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Abstract— Particle simulation has become an important re-
search tool in many scientific and engineering fields. Data ge
erated by such simulations impose great challenges to databe
storage and query processing. One of the queries against parle
simulation data, the spatial distance histogram (SDH) quey, is
the building block of many high-level analytics, and requites
quadratic time to compute using a straightforward algorithm.
In this paper, we propose a novel algorithm to compute SDH
based on a data structure called density map, which can be efs
implemented by augmenting a Quad-tree index. We also show ¢h
results of rigorous mathematical analysis of the time comgxity
of the proposed algorithm: our algorithm runs on @(N%) for
two-dimensional data and 6(N%) for three-dimensional data,
respectively. We also propose an approximate SDH procesgn
algorithm whose running time is unrelated to the input size V.
Experimental results confirm our analysis and show that the
approximate SDH algorithm achieves very high accuracy.

I. INTRODUCTION

Many scientific fields have undergone a transition tQ
data/computation intensive science, as the result of aatthn
experimental equipments and computer simulations. Inntec
years we have witnessed many efforts in building data m
agement tools suitable for processing scientific data |, [
[3], [4], [5]. Scientific data imposes great challenges te th
design of database management systems that are tradit
ally optimized toward handling business applicationsstrir
scientific data often come in large volumes, this requires us

to rethink the storage, retrieval, and replication techegyin

current DBMSs. Second, user accesses to scientific dagbas
are focused on complex high-level analytics and reasonin
that go beyond simple aggregate queries. While many typés
of domain-specific analytical queries are seen in scientific
databases, the DBMS should be able to support those that Are
frequently used as building blocks for more complex analysi
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However, many of such basic analytical queries need super-
linear processing time if handled in a straightforward wasy,
they are handled in current scientific databases. In thiempap
we report our efforts to design efficient algorithms for agyjf
guery that are extremely important in the analysigafticle
simulation data.

Particle simulations are computer simulations in which the
basic components of large systems (e.g., atoms, molecules,
stars, galaxies ...) are treated as classical entitiesritextact
for certain duration under postulated empirical forcest Fo
example, molecular simulations (MS) explore relationship
between molecular structure, movement and function. These
techniques are primarily applicable in modeling of complex
chemical and biological systems that are beyond the scope of
theoretical models. MS are most frequently used in material
sciences, biomedical sciences, and biophysics, motivayed
a wide range of applications. In astrophysics, the N—body
simulations are predominantly used to describe large scale
celestial structure formation [6], [7], [8], [9]. Similarot
MS in applicability and simulation techniques, the N—body
Simulation comes with even larger scales in terms of total

an-

number of particles simulated.

Results of particle simulations form large datasets ofiglart
configurations. Typically, these configurations store iinfa-

%]ﬁ about the patrticle types, their coordinates and va&xi

- the same type of data we have seen in spatial-temporal
atabases [10]. While snapshots of configurations areeisiter
in%, guantitative structural analysis of inter-atomicustures

aré the mainstream tasks in data analysis. This requires the
cglculation of statistical properties or functions of et
ordinates [6]. Of special interest to scientists are g¢hos
yantities that require coordinates of two particles stemé-
ously. In their brute force form these quantities reqanev?)
computations forNV particles [7]. In this paper, we focus on
one such analytical query: thepatial Distance Histogram
(SDH) query, which asks for a histogram of the distances of
all pairs of particles in the simulated system.



A. Motivation We continue this paper by formally defining the SDH prob-
The SDH is a fundamental tool in the validation and analysi@m and listing important notations in Section II; we intuoe

of particle simulation data. It serves as the main buildigh ©OUr SDH processing algorithm in Section IlI; performance

of a series of critical quantities to describe a physicatesys analysis of our algorithm is sketched in Section IV; we dgscu

Specifically, SDH is a direct estimation of a continuousistat @0 a@pproximate SDH solution in Section V; Section VI is

tical distribution function calledadial distribution functions dedicated to the evaluation of our algorithms; we briefly

(RDF) [6], [11], [12]. The RDF is defined as survey related work in Section VII, and conclude this paper
by Section VIII.
() = o) )
g = 4mwr2érp [I. PROBLEM STATEMENT AND LIST OF NOTATIONS

where N(r) is the number of atoms in the shell between The SDH problem can be defined as follows: given the
and r + ér around any particlep is the average density of coordinates ofV points in space, we are to compute the counts
particles in the whole system, angrr?6r is the volume of of point-to-point distances that fall into a seriesiofnges in
the shell. The RDF can be viewed as a normalized SDH. theR domain:[ro,r1),[r1,72), [re,73), -, [ri—1,71]. A range
The RDF is of great importance in computation of thermds;, r;+1) in such series is calledlauckef and the span of the
dynamic quantities about the system. Some of the importaanger;; —r; is called thewidth of the bucket. In this paper,

guantities like total pressure, we focus our discussions on the casestzindard SDH query
o 5, where all buckets have the same wigtland o = 0, which
p=pkT — —p /d7"7‘ u'(r)g(r,p,T) gives the following series of bucket®), p), [p, 2p), - - - , [(I —

1)p, Ip]. Generally, the boundary of the last bucKgtis set

to be the maximum distance of any pair of points. Although

almost all scientific data analysis only require the comiarta
NkT ~ 2 ' 2kT of standard SDH queries, our solutions can be easily extende

cannot be calculated withoytr). For mono—atomic systems,!®_handle histograms with lnon—uniform bucket width and/or

the RDF can also be directly related to the structure factor @fPitrary values o, andr;.~ The SDH is basically a series

and energy

E
= 3 + L /dr 4rr?u(r)g(r, p, T)

the system [13], via of non-negative integens = (hq, ha,--- , h;) whereh; (0 <
'4 - 1 < 1) is the number of pairs of points whose distances are
Sk =1+ =L [ (g(r) = 1) rsin(kr) dr. within the buckef(i — 1)p, ip).
k- Jo In Table I, we list the notations that are used throughout

We skip the definitions of all notations in the above formulaghis paper. Note that symbols defined and referenced in & loca
as the purpose is to show the importance of SDH in pagontext are not listed here.

ticle simulations. In current solutions, we have to caltala
distances between all pairs of particles and put the distanc
into bins with a user-specified width, as done in state-efth
art simulation data analysis software packadgs|[fL2]. MS Symbol | Definition

or N-body techniques generally consist of large number of I width of histogram buckets

particles. For example, the Virgo consortium has accorhetis l total number of histogram buckets

a simulation containing 10 billion particles to study the-fo h the histogram with elements; (0 < i < 1)
mation of galaxies and quasars [14]. MS systems also hold up N total number of particles in data

to millions of atoms. This kind of scale prohibits the anéys i an index symbol for any series

of large datasets following the brute-force approach. Feom DM; | thei-th level density map

database viewpoint, it would be desirable to make SDH a basic
query type with the support of scalable algorithms.

TABLE |
SYMBOLS AND NOTATIONS.

number of dimensions of data
side length of a cell

d
1
B. Contributions and roadmap S area of a region in 2D space
€
H

. . " . . error bound for the approximate algorithm
We claim the following contributions via this work: PP g

. ) - total level of density maps, i.e., tree height

1. We propose an innovative algorithm to solve the SDH

problem based on a Quadtree-like data structure we call

density map _ I1l. OUR APPROACH
2. We accomplish rigorous performance analysis of o

algorithm and prove its time complexity to K@(N?%)

and@(N%) for 2D and 3D data, respectively; In processing SDH using the naive approach, the difficulty
3. Our analytical results on the algorithm gives rise to afPmes from the fact that the distance of any pair of points

approximate SDH solution whose time complexity is
PP P y 1The only complication of non-uniform bucket width is thativen a

'“dePe”de“t to the size of _the dataset. In practice, Rjance value, we need(log!) time to locate the bucket instead of constant
algorithm computes SDH with very low error rates.  time for equal bucket width.

r .
%. Overview



is calculated to determine which bucket a pair belongs te-
An important observation here is: a histogram bucket alwaydgorithm DM-SDH

has a non-zero width. Given a pair of points, their buckdnputs: all data points, density maps built beforehand,
membership could be determined if we only know a range and bucket widthp

that the distance belongs to and this range is contained iPatput: an array of counth

histogram bucket. With the bucket widthincreases (i.e., user
sends in a coarser SDH query), the chance that any such ragg
with a fixed span will fall into a bucket also increases. Inesth
words, we need to save time in our algorithm by calculatir@

initialize all elements irh to 0

%ind the first density map M; whose cells have
diagonal lengtht < p

for all cells in DM;

point-to-point distances approximately. 4 don — number of particles in the cell
5 hi < h1+ 3n(n —1)
6 for any two cellsm; andmy, in DM;
A B A0 Al B0 B1 7 do RESOLVETWOCELLS (m;, my)
8 return h
x0 | 5| 41|4)0
" 14 26 xx | 3|21 9|13 Procedure RSOLVETWOCELLS (m1, ms)
0 check ifm; andmsy are resolvable
, g 1 o 272105 1 if m; andm, are resolvable
il 3|1 a]3 2 then i — index of the buckein; andms resolve into
3 ny1 « number of particles inn,
|53 ]4]1 4 ng +— number of particles imn.
z 29 15 71 9 12 3 7 5 hi — hl + ning
6 else ifm; andms are on the last density
a. low resolution map b. high resolution map map (i.e., the one with highest resolution)
7 for each particle A inm;
Fig. 1. Two density maps of different resolutions. 8 for each particle B inms
9 do f < distance between A and B
10 1 «— the bucketf falls into
The central idea of our approach is a conceptual da%:%L else hi = hi+1

structure calleddensity mapFor a 3D space, a density map, 5
is essentially a 3D grid that divides the simulated space in 4
cubes of equal volumes. For a 2D space, it consists of squaygs
of equal size. From now on, we use 2D data and grids
elaborate and illustrate our ideas unless specified otkerwi
Note that extending our discussions to 3D data/space would Fig. 2. The density-map-based SDH algorithm.

be straightforward. In every cell of the grid, we record the

number of particles that are located in the space repratente

by that cell as well as the four_coordinates that (_jetermirge_ The Density-Map-based SDH (DM-SDH) algorithm

the exact boundary of the cell in space. The reciprocal of

the cell size in a density map is called thessolutionof the In this section, we describe how to use the density maps
density map. In order to process SDH, we build a series ©f process the SDH query. The details of the algorithm are
density maps with different resolutions. We organize thrayar shown in Fig. 2. The core of the algorithm is a procedure
of density maps in a way such that the resolution of a densitpmed RsoLVETWOCELLS, which is given as inputs a pair
map is always doubled as compared to the previous one in ffecells m; andm; on the same density map.

series. Consequently, any cell in a density map is dividéal in In RESOLVETWOCELLS, we first compute the minimum
exactly four (eight for a 3D space) disjoint cells in the nexand maximum distances between any patrticle fraprand any
density map. In Figure 1, we illustrate two density maps withne fromms (line 1). This can be accomplished in constant
different resolutions built for the same dataset. For eXamptime given the corner coordinates of two cells stored in the
the simulated space is divided into six cells in Fig. 1a, eadensity map (only three cases are possible, as shown in Fig.
with side length 2, and cell XA has 14 particles in it. The nexX@). When the minimum and maximum distances betwegn
density map is shown in Fig. 1b: cells are of side length 1 amehd m. fall into the same histogram buckétwe say these
XA is divided into 4 cells on this map: X0AO, X0A1, X1A0, two cells areresolvableon this density map, and thegsolve
and X1Al. A natural way to organize the density maps is iato bucketi. If this happens, the histogram is updated (lines
connect all cells in a quad-tree. We will elaborate more @n tl2 - 5) by incrementing the count of the specific buckedty
implementation of the density maps in Section IlI-C. nine Whereni,no are the particle counts in cells; and

DM’ + next density map with higher resolution
for each partitionmn) of m; on DM’

for each partitionms of ms on DM’

do RESOLVETWOCELLS (m}, m5)




TABLE Il
INTER-CELL DISTANCE RANGES ON DENSITY MAP SHOWN INFIG. 1B.
RANGES MARKED WITH* ARE RESOLVABLE INTO BUCKETS OF WIDTH3.

ZB XA cells

cells  Z0BO Z0B1 Z1BO Z1B1

X0A0 [v10,v/34]" [V13,v41] [V4,V45]  [V20,V52]

X0AL [3.v30)"  [VIO.AL' (VA  [VIF.V
e o 1 ot 0T o e X10. [VEV] (VB (VIO (VIS VA
representing minimum (maximum) distance in each case. X1A1 [27\/%} [\/57\/ﬂ} [37\/@* [@7\/3_4}*

mo, respectively. If the two cells do not resolve on the curregf the 16 pairs of cells, six can be resolved (Table II). For
density map, we move to a density map with higher (doublegkample, since the distances between any particle in X040 an
resolution and repeat the previous step. However, on this ngny one in ZOBO are withifiy/10, v/34] ~ [3.162,5.831], we
density map, we try resolving all four partitions of; with increment the count of the second bucket (with rafsgé)) in

all those ofmy (lines 12 - 16). In other words, there arghe histogram by x 4 = 20. For those the are not resolvable,
4 x 4 = 16 recursive calls to RSOLVETWOCELLS if m; and e need to visit a density map with an even higher resolution,
mo are not resolvable on the current density map. In anothsr, calculate all the inter-cell point-to-point distanceen
scenario wheren; and my are not resolvable yet no moreno such density maps exist. Note that those cells with a zero

density maps are available, we have to calculate the dissangarticle count (e.g., cell YOBO) can be ignored in this pesce
of all particles in the non-resolvable cells (lines 6 - 11heT

DM-SDH algorithm starts (line 2) at the first density magc. Implementation of density maps
DM; whose cell diagonal length is smaller than the bucket |, pM-SDH. we assume that there are a series of density

width p (i.e., cell side length < 75). It is easy to see that ang byilt beforehand for the dataset. In this section, we
no pairs of cells are resolvable in density maps with resmut jegcribe important details on the implementation and main-
lower than that ofD ;. Within each cell onl/;, we are suré ienance of the density maps.

that any intra-cell point-to-point distance is smallemthahus 1y ree structure: As mentioned earlier, we organize the

all such distances are counted into the first bucket with €anga|is on different density maps into a tree structure, milah |

[0,p) (lines 3 - 5). The algorithm proceeds by resolving intefye hoint region (PR) Quad-tree presented in [15]. The nodes
cell distances (i.e., calling B50LVETWOCELLS) for all pairs ; the tree hold the following information:

of cells in M (lines 6 - 7).

Clearly, the main idea behind our algorithm is to avoi
computing any point-to-point distances. By only considgri where p- count is the number of particles in the cehl
atom counts in the density map cells, we are able to processy2 are the four coordinates that define the region of the
multiple point-to-point distances between two cells in shet. cell (for 3D data, we need two more coordinates for the 3rd
This translates into significant improvements over the ésrutdimension),chi | d is a pointer to the first child on the next
force histogram construction approach. level2 The p-1i st element is the head of a list of data

A case studylLet us study an example by revisiting Fig.structures that store the real particle data. Obvioysly,i st
1. Suppose the query asks for SDH with a bucket width & meaningful only for leaf nodes of the tree. Unlike a regula
3 (i-e., histogram buckets af®, 3), [3,6),[6,9),---) and we Quad-tree, we add aext pointer to chain the sibling nodes
start on the low-resolution map in Fig. la. First, since albgether (the order of the four siblings in the list can be
particles in XA are within a distanc2/2 < 3, we can safely arbitrarily determined). Furthermore, for the last of theuf
increase the count of the first bucket (with range 0-3) ksiblings, itsnext pointer is used to point to its cousin. By
14 x (14 — 1)/2 = 91, and we do this for all other cells in Fig.this, all nodes on the same level are connected - such a
la. Then we try to resolve XA with each and every other cetonnected list essentially forms a density map with a sgecifi
in the same density map, e.g., cell ZB. However, we cann@solution. The head of all listed can be stored in an array fo
draw any conclusions as the distances between a particla in ¥e ease of locating the appropriate density map to start the
and one in ZB are within the range ¥, \/5—2] ~[2,7.2111], DM-SDH algorithm (line 2, Fig. 2). From now on, we use
which overlaps with the first and second buckets. In this,caske phrases “density map’ and “tree level”, “cell” and “tree
we turn to the next density map in Fig. 1b, in which a cell in
Fig. 1a is divided into four smaller cells. We start compgrin A parent pointer could be added to each node to achieve logarithmic

. data insertion/deletion time. However, we assume the Siitedataset is static
counts of all XA cells ("e" XO0AO0, X0A1, X1A0, and XlAl) (no sporadic insertions, no deletions) thereforeha | d pointer is sufficient
with all ZB cells (i.e., Z0B0, Z0B1, Z1BO0, and Z1B1). Outfor efficient bulk loading.

&p-count, x1, x2, y1, y2, child, p-list, next)



node” interchangeably. In building the tree, we use the moét- 11 in RESOLVETWOCELLS). Based on this observation,
straightforward space decomposition approach: 1) theespale total level of density map# is set to be

represented by each node is strictly set to be squares (cubes N

for 3D space), i.e., we haj&1—x2| = [yl —y2|; and 2) we H= {bgzd E—‘ +1 (2)
always partition by dividing each dimension into exactly DW

equal segments. In other words, each partitioning procéks wvhered is the number of dimensions and is essentially the
generate four (eight for 3D space) partitions in the nex trélegree of tree nodes (4/8 for 2D/3D datg)js the average
level. Space partition using shapes other than squares (¢}gmber of particles we desire in each leaf node. In practiee,
rectangles, triangles) and/or partitioning into more thiamr Set3 to be slightly greater than 4 in 2D (8 for 3D data) since
children (e.g., any.? (n € Ztandn > 2) partitions) would the CPU cost of resolving two cells is higher than computing

make interesting topics for future research and are beylad the distance between two points.
scope of this paper. 3) Other issuesin addition to the bucket width, which is

the most important parameter, user can attach other condliti
to a SDH query. Two common varieties of the regular SDH
query are:

1. Compute the SDH of a specific region of the whole

simulated space;

2. Compute the SDH of all particles of a specific type (e.g.,

carbon atoms) in the dataset.

The first variety requires modifications to our algorithm:
in RESOLVETWOCELLS, we need to check if both cells are
contained by the query region and add one more case for
the recursive call, that is, if the cells are resolvable but a
Fig. 4. Tree structure to organize the density maps in Figliekte we show least one of the cells overlaps with, or locates out of, the
thep- count (number in each nodejiext (dotted lines)chi | d (thin solid query region, we still need to go to the next density map. If
lines), andp-1i st (lines connecting to a ball). both cells are out of the query region, nothing needs to be

done. In calculating the distances of particles (lines 7 ), 11

The density maps in Fig. 1 can be put into a tree structure &gain, we only consider those particles that are within the
shown in Fig. 4. Due to space limitations, we only show part @fuery region. The second variety requires more informéiin
the tree. Each node is shown with iscount field. The root stored in the density map cells (i_e_, tree nodes): in aolditi
node represent a square with side length 8. The first nodetgnthe p- count field, we keep a list of other counts, one
each level is stored in an array from, to D M3, in which  for each possible type of particles in the data. Fortunatiedy
DM corresponds to the density map in Fig. 1a, @&ht/; the  number of particle types is not very large in the sciences of
one in Fig. 1b. In this case)M; has the highest resolutioninterest (e.g., about 10 for molecular simulation).
so all DM3 nodes connect to the data of the particles they Another piece of information we can store in the tree
contain viap- | i st . nodes is the minimum bounding rectangle (MBR) formed by

2) Tree height.:To be able to answer SDH queries withof all the particles in a node. In BSOLVETWOCELLS, we
different parameters (e.g., bucket width subregion of the can use the MBR of the two cells to compute the minimum
simulated space), we need to build a series of density magsl maximum point-to-point distances. As compared to the
from the most coarse resolution to the finest. On the coarsgstoretical bounds of the space occupied by a tree node, the
end, we can build a single node map that covers the wha#BR will cover a smaller area. Intuitively, the chance of a
simulated space. The question is from the other end: whedll's being resolvable under a givenincreases as the cell
should be the highest resolution in the maps? This is shrinks. The use of MBR can thus shorten the running time by
subtle issue: first, given any bucket widththe percentage of making more cells resolvable at a higher level on the tree. Th
resolvable cells increases with the level of the tree. HanevMBR can be easily computed when data points are loaded to
the number of pairs of cells also increases dramatically, (i.the tree, with the storage overhead of four extra coordiate
by a factor of2%). in each node.

Recall that DM-SDH saves our time of processing SDH by In general, we build balanced trees that are exaéfly
resolving cells such that we need not calculate the point-tevels in height. One possible optimization is to use Eaumti
point distances one by one. However, when pheount of (2) as a guideline instead of a strict rule: we can further
a cell decreases, the time we save by resolving that cell ajsartition a node if it has a large number of particles in
decreases. Imagine a cell withpacount of 4 or smaller (8 it, giving rise to a unbalanced tree. This can benefit those
or smaller for 3D data/space), it does not give us any benefdtasets with highly skewed distribution of particles. Wéin
in processing SDH to further partition this cell on the nexanbalanced tree, we need to modify the last three lines of
level: the cost of resolving the partitions could be highemt code in RESOLVETWOCELLS to take resolving two cells on
directly retrieving the particles and calculating distasi¢lines different levels of the tree into account.




IV. ANALYSIS OF THE ALGORITHM

The running time of DM-SDH consists of two main parts:

1. the time spent to check if two cells are resolvable (line 0
in RESOLVETWOCELLS, constant time needed for each
operation); and

2. distance calculation for data in cells non-resolvablenev ¢
on the finest density map (lines 7 - 11 irE®OLVETWO-
CELLS, constant time needed for each distance).

D3

As compared to the brute-force algorithm, we save time by g >

performing operation 1 in hope of handling multiple distasic

in one shot. However, it is not clear how much overhead this

bears. Consider a tree illustrated in Fig. 5 where each level

represent a density map but each node represents a paitof cel

in the original density map. Given a histogram bucket width

p1, we start from a density map M; with ¢; cells. Thus, there

areO(c?) entries on the corresponding level of the tree shown

in Fig. 5. On the next ma@ M, 1, there arel x 4 = 16 times

of cell pairs to resolve. However, some of the celldid/;;; Fig. 6. Boundaries of bucket 1 and bucket 2 regions of cell Ahuhe

do not need to be considered as their parents are resolfgget widthp being exactlyy/2s. Here we show21Qz, C1Cz, and D1 D;
. . are arcs all centered at point O.

on DM,;. Consider a resolvable entey in DM;, the whole

subtree rooted ad needs no further consideration, leaving a

hole” on the leaf level. Similarly, ib is a resolvable entry " " We have accomplished a quantitative analysis on the perfor-

a lower levelDM;, the time needed for resolving eVeryth'nf“]mance of our algorithm, which involves non-trivial geonietr

in the subtree ofb is also saved. However, this subtree 'Tghodeling and algebraic manipulation of the models
smaller than that ofi, leading to less savings of time. From '

this we can e_asily see t_hat the running time_ depends on tRe gasics of our model

bucket width: if we are given another query with bucket width ] ] )
p2 < p1 such that we will start DM-SDH from levelD M, of Ess.ent|al.ly, our analysis negds to gnswer the following
the tree, more cell comparisons have to be done, giving sise@estion: given a cel on the first density ma@M;, how
longer running time. In analyzing the time complexity of DM-Many parﬂcles_are contained by those resolvable qellsbedela
SDH, we are interested in how the running time increases §sA as we visit more and more levels of density maps?
the total number of particléV increases. Qualitatively, ay  Although this has something to do with the spatial distitmut
increases, the height of the trees also increases (as weirix Of the particles, we start by analyzing how much area are
Equation (2)), thus a higher percentage of particle painsbea covgred by the re'solvable cells tq simplify the. process. To
resolved in the cells. However, the total number of entries @chieve this, we first need to define a theoretical region in
the leaf level in Fig. 5 also increases (quadratically).r&fere, Which a particle can have distance (to a pointip that falls

a quantitatively study on the percentage of resolvables cell into a specific bucket We call this region théucket: region

a given level is essential in such analysis. of cell A. _ _ .
In Fig. 6, a cell A is drawn with four corner points

0,01,04, and O3. The side length ofA is exactlyé =
LQ. The bucket 1 region ofA is bounded by a curve
connected by point§; to Cs. This region is drawn as follows:
C1C5,C3Cy,C5Cq, and C7Cg are all arcs of 90 degrees
DM: starting level for p1 ~_ a centered at the four corners of cefll and their radii arep;
) CyC3,CyC5, CsCr, and CgCy are line segments. Note that
this is a theoretical “maximum” region where a point can

~—/ 0" /\
/'\ / \ resolve with any point inA. It is easy to see that the area

DM;: starting level for p2

of this region istp? + 4pé + §2. Let us continue to consider

distances that fall into the second bucket (i.e., [p, 2pPaif,
T ! : the bucket 2 region ofA is of similar shape to the bucket 1
é) é)é) é) é) region except the radii of the arcs a2p, as drawn in Fig.

6 with a curve connected by poinf3; to Dg. However, if
Fig. 5. A conceptual tree structure with each node reprewpnt pair of @ Point is too close to the center, it may never resolve into
cells in a density map. Similarly, the data nodes hold palirsasticles. bucket 2. These points are contained in a region as follows:

Leaf nodes —

List of particle pairs —* é) (g




_ (27 4+ 4v/2 + 1)6? i=1
9(0) = [2m2+4\/§i—(i—1)2(8arctan 8 —1)2—1-27)+ 8(2’—1)2—1}52 i>1

on each corner point oA, we draw an arc with radiug on Q1
the opposite corner (i.e., ar€21, Q1Q2, Q2Q3, andQ3Q4).

For any point in this region, its distance to any pointAnis

always smaller thap. Therefore, the bucket 2 region should 02 D
not include this inner region (denoted as regl®rhereafter).

A more detailed illustration of regioB is shown in Fig. 7.
The area of the bucket 2 region7i$2p)? +8pé less the area
of regio@,\which consists of eight identical small/eQegions
such asQ1 02D shown in Fig. 7. To get the area ¢f,0-D,
we first need to know the magnitude of the angl@,00s,

which can be determined by

o
E
21002 = ZQ10F — ZLCOFE
— arctan QlE _T Fig. 7. An illustration on how to compute the area of regiQd);Q2Q3
EO 4 formed by four arcs in Fig. 6. Here we only show half of one af #ircs.
2
2 (é)
P2
= arctan -————— - g where B(i) = [2(i — 1) — 1] — 1 and
5 . 2 (6 2
1 (1—1p
- A(i) = =[(i — 1)p)? | arctan \/[ 5] G =
Thus, the area of sect6y; 020 is %pQAQlOOQ. The area of 2 2 4
region10- D can be obtained by the area of this sector less D)
the area of triangle®, DC and Q,CO. By this, we get _%g \/[(Z- —1)p]? - (g) _ g
Sges0 = Sgios0 — S00:0C — SaQ.cO 1 [( ) 512
2 — |G —2)0+ —}
2 -G x| 1 (5) 2 2
= Zp° |arctan 5 -——| —=l3z ) )
2 5 41 2\2 Since we haver = /24, the above equation becomes Eq.
5 (3) shown on top of this page.
1 9 1) ol d .
) P=\3) ~ 3|3 B. Coverable regions
Eq. (3) gives the area of a theoretical region that contains
1 /p2 — (§)2 all particles that could have distance within a given bud&et
_ 2 2 ™ . . .
= 3P arctan ——s——— — 1 a given cellA. Now let us study how much of this region can
2 be resolved in our algorithm under different levels of dgnsi

5 maps. We call the region that consists of all resolvablescell
2 _ (ﬁ) the coverable region
1) Case 1: the first bucketiet us start our discussions on
) the situation of bucket 1. In Fig. 8, we show the coverable
and we haver(2p)” + 8pd — 85575, ;, — Sa as the area of \oqinns of three different density map levels:= 1, m — 2,
the bucket 2 region. andm = 3, as represented by blue-colored lines and denoted
~ The approach to obtain the area of bucket > 2) regions g5 A’ in all subgraphs. Forn = 1, the resolvable cells are
is the same as above. For the area of the region formed by §iy those surrounding.. All other cells, even those entirely
outer boundary, we only need to consider that the arcs in Figyntained by the bucket 1 region, do not resolve with anylleve
7 are of radiiip. The development of a general formula for thg g pcell ofA. As we increasen, the regionA’ grows in area,
area of regiorB is trickier. .Our efforts lead to the following yith its boundary approaching that of the bucket 1 region. To
formula for the bucket region: represent the area &', we need to develop a continuous line
) ) ) to approximate its boundary. One critical observation here
(i) = mp~ +4pd +0 i=1 the furtherest cells ilA’ are those that can resolve with cells
m(ip)* + 4ipd — [8A(i) + B(i)6%] i >2 on the outer rim ofA. For example, the cell cornered at point



Fig. 8. Actual (solid blue line) and approximated (dottedebline) coverable regions for bucket 1 underna= 1; b. m = 2; and c.m = 3. Outer solid
black lines represent the theoretical bucket 1 region. Athwed line segments are drawn from the centers to the qguneng arcs with radiug.

D resolves with the cell cornered at point CAn If we draw boundary, we need to consider the casesof 1 andm > 1
a 90-degree arc centered at C, the arc goes through D asegarately.

all cells on the northwestern corner &’ are bounded by
this arc. To approximate the boundary Af, we can draw
such an arc at all four corners of the graph and connect th
with line segments (e.g., EF connecting the northwestedh 4
northeastern arcs centered at point G in Fig. 8b), as shown
by the blue dotted line. Obviously, this line approaches the
theoretical boundary as increases because the center of the
arcs (e.g., point C) move further to the corner pointsAof : / ’ A \ \
as the cells become smaller. Note this line gives rise to an ! ! o i
optimistic approximation ofA’. In a moment, we will show ; \ ! /
that this overestimation will not harm our analysis on th
running time of DM-SDH. The area of coverable region fg
bucket 1 at leveln can be expressed by the following:

2 N - . R
Sar=mp® +4p (5—22—i> + (5—22—2) 4)

D
3
I
'

\
/

0]

=

Bucket 3 boundaries Bucket 2 boundarié

where the first itemrp? is the area of the four 90-degree
sectors centered at point C, the second item is the area of Hwe9. Inner boundaries of the coverable regions of bucRetsid 3 under
four rectangles (e.g., EFGC in Fig. 8b) connecting the fout = 1. All arowed line segments are of lengp.
sectors. We also need to add the area of the small squar
(with side CG in Fig. 8b) within cellA, which is given by
the last item.

2) Case 2: the second bucket and beyoridie cases of

Eet us first study the case af = 1. Fig. 9 shows examples
with m = 1 with respect to the second and the third buckets.
It is easy to see that any cell that contains a segment of the
tgForetical regiorB boundary will not resolve into bucket

buckets beyond the first one are more complicated. First .
L . because they can only resolve into bucketl. Furthermore,
all, the outer boundary of the buckét(: > 2) regions can . . :
: . ! ' there are more cells that resolve into neither bucketl nor
be approximated using the same techniques we introduced forF

bucket 1 (Section IV-B.1). Therefore, we can use the foliayvi bucket. Il—:ererz] our task is ;[O f|.nd a boupdgrhy to separatlelz 'those
eneralized form of Eq. (4) to quantify the region formed b{/n = 1 cells that can resolve into bUCkEW'.t any subcell in
g X ‘ A and those that cannot. Such boundaries for buckets 2 and
the outer boundaries only. A : .
3 are shown in Fig. 9 as solid blue lines. The boundary can
) 25 25 \ 2 be generated as follows: on each quadrant (e.g., northwest)
Sout(i) = m(ip)” + 4ip (5 - 2—m> + (5 - 2—m> (5) of cell A, we draw an arc (dotted blue line) centered at the
corner point C of the furtherest (e.g., southeast) subdell o
However, we also need to disregard the cells that lie imith radius(i — 1)p. Any cell that contains a segment of this
the inner boundary (e.g., those within or near regi8h arc cannot resolve into buckét{because they are too close to
To quantify the area of the region contained by the innex) but the cells beyond this line can. Therefore, we can also



: Bucket 2 boundanes

Fig. 10. Inner boundaries of the coverable regions of bscReand 3 undefn = 2 andm = 3. All arrowed line segments are of lengp.

use these arcs to approximate the zigzagged real boundafé@st, we get the magnitude of angieC' D by
Let us denote the region bounded by this approximate curve

as regionB’. Form = 1, the arcs on all four quadrants share £BCD =
the same centef’ therefore they form a circle as regidsy.
The radii of the circles are exactly — 1)p for bucketi. Note
that this, again, could give rise to an optimistic approxiora

of the area of coverable regions. Therefore, the area of the

coverable region forn = 1 andn > 2 is:

Sar = m(ip)® — w[(i — 1)p]?

LDCE — ZFCE

tan —— _ T
arcanEC 4
s 5\°
12— (2%
w@ W (5-5m)
arctan é_i _Z
2 2m

The area of the sectd8 DC is 2[(i—=1)p]*£BCD, and the

approximated outer boundary, which is given as a special C&— .= Sppe — Saprac — Sarcu

of Eq. (5) form = 1 and happens to be a circle; and the
second item is that of the region formed by the approximated =

inner boundary (i.e., regioB’).

For the case ofn > 1, we can use the same technique =
described for the case ofi = 1 to generate the curves to

N~ N~

form regionB’. However, these curves are no longer a series
of circles. In Fig .10, we can find such curves for buckets
2 and 3 undern values of 2 and 3. As the four arcs on 1 1
different quadrants no longer share the same center, ti@regvhere we havé,, = - — 5 for convenience.

B’ boundaries (dotted blue lines) are of similar shapes to therjnally, we get the aréa of the coverable region for
theoretical regiorB boundaries (solid black lines). From they 1, > 1 as
graphs, it is easy to see that the approximated curve fits the

actual boundary better as increases. Here we skip the formalSar = Sout(i) — 85554 — Sa

proof as it is straightforward. Furthermore, it also cogesr 2% 25\ 2
to the regionB boundary whemn gets bigger. This is because = m(ip)* + 4ip (5 - 2—m) + (5 - —)
the centers of the two arcs (with the same radii), points C and
O, become closer and closer when the cell size decreases (as

a result of the increase of).

The area of regiol’ can be computed in the same way as
that of regionB, with the help of an illustration in Fig. 11.

= 5O | VI DpP = (007 = 36, —

o . . area of the regio BDGF is
where the first item is the area of the region formed by the g

[(i —1)p]*2BCD — %EC(DE — HE) — §
, VI -1)p]? — 6202, 7
[(i — 1)p)? [arctan 50, - Z}
0 52

2m

— 4[(i — 1)p)? [arctan VI - 15)535 — 9202, ﬂ
+ 400 [ VI = DpP = (30m)? — 86 )



[27r+4\/§+1—(8\/§+4)zim+22im}52 t=1m>1
_ [2m(2i — 1)] 62 i>2,m=
f(Zam): . 9 Ym ™ 8)
1 4 (1—1) arctang— - —
27ri2+4\/§i—(8\/§i+4)2—m+22—m—8 ) m 4 +136%2  i>2m>1
_§9m (A/m _gm)

b for the convenience of displaying equations. First, we have
D YEYI()
B . o = =
= l
= 1+ (2m +4v2)
=1
l
H - Z [(i — 1)* (8arctano; — 27) — o}
1=2
2 2
E c = 1+§l(3\/§+3\/§l+7r+2l7r)
o]

l
—> " [(i — 1)*(8arctano; — 27) —oy]  (10)
Fig. 11. An illustration on how to compute the area of regiomfed by =2

four arcs in Fig. 10. Here we only show half of one of the arcs. -
9 y where o, = /8(: —1)2 — 1. The area of total coverable
regions is considered in two cases. kor= 1, we get

In summary, let us denote the area of the coverable region 25:1 f@, 1)

A’ under differenti andm values asf (i, m). By combining F@,1) = 52

and simplifying Equations 4, 6, and 7 (considering v/26), l

we get Equation (8), in which,, = \/2(i — 1)2 — 62,. = 2m42m) (2i—1)=2rl (11)
=2

C. Covering factor and form > 1, we have the following formula:

In this section, we give a quantitative analysis on the i flim)
relationship betweerf (i, m) and the area of the theoretical (1,m) = 52
regiong(i). For that purpose, given any density map level — 92-2m _92-m 4 1 4 9,/9] _93-m]
we define thecovering factorc(m) as the ratio of the total 5 m 3 4
area of the coverable regions(to )that of the theoretical &uck + V217 - 23T 5177 + §l37T
1 regions for alli. However, the quantity that is more related ! 26 _1)2_02
to our analysis is th@oncovering factore(m) = 1 — ¢(m). - 82(2’ — 1)? arctan 7 L
Specifically, we have i=2 mn

l
Om\/2(i = 1) = 07, 12
Sicalg(i) — £(i,m)] o HAY On 2T (12)

l .
2 i1 9(1) With the above definitions, we develop the most important
result in our analysis in the following lemma.

a(m) =

The quantitya(m) is important in that it can directly tell
how many cell pairs are resolvable on a given density maplLemma 1:For any given standard SDH query with bucket
level (as the total number of cell pairs is always known fagidth p, let DM; be the first density map our DM-SDH
each level). Before investigating the featuresadfn), let us algorithm starts running, and(m) be the noncovering factor
define two relevant quantities, the total area of buckeoregi of a density map that liesn levels belowDM; (i.e., map
for all bucketsG, and that of all coverable regioris. Being D7, ,,,). We have
summations over all buckets gfi) and f (i, m), they can be
expressed as functions of the total bucket nunib&ve also lim afm+1)

1
remove the common fact@? from both Eq. (3) and Eqg. (8) p—0 a(m) 2



Proof: From Eq. (9), we easily get
am+1) GUI)—-F(I,m+1)

a(m) G()— F(l,m)

Plugging Eq. (10), Eqg. (11), and Eq. (12) into the above
a(m + A(m
formula, we get = where

a(m) B(m)

Am) = — — — + (41 + > VRlE-12 -1

\/S(i —1)2-62 (a) Outer boundary of the bucket 1 region.

l
+ 8 i —1)?arctan
;( ) gm—i-l

l
— 8) (i—1)%arctan/8(i — 1)> — 1 (13)
1=2

l

4 23 ‘
B(m) = 2_m_4—m+2—m(z+12)+z 8(i—1)2—1
=2

l
= 4) 020 —1)2— 02,
=2

l -
8(i —1)2 — 92
+ 8 E (i — 1)% arctan ( ) n
i—2 Orm (b) Inner boundary of the bucket 2 region.

l
Fig. 12. Geometric structure of the bucket 1/2 regions fordzia.
— 8 (i—D’arctan/BG-12 -1,  (14) 9 9
i=2

. . 1 1 1 1 and the estimation error decreasesraicreases. Relate this
in which 0, = 5 — o0 andbmy = 5 — 57 to Lemma 1, we have an underestimated non-covering factor

The case oy — 0 is equivalent tol — oo. Despite their @ ON each level. Since the estimation is more accurate on lager
formidable length and complexityd(m) and B(m) have the " the real ratio ofa(m + 1) to a(m) can only be smaller

following feature than the one given by Lemma 1. And the fact t%atneing the
. A(m) 1 upper bound has positive effects on the evaluation of the tim
lllff,lo W D) (15) complexity of DM-SDH: the result shown in Section IV-E also

. . . becomes an upper bound.
and this concludes the proof. More details on derivationaf E

(15) can be found in Appendix I. m D. 3D analysis

What Lemma 1 tells us is: the chance that any pair of cellsThe strategies used to achieve the above analysis can be
is not resolvable decreases by half with the density mag leextended to 3D. The outer and inner boundaries of bucket
increases by one. In other words, for a pair of non-resoévalykegions are illustrated in Fig. 12. The analysis should ls=bta
cells onDM; (or any level lower thanDM;), among the 16 on the volume of relevant regions surrounding a cbwvith
pairs of subcells on the next level, we exp&€k 0.5 = 8 pairs side lengthd. The bucket 1 region (Fig.12(a)) & consists
to be resolvable. One thing to point out is: Lemma 1 not onlyf the following components: 1) quarter cylinders (greeithw
works well for largel (i.e., smallerp), it quickly converges lengthd and radiusp = v/36; 2) one-eighth of a sphere (red)
even whenl is reasonably small This can be verified by our with radiusp; 3) cuboids (white) with dimensiong, ¢, and
numerical results shown in Table Ill. Furthermore, the @&ow; and 4) cubeA itself (not shown). There are eight pieces of
result is also true foBD data, although we can only give each of the first three items. The inner boundary (reg®n
numerical results due to complicated formulae developed af the bucket 2 region (Fig. 12(b)) consists of eight idealtic
the 3D analysis (Section IV-D). portions of a spherical surface centered at the oppositeecor

We have mentioned that our analysis is done based onafnA with radiusp. Note that the projection of these regions
overestimation of the coverable regions on each density, map 2D are exactly those found in Fig. 6. Again, the shape of



TABLE Il

VALUES OF a(m + 1)/ (m) OF 2D DATA UNDER DIFFERENT VALUES OFm AND [. COMPUTED WITH MATHEMATICA 6.0. FRECISION UP TO THEBTH

DIGIT AFTER DECIMAL POINT.

Map Total Number of Buckets (I)

levels 2 4 8 16 32 64 128 256
m=1 0.508709 0.501837  0.50037 0.50007 0.500012 0.500002 5 0. 0.5
m=2  0.503786 0.500685 0.500103 0.500009 0.499998 0.4999®g99999 0.5
m=3 0.501749 0.500282 0.500031 0.499998 0.499997 0.4999990.5 0.5
m=4 0.500838 0.500126 0.50001 0.499997 0.499998 0.499999 5 0 0.5

m=5  0.50041 0.500059 0.500004 0.499998 0.499999 0.5 0.5 0.5

m=6  0.500203 0.500029 0.500002 0.499999 0.499999 0.5 05 5 0.

m=7  0.500101 0.500014 0.500001 0.499999 0.5 0.5 0.5 0.5

m=8 0.50005  0.500007 0.5 0.5 0.5 0.5 0.5 0.5

m=9  0.500012 0.500003 0.5 0.5 0.5 0.5 0.5 0.5

m=10 0.500025 0.500002 0.5 0.5 0.5 0.5 0.5 0.5
TABLE IV

VALUES OF a(m + 1)/a(m) OF 3D DATA UNDER DIFFERENT VALUES OFm AND . COMPUTED WITH MATHEMATICA 6.0. FRECISION UP TO THEGTH

DIGIT AFTER DECIMAL POINT.

Map Total Number of Buckets ()

levels 2 4 8 16 32 64 128 256
m=1 0.531078 0.509177 0.502381 0.500598 0.50015 0.50003&%00@1 0.500002
m=2  0.514551 0.504128 0.50102 0.500247 0.50006 0.50001300004 0.5
m=3 0.505114 0.500774 0.500051 0.499987 0.499991 0.5015%299996 0.500004
m=4  0.498119 0.497695 0.499076 0.499717 0.499931 0.4984280.5 0.5
m=5 0.490039 0.49337 0.496703 0.499313 0.499811 0.499966 .5 0 0.499983
m=6  0.47651 0.485541 0.49586 0.498521 0.499586 0.49989499981 0.499897
m=7 0.448987 0.469814 0.48972 0.497032 0.499241 0.499793499931 0.500138
m=8  0.38559 0.435172 0.478726 0.494029 0.49848  0.49944899862 0.5

the region does not change with respect to bucket numberwherev(i, p,0) = 16Vg and
we only need to changeto ip.

The volume of the bucketregion can thus be expressed as Vpi—atoy?
VB = // da:dy/ dz
4 ] 6/2
_ —mp> + 6pd? + 3np?d + 83, i=1 B
g9(i) = i ) ) ) ) ) — /p2_$2_y2_§ dady
gﬂ(zp)3 + 6ipd? + 37(ip)20 + 63 — v(i, p, ), i > 1 2
B

i

where the first four items in both cases represent the volumes 4 A e ¢
of the four components listed above and, p, ) is that for B /(, 0 b ( rer o
the region formed by half of a spherical surface in Fig. 12(b) Iroq

With p = /36, the above equation becomes / {

(i) = (4V3m 4 6v3+ 97 + 1) 6 i=1 Iros 1
T 7 [4V3r® + 63/3i + 9712 +1— v(i, p,0)] 6 i >1 - /{




[Nls]

—, ¢ = p® — (2)°, andb = A B
P?—2(3) al| a2 bl| b2

wherea = arctan

o

a3 | a4 b3 | b4

2v}eecontinue to develop formulae for the coverable regions
f(i,m) and non-covering factax(m) as we do in Section IV-

B and Section IV-C. These formulae can be found in Appendixig. 13. Two cells that are non-resolvable are divided imtor fsubcells.

Il. The complexity of such formul&ehinders an analytical

conclusion on the convergence®fm + 1)/a(m) towardsi.

Fortunately, we are able to compute the numerical values of Proof: Like in the derivation of Equation (17), we
a(m +1)/a(m) under a wide range of inputs. These resulteonsider the situation of increasing the dataset size f\oto

(listed in Table 1V) clearly show that it does convergejto 2¢N. For any pair of cells on the last density map when dataset
is of size N, we have the chance to divide each cell iato

E. Time complexity of DM-SDH smaller cells when another density map is built (as a result o
With Lemma 1, we achieve the following analysis of théhe increase olV). Altogether we have on the new density map
time complexity of DM-SDH. 2424 = 224 pairs to resolve, among which half are expected to

be resolved (Lemma 1). This leaves half of the distancesan th

Theorem 1:In DM-SDH, the time spent on operation lynresolved cells and they need to be calculated.* By changin
(i.e., resolving two cells) i® (N "7 ) whered € {2,3} is the size of the dataset frofV to 2¢NV, the total number of
the number of dimensions of the data. distances between any pair of cells increase8¥ytimes. As

Proof: Given a SDH query, the starting lev&M; is half of these distances need to be calculated, the total aumb
fixed in DM-SDH. Assume ther;e arg pairs of cells to be of distance calculation®, increases bp2?~!. Therefore, we

resolved onDM;. On the next leveD M.+, total number of Nave the following recurrence:

ce_zll pairs become£22d._ According to Lemma 1, half of them Ty(2¢N) = 224-17(N),

will be resolved, leaving only’22?~1 pairs to resolve. On

level DM, this number becomef??-1122¢ = 192(2d=1) " which is essentially the same as Equation (17), and this
Therefore, the number of calls to resolve cells on the difier concludes the proof. [
density maps form a geometric progression

Theorem 3:The time complexity of the DM-SDH algo-
I, 122d71, 122(25171)7 o 7I2n(2d71) rithm is @(de(fl).
Proof: Proof is concluded by combining Theorem 1 and
orem 2. ]

wheren is the total number of density maps visited. The tim;T.
. , . . he
spent on all cell-resolving operatiofis is basically the sum

of all items in this progression : F. Effects of particle spatial distribution

I[2@d=D+1) 1] Theorem 1 is not affected by the locations of individual
92d—1 _ | : (16) particles since the results are based the geometric losatib
cells. However, the number of distance calculations agged|
9 the distribution of distances, which, in turn, is detered by
e spatial distribution of particles. In the proof of Theor 2
(where we marked a **’), we extend Lemma 1 from percentage
of cell pairs to that the ratio of resolvable distances. This
extension is obviously true for uniformly distributed pelets
for which the expected number of distances any cell involves
is proportional to the cell size. In this section, we showt tha
the uniform (spatial) distribution of particles is not a assary
T.(N) = O(N©&a 2y — @(N*T). condition for Theorem 2 to be true.
Let us consider any pair of 2D cellA and B that are

non-resolvable on density map leve] which is the lowest

Now let us investigate the time complexity for performingey e for a4 dataset withv particles. Let the expected number
operation 2, i.e., calculating distance between particlés ¢ particles inA and B be a and b, respectivey. Note that

have similar results as in Theorem 1. a # b in general (due the skewed data distribution), and we
Theorem 2:In DM-SDH, the time spent on operation Zsc(ﬁem :10 havecéb dlsftancefsl to calculate f;)(;;]hls;]v\\;o cells.
. . . . 2d—1
(i.e., distance calculation) is alsd(N @ ). en the number of particles increases fromto 4V, we
can build another level of density map (levek- 1). On this
3We use Mathematica to solve the integration in Eq. (25) arehited up €Vel, A andB are both d|V|dgd into four ceIIs._ Let us dgnote
an equation that occupies 120 pages! the expected number of particles before the increast¥ afi

Te(N) =

We useT.(N) to denote the time under a given si2é of

the dataset. According to Equation (2), one more level
density map will be built whe@V increases t@?N. Revisiting
Equation (16), we have the following recurrence:

I[2(2d—1)(n+2) _ 1}
22d—1 _ 1

T.(2°N) = = 2271, (N)—o(1) (17)

Based on the master theorem, the above recurrence gives




Fig. 15. A spatial distribution of particles that leads togk number of
non-resolvable distances. Each ball represents a cluktfearticles.

in Fig. 14. With one more density map, their subcells could
generate resolvable distance ranges sudh,d@ and]e, f] on
. A ¢ distribution of i buck the two sides ofp - the boundary of the two buckets. It also
T e sy Generates non-resolvable disiance ranges centeringeaipun
of the distancesic, d] and[e, f] are examples of distance ranges of resolvablf the distribution of distances has heavy density arognd
subcells. Those of the non-resolvable subcells are notrshow most of the area under the density curve will fall into the non
resolvable ranges. On the contrary, if the density curvarato
ip is not a sharp peak (left hand side in Fig. 14), we could
the subcells as; (i € {1,2,3,4}) andb; (j € {1,2,3,4}). have an equal amount of area under the resolvable and non-
We immediately have = >, ; a; andb = >7,_, b;. When yeaolvable ranges. Or, in another extreme case (right Heed s

N becomestN, a; andf)j all get a four-fold increase and thepf Fig. 14) where the density is very low arousd most of
number of expected distances to calculate becomes the distances will be in the resolvable range.

Thppy = ZPi,j4ai4bj (18) Having a distance distribution like the one in the middle
¥

graph of Fig. 14 means large number of particles are in high-
density clusters that ar@ in distance. For this to be true in
whereP, ; is a binary variable that tells whether cell pair more than one, the particles must be organized in a linear
andb; is non-resolvable on the new density miap1. Without pattern as shown in Fig. 15. Fortunately, real simulatiota da
any assumptions, we only know that the averagé’of over will not likely generate such distance distributions besgau
all combinations of and; is 0.5 (i.e., Lemma 1). For Theoremthe particles in nature tend to spread out in space (insttad o
2 to be true, we need to show that,, = %GTk, = 8ab. aligning in a line). Even if such distributions are encouetkt
We first see that, if the distribution of particles is cellthere is an easy remedy: we can compute another histogram
wise uniform on density mag, we can achieve the aboveby moving all buckets to the left or right b¥. By this, we can
condition. Being cell-wise uniform means that the data agenerate a histogram that shows all the trends in the distanc
uniformly distributed within the cells, i.e., we should leav distribution (exactly what we need in a histogram) yet most
a1 = ay =az = ag = ¢ andby = by = b3 = by = g, of the distance calculations are avoided.
which easily leads td} ;1 = 21’;’” 16ab = 8ab. The cell- . . .
wise uniform distribution is a weaker assumption than tH@ General tiling approach in space partition
dataset-wise uniform distribution (which requires= b). In We use a regular tiling approach to partition the space in
simulation data, this can be a safe assumption as the gartiduilding the trees, i.e., the subcells are of the same shape
will not be indefinitely close to each other due to the exiséen (square/cube) as the parent cell. In the previous analfgsis,
of bonds and inter-molecular forces. Note that we only needch node, we evenly cut each dimension by half, leadirg to
to make this assumption for the smallest cells (i.e., thase partitions (child nodes) on the next level. However, in gahe
the leaf nodes of the tree). Cell-wise uniform is also a papulwe could cut each dimension inte > 2 equal segments,
assumption in current spatial-temporal database stufiéls [ giving rise to s? equal-sized squares or cubes. Interestingly,
A more general discussion on the necessary condition tbe value ofs does not affect time complexity of the DM-SDH
Theorem 2 would be helpful in identifying its limitations.algorithm.
Revisiting Eq. (18), we see thaf,; is basically a sum First, the theoretical bucket regions given by Eq. (3) are no
of 16a;b; weighted by P; ;, which has an average of 0.5.affected. For the coverable regions, we incorporate tfegtil
Therefore, we conclude that, f@f,; < 8ab to hold truethe factor s into the same reasoning as what we utilize to obtain
spatial distribution of particles should NOT be strongly Eq. (8). One exception here is the casemof= 1,7 > 2:
(positively) correlated to the cells that are non-resolvate. the approximate coverable region does not form a series of
In other words, we cannot have the situation where the casecotles whens > 2, therefore Eq. (6) does not hold and this
P, ; = 1 are always associated with largeb; values. If we case should be handled in the same way as the caseof
look at the distribution of the distances, this also meams thi,i > 2. Skipping the details, we get an improved version
we cannot have_high density ofdistancgs centering aroudeH} Eq. (8) fors > 2 as Eq. (19), where, = - — 1
bucket boundaries, as shown in the middle graph of Fig. 14. 2 sm
Suppose two cells (e.gA and B in Fig. 13) has a distanceand~/ = /2(i —1)2 — ¢’ 2. With Eq. (19) to describe the
rangelc, f], which overlaps with bucketsandi+ 1, as shown coverable regions, we can easily generate new equations for




TABLE V
EXPECTED PERCENTAGE OF PAIRS OF CELLS THAT CAN BE RESOLVED UNIR DIFFERENT LEVELS OF DENSITY MAPS AND TOTAL NUMBER OF
HISTOGRAM BUCKETS COMPUTED WITHMATHEMATICA 6.0.

Map Total Number of Buckets ({)

levels 2 4 8 16 32 64 128 256
m=1 50.6565 52.1591 52.5131 52.5969 52.6167 52.6214 52.6222.6227
m=2 74.8985 75.9917 76.2390 76.2951 76.3078 76.3106 7Bh.3126.3114
m=3 87.3542 87.9794 88.1171 88.1473 88.1539 88.1553 88.15%8.1557
m=4  93.6550 93.9863 94.0582 94.0737 94.0770 94.0777 98.0794.0778
m=5 96.8222 96.9924 97.0290 97.0369 97.0385 97.0388 99.0387.0389
m=6  98.4098 98.4960 98.5145 98.5184 98.5193 98.5194 98.5198.5195
m=7 99.2046 99.2480 99.2572 99.2592 99.2596 99.2597 9B.2590.2597
m=8 99.6022 99.6240 99.6286 99.6296 99.6298 99.6299 99.6290.6299
m=9 99.8011 99.8120 99.8143 99.8148 99.8149 99.8149 99.8199.8149
m=10 99.9005 99.9060 99.9072 99.9074 99.9075 99.9075 ®®.9(99.9075

1 4
2W+4\/§+1_(8\/§+4)s_m+s2—m}52 i=1,m>1
!
f(i,m,s) = 1 4 (i —1)2 (arctan Pmi - z)
2mi% + 4/2i — (8v/2i +4)— + —— — 8 On 4) | +1%62 i>1m>1
ST s _19/(1_9/)
2m71n m

(19)

the covering factor as a function of and s. By studying 1. the distance calculations will happen between data point
these functions, we get the following lemma. organized in data pages of associated density map cells

. - N ) (i.e., no random reading is needed). On average, one data
Lemma 2:With a tiling factors (s € Z*), the non-covering page only needs to be paired with(y/N) other data

factors have the following property pages for distance calculation (Theorem 2) in 2D space;
alm+1,5) 1 2. /10 comp_lexity for rea(_jing_der_lsity map cells will be the
lim —————— = —. same as in 1. In practice, it will be much smaller, as the
l—oo  a(m,s) s . :
size of the nodes is small.
Proof: See Apprendix IIl for details. ® 1t would be interesting to investigate how we can improve our

Lemma 2 is obviously a nicely-formatted extension 0?Igorlthm to take advantage of blocking and prefetching.

Lemma 1. As Lemma 1, it is well supported by numerical Storage overheadThe storage cost of our algorithm is
results even under smaller values ofdetails not shown in bound by the size of the density map of the highest resolution
this paper). In Sectio??, we will discuss the effects of on we store (leaf nodes in the Quad-tree), as map size deceases

the time complexity of DM-SDH. exponentially with the decrease of resolution. Obviousig
space complexity iQ(N). The total storage overhead will be
H. Other costs really small if we have a Quadtree index built for the dataset

/O costs.In the previous analysis, we focus on the Cpl\yhich is a popular practice in scientific databases [18]hla t

time of the algorithm. Depending on the blocking strate%se' we only need to addpacount field andnext pointer

we use for retrieving data from disk, the exact I/O cost ¢ €ach index node.
DM-SDH varies. The bottomline, however, is that the 1/0
complexity will be asymptotically lower than the quadradtio _ ] _ o
cost needed for calculating all distandes. straightforward _ While the DM-SDH algorithm is more efficient than current
implementation of DM-SDH will give us an /O complexity SDH processing methods, its running time for large datasets

O(((ﬁ)%d—l) whereb is the number of records in each p‘,:lge’,s_till undesirably long. Actually, there are cases wherenesxe
To bé specific: coarse SDH will greatly help the fine-tuning of simulation

programs [6]. On the other hand, the main motivation to
4To be specific, it isO((2£)2 L) whereb is the page factor an@ is the ~PTOCESS SDHs is to study the statistical distribution ohpto-
blocking factor if we use a strategy like in block-based eédbop join. point distances in the simulated system [6]. Since a histogr

V. APPROXIMATE SDH QUERY PROCESSING




by itself is an approximation of the underlying distributio Ra”%?sct’;:;tgsr'ce"
g(r) (Equation 1), an inaccurate histogram generated from a . . ,
given dataset will still be useful in a statistical sensetHis G1p ip ity (i+2)p distance

approximate results to gain better performance in retuna T b‘i.iklet ‘ bﬂil;et
must-have features for a decent approximate algorithmljre :
provable and controllable error bounds such that the users G
have an idea on how close the results are to the fact; and

analysis of costs to reach (below) a given error bound, which
enables desired performance/correctness tradeoffsifedelly, nyisited cells to the histogram buckets heuristically sathe
our analytical results shown in Section IV makes the deovat of them will be done correctly. Consider two non-resolvable
of such error bounds an.d cost model an easy task. ~ cells in a density map with particle counts and n; (total

In the DM-SDH algorithm, we have to : 1) keep resolvingyymher ofn,n, distances between them), respectively. We
cells till we reach the lowest level of the tree; 2) calculatg,ow their minimum and maximum distancesand v (these
point-to-point distances when we cannot resolve _two calls Qe calculated anyway in our attempt to resolve them) fall
the leaf level of the tree. Our idea for approximate SDhhto multiple buckets. Fig. 16 shows an example that spans
processing is: stop at a certain tree level and totally skRree buckets. Using this example, we describe the follgwin
all distance calculations if we are sure that the number ggistics to distributed the; n. total distance counts into the

distances in the unvisited cell pairs fall below some errgg|evant buckets. These heuristics are ordered in theatzgd
tolerance threshold. correctness.

Recall that, for any given density mapM,;,, and total
number of buckets, our analytical model gives the percentage
of non-resolvable cell paira(m) (Equation (9)). Due to the
existence of a closed-form formula(m) can be efficiently
computed. We list some values dvf— a(m), the percentage
of resolvablecell pairs, in Table V. Given a user-specified
error bounde, we can find the appropriate levels of density ip—u D v—(i+1)p
maps to visit such that the unvisited cell pairs only contain 712" = =, 12—, andnmzﬁ, respec-
less thanew distances. For example, for a SDH query tively. Apparently, by adapting this approach, we assume
with 128 buckets and error bound o= 3%, we getm = 5 the (statistical) distribution of the point-to-point disces
by consulting the table. This means, to ensure the 3% error between the two cells is uniform;
bound, we only need to visit five levels of the tree (excluding4. Assuming a spatial distribution model (e.g., uniform) of
the starting leveD M), and no distance calculation is needed.  particles within individual cells, we can generate the
Table V serves as an excellent validation of Lemmav(n) statistical distribution of the distances either anasitic
almost exactly halves itself when increases by 1, even when or via simulations, and put the;n, distances to involved
l is as small as 2. Since the numbers on the first row (i.e., buckets based on this distribution.

values forl — (1)) are also close to 0.5, a rule-of-thumb foNote that all four methods need constant time to compute a
choosingm is 1 solution for two cells (In the fourth one, the distributiohtbe
m=1g-. distances can be derived offline). According to our expenise
€ (Section VI-B), they generate much less error than we expect

The cost of the approximate algorithm only involves reswivi from the theoretical bounds shown in Table V.
cells on then +1 levels of density maps. Borrowing Equation

(17), we obtain the time complexity of the new algorithm VI. EXPERIMENTAL RESULTS

1\ 241 We have implemented the algorithms using the C pro-
T,(N) ~ [22d4=1m — [9(2d-Dla _ I(—) (20) gramming language and tested it with various synthetit/rea
€ datasets. The experiments are run at an Apple Mac Pro
wherel! is the number of cell pairs on the starting density maporkstation with two dual-core 2.66GHz Intel Xeon CPUSs,
DM;, and it is solely determined by the query parameier and 8GB of physical memory. The operating system is OS X
Apparently, the running time of this algorithm is not retite 10.5 Leopard.
to the input sizelV. ) _
Now let us discuss how to deal with those non-resolvabfe Exact PDH processing usingM-SDH
cells after visitingm + 1 levels on the tree. In giving the error The main purpose of this experiment is to verify the time
bounds in our approximate algorithm, we are conservaticemplexity of DM-PDH. In Fig. 17, the running time of
in assuming the distances in all the unresolved cells will mr algorithm are plotted against the size of 2D experimen-
placed into the wrong bucket. In fact, this almost will nevetal datasets. Fig. 17a shows the results of using synthetic
happen because we can distribute the distance counts in dagasets where the locations of individual atoms are Higied

section, we introduce a modified SDH algorithm to give such bucket ‘
UCKE
i

. 16. Distance range of two resolvable cells overlap whitlee buckets.

1. Put allnins distance counts into one bucket;

2. Evenly distribute the distance counts into the three buck
ets involved, i.e., each bucket geltamg;

3. Distribute the distance counts based on the overlaps
between rangéu,v] and the buckets. In Fig. 16, the
distances put into buckets i + 1, and i + 2 are
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Fig. 17. Running time of the SDH processing algorithms with data.
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Fig. 18. Running time of the SDH processing algorithms with data.

uniformly in the simulated space and Fig. 17b for thosef doubling N values ranging from 100,000 to 6,400,000.
following a Zipf distribution with order one, and Fig. 17c For all three datasets, the brute-force approach (‘Dist’)
for data generated from Pandit's previous work to simulaghows an exact quadratic running time (i.e., the gradiethef

a bilayer membrane lipid system in NaCl and KCI solutiondine is 2). The other lines (with spots) represent experisien
as illustrated in Fig. 19. This dataset has 286000 atoms uring our algorithm under different bucket numbers. Clearl
it, we randomly choose and duplicate atoms in this datasetth@ running time of our algorithm grows less dramatically -
reach different total number of atoms to make the experimetivey all have a gradient of about 1.5. For comparisons, we dra
comparable to those in Fig. 17a and 17b. Note that both taalotted line in each graph with a slope of exactly 1.5. When
running time and data size are plotted on logarithmic scalbgcket size decreases, it takes more time to run our algorith
therefore the gradient of the lines reflects the time coniplexalthough the time complexity is stilB(N1-5). The cases of

of the algorithms. In all graphs, we show the results of aeseri o )

Each point in the graphs shows the result of one single runfPDH as
the long running time under larg¥ prohibits having multiple runs. However,
we did run multiple experiments with different random sefsisthe cases of
smaller N and observed very little variances in running time.



B. Approximate histogram processing

Figure 20 shows the results of running the approximate
algorithm. In these experiments, we set the programs to stop
after visiting m levels of density maps and distribute the
distances using the first three heuristics (Section V). Véa th
compare the approximate histogram with those generated by
regular DM-PDH. The error rate is calculated 33, |h; —
R;|/ ", hi where for any bucket, h; is the accurate count
and k! the count given by the approximate algorithm.

According to Fig. 20a, the running time does not change
with the increase of dataset size for = 1,2,3. Whenm
is 4 or 5, the running time increases whé&his small and
then stays as a constant afterwards. Note that the ‘unlifnite
case shows the results of the basic SDH algorithm. Agais, thi
is because the algorithm has less than 4 or 5 levels to visit
Fig. 19. The simulated hydrated dipalmitoylphosphatitglme bilayer in a short tree resulted from smal values. In these cases,

system. We can see two layers of hydrophilic head group$ (mgher atom ; ;
density) connected to hydrophobic tails (lower atom dghsite surrounded our algorithm only saves the time to calculate the unresblve

by water molecules (red dots) that are almost uniformlyritisted in space. distances. WhemnV is large enough, running time no longer

changes with the increase of.

We observe surprising results on the error rates (Fig. 20

c-d): all experiments have error rates under 3%, even for the
large bucket numbersi(= 256’) are worth some attention: cases ofn = 1! These are much lower than the error bounds
its running time is similar to that of the brute-force apprioa we get from Table V. The correctness achieved by heuristic
when NV is small. However, asV increases, the gradient ofl is significantly lower than those by heuristic 2 and 3, as
the line changes to around 1.5. The reason for this is: wiienexpected. The performance of the latter two are very similar
is small, we have a tree with very few levels; when the quegxcept in the case ofi = 1 where heuristic 2 had error rates
comes with a very small bucket size we ended up starting around 0.5%. Whenn > 2, the error rate approaches zero
DM-SDH from the leaf level of the tree (recall Fig. 5) andvith the dataset becomes larger. Heuristic 3 achieves wevy |
have to essentially calculate most or all distances. Howyeverror rates even in scenarios with smaillvalues.
the same query will get the chance to resolve more ceyf Discussions
when the tree becomes taller, as a result of lafgeAnother ] i ] )
interesting discovery is that the actual running time fae th At this point, we can conclude with confidence that the
skewed data (Zipf) is always lower than the uniform datasThPM-SDH algorithm has running time in conformity with our
can be seen by the relative positions of colored lines to tRB&lytical results. On the other hand, we also see that, in
‘T = O(N'5) line. This gain of performance comes from thdProcessing exact SDHs, |t_ shows advant_ages over the brute-
larger number of empty cells on each density map when tfRECe approach only wheN is large (especially whehis also
particles are clustered. This also confirms our argumerit tf40)- However, we would not call this a major limitation of
skewed distribution does not affect the correctness of figrao (e algorithm as the SDH problem is less meaningful when

2. The results of the real dataset are almost the same as t{dsanall (especially for largé). Its limitation, in our opinion,
for the uniform data. is that the time complexity, although superior to quadrasic

still too high to compute SDH for reasonably large simulatio

We have similar results for 3D data (Fig. 18): the corredataset. Fortunately, our approximate algorithm provides
sponding lines for DM-SDH have slopes that are very closdegant practical solution to the problem. According to our
to g confirming our asymptotic analysis. Again, the cases fexperiments, extremely low error rates can be obtained even
large! values are worth more discussions. Fbe= 64’, we we only visit as few as three levels of density maps. Note that
started to see the scenarios 6= 256’ in the 2D case: the for large N, the trees are very likely to have more than three
running time grows quadratically tilN becomes fairly large levels to explore even whehis large.
(1,600,000) and then the line changes its slop'?t@ne thing The potential of the approximate algorithm shown by cur-
to notice is the slope of the last segment b= 64’ in Fig. rent experiments is very exciting. Our explanation for the
18b is almost 2. This does not mean the time complexity ssirprisingly low error rate is: in an individual operation t
going back to quadratic. In fact, it has something to do wittlistribute the distance counts heuristically, we could ehav
the zigzag pattern of running time change in the Zipf datemade a big mistake by putting too many counts into a bucket
for three consecutive doubliny values (8-fold increase), the(e.g., bucket in Fig. 16) than needed. But the effects of this
running time increases by 2, 4, and 4 times, which still givenistake could be canceled out by a subsequent mistake where
a2 x4 x4 = 32 fold increase in total running time (vs. atoo few counts are put into bucketThe error rate is measured
64-fold increase in algorithms with quadratic time). after the binning is done, thus reflecting the net effectsllof a
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Fig. 20. Running time and correctness of the approximate $Ridessing algorithm.

positive and negative mistakes. While more experimenteundiata structure that has applications spanning databasagei
different scenarios are obviously needed, investigatfomm processing, GIS, and computer graphics [22] and has been a
an analytical angle are more urgent. We understand that tbpic for research till now: a recent work [23] showed some
bound given by Table V is a loose bound. The real error boupdrformance advantages of Quadtree over R-tree in query
should be described as= ¢;e2 wheree; is the percentage processing. Various metric trees [24], [25] are closelated
given by Table V andey is the error rate created by theto our density map construction: in these structures, space
heuristic binning. partitioned into two subsets on each level of the tree. Hawev
the main difference between our work and these tree-based
strategies is: we consider the relative distance of celiggooip
Conventional (relational) database systems are desigrikd distance between the data in the cells while they focus
and optimized towards data and applications from the busitore on searching based on a similarity measure.
ness world. In recent years, the database community hasn particle simulations, the computation of (gravita-
invested much efforts into constructing database systetignal/electrostatic) force is of similar flavor to the SDHeayy.
that are suitable for handling scientific data. The follagvinSpecifically, the force (or potential) is the sum of all pasev
are well-known examples of such projects: the GenBarteractions in the system, thus requir€§N?) steps to
(http://www.ncbi.nim.nih.gov/Genbank) database forltd> compute. The simulation community has adopted approximate
cal sequences; the Sloan Digital Sky Survey [2] to explosslutions represented by the Barnes-Hut algorithm that aim
over 200 million astronomical objects in the sky; the QBISM)(N log N) time [26] and the Multi-pole algorithm [27] with
project [19] for querying and visualizing 3D medical imagedinear running time. Although both algorithms use a Quas-tr
the BDBMS project [3] for handling annotation and provelike data structure to hold the data, they provide littleighss
nance of biological sequence data; and the PeriScope @) how to solve the SDH problem. The main reason is that
project for declarative queries against biological segasen these strategies take advantage of two features of forcéorl)
The main challenges and possible solutions of scientifia datny pairwise interaction, its contribution to the force Bases
management are discussed in [1]. Traditionally, moleculdramatically when particle distance increases; 2). thecesfof
simulation data are stored in large files and queries aresimpsymmetric interactions cancel out. However, neither fiestu
mented in standalone programs, as represented by popular sire applicable to SDH computation, in which every pairwise
ulation/analytics package8][ [20]. The scientific community interaction counts and all are equally important.
has gradually moved towards using database systems for the
storage, retrieval, and analysis of large-scale simuiatiata, VIIl. CONCLUSIONS AND FUTURE WORK
as represented by the BioSimGrid [4] and SimDB [21] projects In this paper, we argue that the SDH query is critical in
developed for molecular simulations. However, such systeranalyzing particle simulation data. To improve the efficign
are still in short of efficient query processing strategits. of processing this query, we take advantage of the fact that
the best of our knowledge, the computation of SDH in sudfistance calculation can be processed in a batch instead of
software packages is done in a brute-force way. individually. We build a data structure based on a pointargi
Although the SDH problem has not been studied in tH@uadtree to systematically solve this problem. Our anslysi
database community, our work is deeply rooted in the phshows that the time complexity of our basic algorithm beats
losophy of using tree-based indexing for pruning the infocurrent solutions: it runs a@(NMJl) with d being the data
mation that is not needed. Quadtree has been a well-studihension number. An approximate algorithm derived from

VIl. RELATED WORK




our approach runs at constant time while giving surprigingf12] J. L. Stark and F. MurtaghAstronomical Image and Data Analysis
low error rates. We believe our work has provided valuablle]
theoretical and practical insights on the problem such ﬂ{a?

computing PDH in large simulations has become a reality.

Our work on this topic can be extended in multiple dill4]
rections. First, the approximate algorithm has shown great
potential. Based on the experimental results shown in this

paper, we strongly believe there is a tighter bound on the

level of errors. Sophisticated (statistical) models stolie

15]

generated to study this error bound. Second, we should explp6]

more space partitioning plans in building the Quadtree |[r117
hope to find one with the “optimal” (or just better) cell

]

resolving percentage. Another topic that we did not pay much

attention to is the optimization targeting at the I/O coStse

- . : JEE)
main issue is how to pack tree nodes into pages and wha
prefetching strategy we can adopt to improve 1/O perforreanc

Finally, our discussions totally ignored another dimensio

[19]

the data - time. Simulation data are essentially continuous

snapshots (calledramesin simulation terminology) of the

simulated system. With large number of frames, processiH§!

SDH separately for each frame will take intolerably longdim
for any meaningful simulation dataset. Incremental sohdi

need to be developed, taking advantage of the similarigtl

between neighboring frames.
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APPENDIX |
THE DERIVATION OF EQ. (15)

We accomplish this proof by studying the difference betwgéﬁ& and % First, we see

1
A(m) — ;1/ (i —1)2 ———4Z9m+1\/22_1 m+1

\/8(2' —12-62,

+ QZOm\/Q(i —1)2-62,+ SZ(Z —1)%arctan
i=2 i=2

0m+1
l . l
—1)2 — 62
- 4;(2 —1)*arctan 8 9m) = — 4;(2 —1)*arctan /8(i — 1)2 — 1 (21)
When! — oo, we have the results shown in (22).
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i—2 Om+1 i—2
l . l
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i=2 m i=2
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Z(z —1)%arctan/8(i —1)2 -1 — Z(z —1)%arctan 2v/2(i — 1) (22)
1=2 =2
Plugging the left-hand side of six formulae in (22) into ERL), we getA(m) — @ — 0 and thusA(m) — @.
APPENDIX I
RELEVANT QUANTITIES IN 3D ANALYSIS
These formulae are listed on the last page of this paper a(SZB)qu Eqg. (25).
\/P - 37——1 y—w) +2m
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Y T e
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Here we have: = arctan 00 b= 5_9’" ,andc = /p? — (00,,)2.
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The coverable region is

2
%wp3+6p<6—22—i> +3 5(6—2—2)—#(5—22—3) n=1m2>1
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Simplifying the above withp = /35, we get
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wherev (i, m, p, 5) = 16V (m).
Continue with the same reasoning as in Section IV-C, we have
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wheregq = arctan 2

\/ = and the following formulae for the accumulated volume fibicaverable regiond-.
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APPENDIXIII
PROOF OFLEMMA 2

Proof: Proof is accomplished in a similar way to that of Lemma 1. Whkie total area of all bucket regions Eq. (10)
is still the same, Eq. (11) and Eq. (12) become the followiggation for allm > 1:

l .
Fll,mys) = Z=fbms) J;(; ™, ) (26)

- z_l: [ﬂ(ip)Q + 4ip (5 - j—i) + (5 — 5—2)21

! 2(i —1)2—0,,° !
- Z(z —1)? [8 arctan —2m| + 42 [G;n 20i—1)2 -0 2 — 9%2} :

=2

a(m+1,s)  A(m,s)

hich gi = h
wnich gives a(m’ S) B(m,s) wnere
420 +17) 2 \? 1 1 \?
A(m,s) = 1+ $1+m —I(1- sltm + 4(l - 1) 5 - m (27)
! 20i—1)2— ¢/
—42 9m+1\/2(z' —1)2 =6, ., +8> (i—1)%arctan \/ 7 o
i=2 m+1
l
+Z\/8(z’—1)2 —1-8) (i—1)%arctan/8(i — 1)2 — 1
=2 =2
and
AV2(L+ 12 2\? 1 1\°
B(m,s) = 1+M—l(1——> —|—4(l—1)<———) (28)
sm sm 2 sm
! ! 2(i —1)2 — 01,2
—43 70 \[2(i—1)2 — 6 2 i — 1) arct -
; A/ 2(i—1) -~ +8ZZ:;(Z )* arctan i

l l

+> 0 V/B8(i—1)2—1-8) (i —1)%arctan /8(i — 1)2 — 1

=2 =2

: o . A 1
Following the reasoning in Appendix I, we compare the valfi - T:L’ 3 to 5 And we have
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When! — oo, we have the results shown in (30).

l
1
§¢2<i—1>2—%+3 — VTP

! 8(i—1)2 -0, !
Z(’L — 1)? arctan \/ +1 — Z(z —1)%arctan/8(i — 1)2 — 1 (30)
i=2 0'mt1 i=2
Plugging the left-hand side of the above two formulae in (3@ Eq. (29), we getsA(m,s) — B(m,s) — 0 and thus
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