example, CNN.com used to provide video streaming service in
three different predefined qualities: one for dial-up users, one for
DSL users, and for T1 users. However, this solution places strong
limitations to the freedom of quality selection. Furthermore, with
the development of mobile technologies, there are a large number
of devices such as smart phones and PDAs, each of which has
different rendering and communication capabilities. Thus, even
by adapting this strategy, the number of possible quality-specific
copies of the same media is large and keeps increasing with the
emergence of new devices.

cation of multimedia deals with data placement in a metric
space of quality values (termed as quality space). In the
traditional replication scheme, data are replicated as exact
or segmental copies of the original while the replicas in our
problem are multi-quality copies generated via transcoding.
In this paper, we present strategies to choose quality of repli-
cas under two different user requirements: Hard-Quality and
Soft-Quality. Under the hard-quality model, users must re-
ceive the exact quality requested. If such a quality is not
already stored on disk, it must be generated by transcoding
from an available quality and delivered to the client simulta-
neously. If the resources necessary for this transcoding are
not available (e.g., due to overloading) then the request is
rejected. In a soft-quality model, users are willing to ne-
gotiate the quality that they receive and may be willing to
accept a quality that is close to the original request. Nat-
urally, there is a loss in utility for the user when he has to
accept a different quality, depending upon the difference in
quality. In either model, a request can be rejected if the
system is overloaded (at the CPU, disk, or network).

Important performance metrics for these systems include:
reject rate of requests, user satisfaction, and resource con-
sumption [4, 17]. Our data replication algorithms are de-
signed to achieve the lowest rejection rate, or highest user
satisfaction under fixed resource (CPU, bandwidth, and stor-
age) capacities. We hope our work will provide useful guide-
lines to system designers in building cost-effective and user-
friendly multimedia databases.

The remainder of this paper is organized as follows: we
first compare our work with others in Section 2; we then
introduce the system model in Section 3; Section 4 discusses
storage use of the replication process; we present our replica
selection algorithms in Sections 5, 6, and 7; Section 8 is
dedicated to experimental results; we conclude the paper by
Section 9.

2. RELATED WORK AND OUR CONTRI-
BUTIONS

This work is motivated by the efforts to build quality-
aware media systems [10, 23, 26, 30]. In our previous work
[30], quality-aware query processing is studied in the con-
text of multimedia databases. In that paper, we extend
the query processing/optimization module of a multimedia
DBMS to handle quality in queries as a core DBMS func-
tionality. Two other related works in multimedia databases
discuss quality specification [3] and quality model [32]. None
of the above deals with replication of copies with different
qualities. The closest work in quality-aware data replication
is by Steinmetz et al. [27]. They focus more on availability
and consistency of non-media data.

The traditional data caching/replication problem has been
studied extensively in the context of web [28,29], distributed
databases [22,25], and multimedia systems [19,33]. The web
caching and replication problem aims at higher availability
of data and load balancing at the web servers. Similar goals
are set for data replication in multimedia systems. What dif-
fers from web caching is that disk space and I/O bandwidth
are the major concerns in multimedia systems. A number
of algorithms are proposed to achieve high acceptance rate
and resource utilization by balancing the use of different re-
sources [6,9,33]. Unlike web and multimedia data, database
contents are accessed by both read and write operations.
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Figure 2: Traditional (A) and quality-aware (B) data replication.

This leads to high requirements on data consistency, which
often conflict with data availability. Due to resource con-
straints, data consistency can sometimes only be enforced
loosely.

Dynamic replication of data is another important issue.
Access frequency to individual data items are likely to change
in most environments. The goal is to make the replica-
tion strategy quickly and accurately adapt to changes and
achieve optimal long-term performance. Wolfson et al. [34]
introduced an algorithm that changes the location of repli-
cas in response to changes of read-write patterns of data
items. The interactions between query optimization and
data cache utilization in distributed databases are discussed
in [16]. They found that to take advantages of cached data,
it is sometimes necessary to process individual queries using
‘sub-optimal’ plans in order to reach higher system perfor-
mance. In [18] and [4], video replication/de-replication is
triggered as a result of changes of request rates.

Quality support in media delivery in response to hetero-
geneous client features and environmental conditions has at-
tracted a lot of attention [23,24]. The problem of quality se-
lection under storage constraints, however, has not been well
addressed due to the oversimplified assumption of unlimited
storage. A work that is close in spirit to ours is presented
in [20] where quality selection is performed with the goal
of minimizing expected transcoding costs between qualities.
In another related paper [11], the problem of optimal mate-
rialized view selection is studied. Both [20] and [11] address
different data selection problems from ours. Furthermore,
neither considers quality selection in response to dynamic
changes of query pattern. Another feature of our problem
is that storage is shared by multiple physical objects, each
of which has it own quality space. How to distribute stor-
age among these quality spaces brings an extra dimension of
difficulty. In comparison to the preceding papers, we make
the following contributions in our study:

1. We analytically and experimentally show that the stor-
age cost of static adaptation is so high that typically
only a small number of replicas in the quality space
can be accommodated in disks;

2. In a hard-quality system where users are assumed to
be strict on quality requirements, we develop a (near-
optimal) replica selection algorithm that minimizes re-
quest reject rate based on probabilistic analysis;

3. We formulate the replica selection under a soft-quality
model as a facility location problem with the goal of

maximizing user satisfaction. We propose a fast greedy
algorithm with performance comparable to commercial
optimizers. An improvement to the greedy algorithm
is also discussed; and

4. We extend the algorithms developed in 2) and 3) to
handle dynamic changes of query pattern. Our solu-
tions are fast and achieve the same level of optimality
as the original algorithms. To the best of our knowl-
edge, this is the first work to study the dynamic version
of a combinatorial optimization problem.

A preliminary version of this paper appears in [31].

3. SYSTEM MODEL, NOTATIONS, AND AS-
SUMPTIONS

We assume that the database consists of a collection of
servers that host the media content and service user queries.
For now, we consider a centralized, single server scenario.
The case of multiple, distributed servers is discussed in Sec-
tion 6.5.3. We list in Table 1 the notations that will be used
throughout this paper.

Table 1: Notations and definitions.
Symbol Definition

System parameters
B Server bandwidth
S Server storage space for storing media
C Server CPU power
V Number of media objects in the system
P Request reject rate
Mi Total number of quality points for media i
M Total number of quality points for all media

f Total query rate, f =
PM

k=1 fk

Quality-specific parameters
fk Query rate, number of requests per unit time
µk Service rate, requests served per unit time
λk Request intensity, λk = fkµ

−1
k

ck CPU cycles per unit time for transcoding into
this quality point from original quality

bk Bandwidth needed for streaming
sk Storage space needed if a replica is placed
Pk Reject rate of requests to quality k

In our model, a server is characterized by the total amounts
of the following resources available: bandwidth (B), storage



space (S), and CPU cycles (C). Among them, bandwidth
can be viewed as the minimum of the network bandwidth
and the I/O bandwidth. In modern media servers, network
bandwidth is most likely to be the bottleneck.

The system contains V media objects. User requests iden-
tify (either directly or via a query) an object to be retrieved
as well as the desired quality requirements on m quality
dimensions (~q = {q1, q2, ..., qm}, termed as quality vector).
Each quality vector can thus be modeled as a point (here-
after called quality point) in a m-dimensional space. Gen-
erally, the domain of a quality parameter contains a finite
number of values. For example, the spatial resolution of
a video is an integer number of pixels within the range of
192×144 (low-quality MPEG1) to 1920×1080 (HDTV). Fur-
thermore, the (horizontal) resolution can only be multiplies
of 16 as the latter is the finest granularity most transcoders
can handle. The total number of quality points for a specific
media object i is Mi =

Qm
j=1 |Qij | where Qij is the set of

possible values in dimension j for object i and Qij need not
to be identical for all media objects. Note that every quality
point is a candidate replica to be stored on disk.

Consider each possible quality, k, stored in the database.
We use the following parameters to model this object: fk,
µk, ck, sk, bk. fk represents the query rate for this version
of the video. We assume that the query arrival is a Poisson
process with this arrival rate. The query processing duration
is assumed to follow an arbitrary distribution with expecta-
tion 1/µk . Note 1/µk may not be the same as the standard
playback time of the media as the users may use VCR func-
tionalities (e.g., stop, fast forward/backward) during media
playback. The last three parameters (ck, sk, bk) correspond
to the usage of resources. They can be effectively estimated
from empirical functions derived by regression (see Section
4). Note ck is fixed as the transcoding cost only depends on
the target quality.

Under the hard-quality model, the server performs the
following steps upon receiving a request:

1) attempts to retrieve from disk a replica that matches
the quality vector ~q attached to the request;

2) if the corresponding replica does not exist, transcodes
a copy from a high-quality replica (by consuming ck

units of CPU) at runtime;

3) rejects the request if not enough CPU is available to
perform 2).

If either 1) or 2) is performed, the retrieved/transcoded
media data is transmitted to the client via the network (us-
ing bk units of bandwidth). The request is also rejected if
the required bandwidth is unavailable. We ignore the CPU
costs of non-transcoding operations as they are negligible
compared to transcoding costs and do not change with the
specified ~q. In the above model, requests are either admitted
or rejected without waiting in a queue. The steps performed
in soft-quality systems are slightly different from the above.
We will discuss those in Section 6.

3.1 Assumptions
In this paper, we assume that replicas are readily avail-

able. In practice, all replicas can be precoded and archived
on tertiary storage and copied into disk when a replication
decision is made. We also assume that rejected queries are

Table 2: Total relative storage in a 3D space.

n 5 10 15 20 25
Storage 20.23 117.7 354.8 755.9 1496.5

not re-issued by the users. For analysis in Section 5, we
make the following assumptions:

Assumption 1. We assume that CPU is a heavily over-
loaded resource as a result of online transcoding requests,
i.e.,

PM
k=1 λkck = mcC where mc � 1. On the other hand,

the load put on system bandwidth is not as heavy as that
on CPU, i.e.,

PM
k=1 λkbk = mbB and mb � mc. We call

mb and mc the load coefficients of these resources. Note the
load on system bandwidth can be critical, i.e., mb = 1 or
light, i.e., mb < 1.

Assumption 2. We further assume that ci

C
>

bj

B
(∀i, j),

which means that the ratio of CPU cost to total CPU power
is always higher than that of bandwidth cost to total band-
width.

The above two assumptions are reasonable due to our dis-
cussion in Section 1 about CPU being the bottleneck in our
system model.

4. STORAGE REQUIREMENTS FOR QUA-
LITY-AWARE REPLICATION

As mentioned in Section 1, it is often assumed in previous
works that sufficient storage is available for static adapta-
tion. Now we explore this assumption. Since a user can
request any of the possible qualities, an ideal solution is to
store most, if not all, of these replicas on disk such that only
minimal load is put on the CPU for transcoding. We show
that the storage cost for such a solution is simply too high.

We use digital video as an example throughout this paper.
According to [24], the bitrate of a video replica with a single
reduced quality parameter (e.g., resolution) is expressed as:

F = F0(1 −Rβ) (1)

where F0 is the bitrate of the original video, R is the percent-
age of quality change (0 ≤ R ≤ 1) from the original media,
and β is a constant derived from experiments (0.5 < β < 1).
Suppose we replicate a media into n copies with a series of
quality changes Ri (i = 1, 2, . . . , n) that cover the domain
of R evenly (i.e. Ri = i/n). The sum of the bitrate of all
copies is given by:

n
X

i=0

F0

`

1 −Rβ
i

´

= F0

"

n −
n

X

i=0

„

i

n

«β
#

(2)

≈ F0

"

n −
Z n

0

„

i

n

«β

di

#

(3)

= F0

„

n− n

β + 1

«

(4)

= F0
nβ

β + 1
= F0O

`

n
´

. (5)

The corresponding storage requirement can be easily calcu-
lated as TF0

n
β+1

where T is the playback time of the media.
Note that the above only considers one quality dimension.
In [24], Equation (1) is also extended to three dimensions
(spatial resolution, temporal resolution, and SNR):

F = αF0

`

1 −Rβ
a

´`

1 −Rγ
b

´`

1 −Rθ
c

´

(6)
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Figure 3: Change of video bandwidth with resolu-
tion degradation.

where Ra, Rb, and Rc are quality change in the three di-
mensions, respectively. The constants of their transcoder(s)
are: α = 1.12, β = 2/3, γ = 0.588, and θ = 1.0. Using the
same technique of approximation by integration as used in
Equation (3), we can easily see the sum of all storage needed
for all n3 replicas is TF0O

`

n3
´

. To be more general, the rel-
ative storage (to original size) needed for static adaptation
is on the order of total number of quality points. The latter
can be represented as O

`

nd
´

where d is the number of and
n is the replication density along quality dimensions. The
conclusion is true as long as storage decreases polynomially
with degradation of quality. Some of the storage costs gener-
ated using Eq. (6) are listed in Table 2. For example, when
n = 10, the extra storage needed for all replicas is 117.7
times that of the original media size. No media service can
afford to acquire hundreds of times of more storage for the
extra feature of static adaptation. Needless to say, we could
have even more quality dimensions in practice.

We have also experimentally verified the storage require-
ments for replication. We use the open-source video pro-
cessing tool named transcode4 in these experiments. Figure
3 shows the relative video size when spatial resolution de-
creases by various percentages. The discrete points are the
resulting video sizes and curve A represents Eq. (1). In
this graph, the areas under the curves can be viewed as the
total relative storage use. We also plot a straight line B
with function 1 − 1.25R to show the theoretical storage us-
age based on Eq. (5). The area of the triangle formed by
X, Y axles and line B is 2

5
, which is the same as that given

by Eq. (5) since β = 2
3
. The fact that the areas under these

three curves are very close to each other corroborates our
analysis in this section.

5. HARD-QUALITY SYSTEMS
In this section, we discuss data replication strategies in

hard quality systems where users have rigid quality require-
ments on service. This means a user is not willing to nego-
tiate when the quality she specifies cannot be satisfied. As
mentioned in Section 1, the main idea of static adaptation is
to replicate original media into multiple quality copies such
that the demand on CPU decreases. In Section 4 we have

4http://www.theorie.physik.uni-
goettingen.de/∼ostreich/transcode/

shown that it is impractical to store all possible quality com-
binations. Therefore, the problem becomes how to choose
quality points for replication given finite storage space C
such that system performance is maximized. Since the non-
availability of a requested quality results in the rejection of
the request, we use the reject probability, P , as the metric
for performance evaluation. Let the output of the replica
selection algorithm be a vector (r1, r2, ..., rM ) with 0/1 ele-
ments (rk = 1 if replica k is to be stored in disk). Formally,
the replica placement problem is to

minimize P ,

subject to
PM

i=1 rksk ≤ S

where the fk, µk, sk, and ck values for each replica are given.
To approach the above problem, it is critical to derive

the relationship between P and the replica-specific values.
First of all, the reject probability of all quality points is a
weighted average of those of individual points:

P =

M
X

k=1

fk
PM

k=1 fk

Pk =
1

f

M
X

k=1

fkPk (7)

where Pk is the reject probability of replica k. Suppose, by
applying our replication algorithm, the M quality points are
divided into two disjoint sets: a set R containing replicated
points and a set R′ with non-replicated points. Following
Eq. (7), we have

P =
1

f

`

fRPR + fR′PR′

´

(8)

where fR =
P

i∈R
fi is the total request rate in set R,

PR = 1
fR

P

k∈R
fkPk is the reject probability of all requests

from R and fR′ , PR′ are the counterparts of fR, PR in set
R′.

In our model, the admission of a request is determined
by the runtime availability of two resources: bandwidth and
CPU. If either is insufficient to serve the request, the request
is rejected. So the reject probability for a set of objects, say,
those in set R, can be expressed as

PR = P
(b)
R

+ P
(c)
R

− P
(bc)
R

(9)

where P
(b)
R

, P
(c)
R

, and P
(bc)
R

are probabilities of the follow-
ing events happening to requests from set R: rejected by
bandwidth, rejected by CPU, and rejected by both CPU and

bandwidth. Note we cannot say P
(bc)
R

= P
(b)
R

·P (c)
R

as the first
two events could be dependent on each other. Similarly, we
have the following for set R′:

PR′ = P
(b)
R′ + P

(c)
R′ − P

(bc)
R′ (10)

where P
(b)
R′ , P

(c)
R′ , and P

(bc)
R′ are defined according to requests

from set R′.
As no rejection by CPU will occur when a replica is placed

in disk (Section 3.1), we have P
(c)
R

= 0, which leads to

P
(bc)
R

= 0 and thus PR = P
(b)
R

. Plugging this and Eq. (10)
into Eq. (8), we have

P =
1

f

“

fRP
(b)
R

+ fR′PR′

”

(11)

=
1

f

h

fRP
(b)
R

+ fR′

“

P
(b)

R′ + P
(c)

R′ − P
(bc)

R′

”i

. (12)

We now establish the following proposition and theorem
that will help analyze the above expression. Although both



Proposition 1 and Theorem 1 seem intuitively obvious, their
proofs are non-trivial extensions of well-established results
in queueing theory [5]. The basic idea is to map the hard-
quality system to an Erlang loss model: we can view the
bandwidth (CPU) as a resource pool with B (C) channels,
the replica-specific requests are modeled as Poisson streams
with arrival rate fk, and service rate µk, and no waiting
queue exists (i.e., lossy system). What complicates our anal-
ysis is that each request class requires a different number of
channels (i.e., ck, bk) whereas exactly one channel is used
for one request in a regular Erlang system (e.g., one line for
each telephone call). It is reported that stationary distri-
butions do exist for the reject probability in such systems.
The main results of such studies can be found in Appendix
A.

Proposition 1. Given two Erlang loss systems A and B,
each has a number of traffic classes. Any class i in group A
is characterized by its arrival rate fi, service time µi, and
number of channels needed for each connection ai. Similarly,
any class j in group B is by fj , µj, and bj . Let RA and
RB be the total number of channels for system A and B,
respectively. If 1) RA > RB; 2) mA � mB where mA

and mB are the load coefficients of systems A and B (i.e.,
Assumption 1 in Section 3.1); and 3) mini∈A{ai}/RA >
maxj∈B{bj}/RB (Assumption 2 in Section 3.1), then the
reject probability in system A is greater than that of system
B.

Proof. See Appendix B.

Theorem 1. If the requested load on a resource in the

hard-quality system is critical or light, we have P = O
“q

2β
Nπf2

”

where N is the scale of resource pool (i.e., N = Θ
`

B
´

for

bandwidth and N = Θ
`

C
´

for CPU), and β =
PM

i=1 fkµk.

Proof. See Appendix C.

The non-replicated set R′ and replicated set R can be
mapped to groups A and B in Proposition 1, respectively.
Since storage is limited, replicating some qualities does not
change the fact that CPU is still heavily loaded (i.e., condi-
tion 2) always holds). Thus, we have

P
(b)
R

< P
(c)
R′ ≤ PR′

when both resources are overloaded. This also holds true
when the bandwidth (i.e, group B) has critical or light load
because the reject probability is close to zero under such
conditions (Theorem 1, it is easy to see that β < f 2 and N
is large in our problem). The second inequality in the above

formula is given by the fact that P
(b)

R′ ≥ P
(bc)

R′ .

Revisiting Eq. (11), as P
(b)
R

< PR′ no matter how we
choose members of R and R′, a heuristic solution to the
problem of minimizing P would be to maximize fR (or min-
imize fR′ since fR + fR′ = f) subject to

P

k∈R
sk ≤ S.

In other words, the problem becomes the classic 0-1 Knap-
sack problem, which can in turn be solved by the following
heuristic algorithm: we sort all possible qualities by their
request rate per unit size (fk/sk) and select those with the
highest such values till the total storage is filled. The run-
ning time of this algorithm is O

`

M logM
´

. In Appendix D,
we show that the results obtained by such a heuristic are
near-optimal when S � sk for all k ∈ [1,M ], which is a safe
assumption.

The above result is interesting in that it shows that fk

and sk are the only factors we need to consider in quality
selection even though the reject probability is also a function
of µk, ck, and bk (Appendix A).

6. SOFT-QUALITY SYSTEMS
In hard-quality systems, replicas of the same media object

are treated as independent entities: storing a replica with
quality ~q1 does not help the requests to another with quality
~q2 as quality requirements are either strictly satisfied or the
request is not served at all. However, users can generally
tolerate some changes of quality [24] and the quality param-
eters specified by a user only represent the most desirable
quality. If these parameters cannot be exactly matched by
the server, they are willing to accept similar set of qualities.
The process of settling down to a new set of quality param-
eters is called renegotiation. Of course, the deviation of the
actual qualities a user gets from those he/she desires will
have some impact on the user’s viewing experience and the
system should be penalized for that.

6.1 Utility Functions
We generally use utility to quantify user satisfaction on a

service received [21]. For our purposes, utility functions can
be used to map quality to utility and the penalty applied
to the media service due to renegotiation is easily captured
by utility loss. As utility directly reflects the level of sat-
isfaction from users, it is the primary optimization goal in
quality-critical applications [17]. We thus set the goal of
our replica selection strategies to be maximizing utility. The
server operations shown in Section 3 needs to be modified
in soft-quality systems. For simplicity, we assume the ‘rene-
gotiation’ process between client/server is instantaneously
performed on the server side based on a simple rule: in case
of a miss in step 1), the server always chooses a replica that
yields the largest utility for the request to retrieve.

Figure 4 shows various types of utility functions for a sin-
gle quality dimension. In general, utility functions are con-
vex monotones (Fig. 4A) due to the fact that users are al-
ways happy to get a high-quality service, even if the quality
exceeds his/her needs [21]. This makes our replica selection
a trivial problem: always keep the one with the highest qual-
ity. However, in a more realistic environment, the cost of the
extra quality may be high as more resources have to be con-
sumed (Section 1) on the client side. Thus excessively high
quality negatively affects utility. Taking this into account,
we propose a new group of utility functions in quality-aware
media services: it achieves the maximal utility at a single
point qdesire and monotonically decreases on both sides of
qdesire along the quality dimension (Fig. 4B). The pattern
of utility decrease with change of quality can either be dra-
matic (a, b of Fig. 4B) or uniform (c of Fig. 4B). Note that
the functions do not have to be symmetric on both sides of
qdesire. The hard-quality model in Section 5 can be viewed
as a special case: its utility function takes the value of 1
at qdesire and 0 otherwise. The functions mentioned above
are for one single quality dimension only. The utility for a
quality vector with multiple dimensions is generally given as
a weighted sum of dimensional utility described above [17].
The weights of individual quality dimensions are also user-
dependent.

6.2 Data Replication as an Optimization
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Figure 4: Different types of utility functions.

In this subsection we formally define the replica selection
problem in soft-quality systems. Let us first study how to
choose replicas for one media object i. We then extend our
discussion to all V objects in Section 6.5.1.

The problem is to pick a set L of replicas that gives the
largest total utility over time, which can be expressed as

U =
P

j∈J fju(j, L)

where J is the set of all Mi points and u(j, L) is the largest
utility with which a replica in L serves a request for quality
j. Obviously, u(j, L) has maximum value when j ∈ L. We
set u(j, L) to be a function of the distance between j and
its nearest neighbor in L (Section 6.1). For example, when
we put equal weights on both quality dimensions in a 2-D
space and use linear functions such as c in Fig. 4B, u(j, L) is
actually the Manhattan distance between two points. Gen-
erally, u(j, L) is normalized into a value in [0, 1]. We weight
the utility by the request rate fj and the weighted utility
is termed as utility rate. The constraint of forming set L is
that the total storage of all members of L can not exceed
S. We name our problem the fixed-storage replica selection
(FSRS) problem and it can be formulated as the following
integer programming:

maximize
P

j∈J

P

k∈J fju(j, k)Yjk (13)

subject to
P

k∈J Xksk ≤ S, (14)
P

k∈J Yjk = 1, (15)

Yjk ≤ Xk, (16)

Yjk ∈ {0, 1}, (17)

Xk ∈ {0, 1} (18)

where u(j, k) is the utility value when a request to point k is
served by a replica in j, Xk is a binary variable representing
whether k is replicated, Yjk tells if j should be served by k.
Equation (14) shows the storage constraint while Equations
(15) and (16) mean all requests from k should be served by
one and only one replica. Here fj , sk, and S are inputs and
Xk for all k ∈ J is the solution.

The FSRS problem looks similar to a group of well-studied
optimizations known as the uncapacitated facility location
(UFL) problems [7]. Yet it is different from any known UFL
problems in that the storage constraint in FSRS is unique. A
close match to FSRS is the so-called p-median problem with
the same problem statements except Equation (14) becomes
P

Xk = p, meaning only p (p < |J |) facilities are to be

built. As the p-median problem is NP-hard [12], we can
thus conclude FSRS is also NP-hard.

Theorem 2. The FSRS problem is NP-hard.

Proof. The p-median problem is equivalent to finding
the set of replicas that yields the smallest loss of utility rate
in a quality space where sk = δ (δ > 0) for all k and S = pδ.
Thus the p-median problem is polynomial time reducible to
the FSRS problem and this concludes the proof.

6.3 The Greedy Algorithm.
As in the Knapsack problem, we can use a benefit/cost

model to evaluate a replica k: the cost is obviously the stor-
age sk, the benefit would be the gain of utility rate of select-
ing k . What makes the problem more complicated is that
the benefit is not fixed: it depends on the selection of other
replicas. More specifically, the value of point k is the total
utility rate of the set of points it serves and different selec-
tions of other replicas will affect the membership of this set
of points. To bypass this difficulty, we propose an algorithm
(we call it Greedy) that takes guesses on such benefits. The
main idea is to aggressively select replicas one by one. The
first replica is assigned to a point k that yields the largest
∆Uk/sk value as if only one replica is to be placed. We de-
note ∆Uk/sk as the utility density of replica k where ∆Uk

is the marginal utility rate gained by replicating k. The
following replicas are determined in the same way with the
knowledge of replicas that are already selected. The util-
ity density value represents our guess of the benefit-to-cost
ratio in replicating k. It should be noted that this is differ-
ent from choosing the replicas simply in descending order
of precomputed ∆Uk/sk because the ∆Uk changes depend-
ing upon which replicas have already been selected and thus
must be recomputed after each selection.

Fig. 5 shows the pseudo-code of the Greedy algorithm.
Greedy calls Add-Replica continuously with a queue list
holding the replicas selected so far. The algorithm termi-
nates when no more replicas can be added due to storage
constraints. The subroutine Add-Replica is the core of
this algorithm: it selects a new replica given those chosen in
slist. It does so by trying all Mi points in the quality space
(line 2) to look for the one that yields the largest utility
rate. Subroutine MaxUtility gives the utility from j to its
nearest replica in slist + k, which can be done in constant
time if we store the previous nearest replica for all j. The
two loops both have to run Mi iterations therefore the time
complexity for Greedy is O

`

IM2
i

´

for one media i. Here I



Algorithm Greedy

Inputs: fk, sk (∀k), and S

Output: a set of selected replicas, P

1 s′ ← S, P ← ∅, k← 0

2 while k 6= NULL do

3 k← AddReplica(s′, P )

4 s′ ← s′ − sk

5 append k to P

6 return P

AddReplica (s, P’)

1 i← NULL, Vmax ← 0

2 for each quality point k do

3 if k 6∈ P ′ and sk ≤ s

4 U ← 0

5 for each quality point j

6 U ← U + MaxUtil(j, k, P ′)

7 if U/sk > Vmax

8 Vmax ← U/sk

9 i← k

10 return i

Figure 5: The Greedy algorithm.

is the number of replicas eventually placed in list. In the
worst case when all points are selected, I = Mi. In our stor-
age constrained system, I should be asymptotically smaller
than Mi.

Effects of the type of utility functions. It is easy
to see that the shape of the utility functions affect the final
results of replica selection. Recall that we evaluate a replica
k by its

P

fju(j, k)/sk value where j are the points k serves
(line 7 in Add-Replica). If the utility drops very fast, a
replica can only collect utility from points that are extremely
close to it therefore the Greedy algorithm favors those with
high query rates in their close neighborhood. On the other
hand, if utility drops very slowly, we may overestimate the
utility rate of a point at early stages of Greedy. As a result,
the first few replicas chosen by Greedy tend to be those with
small sk values since the utility rate of all candidates have
little difference at that moment. In Section 6.4, we propose
a solution to remedy this problem of Greedy.

The utility curves we have discussed so far are all mono-
tonically decreasing functions of distance (between two points).
However, our FSRS algorithm does not depend on any spe-
cial features (e.g. monotonicity, convexity) of the utility
functions. In fact, Greedy works for arbitrary types of util-
ity functions as long as the utility value between two points
is not affected by the replica selection process.

6.4 The Iterative Greedy Algorithm
Iterative Greedy algorithm attempts to improve the per-

formance of Greedy. We notice that at each step of Greedy,
some local optimization is achieved: the (K + 1)-th replica
chosen is the best given the first K replicas. The problem
is: we do not know if the first K replicas are good choices.
However, we believe the (K + 1)–th replica added is more

Candidate Set

Step 1

Step 2

Selected replicas

Figure 6: Replica replacement in Iterative Greedy.

Algorithm IterativeGreedy

Inputs: selected replicas slist, number of iterations I
Output: a modified list of replicas newlist
1 copy slist to newlist
2 Umax ← 0, storage← available storage
3 for i← 0 to I
4 do k← head of slist
5 storage← storage + sk
6 l← Add-Replica(storage, slist)
7 append l to slist
8 update storage, U ← total utility of slist
9 if Umax < U
10 Umax ← U
11 copy slist to newlist
12 return newlist

Figure 7: The Iterative greedy algorithm.

‘reliable’ than its predecessors because more global informa-
tion (existence of other selected replicas) is leveraged in its
selection. In this sense, the first replica is the most ‘unreli-
able’ one: it is chosen taking no such global information into
account. Based on this conjecture, we develop the Iterative
Greedy algorithm that iteratively improves the ‘correctness’
of the replicas chosen. Specifically, we repeatedly get rid of
the most ‘unreliable’ selected replica and choose a new one,
as illustrated in Fig. 6. Note that the one that is eliminated
is also a candidate of the selection process.

The operations in Iterative Greedy are shown in Fig 7.
All replicas selected by Greedy are stored in a FIFO queue
slist. In each iteration, we dequeue slist and find one replica
(line 6) among the remaining replicas. The newly identified
replica is then added to the tail of slist. The same sub-
routine, Add-Replica, is used to find new replicas. Note
that Add-Replica may sometimes return no new replica
if the one removed from slist leaves too little storage. We
keep dequeuing slist and running Add-Replica until I it-
erations are finished. We record the set of replicas with the
largest utility rate as the final output. As Add-Replica

runs in O
`

M2
i

´

time, Iterative Greedy has time complexity

of O
`

IM2
i

´

, which is the same as that of Greedy. The only
problem here is how to set the number of iterations I. Since
the primary goal of Iterative Greedy is to reconsider the se-
lection of the first few ‘unreliable’ replicas, we can set I to be
smaller than the total number of replicas selected by Greedy.

6.5 Other issues

6.5.1 Handling Multiple Media Objects
With very few modifications, both Greedy and Iterative

Greedy algorithms can handle multiple media objects. The
idea is to view the collection of V physical media as replicas
of one virtual data object. The different content in the phys-
ical media can be modeled as a new quality dimension called



content. A special feature of content is its lack of adaptabil-
ity, i.e., any replica of the movie Matrix cannot be used to
serve a request to the movie Shrek. Assume all physical me-
dia have a quality space with M̂ points, the FSRS problem
with V media can be solved by simply running the Greedy
algorithm for the virtual media with V M̂ points. Knowing
that there is no utility gain between two replicas with differ-
ent content, we only need to run the second loop (line 5) in
Add-Replica for those with the same content. Thus, the
time complexity of Greedy becomes O

`

IV M̂2
´

.
Note some quality parameters for physical media objects

also lack adaptability. Video format is a good example.
Without degradation of bitrate, replication along these qual-
ity dimensions requires even more storage than adaptable
dimensions. However, it can reduce the time complexity of
Greedy the same way as the content dimension does.

6.5.2 Relaxing/tightening constraints
Another point is that we set a constraint of replicating at

least one copy for the video in Eq. (15). In the multi-object
scenario, we can further relax or tighten this constraint. To
relax it, we allow no replica being selected for a video, mod-
ifying Eq. (15) to

P

k∈J Yjk ≤ 1. This requires no changes
to our algorithms. On the other hand, the system admin-
istrator could also enforce the selection of certain replicas
(e.g. the original video). Again, our FSRS algorithms can
easily handle this: we just start running Add-Replica with
a list of all replicas that must stay in storage. However, if
we stick to the original constraint but do not specify which
replica to store for each video, the problem becomes trickier
as our algorithms may assign no replica to videos with low
query rates. The solution is to start by selecting the small-
est replica for all videos and run Greedy. This guarantees
one replica for each video but the effects of the constraint
are minimized. Unless specified otherwise, the following ex-
tensions are based on a multi-video environment with the
relaxed constraint.

6.5.3 Distributed Data Replication
In Section 5 and 6 we discuss the strategies of quality-

aware data replication in a single server. Now we extend
the solutions to a distributed system with multiple servers.
Let us first investigate how the problem is changed when
we consider multiple servers in a hard-quality system. Here
we assume user requests can be served by any one of n > 1
servers5. As we can see, the analysis we show in Section 4
still holds true and we can use Eq. (11) to guide our replica
selection: the strategy is, again, to maximize fR. When we
obtain a set of replicas with the largest possible fA, how to
assign these replicas to n servers becomes a problem. We
can immediately relate this to a load balancing problem with
the goal of achieving uniform reject probability in all servers.
A more detailed justification can be found in Appendix E.

For example, we can utilize a load balancing approach
based on the idea of resource pricing proposed in [2]. In this
approach, we set a price for the resource on which load is
placed in each server. The price is set to reflect the supply-
demand relationship of the resource. In our problem, the

5If each server only handles requests from its local region, the
problem is not interesting as we only need to perform single-server
replication at each server.

price for bandwidth can be set to

ψbandwidth = nB′/B (19)

where B′ is the load put on bandwidth so far. The replica
placement is accomplished by putting replicas one by one
into a server with the lowest cost. Note that in our problem
we need to balance both storage and bandwidth. Therefore,
the cost of placing replica k in a server is:

Cost = skψstorage + λkbkψbandwidth. (20)

Resource prices are updated upon placement of each replica
according to Eq. (19). The advantages of this algorithm
are: server capacities do not have to be identical and it is
proved to be O

`

log n
´

-competitive [2].
The same strategy can be deployed to balance load under

the soft quality system model even though reject probability
is not the primary optimization goal.

7. DYNAMIC DATA REPLICATION
In previous sections we considered the situation of static

data replication, in which access rates of all qualities do not
change over time. The importance of studying static repli-
cation can be justified by two observations: 1. Access pat-
terns to many media systems, especially video-on-demand
systems, remain the same within a period of at least 24
hours [19]; 2. Conclusions drawn from static replication
studies form the basis of dynamic replication research [18].
In this section, we discuss quality-aware data replication in
an environment where access patterns change. There are two
main requirements to a dynamic replication scheme: quick
response to changes and optimality of results. Our goal is
to design real-time algorithms that match static replication
algorithms in terms of result optimality.

7.0.4 hard-quality systems
Our replication strategy for hard-quality systems is eas-

ily adaptable to dynamic situations: the replication deci-
sion is made by sorting replicas by their ηk = fk/sk values.
When the query rate of a replica changes, we just reinsert
the replica into the sorted list and make decisions based on
its current position in the list. The algorithm is displayed
in Fig. 8. Recall from Section 5, all replicas belong to ei-
ther the replicated set A or the non-replicated set B. In
HardDynaRep, we set a bound η̄ such that for any replica
k, we have ηk > η̄ ⇔ k ∈ A and ηk < η̄ ⇔ k ∈ B. Hard-

DynaRep is called when we detect a change of access rate
for a replica r. Replication decision is made based on com-
parison between the new ηr and the bound η̄. The time
complexity of this algorithm is O

`

logM
´

.

7.0.5 Soft-quality systems
Dynamic replication in soft-quality systems is a very chal-

lenging task. The difficulty comes from the fact that the ac-
cess rate change of a single point could have cascading effects
on the choice of many (if not all) replicas. We may have to
rerun the static algorithms (e.g. Greedy) in response to such
changes but these algorithms are too slow to make online de-
cisions. Fortunately, the Greedy and Iterative Greedy algo-
rithms we developed have properties that we can exploit in
building efficient, accurate dynamic replication algorithms.
In this section, we assume that runtime variations of access
pattern only exist at the media object level. In other words,



Algorithm HardDynaRep

Inputs: sorted list L of all replicas, η̄, and a replica r
1 reinsert ηr into L
2 Case 1. fr increases
3 Case 1.1. r was replicated, do nothing
4 Case 1.2. r was not replicated
5 if ηr > η̄
6 do reset bound η̄
7 ∀k, if k ∈ A and ηk < η̄, dereplicate k
8 replicate r
9 Case 2. fr decreases, operations are opposite to Case 1.

Figure 8: Hard-quality dynamic replication algorithm.

the relative popularities of different quality points for the
same media object do not change. Although this assump-
tion is reasonable in many systems [19, 33], we understand
a solution for more general situation is meaningful and we
leave it as future work.

7.1 Replication roadmap
Let us first investigate how Add-Replica, being the core

of both Greedy and Iterative Greedy, selects replicas. The
history of total utility rate gained and storage spent on each
selected replica can be represented as a series of points in a
2D graph. We call the lines that connect these points in the
order of their being selected a Replication Roadmap (RR).
Fig. 9 shows two examples of RRs plotted with the same
scale. We can see that any RR is convex. The reason for
this is: the slope of the line connecting any two consecutive
points (e.g. r1 and r2 in Fig. 9) in a RR represents the ratio
of ∆Ur2 to sr2. As Add-Replica always chooses a replica
with the largest ∆U/s value, the slopes of the lines along
the RR are thus non-increasing.

We can also draw RRs for individual media objects. It
is not hard to see that single-media RRs are also convex.
In dynamic replication, replicas need to be re-selected with
respect to the new query rate of a media object. Suppose the
query rate fi of a medium i increases by a factor δ (δ > 0).
This makes the slopes of all pieces in i’s RR increase by
δ. What happens now is that we may consider assigning
extra storage to i as it reaches a position to use storage
more profitably than before. As storage is limited, the extra
chunk should come from another medium whose slope in
the last piece of RR is small. Take Fig. 9 as an example.
Suppose we have fully extended RRs: all future replicas are
precomputed (empty dots in Fig. 9) and we call the last
real replica the frontier of the RR. It buys us more utility
to advance A’s frontier (take storage) and move backwards
on B’s RR (give up storage). The beauty of this scheme
is that: we never need to pick up points far into or over
the frontier to make storage exchanges. The convexity of
RRs tells us that the frontier is always the most efficient
point to acquire/release storage. Based on this idea, we have
the an online algorithm named SoftDynaRep for dynamic
replication (Fig. 10).

7.2 The SoftDynaRep algorithm
The algorithm consists of two phases: the Preprocess Phase

and Online Phase. In the Preprocess phase, we need to
extend each RR formed by Greedy or Iterative Greedy by

Algorithm SoftDynaRep

Preprocess Phase
1 run Greedy or Iterative Greedy
2 for all V media objects
3 store the post-frontier segment of the RR in flist
4 store the pre-frontier segment of the RR in blist
5 extend RR to its full length
Online Phase

6 Case 1. fi increases
7 recalculate slopes of stored segments for i
8 update blist and flist (reinsertion)
9 do StorageExchange

10 Case 2. fi decreases, symmetric to Case 1

StorageExchange

1 storage← available storage
2 k← 0, j ← V − 1
3 while k ≤ 0
4 do r0 ← flist[k]
5 victims← ∅
6 while storage < size of replica r0

7 do r1 ← blist[j]
8 if r0 and r1 belong to the same video
9 j ← j − 1
10 continue
11 if utility density of r1 > utility density of r0

12 k← k + 1
13 rollback blist to its status on line 6
14 break
15 else append r1 to victims
16 update and sort blist
17 if storage ≥ size of replica r0

18 Exchange (r0, victims)
19 update and sort both flist and blist

Figure 10: Soft-quality dynamic replication algo-
rithm.

adding all Mi replicas6. For all RRs, we put the immediate
predecessor of the frontier in a list called blist and the im-
mediate successor in a list called flist. Both lists are sorted
by the slopes of the segments stored. The Preprocess phase
runs at O

`

V M̂3
´

time and it only needs to be executed once.
The Online Phase is triggered once we detect a change

in query rate to an object i. The idea is to iteratively
take storage from the end of blist until a new equilibrium
is reached. The running time of this phase is O

`

I log V
´

where I is the number of storage exchanges (line 9). In
the worst case where most of i’s replicas are to be stored,
we have I = O

`

Mi

´

. The case of query rate decrease is
just handled in an opposite way to what we have discussed
above. In ExchangeStorage, there are two loops: in the
outer loop (line 3), we choose the replica (r0) on the head
of flist and try to find a list (victims) of replicas on the
tail of blist from where storage can be taken via the inner
loop (line 6). The list victims has to be formed as the size
of r0 can be larger than that of one single victim replica
r1. The subroutine Exchange basically dereplicates those
in victims and replicate r0. The inner loop terminates when
enough storage is found for r0 or we reach a replica whose
utility density is greater than that of r0 (line 11). The latter
case also terminates the outer loop (as k > 0).

Suppose the access rate to a video increases by a factor of
δ and we rerun the Greedy algorithm, we shall see that the
replicas are chosen following the same RR as before. This is

6In practice, we do not have to extend a RR to its full length if
we can bound the possible changes of query rates.
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Figure 9: Replication roadmaps.

because the access rates to all quality points for this media
increase proportionally as a result of the stable intra-media
access pattern.

7.3 Optimality of SoftDynaRep.
In this section, we show that the online phase of Soft-

DynaRep achieves (almost) the same quality in the selected
replicas as that by rerunning Greedy at runtime.

From discussions in Section 7.1, we know that the global
RR changes as the query rates of individual replicas change
and Greedy (implicitly) rebuilds the whole global RR. Es-
sentially, Greedy selects those replicas with the largest util-
ity density on the global RR, similar to our solution to the
hard-quality problem (i.e., a 0-1 Knapsack). Let us con-
sider a modified version of Greedy named M-Greedy, which
has a subtle difference from the original Greedy algorithm.
In M-Greedy, we replicate items along the global RR till
we encounter the first replica k′ that cannot be accommo-
dated by the available storage (equivalent to l in Appendix
D)7. We immediately see that Greedy is smarter than M-

Greedy: it will try to fill the available storage with replicas
with lower utility density than k′. Thus, the replicas se-
lected by M-Greedy is a prefix of the global RR (from the
beginning to the one prior to k′) while those selected by
Greedy is not a consecutive chunk in the RR. Due to the
same reasons discussed in Appendix D, the total utility rate
achieved by M-Greedy is only trivially smaller than that
of Greedy. To accomplish our claim that SoftDynaRep

is as good as Greedy, we have the following lemma.

Lemma 1. With the same replica-specific inputs and change
of query rate of a specific video, if a replica is selected by M-

Greedy, it is also selected by SoftDynaRep.

Proof. Let us first study the change of the global RR
before and after the query rate change. In Fig. 11, the
global RR is represented as an array of replicas sorted by
descending order of utility density. We know that Greedy

selects replicas from the left to the right till no storage is
available. We draw a line called boundary between those that
are replicated and those that are not. We consider the case
of query rate increase of an object v. As a result of query rate
increase, some replicas of v (represented as shaded boxes in
Fig. 11) will move toward the left in the array of replicas and
a new boundary will be formed. However, the relative order
of all replicas of v does not change. Therefore, there are

7We use M-Greedy as a conceptual variance to Greedy, its im-
plementation is irrelevant to our discussions.
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Figure 11: Replica selection upon query rate change.

two types of selected replicas by the M-Greedy algorithm
after the change: 1. those that were not selected before the
change, and 2. those that were selected before the change.
We prove SoftDynaRep selects the corresponding replicas
in both cases:
Case 1. Without loss of generality, we consider a replica
k of v that moves across the boundary in M-Greedy. The
selection of k can be achieved by one of two means: 1. the
storage left before the change is greater than sk; 2. storage
is taken from replicas with utility density smaller than that
of k. It is easy to see that k will be the head of flist in
SoftDynaRep. In the former case, we directly go to line
17 of StorageExchange (Fig. 10) and replicate k. For
the second situation, a list of replicas are chosen to give
up their storage to k (loop in line 6). As long as there is
enough storage from those with smaller utility density, k will
be replicated.
Case 2. The replicas considered in this case can be divided
into two categories:

Case 2.1. Replicas whose utility density is greater than
that of k (e.g., those in region S0 in Fig. 11). These replicas
are not affected by SoftDynaRep as we never sacrifice such
replicas for k (line 11 of StorageExchange, Fig. 10).

Case 2.2. Replicas whose utility density is smaller than
that of k (e.g., those in region S1 in Fig. 11). These repli-
cas are part of region S before the query rate changes. One
feature of M-Greedy is that all replicas chosen form a con-
secutive chunk in the list. To accommodate k, S is sim-
ply cut into two consecutive regions S1 and S2. In Soft-

DynaRep, the same list victims is also a consecutive chunk
as it is formed by always choosing the replica with the small-
est utility density, starting (backwards) from the end of S.
Furthermore, it ends as long as enough storage is found thus
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Figure 12: Performance of various replica selection algorithms in the hard-quality model.

everything in S1 will not be included in victims.
The case of multiple replicas crossing the boundary and

decrease of query rate would not complicate the above ar-
gument.

8. EXPERIMENTS
We study the behavior of various algorithms described

in previous sections by extensive simulations. We use 270
MPEG1/2 videos stored in a real video database as exper-
imental data8. For all replicas, we set their µk to be their
standard playback time. The videos are then transcoded
into replicas of different spatial resolution and frame rates
using transcode (Section 4) to generate the bk, ck, and sk

values for all replicas. We test various access patterns (e.g.,
uniform, Zipf, 20-80, 10-90) in our simulations. The sim-
ulated video servers possess network bandwidth of 90Mbps
(dual T3 lines), four UltraSparc 1.2MHz CPUs, and variable
storage capacity (60 to 300G) for data replication. All the
above parameters are set to be close to those in a real-world
server 9 and we simulate a cluster of 10 such servers. We
perform our simulations on a Sun Workstation with a Ultra-
Sparc 1.2MHz CPU and 2 gigabytes of min memory running
Solaris 8.

8.1 Results for Hard-Quality Model
In this experiment, we compare our replica selection algo-

rithm (Section 5) to various heuristics under the hard quality
system model. The metric is the reject frequency measured
as the ratio of the total number of rejected requests to total

8http://www.cs.purdue.edu/vdbms
9The total storage is relatively small because we only have 270
raw videos in the simulated system and the quality of most of
the videos are not very high. In real systems, storage is more
abundant but we may also have much more raw media with higher
quality.

requests. The quality space is a 2-D space (resolution and
frame rate) with 15 to 20 values on each dimension (differs
by each video object). Requests (with f = 7200/hour) are
distributed in a Zipf pattern to all M replicas.

In Fig. 12, we show the performance of three quality se-
lection methods: 1) our solution that chooses quality points
by their fk/sk values (‘freq’); 2) an algorithm that randomly
chooses replicas one by one till all storage is filled (‘random’);
and 3) an algorithm (‘load’) that places the largest possible
load into set R by choosing qualities with the largest CPU
load to storage ratio ( λkck

sk
). The results confirm our analy-

sis in Section 5 as our solution (freq) always gets the lowest
reject probability (Fig 12A). As expected, the total request
rate in set R achieved by freq is always the highest (Fig.
12B). In fact, the fR value achieved in our results are very
close to those given as the upper bound of the optimal such
values in all cases10.

From Fig. 12C and Fig. 12D we can see that the rejection
frequency on bandwidth is significantly smaller than that
on CPU. In these experiments, the recorded load coefficient
of bandwidth (mb) range from 0.24 to 1.26. On the other
hand, the load coefficients of CPU rendered by the same jobs
range from 16 to 36. This explains why the observed reject
frequency on CPU (Fig. 12D) is always high (> 0.88). For

algorithms freq and load, as storage increases, P and P
(c)
R′

decrease while P
(b)
R

and fR increase. Note when excessive
storage is used the decrease of P slows down as congestion
on bandwidth becomes more significant. The performance
of random is not affected by total storage.

The performance of our algorithm is not affected by the
access patterns of the qualities. The results of the above
three algorithms under uniformly distributed query accesses

10The upper bound is described in Appendix D and is not plotted
here.
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are plotted in Fig. 13. Similar to the results under the Zipf
distribution, our solution renders the smallest reject rate in
all cases of total storage.

8.2 Results for Soft-Quality Model
In this section we present experimental results under the

soft-quality model. We first evaluate the performance of
Greedy and IterativeGreedy algorithms in terms of op-
timality (Fig. 14) and running time (Fig. 15). In this exper-
iment, we set f to 3600 requests/hour thus the utility rate is
bounded by 3600/hr. We compare our algorithms with three
others: 1) the CPEX mathematical programming package11.
CPLEX is a widely-used software for solving various opti-
mization problems and is well-known for its efficiency. We
tune CPLEX such that the utility rate of results obtained
are within a 0.01% gap to that of the optimal solution; 2)
the same random algorithm as the one described in Section
8.1; 3) a local algorithm that places replicas in the hottest
areas in the quality space12. We run the experiments for a
total of 30 media objects13. Each data point represents the
mean of four simulations.

11version 8.0.1, http://www.cplex.com
12Specifically, we divide the whole space into squares of equal size.
Each square is evaluated by the sum of the query rates of all
quality points it contains. We place a replica in the center of
those squares with the largest total query rates till all storage is
filled.

13Here we choose a small number of media so that it is feasible to
find the optimal solutions as a comparison to our solutions.

From Fig. 14A, it is clear that our algorithms always find
solutions that are very close to the optimal. More details can
be found in Fig. 14B where the relative U values obtained
by our algorithms to those by CPLEX are plotted. Util-
ity rates of solutions found by Greedy are only about 3%
smaller than the optimal values. The Iterative Greedy

cuts the gap by at least half in all cases: its solutions always
achieve more than 99% of the optimal utility rate. The per-
formance of both algorithms is not affected by the increase
of number of quality points. Neither is it affected by access
patterns: we tested different access patterns (e.g., Zipf, 20-
80, 10-90, and uniform) and obtained similar results (data
not plotted). The solutions given by random and local are
far from optimal. Surprisingly, the local algorithm, which is
similar to our solution under the hard-quality model (Sec-
tion 5), performs even worse than the random algorithm.
This reiterates that it is dangerous to consider only local or
regional information in solving a combinatorial problem.
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Figure 15: Running time of different replica selec-
tion algorithms.

The running time of the above experiments are shown
on a logarithmic scale in Fig. 15. CPLEX is the slow-
est algorithm in all cases. This is what we expected as its
target is always the optimal solutions. Actually, we could
only run CPLEX for the five smaller cases due to its long
running time. Both Greedy and Iterative Greedy are 2-4 or-
ders of magnitude faster than CPLEX. It takes them about
200 seconds to solve the selection of 30 videos in a quality
space with 500 points. From Section 6 we know the running
time increases linearly with the number of media objects V .
Thus, it may take a few hours to select replicas in a real me-
dia system with thousands of media objects. Fortunately,
we do not need to run these algorithms very often and the
running time of our online algorithm is very small, as we
will see in Section 8.3.

8.2.1 Effects of utility functions
We test our algorithms with four types of utility functions:

hard-quality, financial, Manhattan distance, and minimum
penalty. They are ordered by the speed of utility loss as a
function of distance in the quality space. The type of utility
function we used in the experiments presented in Fig. 14
and Fig. 15 is Manhattan distance. The details of these
utility functions are as follows:

1. hard-quality, which only gains utility when the dis-
tance d between the requested quality and retrieved

quality is zero, i.e., U =



1.0 if d = 0
0 otherwise

2. Financial type, in which utility decreases exponentially
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Figure 16: Frequency of replicas chosen by Greedy in a

20 × 20 quality space.
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Greedy in a 20 × 20 quality space.

with the distance d between two quality points, e.g.,
U = 1.0 − e−dτ where τ > 1;

3. Manhattan distance, which is defined as the sum of
dimensional differences between two points, e.g., d =
|x1 − x2

˛

˛ + |y1 − y2| for two points with coordinates
(x1, y1) and (x2, y2). In this type, utility decreases
linearly with distance d;

4. Minimal penalty. In this type, utility remains 1.0 if
the distance d is smaller than a threshold value and
decrease linearly afterwards otherwise.

Fig. 16 shows the frequency of quality points chosen by
Greedy in a 20 × 20 space for a total of 30 videos. In Fig.
16, any point (x, y, z) shows that, out of the 30 media ob-
jects, z objects have replicas of quality (x, y) selected by
the algorithm. Larger numbers on X, Y axes mean lower
quality. We can see that utility functions significantly affect
the choice of replicas. For hard-quality and financial whose
utility drops very fast, the replicas are evenly distributed
in the quality space. For the other two utility functions,
Greedy selects more replicas with lower quality. A salient
problem is that for over 20 videos, Greedy picks the lowest
quality replica (19, 19). This confirms our discussion in Sec-
tion 6.3: with overestimated utility rates, smaller replicas
are always chosen first. The situation is improved by the
Iterative Greedy algorithm. Fig 17 shows the distribution
of replicas after running Iterative Greedy with the same set
of inputs. The high peaks on points (19, 19) disappear and
total utility rate increases by about 2%.

It should be noted that the solutions found by Greedy are
almost optimal if we use hard-quality and financial types of

utility functions. Iterative Greedy has no advantages under
this situation. Our explanation to this is: by utilizing fast
utility-dropping functions, we are making the FSRS prob-
lem a lot easier to solve. Recall (Section 6) that the major
difficulty of solving FSRS comes from the combinatorial ef-
fects among replicas in collecting utility. However, the above
utility functions tend to make replicas more isolated as they
can only collect utility locally.

8.3 Dynamic Replication
We study replica selection in a multi-server environment

under the hard-quality model. Experimental setup is the
same as that described in Section 8.1 except the simula-
tor contains 10 identical servers. We compare the perfor-
mance of three strategies: load balancing by resource pric-
ing (Section 6.5.3), load balancing by Bandwidth-storage ra-
tio (BSR) [6], and random assignment of load. Fig. 18A
shows the results of load balancing using the metric of stan-
dard deviation normalized by the mean of loads. The pric-
ing strategy has slightly better performance than BSR. The
random method generates highly unbalanced load distribu-
tion. The effect of load balancing on reject rate is presented
in Fig. 18B: the random method performs the worst while
pricing only has marginal advantages over BSR. From this
experiment we conclude that load balancing is needed. How-
ever, it is not clear which load balancing strategy is better
and further investigation on this is beyond the scope of this
paper.
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Figure 18: Performance of load balancing methods.

We also test our dynamic replication algorithm for the
soft-quality model for its optimality and speed. We simulate
a system for a period of time during which events of query
rate changes of media objects are randomly generated. We
allow the query rate of videos to increase up to 20 times and
to decrease down to 1/10 of the original rate. We first com-
pare the total utility rate of the selected replicas between the
online phase of SoftDynaRep and Greedy. In all cases, the
replicas selected match exactly with those found by the M-

Greedy algorithm discussed in Section 7.3 thus the utility
rates are always the same between two solutions. As shown
in Fig. 19A, the replicas selected by SoftDynaRep have
utility rates that are consistently within 99.5% of that by
the original Greedy algorithm. In this experiment with 270
videos and a 20×20 quality space, the running time of Soft-

DynaRep for each event is on the order of 10−4 seconds
while Add-Replica needs to run about half a hour to solve
the same problems. The main reason for SoftDynaRep’s
efficiency is the small number of storage exchanges. In Fig.
19B, we record such numbers for each execution of Soft-

DynaRep and very few of these readings exceeds 15. This
shows that our algorithm is suitable for making real-time
decisions.
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9. CONCLUSIONS
In this paper, we studied the problem of selecting quality-

specific replicas of media data. This problem is generally
ignored in multimedia database research due to the over-
simplified assumption that storage space is abundant. We
demonstrated by analysis and experiments that this is not
the case if the system is to adapt to user quality require-
ments with reasonable granularity. We provided solutions
to the problem under two different system models. In the
discussions on a hard-quality system model, we concluded
that the query rate and storage of individual replicas are the
most critical factors that affect performance. We also pro-
posed a greedy algorithm to solve the replica selection prob-
lem on a soft-quality system model. Experiments showed
that the solutions found by our algorithm are within 3% of
the optimal. An advanced version of this algorithm further
reduced that to 1%. A derived online algorithm provided
an elegant solution to an important subproblem of dynamic
data replication.

APPENDIX

A. REJECT (BLOCKING) PROBABILITY
IN A GENERALIZED ERLANG MODEL

We use CPU as an example to elaborate this. The CPU
requests from different replicas can be viewed as competitors
for a shared resource pool with a finite capacity C. Kelly
first studied the probability of rejection in such systems [14,
15]. The main idea is to analyze the occurrence of resource
occupation states denoted as ~n = (n1, n2, · · · , nM ) where
nk is the number of requests to replica k currently being
serviced. According to [15], the reject probability of any
replica k is

Pk =

P

~n∈Sk

QM
k=1

1
nk!

λnk
k

P

~n∈S

QM
k=1

1
nk !

λnk
k

(21)

where Sk = {~n : C − ck <
PM

k=1 nkck ≤ C} and S = {~n :
PM

k=1 nkck ≤ C} are two sets of states. The states in Sk

are those at which a request to replica k will be rejected (as
there are less than ck units of resource available) while S is
the collection of all possible states.

Due to the discrete feature of the states, it is very diffi-
cult to discuss the characteristics of Eq. (21). Fortunately,
Gazdzicki et al. [8] gives the following asymptotic approxi-
mation to Eq. (21).

Case 1. When the resource has light load, i.e.,
PM

k=1 λkck <
C, the class-specific reject probability is

Pk = eτdε−I(C) d√
2πNσ

„

1 − eτck

1 − eτd

«

`

1 + o(1)
´

. (22)

Case 2. When the resource has critical load, i.e.,
PM

k=1 λkck =
C, Pk becomes

Pk =

r

2

πN

ck
σ

`

1 + o(1)
´

. (23)

Case 3. When the pool is heavily loaded, i.e.,
PM

k=1 λkck >
C, we get

Pk =
`

1 − eτck
´`

1 + o(1)
´

(24)

where N is the scale of resource pool (i.e., N = Θ
`

C
´

), τ is
the unique solution to the equation

M
X

k=1

fk

µk
cke

τck = C , (25)

and other relevant quantities are defined as follows:

i. d is the greatest common divisor of c1, c2, . . . , cM ;

ii. ε = C
d
−

ˆ

C
d

˜

where [a] denotes the largest integer such
that [a] ≤ a;

iii. I(C) = τC − PM
k=1 λk

`

eτck − 1
´

;

iv. σ2 =
PM

k=1 λkck
2eτck .

B. PROOF OF PROPOSITION 1

Proof. The reject probability for group A is PA = 1
fA

P

i∈A fiPi

where Pi is the reject probability for traffic class i and
fA =

P

i∈A fi. Similarly, we have PB = 1
fB

P

i∈B fjPj .

For overloaded resources, we can use Eq. (24) to quan-
tify the quality-specific reject probability. Therefore, we get
Pi = 1 − eτAai and Pj = 1 − eτBbj where τA and τB are
constants that satisfy Eq. (25). Let s = τA and u = τB

and we call s and u the passage coefficients 14 of groups
A and B. To prove PA > PB, it is sufficient to show that
1

fA

P

i∈A fis
ai < 1

fB

P

j∈B fju
bj .

We first apply a proportional scaling to the classes in
group A, that is, we increase all ai as well as the total re-
source units RA by a factor of ω (ω > 1) such that ωRA =
RB . According to [8], such “scaling” will not increase the
class-specific reject probability, i.e., ∀i, P ′

i ≤ Pi where P ′
i =

1 − s′ωai is the reject probability of class i after it is scaled.
Note that s is replaced by a new constant s′. With this
transformation, this proof is concluded if we can show

1

fA

X

i∈A

fis
′ωai <

1

fB

X

j∈B

fju
bj (26)

Kelly [14] states that the value of the passage coefficient
of a traffic group can be approximated by the inverse of its

14These are basically the probabilities of one single unit of resource
being free.



load coefficient. Thus, we get s′ ≈ 1
mA

and u ≈ 1
mB

. Note

that scaling does not change the load coefficient of group A.
For mA � mB, we have s′ < u for sure. With the given
condition mini∈A{ai}/RA > maxj∈B{bj}/RB , we immedi-
ately have mini∈A{ωai} > maxj∈B{bj}, which further leads
to s′ωai < ubj , ∀i, j. Having this, formula (26) is trivially
correct.

C. PROOF OF THEOREM 1
Proof. Using the notations for the bandwidth resource

(λk, bk, B), we first derive an upper bound of P under the
critical load situation. Recall the asymptotic approxima-
tion to Pk for a critically-loaded resource in Eq. (23), we
immediately have τ = 0 and eτbk = 1.

From Eq. (23), we get λkP
2
k = 2

πN

λkb2k
P

M
k=1

λkb2
k

, which leads

to
M

X

k=1

λkP
2
k =

M
X

k=1

fkµ
−1
k P 2

k =
2

πN
. (27)

To get the upper bound for P = 1
f

P

fkPk, we use the
method of Lagrangian multipliers with the following opti-
mization function

L =
X

fkPk − φ

„

X

fkµ
−1
k P 2

k − 2

πN

«

where φ is the Lagrangian multiplier. We discuss how Pk

may affect the bound of P given all fk and µk. The condition
for maximality is thus ∂L

∂Pk
= 0, ∀k. This is the same as

fk − 2φ
fk

µk
Pk = 0, ∀k.

Immediately, we get Pk = µk

2φ
as the condition for achieving

the upper bound. Plugging this into Eq. (27), we have

2φ =
q

πN
P

fkµk

2
. Let β =

P

fkµk, we have Pk = µk

q

2
πNβ

under the optimal situation. Therefore, the maximum value
of P can be expressed as

P =
1

f

X

fkPk =
1

f

X

fkµk

r

2

πNβ
=

s

2β

πNf2
.

Now we consider the underload situation (i.e., Case 1 in
Appendix A). Note that any such case can be transformed to
a critical load case by adding a new class (i.e., class M + 1)
of requests. Specifically, we let bM+1 = B and choose an
arbitrary λM+1 such that

PM
k=1 λkbk + λM+1bM+1 = B.

We now show that the reject probability P always increases
after the transformation.

According to [13], Pk can be obtained from the following
relation:

M+1
X

k=1

λkbkq(j − bk) = jq(j), j = 0, 1, · · · , B (28)

where q(j) is the stationary probability that exactly j units
of resources are occupied and q(j) = 0 for j < 0. It is

easy to see that
PB

j=0 q(j) = 1, and Pk is given by Pk =
Pbk−1

i=0 q(B − i).
Running Eq. (28) recursively with the unknown quantity

q(0) as the base case, we have

q(0)+q(1)+q(2)+· · ·+q(B) = q(0)(1+α1+α2+· · ·+αB) = 1
(29)

where αj (1 ≤ j ≤ B) is a constant determined by the
recursions. By adding class M + 1, reconsidering Eq. (28),
Eq. (29) becomes

q(0) + q(1) + q(2) + · · · + q(B) = (30)

q(0) [1 + α1 + α2 + · · · + (αB + λM+1bM+1)] = 1.

As a result, the value of Pk =
Pbk−1

i=0 q(B − i) for any class
k is larger in Eq. (30) than in Eq. (29). Therefore, quantity
P in the underload case is smaller than the corresponding
critical load case generated by the above transformation. In

other words, it is also bounded by
q

2β
πNf2 .

D. OPTIMALITY OF A SIMPLE SOLUTION
TO THE 0/1 KNAPSACK PROBLEM

In the 0-1 Knapsack problem, each candidate object has
its own size and value. We define the ratio of value over size
as the value density of an object (denoted as v). We claim
that if we put the objects with the largest value density
into the knapsack, the total value obtained are near-optimal
when the size of the knapsack is far greater than the size of
any individual object.

L
l

v

More Objects

Figure 20: A knapsack filled with objects.

As illustrated in Fig. 20, the knapsack has size L, and Y
axle represents value density. Each candidate object is rep-
resented as a rectangle and its size as the width, and value
as the area of the rectangle, respectively. Our algorithm will
fill the knapsack with objects with the largest value densi-
ties until no objects can be filled as a whole. It is easy to see
that, if all L storage is filled, the solution is optimal as any
other plan will decrease the total value achieved. If there is
a unfilled region with size l, we can fill it with the object
whose value density v′ is the largest among the unselected
objects. This generates an infeasible solution as we have to
cut a piece (with size l) from the last object. However, it
gives an upper bound of the optimal total value: v̂ = Ω+ lv′

where Ω is the achieved total value (area of the shaded re-
gion in Fig. 20). Here lv′ can be viewed as an upper bound
of the difference between our solution and the optimal value.
When L � l, we have lv′ � v̂.

E. LOAD BALANCING IN DISTRIBUTED
DATA REPLICATION

Suppose set R contains certain number of replicas and
they are to be placed on n servers. Denote the total query

rate in server i as fi and reject probability as P
(b)
i . Imme-

diately, we have fR =
Pn

i=1 fi and P
(b)
R

= 1
fR

Pn
i=1 P

(b)
i .

In distributed replication, we have the problem of minimiz-

ing P
(b)
R

given fR, which can be solved by using Lagrangian



multipliers with the following solution:

∂

∂fi

"

n
X

i=1

fiP
(b)
i − φ

`

n
X

i=1

fi − fR
´

#

= 0, ∀fi (31)

where φ is a Lagrange multiplier. For any i, the LHS of

Equation (31) is P
(b)
i − φ. Thus, we get the following con-

dition of minimality

P
(b)
1 = P

(b)
2 = · · · = P (b)

n = φ. (32)

Theoretically, it is not clear how to achieve uniform P
(b)
i in

our case. Little et al. [19] proved that, when all requests have
the same bandwidth requirements (bk), the above condition
is achieved when all servers have the same load (

P

λkbk)
on bandwidth. In our system where requests have different
bandwidth requirements, the above condition can only be
approximated by evenly distributing the load (Theorem B
is favorable to this approach).
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