
Computing Spatial Distance Histograms Efficiently
in Scientific Databases

Yi-Cheng Tu1, Shaoping Chen2, and Sagar Pandit3

1Department of Computer Science and Engineering, University of South Florida
4202 E. Fowler Ave., ENB118, Tampa, FL 33620, U.S.A.

ytu@cse.usf.edu
2Department of Mathematics, Wuhan University of Technology

122 Luosi Road, Wuhan, Hubei, 430070, P. R. China
chensp@whut.edu.cn

3Department of Physics, University of South Florida
4202 E. Fowler Ave., PHY114, Tampa, FL 33620, U.S.A.

pandit@cas.usf.edu

Abstract— Particle simulation has become an important re-
search tool in many scientific and engineering fields. Data gen-
erated by such simulations impose great challenges to database
storage and query processing. One of the queries against particle
simulation data, the spatial distance histogram (SDH) query, is
the building block of many high-level analytics, and requires
quadratic time to compute using a straightforward algorithm.
In this paper, we propose a novel algorithm to compute SDH
based on a data structure called density map, which can be easily
implemented by augmenting a Quad-tree index. We also show the
results of rigorous mathematical analysis of the time complexity
of the proposed algorithm: our algorithm runs on Θ(N

3

2) for
two-dimensional data and Θ(N

5

3) for three-dimensional data,
respectively. We also propose an approximate SDH processing
algorithm whose running time is unrelated to the input sizeN .
Experimental results confirm our analysis and show that the
approximate SDH algorithm achieves very high accuracy.

I. I NTRODUCTION

Many scientific fields have undergone a transition to
data/computation intensive science, as the result of automated
experimental equipments and computer simulations. In recent
years we have witnessed many efforts in building data man-
agement tools suitable for processing scientific data [1], [2],
[3], [4], [5]. Scientific data imposes great challenges to the
design of database management systems that are tradition-
ally optimized toward handling business applications. First,
scientific data often come in large volumes, this requires us
to rethink the storage, retrieval, and replication techniques in
current DBMSs. Second, user accesses to scientific databases
are focused on complex high-level analytics and reasoning
that go beyond simple aggregate queries. While many types
of domain-specific analytical queries are seen in scientific
databases, the DBMS should be able to support those that are
frequently used as building blocks for more complex analysis.

S. Chen is currently a visiting professor in the Department of Computer
Science and Engineering at the University of South Florida (USF). His email
at USF is: schen11@cse.usf.edu

However, many of such basic analytical queries need super-
linear processing time if handled in a straightforward way,as
they are handled in current scientific databases. In this paper,
we report our efforts to design efficient algorithms for a type of
query that are extremely important in the analysis ofparticle
simulation data.

Particle simulations are computer simulations in which the
basic components of large systems (e.g., atoms, molecules,
stars, galaxies ...) are treated as classical entities thatinteract
for certain duration under postulated empirical forces. For
example, molecular simulations (MS) explore relationship
between molecular structure, movement and function. These
techniques are primarily applicable in modeling of complex
chemical and biological systems that are beyond the scope of
theoretical models. MS are most frequently used in material
sciences, biomedical sciences, and biophysics, motivatedby
a wide range of applications. In astrophysics, the N–body
simulations are predominantly used to describe large scale
celestial structure formation [6], [7], [8], [9]. Similar to
MS in applicability and simulation techniques, the N–body
simulation comes with even larger scales in terms of total
number of particles simulated.

Results of particle simulations form large datasets of particle
configurations. Typically, these configurations store informa-
tion about the particle types, their coordinates and velocities
- the same type of data we have seen in spatial-temporal
databases [10]. While snapshots of configurations are interest-
ing, quantitative structural analysis of inter-atomic structures
are the mainstream tasks in data analysis. This requires the
calculation of statistical properties or functions of particle
coordinates [6]. Of special interest to scientists are those
quantities that require coordinates of two particles simultane-
ously. In their brute force form these quantities requireO(N2)
computations forN particles [7]. In this paper, we focus on
one such analytical query: theSpatial Distance Histogram
(SDH) query, which asks for a histogram of the distances of
all pairs of particles in the simulated system.

A. Motivation

The SDH is a fundamental tool in the validation and analysis
of particle simulation data. It serves as the main building block
of a series of critical quantities to describe a physical system.
Specifically, SDH is a direct estimation of a continuous statis-
tical distribution function calledradial distribution functions
(RDF) [6], [11], [12]. The RDF is defined as

g(r) =
N(r)

4πr2δrρ
(1)

whereN(r) is the number of atoms in the shell betweenr
and r + δr around any particle,ρ is the average density of
particles in the whole system, and4πr2δr is the volume of
the shell. The RDF can be viewed as a normalized SDH.

The RDF is of great importance in computation of thermo-
dynamic quantities about the system. Some of the important
quantities like total pressure,

p = ρkT − 2π

3
ρ2

∫
drr3u′(r)g(r, ρ, T)

and energy

E

NkT
=

3

2
+

ρ

2kT

∫
dr 4πr2u(r)g(r, ρ, T)

cannot be calculated withoutg(r). For mono–atomic systems,
the RDF can also be directly related to the structure factor of
the system [13], via

S(k) = 1 +
4πρ

k

∫ ∞

0

(g(r)− 1) r sin(kr) dr.

We skip the definitions of all notations in the above formulae,
as the purpose is to show the importance of SDH in par-
ticle simulations. In current solutions, we have to calculate
distances between all pairs of particles and put the distances
into bins with a user-specified width, as done in state-of-the-
art simulation data analysis software packages [?], [12]. MS
or N–body techniques generally consist of large number of
particles. For example, the Virgo consortium has accomplished
a simulation containing 10 billion particles to study the for-
mation of galaxies and quasars [14]. MS systems also hold up
to millions of atoms. This kind of scale prohibits the analysis
of large datasets following the brute-force approach. Froma
database viewpoint, it would be desirable to make SDH a basic
query type with the support of scalable algorithms.

B. Contributions and roadmap

We claim the following contributions via this work:
1. We propose an innovative algorithm to solve the SDH

problem based on a Quadtree-like data structure we call
density map;

2. We accomplish rigorous performance analysis of our
algorithm and prove its time complexity to beΘ

(
N

3

2

)

andΘ
(
N

5

3

)
for 2D and 3D data, respectively;

3. Our analytical results on the algorithm gives rise to an
approximate SDH solution whose time complexity is
independent to the size of the dataset. In practice, this
algorithm computes SDH with very low error rates.

We continue this paper by formally defining the SDH prob-
lem and listing important notations in Section II; we introduce
our SDH processing algorithm in Section III; performance
analysis of our algorithm is sketched in Section IV; we discuss
an approximate SDH solution in Section V; Section VI is
dedicated to the evaluation of our algorithms; we briefly
survey related work in Section VII, and conclude this paper
by Section VIII.

II. PROBLEM STATEMENT AND LIST OF NOTATIONS

The SDH problem can be defined as follows: given the
coordinates ofN points in space, we are to compute the counts
of point-to-point distances that fall into a series ofl ranges in
theR domain:[r0, r1), [r1, r2), [r2, r3), · · · , [rl−1, rl]. A range
[ri, ri+1) in such series is called abucket, and the span of the
rangeri+1−ri is called thewidth of the bucket. In this paper,
we focus our discussions on the case ofstandard SDH query
where all buckets have the same widthp and r0 = 0, which
gives the following series of buckets:[0, p), [p, 2p), · · · , [(l−
1)p, lp]. Generally, the boundary of the last bucketlp is set
to be the maximum distance of any pair of points. Although
almost all scientific data analysis only require the computation
of standard SDH queries, our solutions can be easily extended
to handle histograms with non-uniform bucket width and/or
arbitrary values ofr0 and rl.1 The SDH is basically a series
of non-negative integersh = (h1, h2, · · · , hl) wherehi (0 <
i ≤ l) is the number of pairs of points whose distances are
within the bucket[(i− 1)p, ip).

In Table I, we list the notations that are used throughout
this paper. Note that symbols defined and referenced in a local
context are not listed here.

TABLE I

SYMBOLS AND NOTATIONS.

Symbol Definition
p width of histogram buckets
l total number of histogram buckets
h the histogram with elementshi (0 < i ≤ l)

N total number of particles in data
i an index symbol for any series

DMi the i-th level density map
d number of dimensions of data
δ side length of a cell
S area of a region in 2D space
ǫ error bound for the approximate algorithm
H total level of density maps, i.e., tree height

III. O UR APPROACH

A. Overview

In processing SDH using the naive approach, the difficulty
comes from the fact that the distance of any pair of points

1The only complication of non-uniform bucket width is that, given a
distance value, we needO

`

log l
´

time to locate the bucket instead of constant
time for equal bucket width.

is calculated to determine which bucket a pair belongs to.
An important observation here is: a histogram bucket always
has a non-zero width. Given a pair of points, their bucket
membership could be determined if we only know a range
that the distance belongs to and this range is contained in a
histogram bucket. With the bucket widthp increases (i.e., user
sends in a coarser SDH query), the chance that any such range
with a fixed span will fall into a bucket also increases. In other
words, we need to save time in our algorithm by calculating
point-to-point distances approximately.

A B

X 14 26

Y 8 12

Z 29 15

A0 A1 B0 B1

X0 5 4 4 0

X1 3 2 9 13

Y0 2 2 0 5

Y1 3 1 4 3

Z0 5 3 4 1

Z1 9 12 3 7

a. low resolution map b. high resolution map

Fig. 1. Two density maps of different resolutions.

The central idea of our approach is a conceptual data
structure calleddensity map. For a 3D space, a density map
is essentially a 3D grid that divides the simulated space into
cubes of equal volumes. For a 2D space, it consists of squares
of equal size. From now on, we use 2D data and grids to
elaborate and illustrate our ideas unless specified otherwise.
Note that extending our discussions to 3D data/space would
be straightforward. In every cell of the grid, we record the
number of particles that are located in the space represented
by that cell as well as the four coordinates that determine
the exact boundary of the cell in space. The reciprocal of
the cell size in a density map is called theresolutionof the
density map. In order to process SDH, we build a series of
density maps with different resolutions. We organize the array
of density maps in a way such that the resolution of a density
map is always doubled as compared to the previous one in the
series. Consequently, any cell in a density map is divided into
exactly four (eight for a 3D space) disjoint cells in the next
density map. In Figure 1, we illustrate two density maps with
different resolutions built for the same dataset. For example,
the simulated space is divided into six cells in Fig. 1a, each
with side length 2, and cell XA has 14 particles in it. The next
density map is shown in Fig. 1b: cells are of side length 1 and
XA is divided into 4 cells on this map: X0A0, X0A1, X1A0,
and X1A1. A natural way to organize the density maps is to
connect all cells in a quad-tree. We will elaborate more on the
implementation of the density maps in Section III-C.

Algorithm DM-SDH
Inputs: all data points, density maps built beforehand,

and bucket widthp
Output: an array of countsh

1 initialize all elements inh to 0
2 find the first density mapDMi whose cells have

diagonal lengthk ≤ p
3 for all cells in DMi

4 do n← number of particles in the cell
5 h1 ← h1 + 1

2n(n− 1)
6 for any two cellsmj andmk in DMi

7 do RESOLVETWOCELLS (mj, mk)
8 return h

Procedure RESOLVETWOCELLS (m1, m2)
0 check ifm1 andm2 are resolvable
1 if m1 andm2 are resolvable
2 then i← index of the bucketm1 andm2 resolve into
3 n1 ← number of particles inm1

4 n2 ← number of particles inm2

5 hi ← hi + n1n2

6 else if m1 andm2 are on the last density
map (i.e., the one with highest resolution)

7 for each particle A inm1

8 for each particle B inm2

9 do f ← distance between A and B
10 i← the bucketf falls into
11 hi ← hi + 1
12 else
13 DM ′ ← next density map with higher resolution
14 for each partitionm′

1 of m1 on DM ′

15 for each partitionm′
2 of m2 on DM ′

16 do RESOLVETWOCELLS (m′
1, m′

2)

Fig. 2. The density-map-based SDH algorithm.

B. The Density-Map-based SDH (DM-SDH) algorithm

In this section, we describe how to use the density maps
to process the SDH query. The details of the algorithm are
shown in Fig. 2. The core of the algorithm is a procedure
named RESOLVETWOCELLS, which is given as inputs a pair
of cells m1 andm2 on the same density map.

In RESOLVETWOCELLS, we first compute the minimum
and maximum distances between any particle fromm1 and any
one fromm2 (line 1). This can be accomplished in constant
time given the corner coordinates of two cells stored in the
density map (only three cases are possible, as shown in Fig.
3). When the minimum and maximum distances betweenm1

and m2 fall into the same histogram bucketi, we say these
two cells areresolvableon this density map, and theyresolve
into bucketi. If this happens, the histogram is updated (lines
2 - 5) by incrementing the count of the specific bucketi by
n1n2 where n1, n2 are the particle counts in cellsm1 and

A

B

B

B

Fig. 3. Three scenarios to consider when computing the minimum and
maximum distance between two cells A and B, with solid (dotted) line
representing minimum (maximum) distance in each case.

m2, respectively. If the two cells do not resolve on the current
density map, we move to a density map with higher (doubled)
resolution and repeat the previous step. However, on this new
density map, we try resolving all four partitions ofm1 with
all those of m2 (lines 12 - 16). In other words, there are
4× 4 = 16 recursive calls to RESOLVETWOCELLS if m1 and
m2 are not resolvable on the current density map. In another
scenario wherem1 and m2 are not resolvable yet no more
density maps are available, we have to calculate the distances
of all particles in the non-resolvable cells (lines 6 - 11). The
DM-SDH algorithm starts (line 2) at the first density map
DMi whose cell diagonal length is smaller than the bucket
width p (i.e., cell side lengthδ ≤ p√

2
). It is easy to see that

no pairs of cells are resolvable in density maps with resolution
lower than that ofDMi. Within each cell onMi, we are sure
that any intra-cell point-to-point distance is smaller than p thus
all such distances are counted into the first bucket with range
[0, p) (lines 3 - 5). The algorithm proceeds by resolving inter-
cell distances (i.e., calling RESOLVETWOCELLS) for all pairs
of cells in M (lines 6 - 7).

Clearly, the main idea behind our algorithm is to avoid
computing any point-to-point distances. By only considering
atom counts in the density map cells, we are able to process
multiple point-to-point distances between two cells in oneshot.
This translates into significant improvements over the brute-
force histogram construction approach.

A case study.Let us study an example by revisiting Fig.
1. Suppose the query asks for SDH with a bucket width of
3 (i.e., histogram buckets are[0, 3), [3, 6), [6, 9), · · ·) and we
start on the low-resolution map in Fig. 1a. First, since all
particles in XA are within a distance2

√
2 < 3, we can safely

increase the count of the first bucket (with range 0-3) by
14× (14− 1)/2 = 91, and we do this for all other cells in Fig.
1a. Then we try to resolve XA with each and every other cell
in the same density map, e.g., cell ZB. However, we cannot
draw any conclusions as the distances between a particle in XA
and one in ZB are within the range of[2,

√
52] ≈ [2, 7.2111],

which overlaps with the first and second buckets. In this case,
we turn to the next density map in Fig. 1b, in which a cell in
Fig. 1a is divided into four smaller cells. We start comparing
counts of all XA cells (i.e., X0A0, X0A1, X1A0, and X1A1)
with all ZB cells (i.e., Z0B0, Z0B1, Z1B0, and Z1B1). Out

TABLE II

INTER-CELL DISTANCE RANGES ON DENSITY MAP SHOWN INFIG. 1B.

RANGES MARKED WITH * ARE RESOLVABLE INTO BUCKETS OF WIDTH3.

ZB XA cells

cells Z0B0 Z0B1 Z1B0 Z1B1

X0A0
ˆ√

10,
√

34
˜

∗
ˆ√

13,
√

41
˜ ˆ√

4,
√

45
˜ ˆ√

20,
√

52
˜

X0A1
ˆ

3,
√

29
˜

∗
ˆ√

10,
√

34
˜

∗
ˆ√

4,
√

40
˜ ˆ√

17,
√

45
˜

X1A0
ˆ√

5,
√

25
˜ ˆ√

8,
√

32
˜ ˆ√

10,
√

34
˜

∗
ˆ√

13,
√

41
˜

X1A1
ˆ

2,
√

20
˜ ˆ√

5,
√

24
˜ ˆ

3,
√

29
˜

∗
ˆ√

10,
√

34
˜

∗

of the 16 pairs of cells, six can be resolved (Table II). For
example, since the distances between any particle in X0A0 and
any one in Z0B0 are within[

√
10,
√

34] ≈ [3.162, 5.831], we
increment the count of the second bucket (with range[3, 6)) in
the histogram by5×4 = 20. For those the are not resolvable,
we need to visit a density map with an even higher resolution,
or, calculate all the inter-cell point-to-point distanceswhen
no such density maps exist. Note that those cells with a zero
particle count (e.g., cell Y0B0) can be ignored in this process.

C. Implementation of density maps

In DM-SDH, we assume that there are a series of density
maps built beforehand for the dataset. In this section, we
describe important details on the implementation and main-
tenance of the density maps.

1) Tree structure:As mentioned earlier, we organize the
cells on different density maps into a tree structure, much like
the point region (PR) Quad-tree presented in [15]. The nodes
in the tree hold the following information:

(p-count, x1, x2, y1, y2, child, p-list, next)

wherep-count is the number of particles in the cell,x1
to y2 are the four coordinates that define the region of the
cell (for 3D data, we need two more coordinates for the 3rd
dimension),child is a pointer to the first child on the next
level.2 The p-list element is the head of a list of data
structures that store the real particle data. Obviously,p-list
is meaningful only for leaf nodes of the tree. Unlike a regular
Quad-tree, we add anext pointer to chain the sibling nodes
together (the order of the four siblings in the list can be
arbitrarily determined). Furthermore, for the last of the four
siblings, itsnext pointer is used to point to its cousin. By
this, all nodes on the same level are connected - such a
connected list essentially forms a density map with a specific
resolution. The head of all listed can be stored in an array for
the ease of locating the appropriate density map to start the
DM-SDH algorithm (line 2, Fig. 2). From now on, we use
the phrases “density map’ and “tree level”, “cell” and “tree

2A parent pointer could be added to each node to achieve logarithmic
data insertion/deletion time. However, we assume the scientific dataset is static
(no sporadic insertions, no deletions) therefore achild pointer is sufficient
for efficient bulk loading.

node” interchangeably. In building the tree, we use the most
straightforward space decomposition approach: 1) the space
represented by each node is strictly set to be squares (cubes
for 3D space), i.e., we have

∣∣x1−x2
∣∣ =

∣∣y1−y2
∣∣; and 2) we

always partition by dividing each dimension into exactly TWO
equal segments. In other words, each partitioning process will
generate four (eight for 3D space) partitions in the next tree
level. Space partition using shapes other than squares (e.g.,
rectangles, triangles) and/or partitioning into more thanfour
children (e.g., anyn2 (n ∈ Z+and n > 2) partitions) would
make interesting topics for future research and are beyond the
scope of this paper.

104

60 44

26 8 12 152914

DM0

DM1

DM2

DM3 5 4 3 2 4 9 13 2 2 ...

Fig. 4. Tree structure to organize the density maps in Fig. 1.Here we show
thep-count (number in each node),next (dotted lines),child (thin solid
lines), andp-list (lines connecting to a ball).

The density maps in Fig. 1 can be put into a tree structure as
shown in Fig. 4. Due to space limitations, we only show part of
the tree. Each node is shown with itsp-count field. The root
node represent a square with side length 8. The first node on
each level is stored in an array fromDM0 to DM3, in which
DM2 corresponds to the density map in Fig. 1a, andDM3 the
one in Fig. 1b. In this case,DM3 has the highest resolution
so all DM3 nodes connect to the data of the particles they
contain viap-list.

2) Tree height.:To be able to answer SDH queries with
different parameters (e.g., bucket widthp, subregion of the
simulated space), we need to build a series of density maps
from the most coarse resolution to the finest. On the coarsest
end, we can build a single node map that covers the whole
simulated space. The question is from the other end: what
should be the highest resolution in the maps? This is a
subtle issue: first, given any bucket widthp, the percentage of
resolvable cells increases with the level of the tree. However,
the number of pairs of cells also increases dramatically (i.e.,
by a factor of2d).

Recall that DM-SDH saves our time of processing SDH by
resolving cells such that we need not calculate the point-to-
point distances one by one. However, when thep-count of
a cell decreases, the time we save by resolving that cell also
decreases. Imagine a cell with ap-count of 4 or smaller (8
or smaller for 3D data/space), it does not give us any benefit
in processing SDH to further partition this cell on the next
level: the cost of resolving the partitions could be higher than
directly retrieving the particles and calculating distances (lines

7 - 11 in RESOLVETWOCELLS). Based on this observation,
the total level of density mapsH is set to be

H =

⌈
log2d

N

β

⌉
+ 1 (2)

whered is the number of dimensions and2d is essentially the
degree of tree nodes (4/8 for 2D/3D data),β is the average
number of particles we desire in each leaf node. In practice,we
setβ to be slightly greater than 4 in 2D (8 for 3D data) since
the CPU cost of resolving two cells is higher than computing
the distance between two points.

3) Other issues:In addition to the bucket widthp, which is
the most important parameter, user can attach other conditions
to a SDH query. Two common varieties of the regular SDH
query are:

1. Compute the SDH of a specific region of the whole
simulated space;

2. Compute the SDH of all particles of a specific type (e.g.,
carbon atoms) in the dataset.

The first variety requires modifications to our algorithm:
in RESOLVETWOCELLS, we need to check if both cells are
contained by the query region and add one more case for
the recursive call, that is, if the cells are resolvable but at
least one of the cells overlaps with, or locates out of, the
query region, we still need to go to the next density map. If
both cells are out of the query region, nothing needs to be
done. In calculating the distances of particles (lines 7 - 11),
again, we only consider those particles that are within the
query region. The second variety requires more informationbe
stored in the density map cells (i.e., tree nodes): in addition
to the p-count field, we keep a list of other counts, one
for each possible type of particles in the data. Fortunately, the
number of particle types is not very large in the sciences of
interest (e.g., about 10 for molecular simulation).

Another piece of information we can store in the tree
nodes is the minimum bounding rectangle (MBR) formed by
of all the particles in a node. In RESOLVETWOCELLS, we
can use the MBR of the two cells to compute the minimum
and maximum point-to-point distances. As compared to the
theoretical bounds of the space occupied by a tree node, the
MBR will cover a smaller area. Intuitively, the chance of a
cell’s being resolvable under a givenp increases as the cell
shrinks. The use of MBR can thus shorten the running time by
making more cells resolvable at a higher level on the tree. The
MBR can be easily computed when data points are loaded to
the tree, with the storage overhead of four extra coordinates
in each node.

In general, we build balanced trees that are exactlyH
levels in height. One possible optimization is to use Equation
(2) as a guideline instead of a strict rule: we can further
partition a node if it has a large number of particles in
it, giving rise to a unbalanced tree. This can benefit those
datasets with highly skewed distribution of particles. With an
unbalanced tree, we need to modify the last three lines of
code in RESOLVETWOCELLS to take resolving two cells on
different levels of the tree into account.

IV. A NALYSIS OF THE ALGORITHM

The running time of DM-SDH consists of two main parts:

1. the time spent to check if two cells are resolvable (line 0
in RESOLVETWOCELLS, constant time needed for each
operation); and

2. distance calculation for data in cells non-resolvable even
on the finest density map (lines 7 - 11 in RESOLVETWO-
CELLS, constant time needed for each distance).

As compared to the brute-force algorithm, we save time by
performing operation 1 in hope of handling multiple distances
in one shot. However, it is not clear how much overhead this
bears. Consider a tree illustrated in Fig. 5 where each level
represent a density map but each node represents a pair of cells
in the original density map. Given a histogram bucket width
p1, we start from a density mapDMi with ci cells. Thus, there
areO(c2

i) entries on the corresponding level of the tree shown
in Fig. 5. On the next mapDMi+1, there are4×4 = 16 times
of cell pairs to resolve. However, some of the cells inDMi+1

do not need to be considered as their parents are resolved
on DMi. Consider a resolvable entrya in DMi, the whole
subtree rooted ata needs no further consideration, leaving a
“hole” on the leaf level. Similarly, ifb is a resolvable entry on
a lower levelDMj , the time needed for resolving everything
in the subtree ofb is also saved. However, this subtree is
smaller than that ofa, leading to less savings of time. From
this we can easily see that the running time depends on the
bucket width: if we are given another query with bucket width
p2 < p1 such that we will start DM-SDH from levelDMj of
the tree, more cell comparisons have to be done, giving rise to
longer running time. In analyzing the time complexity of DM-
SDH, we are interested in how the running time increases as
the total number of particleN increases. Qualitatively, asN
increases, the height of the trees also increases (as we fixβ in
Equation (2)), thus a higher percentage of particle pairs can be
resolved in the cells. However, the total number of entries on
the leaf level in Fig. 5 also increases (quadratically). Therefore,
a quantitatively study on the percentage of resolvable cells on
a given level is essential in such analysis.

DMi: starting level for p1

DMj: starting level for p2

… ...

Leaf nodes

List of particle pairs

a

b

Fig. 5. A conceptual tree structure with each node representing a pair of
cells in a density map. Similarly, the data nodes hold pairs of particles.

A

O

O1O2

O3

Q

Q1

Q2

Q3

C1

C3

D1

C2

C4C5

C6

C7

C8

D2

D3

D4D5

D6

D7

D8

Fig. 6. Boundaries of bucket 1 and bucket 2 regions of cell A, with the
bucket widthp being exactly

√

2δ. Here we showQ1Q2, C1C2, andD1D2

are arcs all centered at point O.

We have accomplished a quantitative analysis on the perfor-
mance of our algorithm, which involves non-trivial geometric
modeling and algebraic manipulation of the models.

A. Basics of our model

Essentially, our analysis needs to answer the following
question: given a cellA on the first density mapDMi, how
many particles are contained by those resolvable cells related
to A as we visit more and more levels of density maps?
Although this has something to do with the spatial distribution
of the particles, we start by analyzing how much area are
covered by the resolvable cells to simplify the process. To
achieve this, we first need to define a theoretical region in
which a particle can have distance (to a point inA) that falls
into a specific bucketi. We call this region thebucketi region
of cell A.

In Fig. 6, a cell A is drawn with four corner points
O, O1, O2, and O3. The side length ofA is exactly δ =
p√
2
. The bucket 1 region ofA is bounded by a curve

connected by pointsC1 to C8. This region is drawn as follows:
C1C2, C3C4, C5C6, and C7C8 are all arcs of 90 degrees
centered at the four corners of cellA and their radii arep;
C2C3, C4C5, C6C7, and C8C1 are line segments. Note that
this is a theoretical “maximum” region where a point can
resolve with any point inA. It is easy to see that the area
of this region isπp2 + 4pδ + δ2. Let us continue to consider
distances that fall into the second bucket (i.e., [p, 2p)). Again,
the bucket 2 region ofA is of similar shape to the bucket 1
region except the radii of the arcs are2p, as drawn in Fig.
6 with a curve connected by pointsD1 to D8. However, if
a point is too close to the center, it may never resolve into
bucket 2. These points are contained in a region as follows:

g(i) =

{
(2π + 4

√
2 + 1)δ2 i = 1[

2πi2 + 4
√

2i− (i− 1)2
(
8 arctan

√
8(i− 1)2 − 1− 2π

)
+
√

8(i− 1)2 − 1
]
δ2 i > 1

(3)

on each corner point ofA, we draw an arc with radiusp on
the opposite corner (i.e., arcsQQ1, Q1Q2, Q2Q3, andQ3Q4).
For any point in this region, its distance to any point inA is
always smaller thanp. Therefore, the bucket 2 region should
not include this inner region (denoted as regionB hereafter).
A more detailed illustration of regionB is shown in Fig. 7.

The area of the bucket 2 region isπ(2p)2+8pδ less the area
of regionB, which consists of eight identical smaller regions
such aŝQ1O2D shown in Fig. 7. To get the area of̂Q1O2D,
we first need to know the magnitude of the angle∠Q1OO2,
which can be determined by

∠Q1OO2 = ∠Q1OE − ∠COE

= arctan
Q1E

EO
− π

4

= arctan

√
p2 −

(
δ

2

)2

δ

2

− π

4

Thus, the area of sector̂Q1O2O is 1
2p2

∠Q1OO2. The area of
regionQ̂1O2D can be obtained by the area of this sector less
the area of trianglesO2DC andQ1CO. By this, we get

S
Q̂1O2D

= S
Q̂1O2O

− S△O2DC − S△Q1CO

=
1

2
p2


arctan

√
p2 −

(
δ
2

)2
δ
2

− π

4


− 1

2

(
δ

2

)2

− 1

2



√

p2 −
(

δ

2

)2

− δ

2


 δ

2

=
1

2
p2


arctan

√
p2 −

(
δ
2

)2
δ
2

− π

4




− δ

4

√
p2 −

(
δ

2

)2

and we haveπ(2p)2 + 8pδ − 8S
Q̂1O2D

− SA as the area of
the bucket 2 region.

The approach to obtain the area of bucketi (i > 2) regions
is the same as above. For the area of the region formed by the
outer boundary, we only need to consider that the arcs in Fig.
7 are of radiiip. The development of a general formula for the
area of regionB is trickier. Our efforts lead to the following
formula for the bucketi region:

g(i) =

{
πp2 + 4pδ + δ2 i = 1

π(ip)2 + 4ipδ − [8A(i) + B(i)δ2] i ≥ 2

Q1

C

O

D

E

O2

Fig. 7. An illustration on how to compute the area of regionQQ1Q2Q3

formed by four arcs in Fig. 6. Here we only show half of one of the arcs.

whereB(i) = [2(i− 1)− 1]2 − 1 and

A(i) =
1

2
[(i− 1)p]2


arctan

√
[(i− 1)p]2 −

(
δ
2

)2
δ
2

− π

4




−1

2

δ

2



√

[(i− 1)p]2 −
(

δ

2

)2

− δ

2




−1

2

[
(i− 2)δ +

δ

2

]2

Since we havep =
√

2δ, the above equation becomes Eq.
(3) shown on top of this page.

B. Coverable regions

Eq. (3) gives the area of a theoretical region that contains
all particles that could have distance within a given bucketto
a given cellA. Now let us study how much of this region can
be resolved in our algorithm under different levels of density
maps. We call the region that consists of all resolvable cells
the coverable region.

1) Case 1: the first bucket:Let us start our discussions on
the situation of bucket 1. In Fig. 8, we show the coverable
regions of three different density map levels:m = 1, m = 2,
andm = 3, as represented by blue-colored lines and denoted
as A

′ in all subgraphs. Form = 1, the resolvable cells are
only those surroundingA. All other cells, even those entirely
contained by the bucket 1 region, do not resolve with any level
1 subcell ofA. As we increasem, the regionA′ grows in area,
with its boundary approaching that of the bucket 1 region. To
represent the area ofA′, we need to develop a continuous line
to approximate its boundary. One critical observation hereis:
the furtherest cells inA′ are those that can resolve with cells
on the outer rim ofA. For example, the cell cornered at point

a

C

 D

A’

A

b

A’
D

FE

G

A

C

A’

A
C

D

c

Fig. 8. Actual (solid blue line) and approximated (dotted blue line) coverable regions for bucket 1 under: a.m = 1; b. m = 2; and c.m = 3. Outer solid
black lines represent the theoretical bucket 1 region. All arrowed line segments are drawn from the centers to the corresponding arcs with radiusp.

D resolves with the cell cornered at point C inA. If we draw
a 90-degree arc centered at C, the arc goes through D and
all cells on the northwestern corner ofA′ are bounded by
this arc. To approximate the boundary ofA

′, we can draw
such an arc at all four corners of the graph and connect them
with line segments (e.g., EF connecting the northwestern and
northeastern arcs centered at point G in Fig. 8b), as shown
by the blue dotted line. Obviously, this line approaches the
theoretical boundary asm increases because the center of the
arcs (e.g., point C) move further to the corner points ofA

as the cells become smaller. Note this line gives rise to an
optimistic approximation ofA′. In a moment, we will show
that this overestimation will not harm our analysis on the
running time of DM-SDH. The area of coverable region for
bucket 1 at levelm can be expressed by the following:

SA′ = πp2 + 4p

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)2

(4)

where the first itemπp2 is the area of the four 90-degree
sectors centered at point C, the second item is the area of the
four rectangles (e.g., EFGC in Fig. 8b) connecting the four
sectors. We also need to add the area of the small square
(with side CG in Fig. 8b) within cellA, which is given by
the last item.

2) Case 2: the second bucket and beyond:The cases of
buckets beyond the first one are more complicated. First of
all, the outer boundary of the bucketi (i ≥ 2) regions can
be approximated using the same techniques we introduced for
bucket 1 (Section IV-B.1). Therefore, we can use the following
generalized form of Eq. (4) to quantify the region formed by
the outer boundaries only.

Sout(i) = π(ip)2 + 4ip

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)2

(5)

However, we also need to disregard the cells that lie in
the inner boundary (e.g., those within or near regionB).
To quantify the area of the region contained by the inner

boundary, we need to consider the cases ofm = 1 andm > 1
separately.

Bucket 3 boundaries

A

C

Bucket 2 boundaries

O

Fig. 9. Inner boundaries of the coverable regions of buckets2 and 3 under
m = 1. All arrowed line segments are of length2p.

Let us first study the case ofm = 1. Fig. 9 shows examples
with m = 1 with respect to the second and the third buckets.
It is easy to see that any cell that contains a segment of the
theoretical regionB boundary will not resolve into bucketi
because they can only resolve into bucketi− 1. Furthermore,
there are more cells that resolve into neither bucketi− 1 nor
bucketi. Here our task is to find a boundary to separate those
m = 1 cells that can resolve into bucketi with any subcell in
A and those that cannot. Such boundaries for buckets 2 and
3 are shown in Fig. 9 as solid blue lines. The boundary can
be generated as follows: on each quadrant (e.g., northwest)
of cell A, we draw an arc (dotted blue line) centered at the
corner point C of the furtherest (e.g., southeast) subcell of A

with radius(i− 1)p. Any cell that contains a segment of this
arc cannot resolve into bucketi (because they are too close to
A) but the cells beyond this line can. Therefore, we can also

O

Bucket 2 boundaries

Bucket 3 boundaries

A

C

a. m = 2 b. m = 3

Bucket 2 boundaries

A

O

C

Bucket 3 boundaries

Fig. 10. Inner boundaries of the coverable regions of buckets 2 and 3 underm = 2 andm = 3. All arrowed line segments are of length2p.

use these arcs to approximate the zigzagged real boundaries.
Let us denote the region bounded by this approximate curve
as regionB′. For m = 1, the arcs on all four quadrants share
the same centerC therefore they form a circle as regionB′.
The radii of the circles are exactly(i− 1)p for bucketi. Note
that this, again, could give rise to an optimistic approximation
of the area of coverable regions. Therefore, the area of the
coverable region form = 1 andn ≥ 2 is:

SA′ = π(ip)2 − π[(i− 1)p]2 (6)

where the first item is the area of the region formed by the
approximated outer boundary, which is given as a special case
of Eq. (5) for m = 1 and happens to be a circle; and the
second item is that of the region formed by the approximated
inner boundary (i.e., regionB′).

For the case ofm > 1, we can use the same technique
described for the case ofm = 1 to generate the curves to
form regionB

′. However, these curves are no longer a series
of circles. In Fig .10, we can find such curves for buckets
2 and 3 underm values of 2 and 3. As the four arcs on
different quadrants no longer share the same center, the region
B

′ boundaries (dotted blue lines) are of similar shapes to the
theoretical regionB boundaries (solid black lines). From the
graphs, it is easy to see that the approximated curve fits the
actual boundary better asm increases. Here we skip the formal
proof as it is straightforward. Furthermore, it also converges
to the regionB boundary whenm gets bigger. This is because
the centers of the two arcs (with the same radii), points C and
O, become closer and closer when the cell size decreases (as
a result of the increase ofm).

The area of regionB′ can be computed in the same way as
that of regionB, with the help of an illustration in Fig. 11.

First, we get the magnitude of angleBCD by

∠BCD = ∠DCE − ∠FCE

= arctan
DE

EC
− π

4

= arctan

√
[(i− 1)p]

2 −
(

δ

2
− δ

2m

)2

δ

2
− δ

2m

− π

4

The area of the sector̂BDC is 1
2 [(i−1)p]2∠BCD, and the

area of the region̂BDGF is

SdBDGF
= SdBDC

− S△DHC − S△FGH

=
1

2
[(i− 1)p]2∠BCD − 1

2
EC(DE −HE)− δ2

8

=
1

2
[(i− 1)p]2

[
arctan

√
[(i− 1)p]2 − δ2θ2

m

δθm
− π

4

]

− δ

2
θm

[√
[(i− 1)p]2 − (δθm)2 − δθm

]
− δ2

8

where we haveθm =
1

2
− 1

2m
for convenience.

Finally, we get the area of the coverable region fori ≥
2, m > 1 as

SA′ = Sout(i)− 8SdBDGF − SA

= π(ip)2 + 4ip

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)2

− 4[(i− 1)p]2

[
arctan

√
[(i− 1)p]2 − δ2θ2

m

δθm
− π

4

]

+ 4δθm

[√
[(i− 1)p]2 − (δθm)2 − δθm

]
(7)

f(i, m) =





[
2π + 4

√
2 + 1− (8

√
2 + 4)

1

2m
+

4

22m

]
δ2 i = 1, m ≥ 1

[
2π(2i− 1)

]
δ2 i ≥ 2, m = 1




2πi2 + 4
√

2i− (8
√

2i + 4)
1

2m
+

4

22m
− 8




(i− 1)2
(

arctan
γm

θm
− π

4

)

−1

2
θm (γm − θm)


+ 1





δ2 i ≥ 2, m > 1

(8)

H

O

C

B

D

E

F
G

Fig. 11. An illustration on how to compute the area of region formed by
four arcs in Fig. 10. Here we only show half of one of the arcs.

In summary, let us denote the area of the coverable region
A

′ under differenti andm values asf(i, m). By combining
and simplifying Equations 4, 6, and 7 (consideringp =

√
2δ),

we get Equation (8), in whichγm =
√

2(i− 1)2 − θ2
m.

C. Covering factor

In this section, we give a quantitative analysis on the
relationship betweenf(i, m) and the area of the theoretical
regiong(i). For that purpose, given any density map levelm,
we define thecovering factorc(m) as the ratio of the total
area of the coverable regions to that of the theoretical bucket
i regions for alli. However, the quantity that is more related
to our analysis is thenoncovering factorα(m) = 1 − c(m).
Specifically, we have

α(m) =

∑l
i=1[g(i)− f(i, m)]
∑l

i=1 g(i)
(9)

The quantityα(m) is important in that it can directly tell
how many cell pairs are resolvable on a given density map
level (as the total number of cell pairs is always known for
each level). Before investigating the features ofα(m), let us
define two relevant quantities, the total area of bucket regions
for all bucketsG, and that of all coverable regionsF . Being
summations over all buckets ofg(i) andf(i, m), they can be
expressed as functions of the total bucket numberl. We also
remove the common factorδ2 from both Eq. (3) and Eq. (8)

for the convenience of displaying equations. First, we have

G(l) =

∑l
i=1 g(i)

δ2

= 1 +
l∑

i=1

(
2πi2 + 4

√
2
)

−
l∑

i=2

[
(i− 1)2 (8 arctanσi − 2π)− σi

]

= 1 +
2

3
l
(
3
√

2 + 3
√

2l + π + 2l2π
)

−
l∑

i=2

[
(i− 1)2 (8 arctanσi − 2π)− σi

]
(10)

where σi =
√

8(i− 1)2 − 1. The area of total coverable
regions is considered in two cases. Form = 1, we get

F (l, 1) =

∑l
i=1 f(i, 1)

δ2

= 2π + 2π
l∑

i=2

(2i− 1) = 2πl2 (11)

and form > 1, we have the following formula:

F (l, m) =

∑l
i=1 f(i, m)

δ2

= 22−2m − 22−m + 1 + 2
√

2l− 2
5

2
−ml

+ 2
√

2l2 − 2
5

2
−ml2 +

3

2
lπ +

4

3
l3π

− 8

l∑

i=2

(i− 1)2 arctan

√
2(i− 1)2 − θ2

m

θm

+ 4
l∑

i=2

θm

√
2(i− 1)2 − θ2

m (12)

With the above definitions, we develop the most important
result in our analysis in the following lemma.

Lemma 1:For any given standard SDH query with bucket
width p, let DMi be the first density map our DM-SDH
algorithm starts running, andα(m) be the noncovering factor
of a density map that liesm levels belowDMi (i.e., map
DMi+m). We have

lim
p→0

α(m + 1)

α(m)
=

1

2
.

Proof: From Eq. (9), we easily get

α(m + 1)

α(m)
=

G(l)− F (l, m + 1)

G(l)− F (l, m)

Plugging Eq. (10), Eq. (11), and Eq. (12) into the above

formula, we get
α(m + 1)

α(m)
=

A(m)

B(m)
where

A(m) =
2

2m
− 1

4m
+

2
3

2

2m
(l + l2) +

l∑

i=2

√
8(i− 1)2 − 1

− 4

l∑

i=2

θm+1

√
2(i− 1)2 − θ2

m+1

+ 8

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ2

m+1

θm+1

− 8

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1 (13)

and

B(m) =
4

2m
− 4

4m
+

2
5

2

2m
(l + l2) +

l∑

i=2

√
8(i− 1)2 − 1

− 4

l∑

i=2

θm

√
2(i− 1)2 − θ2

m

+ 8

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ2

m

θm

− 8

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1 , (14)

in which θm =
1

2
− 1

2m
andθm+1 =

1

2
− 1

2m+1
.

The case ofp → 0 is equivalent tol → ∞. Despite their
formidable length and complexity,A(m) andB(m) have the
following feature

lim
l→∞

A(m)

B(m)
=

1

2
(15)

and this concludes the proof. More details on derivation of Eq.
(15) can be found in Appendix I.

What Lemma 1 tells us is: the chance that any pair of cells
is not resolvable decreases by half with the density map level
increases by one. In other words, for a pair of non-resolvable
cells onDMi (or any level lower thanDMi), among the 16
pairs of subcells on the next level, we expect16×0.5 = 8 pairs
to be resolvable. One thing to point out is: Lemma 1 not only
works well for largel (i.e., smallerp), it quickly converges
even whenl is reasonably small. This can be verified by our
numerical results shown in Table III. Furthermore, the above
result is also true for3D data, although we can only give
numerical results due to complicated formulae developed in
the 3D analysis (Section IV-D).

We have mentioned that our analysis is done based on an
overestimation of the coverable regions on each density map,

(a) Outer boundary of the bucket 1 region.

(b) Inner boundary of the bucket 2 region.

Fig. 12. Geometric structure of the bucket 1/2 regions for 3Ddata.

and the estimation error decreases asm increases. Relate this
to Lemma 1, we have an underestimated non-covering factor
α on each level. Since the estimation is more accurate on lager
m, the real ratio ofα(m + 1) to α(m) can only be smaller
than the one given by Lemma 1. And the fact that1

2 being the
upper bound has positive effects on the evaluation of the time
complexity of DM-SDH: the result shown in Section IV-E also
becomes an upper bound.

D. 3D analysis

The strategies used to achieve the above analysis can be
extended to 3D. The outer and inner boundaries of bucketi
regions are illustrated in Fig. 12. The analysis should be based
on the volume of relevant regions surrounding a cubeA with
side lengthδ. The bucket 1 region (Fig.12(a)) ofA consists
of the following components: 1) quarter cylinders (green) with
lengthδ and radiusp =

√
3δ; 2) one-eighth of a sphere (red)

with radiusp; 3) cuboids (white) with dimensionsδ, δ, and
p; and 4) cubeA itself (not shown). There are eight pieces of
each of the first three items. The inner boundary (regionB)
of the bucket 2 region (Fig. 12(b)) consists of eight identical
portions of a spherical surface centered at the opposite corner
of A with radiusp. Note that the projection of these regions
on 2D are exactly those found in Fig. 6. Again, the shape of

TABLE III

VALUES OFα(m + 1)/α(m) OF 2D DATA UNDER DIFFERENT VALUES OFm AND l. COMPUTED WITH MATHEMATICA 6.0. PRECISION UP TO THE6TH

DIGIT AFTER DECIMAL POINT.

Map Total Number of Buckets (l)

levels 2 4 8 16 32 64 128 256

m=1 0.508709 0.501837 0.50037 0.50007 0.500012 0.500002 0.5 0.5

m=2 0.503786 0.500685 0.500103 0.500009 0.499998 0.4999990.499999 0.5

m=3 0. 501749 0.500282 0.500031 0.499998 0.499997 0.4999990.5 0.5

m=4 0. 500838 0.500126 0.50001 0.499997 0.499998 0.499999 0.5 0.5

m=5 0. 50041 0.500059 0.500004 0.499998 0.499999 0.5 0.5 0.5

m=6 0.500203 0.500029 0.500002 0.499999 0.499999 0.5 0.5 0.5

m=7 0.500101 0.500014 0.500001 0.499999 0.5 0.5 0.5 0.5

m=8 0.50005 0.500007 0.5 0.5 0.5 0.5 0.5 0.5

m=9 0.500012 0.500003 0.5 0.5 0.5 0.5 0.5 0.5

m=10 0.500025 0.500002 0.5 0.5 0.5 0.5 0.5 0.5

TABLE IV

VALUES OFα(m + 1)/α(m) OF 3D DATA UNDER DIFFERENT VALUES OFm AND l. COMPUTED WITH MATHEMATICA 6.0. PRECISION UP TO THE6TH

DIGIT AFTER DECIMAL POINT.

Map Total Number of Buckets (l)

levels 2 4 8 16 32 64 128 256

m=1 0.531078 0.509177 0.502381 0.500598 0.50015 0.500038 0.50001 0.500002

m=2 0.514551 0.504128 0.50102 0.500247 0.50006 0.500013 0.500004 0.5

m=3 0.505114 0.500774 0.500051 0.499987 0.499991 0.5015510.499996 0.500004

m=4 0.498119 0.497695 0.499076 0.499717 0.499931 0.4984280.5 0.5

m=5 0.490039 0.49337 0.496703 0.499313 0.499811 0.499966 0.5 0.499983

m=6 0.47651 0.485541 0.49586 0.498521 0.499586 0.499897 0.499931 0.499897

m=7 0.448987 0.469814 0.48972 0.497032 0.499241 0.499793 0.499931 0.500138

m=8 0.38559 0.435172 0.478726 0.494029 0.49848 0.499448 0.499862 0.5

the region does not change with respect to bucket numberi -
we only need to changep to ip.

The volume of the bucketi region can thus be expressed as

g(i) =





4

3
πp3 + 6pδ2 + 3πp2δ + δ3, i = 1

4

3
π(ip)3 + 6ipδ2 + 3π(ip)2δ + δ3 − v(i, p, δ), i > 1

where the first four items in both cases represent the volumes
of the four components listed above andv(i, p, δ) is that for
the region formed by half of a spherical surface in Fig. 12(b).
With p =

√
3δ, the above equation becomes

g(i) =

{(
4
√

3π + 6
√

3 + 9π + 1
)
δ3 i = 1[

4
√

3πi3 + 6
√

3i + 9πi2 + 1− v(i, p, δ)
]
δ3 i > 1

wherev(i, p, δ) = 16VB and

VB =

∫ ∫

B

dxdy

∫ √p2−x2−y2

δ/2

dz

=

∫ ∫

B

(√
p2 − x2 − y2 − δ

2

)
dxdy

=

∫ π
4

a

dθ

∫ c

b

(√
p2 − r2 − δ

2

)
rdr

=

∫ π
4

a

[
−1

3
(p2 − r2)

3

2 − δ

4
r2

] ∣∣∣∣∣

c

b

dθ

=

∫ π
4

a

[
− δ3

24
+

1

3
(p2 − b2)

3

2 − δ

4
c2 +

1

16

δ3

(sin θ)2

]
dθ

wherea = arctan
δ
2√

p2 − 2
(

δ
2

)2 , c =

√
p2 −

(
δ
2

)2
, andb =

δ

2 sin θ
.

We continue to develop formulae for the coverable regions
f(i, m) and non-covering factorα(m) as we do in Section IV-
B and Section IV-C. These formulae can be found in Appendix
II. The complexity of such formulae3 hinders an analytical
conclusion on the convergence ofα(m+1)/α(m) towards1

2 .
Fortunately, we are able to compute the numerical values of
α(m + 1)/α(m) under a wide range of inputs. These results
(listed in Table IV) clearly show that it does converge to1

2 .

E. Time complexity of DM-SDH

With Lemma 1, we achieve the following analysis of the
time complexity of DM-SDH.

Theorem 1:In DM-SDH, the time spent on operation 1
(i.e., resolving two cells) isΘ

(
N

2d−1

d

)
whered ∈ {2, 3} is

the number of dimensions of the data.

Proof: Given a SDH query, the starting levelDMi is
fixed in DM-SDH. Assume there areI pairs of cells to be
resolved onDMi. On the next levelDMi+1, total number of
cell pairs becomesI22d. According to Lemma 1, half of them
will be resolved, leaving onlyI22d−1 pairs to resolve. On
level DMi+2, this number becomesI22d−1 1

222d = I22(2d−1).
Therefore, the number of calls to resolve cells on the different
density maps form a geometric progression

I, I22d−1, I22(2d−1), . . . , I2n(2d−1)

wheren is the total number of density maps visited. The time
spent on all cell-resolving operationsTc is basically the sum
of all items in this progression :

Tc(N) =
I
[
2(2d−1)(n+1) − 1

]

22d−1 − 1
. (16)

We useTc(N) to denote the time under a given sizeN of
the dataset. According to Equation (2), one more level of
density map will be built whenN increases to2dN . Revisiting
Equation (16), we have the following recurrence:

Tc(2
dN) =

I
[
2(2d−1)(n+2) − 1

]

22d−1 − 1
= 22d−1Tc(N)−o(1) (17)

Based on the master theorem, the above recurrence gives

Tc(N) = Θ
(
N log

2d 22d−1)
= Θ

(
N

2d−1

d

)
.

Now let us investigate the time complexity for performing
operation 2, i.e., calculating distance between particles. We
have similar results as in Theorem 1.

Theorem 2:In DM-SDH, the time spent on operation 2
(i.e., distance calculation) is alsoΘ

(
N

2d−1

d

)
.

3We use Mathematica to solve the integration in Eq. (25) and itended up
an equation that occupies 120 pages!

b4

A B

a1 a2

a3 a4

b1 b2

b3

Fig. 13. Two cells that are non-resolvable are divided into four subcells.

Proof: Like in the derivation of Equation (17), we
consider the situation of increasing the dataset size fromN to
2dN . For any pair of cells on the last density map when dataset
is of sizeN , we have the chance to divide each cell into2d

smaller cells when another density map is built (as a result of
the increase ofN). Altogether we have on the new density map
2d2d = 22d pairs to resolve, among which half are expected to
be resolved (Lemma 1). This leaves half of the distances in the
unresolved cells and they need to be calculated.* By changing
the size of the dataset fromN to 2dN , the total number of
distances between any pair of cells increases by22d times. As
half of these distances need to be calculated, the total number
of distance calculationsTd increases by22d−1. Therefore, we
have the following recurrence:

Td(2
dN) = 22d−1Td(N),

which is essentially the same as Equation (17), and this
concludes the proof.

Theorem 3:The time complexity of the DM-SDH algo-
rithm is Θ

(
N

2d−1

d

)
.

Proof: Proof is concluded by combining Theorem 1 and
Theorem 2.

F. Effects of particle spatial distribution

Theorem 1 is not affected by the locations of individual
particles since the results are based the geometric locations of
cells. However, the number of distance calculations are related
to the distribution of distances, which, in turn, is determined by
the spatial distribution of particles. In the proof of Theorem 2
(where we marked a ‘*’), we extend Lemma 1 from percentage
of cell pairs to that the ratio of resolvable distances. This
extension is obviously true for uniformly distributed particles
for which the expected number of distances any cell involves
is proportional to the cell size. In this section, we show that
the uniform (spatial) distribution of particles is not a necessary
condition for Theorem 2 to be true.

Let us consider any pair of 2D cellsA and B that are
non-resolvable on density map levelk, which is the lowest
level for a dataset withN particles. Let the expected number
of particles inA and B be a and b, respectivey. Note that
a 6= b in general (due the skewed data distribution), and we
expect to haveab distances to calculate for this two cells.
When the number of particles increases fromN to 4N , we
can build another level of density map (levelk + 1). On this
level,A andB are both divided into four cells. Let us denote
the expected number of particles before the increase ofN in

c d ip e f c d ip e fc d ip e f

Fig. 14. Three cases of distribution of distances around theedge of buckets
i andi+1, with the solid curves representing portions of the densityfunction
of the distances;[c, d] and[e, f] are examples of distance ranges of resolvable
subcells. Those of the non-resolvable subcells are not shown.

the subcells asai (i ∈ {1, 2, 3, 4}) and bj (j ∈ {1, 2, 3, 4}).
We immediately havea =

∑4
i=1 ai and b =

∑4
j=1 bj. When

N becomes4N , ai andbj all get a four-fold increase and the
number of expected distances to calculate becomes

Tk+1 =
∑

i,j

Pi,j4ai4bj (18)

wherePi,j is a binary variable that tells whether cell pairai

andbj is non-resolvable on the new density mapk+1. Without
any assumptions, we only know that the average ofPi,j over
all combinations ofi andj is 0.5 (i.e., Lemma 1). For Theorem
2 to be true, we need to show thatTk+1 = 16

2 Tk = 8ab.
We first see that, if the distribution of particles is cell-

wise uniform on density mapk, we can achieve the above
condition. Being cell-wise uniform means that the data are
uniformly distributed within the cells, i.e., we should have
a1 = a2 = a3 = a4 = a

4 and b1 = b2 = b3 = b4 = b
4 ,

which easily leads toTk+1 =
P

Pi,j

16 16ab = 8ab. The cell-
wise uniform distribution is a weaker assumption than the
dataset-wise uniform distribution (which requiresa = b). In
simulation data, this can be a safe assumption as the particles
will not be indefinitely close to each other due to the existence
of bonds and inter-molecular forces. Note that we only need
to make this assumption for the smallest cells (i.e., those on
the leaf nodes of the tree). Cell-wise uniform is also a popular
assumption in current spatial-temporal database studies [16].

A more general discussion on the necessary condition of
Theorem 2 would be helpful in identifying its limitations.
Revisiting Eq. (18), we see thatTk+1 is basically a sum
of 16aibj weighted byPi,j , which has an average of 0.5.
Therefore, we conclude that, forTk+1 ≤ 8ab to hold true,the
spatial distribution of particles should NOT be strongly
(positively) correlated to the cells that are non-resolvable.
In other words, we cannot have the situation where the case of
Pi,j = 1 are always associated with largeaibj values. If we
look at the distribution of the distances, this also means that
we cannot have high density of distances centering around the
bucket boundaries, as shown in the middle graph of Fig. 14.
Suppose two cells (e.g.,A andB in Fig. 13) has a distance
range[c, f], which overlaps with bucketsi andi+1, as shown

pppp

Fig. 15. A spatial distribution of particles that leads to large number of
non-resolvable distances. Each ball represents a cluster of particles.

in Fig. 14. With one more density map, their subcells could
generate resolvable distance ranges such as[c, d] and[e, f] on
the two sides ofip - the boundary of the two buckets. It also
generates non-resolvable distance ranges centering around ip.
If the distribution of distances has heavy density aroundip,
most of the area under the density curve will fall into the non-
resolvable ranges. On the contrary, if the density curve around
ip is not a sharp peak (left hand side in Fig. 14), we could
have an equal amount of area under the resolvable and non-
reaolvable ranges. Or, in another extreme case (right hand side
of Fig. 14) where the density is very low aroundip, most of
the distances will be in the resolvable range.

Having a distance distribution like the one in the middle
graph of Fig. 14 means large number of particles are in high-
density clusters that areip in distance. For this to be true in
more than onei, the particles must be organized in a linear
pattern as shown in Fig. 15. Fortunately, real simulation data
will not likely generate such distance distributions because
the particles in nature tend to spread out in space (instead of
aligning in a line). Even if such distributions are encountered,
there is an easy remedy: we can compute another histogram
by moving all buckets to the left or right byp2 . By this, we can
generate a histogram that shows all the trends in the distance
distribution (exactly what we need in a histogram) yet most
of the distance calculations are avoided.

G. General tiling approach in space partition

We use a regular tiling approach to partition the space in
building the trees, i.e., the subcells are of the same shape
(square/cube) as the parent cell. In the previous analysis,for
each node, we evenly cut each dimension by half, leading to2d

partitions (child nodes) on the next level. However, in general,
we could cut each dimension intos > 2 equal segments,
giving rise tosd equal-sized squares or cubes. Interestingly,
the value ofs does not affect time complexity of the DM-SDH
algorithm.

First, the theoretical bucket regions given by Eq. (3) are not
affected. For the coverable regions, we incorporate the tiling
factor s into the same reasoning as what we utilize to obtain
Eq. (8). One exception here is the case ofm = 1, i ≥ 2:
the approximate coverable region does not form a series of
circles whens > 2, therefore Eq. (6) does not hold and this
case should be handled in the same way as the case ofm >
1, i ≥ 2. Skipping the details, we get an improved version

of Eq. (8) for s > 2 as Eq. (19), whereθ′m =
1

2
− 1

sm

and γ′
m =

√
2(i− 1)2 − θ′m

2. With Eq. (19) to describe the
coverable regions, we can easily generate new equations for

TABLE V

EXPECTED PERCENTAGE OF PAIRS OF CELLS THAT CAN BE RESOLVED UNDER DIFFERENT LEVELS OF DENSITY MAPS AND TOTAL NUMBER OF

HISTOGRAM BUCKETS. COMPUTED WITH MATHEMATICA 6.0.

Map Total Number of Buckets (l)

levels 2 4 8 16 32 64 128 256

m=1 50.6565 52.1591 52.5131 52.5969 52.6167 52.6214 52.6225 52.6227

m=2 74.8985 75.9917 76.2390 76.2951 76.3078 76.3106 76.3112 76.3114

m=3 87.3542 87.9794 88.1171 88.1473 88.1539 88.1553 88.1556 88.1557

m=4 93.6550 93.9863 94.0582 94.0737 94.0770 94.0777 94.0778 94.0778

m=5 96.8222 96.9924 97.0290 97.0369 97.0385 97.0388 97.0389 97.0389

m=6 98.4098 98.4960 98.5145 98.5184 98.5193 98.5194 98.5195 98.5195

m=7 99.2046 99.2480 99.2572 99.2592 99.2596 99.2597 99.2597 99.2597

m=8 99.6022 99.6240 99.6286 99.6296 99.6298 99.6299 99.6299 99.6299

m=9 99.8011 99.8120 99.8143 99.8148 99.8149 99.8149 99.8149 99.8149

m=10 99.9005 99.9060 99.9072 99.9074 99.9075 99.9075 99.9075 99.9075

f(i, m, s) =





[
2π + 4

√
2 + 1− (8

√
2 + 4)

1

sm
+

4

s2m

]
δ2 i = 1, m ≥ 1





2πi2 + 4
√

2i− (8
√

2i + 4)
1

sm
+

4

s2m
− 8




(i− 1)2
(

arctan
γ′

m

θ′m
− π

4

)

−1

2
θ′m (γ′

m − θ′m)


+ 1





δ2 i > 1, m > 1

(19)

the covering factor as a function ofm and s. By studying
these functions, we get the following lemma.

Lemma 2:With a tiling factors (s ∈ Z+), the non-covering
factors have the following property

lim
l→∞

α(m + 1, s)

α(m, s)
=

1

s
.

Proof: See Apprendix III for details.

Lemma 2 is obviously a nicely-formatted extension of
Lemma 1. As Lemma 1, it is well supported by numerical
results even under smaller values ofl (details not shown in
this paper). In Section??, we will discuss the effects ofs on
the time complexity of DM-SDH.

H. Other costs

I/O costs.In the previous analysis, we focus on the CPU
time of the algorithm. Depending on the blocking strategy
we use for retrieving data from disk, the exact I/O cost of
DM-SDH varies. The bottomline, however, is that the I/O
complexity will be asymptotically lower than the quadraticI/O
cost needed for calculating all distances.4 A straightforward
implementation of DM-SDH will give us an I/O complexity
O
(
(N

b)
2d−1

d

)
whereb is the number of records in each page.

To be specific:

4To be specific, it isO
`

(N

b
)2 1

B

´

whereb is the page factor andB is the
blocking factor if we use a strategy like in block-based nested-loop join.

1. the distance calculations will happen between data points
organized in data pages of associated density map cells
(i.e., no random reading is needed). On average, one data
page only needs to be paired withO

(√
N
)

other data
pages for distance calculation (Theorem 2) in 2D space;

2. I/O complexity for reading density map cells will be the
same as in 1. In practice, it will be much smaller, as the
size of the nodes is small.

It would be interesting to investigate how we can improve our
algorithm to take advantage of blocking and prefetching.

Storage overhead.The storage cost of our algorithm is
bound by the size of the density map of the highest resolution
we store (leaf nodes in the Quad-tree), as map size deceases
exponentially with the decrease of resolution. Obviously,the
space complexity isO

(
N
)
. The total storage overhead will be

really small if we have a Quadtree index built for the dataset,
which is a popular practice in scientific databases [18]. In this
case, we only need to add ap-count field andnext pointer
to each index node.

V. A PPROXIMATE SDH QUERY PROCESSING

While the DM-SDH algorithm is more efficient than current
SDH processing methods, its running time for large datasetsis
still undesirably long. Actually, there are cases where even a
coarse SDH will greatly help the fine-tuning of simulation
programs [6]. On the other hand, the main motivation to
process SDHs is to study the statistical distribution of point-to-
point distances in the simulated system [6]. Since a histogram

by itself is an approximation of the underlying distribution
g(r) (Equation 1), an inaccurate histogram generated from a
given dataset will still be useful in a statistical sense. Inthis
section, we introduce a modified SDH algorithm to give such
approximate results to gain better performance in return. Two
must-have features for a decent approximate algorithm are :1)
provable and controllable error bounds such that the users can
have an idea on how close the results are to the fact; and 2)
analysis of costs to reach (below) a given error bound, which
enables desired performance/correctness tradeoffs. Fortunately,
our analytical results shown in Section IV makes the derivation
of such error bounds and cost model an easy task.

In the DM-SDH algorithm, we have to : 1) keep resolving
cells till we reach the lowest level of the tree; 2) calculate
point-to-point distances when we cannot resolve two cells on
the leaf level of the tree. Our idea for approximate SDH
processing is: stop at a certain tree level and totally skip
all distance calculations if we are sure that the number of
distances in the unvisited cell pairs fall below some error
tolerance threshold.

Recall that, for any given density mapDMi+m and total
number of bucketsl, our analytical model gives the percentage
of non-resolvable cell pairsα(m) (Equation (9)). Due to the
existence of a closed-form formula,α(m) can be efficiently
computed. We list some values of1 − α(m), the percentage
of resolvablecell pairs, in Table V. Given a user-specified
error boundǫ, we can find the appropriate levels of density
maps to visit such that the unvisited cell pairs only contain
less thanǫN(N−1)

2 distances. For example, for a SDH query
with 128 buckets and error bound ofǫ = 3%, we getm = 5
by consulting the table. This means, to ensure the 3% error
bound, we only need to visit five levels of the tree (excluding
the starting levelDMi), and no distance calculation is needed.
Table V serves as an excellent validation of Lemma 1:α(m)
almost exactly halves itself whenm increases by 1, even when
l is as small as 2. Since the numbers on the first row (i.e.,
values for1−α(1)) are also close to 0.5, a rule-of-thumb for
choosingm is

m = lg
1

ǫ
.

The cost of the approximate algorithm only involves resolving
cells on them+1 levels of density maps. Borrowing Equation
(17), we obtain the time complexity of the new algorithm

Tc(N) ≈ I2(2d−1)m = I2(2d−1) lg 1

ǫ = I

(
1

ǫ

)2d−1

(20)

whereI is the number of cell pairs on the starting density map
DMi, and it is solely determined by the query parameterp.
Apparently, the running time of this algorithm is not related
to the input sizeN .

Now let us discuss how to deal with those non-resolvable
cells after visitingm+1 levels on the tree. In giving the error
bounds in our approximate algorithm, we are conservative
in assuming the distances in all the unresolved cells will be
placed into the wrong bucket. In fact, this almost will never
happen because we can distribute the distance counts in the

(i-1)p ip (i+1)p (i+2)pu v
......

distance

Range of inter-cell

distances

bucket

i+1

bucket

i

bucket

i+2

Fig. 16. Distance range of two resolvable cells overlap withthree buckets.

unvisited cells to the histogram buckets heuristically andsome
of them will be done correctly. Consider two non-resolvable
cells in a density map with particle countsn1 and n2 (total
number ofn1n2 distances between them), respectively. We
know their minimum and maximum distancesu andv (these
are calculated anyway in our attempt to resolve them) fall
into multiple buckets. Fig. 16 shows an example that spans
three buckets. Using this example, we describe the following
heuristics to distributed then1n2 total distance counts into the
relevant buckets. These heuristics are ordered in their expected
correctness.

1. Put alln1n2 distance counts into one bucket;
2. Evenly distribute the distance counts into the three buck-

ets involved, i.e., each bucket gets1
3n1n2;

3. Distribute the distance counts based on the overlaps
between range[u, v] and the buckets. In Fig. 16, the
distances put into bucketsi, i + 1, and i + 2 are

n1n2
ip− u

v − u
, n1n2

p

v − u
, andn1n2

v − (i + 1)p

v − u
, respec-

tively. Apparently, by adapting this approach, we assume
the (statistical) distribution of the point-to-point distances
between the two cells is uniform;

4. Assuming a spatial distribution model (e.g., uniform) of
particles within individual cells, we can generate the
statistical distribution of the distances either analytically
or via simulations, and put then1n2 distances to involved
buckets based on this distribution.

Note that all four methods need constant time to compute a
solution for two cells (In the fourth one, the distribution of the
distances can be derived offline). According to our experiments
(Section VI-B), they generate much less error than we expect
from the theoretical bounds shown in Table V.

VI. EXPERIMENTAL RESULTS

We have implemented the algorithms using the C pro-
gramming language and tested it with various synthetic/real
datasets. The experiments are run at an Apple Mac Pro
workstation with two dual-core 2.66GHz Intel Xeon CPUs,
and 8GB of physical memory. The operating system is OS X
10.5 Leopard.

A. Exact PDH processing usingDM-SDH

The main purpose of this experiment is to verify the time
complexity of DM-PDH. In Fig. 17, the running time of
our algorithm are plotted against the size of 2D experimen-
tal datasets. Fig. 17a shows the results of using synthetic
datasets where the locations of individual atoms are distributed

100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

a. Uniformly distributed data

l=4
l=16
l=64

l=256
Dist

T = O(N1.5) 100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

b. Zipf-distributed data

l=4
l=16
l=64

l=256
Dist

T = O(N1.5) 100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

c. Real data

l=4
l=16
l=64

l=256
Dist

T = O(N1.5)

Fig. 17. Running time of the SDH processing algorithms with 2D data.

100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

a. Uniform distributed data

l=2
l=4

l=16
l=64
Dist

T = O(N5/3)
100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

b. Zipf-distributed data

l=2
l=4

l=16
l=64
Dist

T = O(N5/3)
100

101

102

103

104

105

106

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

c. Real data

l=2
l=4

l=16
l=64
Dist

T = O(N5/3)

Fig. 18. Running time of the SDH processing algorithms with 3D data.

uniformly in the simulated space and Fig. 17b for those
following a Zipf distribution with order one, and Fig. 17c
for data generated from Pandit’s previous work to simulate
a bilayer membrane lipid system in NaCl and KCl solutions,
as illustrated in Fig. 19. This dataset has 286000 atoms in
it, we randomly choose and duplicate atoms in this dataset to
reach different total number of atoms to make the experiments
comparable to those in Fig. 17a and 17b. Note that both the
running time and data size are plotted on logarithmic scales
therefore the gradient of the lines reflects the time complexity
of the algorithms. In all graphs, we show the results of a series

of doublingN values ranging from 100,000 to 6,400,000.5

For all three datasets, the brute-force approach (‘Dist’)
shows an exact quadratic running time (i.e., the gradient ofthe
line is 2). The other lines (with spots) represent experiments
using our algorithm under different bucket numbers. Clearly,
the running time of our algorithm grows less dramatically -
they all have a gradient of about 1.5. For comparisons, we draw
a dotted line in each graph with a slope of exactly 1.5. When
bucket size decreases, it takes more time to run our algorithm,
although the time complexity is stillΘ(N1.5). The cases of

5Each point in the graphs shows the result of one single run of DM-PDH as
the long running time under largeN prohibits having multiple runs. However,
we did run multiple experiments with different random seedsfor the cases of
smallerN and observed very little variances in running time.

Fig. 19. The simulated hydrated dipalmitoylphosphatidylcholine bilayer
system. We can see two layers of hydrophilic head groups (with higher atom
density) connected to hydrophobic tails (lower atom density) are surrounded
by water molecules (red dots) that are almost uniformly distributed in space.

large bucket numbers (‘l = 256’) are worth some attention:
its running time is similar to that of the brute-force approach
when N is small. However, asN increases, the gradient of
the line changes to around 1.5. The reason for this is: whenN
is small, we have a tree with very few levels; when the query
comes with a very small bucket sizep, we ended up starting
DM-SDH from the leaf level of the tree (recall Fig. 5) and
have to essentially calculate most or all distances. However,
the same query will get the chance to resolve more cells
when the tree becomes taller, as a result of largerN . Another
interesting discovery is that the actual running time for the
skewed data (Zipf) is always lower than the uniform data. This
can be seen by the relative positions of colored lines to the
‘T = O(N1.5)’ line. This gain of performance comes from the
larger number of empty cells on each density map when the
particles are clustered. This also confirms our argument that
skewed distribution does not affect the correctness of Theorem
2. The results of the real dataset are almost the same as those
for the uniform data.

We have similar results for 3D data (Fig. 18): the corre-
sponding lines for DM-SDH have slopes that are very close
to 5

3 , confirming our asymptotic analysis. Again, the cases for
large l values are worth more discussions. For ‘l = 64’, we
started to see the scenarios of ‘l = 256’ in the 2D case: the
running time grows quadratically tillN becomes fairly large
(1,600,000) and then the line changes its slope to5

3 . One thing
to notice is the slope of the last segment of ‘l = 64’ in Fig.
18b is almost 2. This does not mean the time complexity is
going back to quadratic. In fact, it has something to do with
the zigzag pattern of running time change in the Zipf data:
for three consecutive doublingN values (8-fold increase), the
running time increases by 2, 4, and 4 times, which still gives
a 2 × 4 × 4 = 32 fold increase in total running time (vs. a
64-fold increase in algorithms with quadratic time).

B. Approximate histogram processing

Figure 20 shows the results of running the approximate
algorithm. In these experiments, we set the programs to stop
after visiting m levels of density maps and distribute the
distances using the first three heuristics (Section V). We then
compare the approximate histogram with those generated by
regular DM-PDH. The error rate is calculated as

∑
i |hi −

h′
i|/
∑

i hi where for any bucketi, hi is the accurate count
andh′

i the count given by the approximate algorithm.
According to Fig. 20a, the running time does not change

with the increase of dataset size form = 1, 2, 3. When m
is 4 or 5, the running time increases whenN is small and
then stays as a constant afterwards. Note that the ‘unlimited’
case shows the results of the basic SDH algorithm. Again, this
is because the algorithm has less than 4 or 5 levels to visit
in a short tree resulted from smallN values. In these cases,
our algorithm only saves the time to calculate the unresolved
distances. WhenN is large enough, running time no longer
changes with the increase ofN .

We observe surprising results on the error rates (Fig. 20
c-d): all experiments have error rates under 3%, even for the
cases ofm = 1! These are much lower than the error bounds
we get from Table V. The correctness achieved by heuristic
1 is significantly lower than those by heuristic 2 and 3, as
expected. The performance of the latter two are very similar
except in the case ofm = 1 where heuristic 2 had error rates
around 0.5%. Whenm > 2, the error rate approaches zero
with the dataset becomes larger. Heuristic 3 achieves very low
error rates even in scenarios with smallm values.

C. Discussions

At this point, we can conclude with confidence that the
DM-SDH algorithm has running time in conformity with our
analytical results. On the other hand, we also see that, in
processing exact SDHs, it shows advantages over the brute-
force approach only whenN is large (especially whenl is also
big). However, we would not call this a major limitation of
the algorithm as the SDH problem is less meaningful whenN
is small (especially for largel). Its limitation, in our opinion,
is that the time complexity, although superior to quadratic, is
still too high to compute SDH for reasonably large simulation
dataset. Fortunately, our approximate algorithm providesan
elegant practical solution to the problem. According to our
experiments, extremely low error rates can be obtained even
we only visit as few as three levels of density maps. Note that
for largeN , the trees are very likely to have more than three
levels to explore even whenl is large.

The potential of the approximate algorithm shown by cur-
rent experiments is very exciting. Our explanation for the
surprisingly low error rate is: in an individual operation to
distribute the distance counts heuristically, we could have
made a big mistake by putting too many counts into a bucket
(e.g., bucketi in Fig. 16) than needed. But the effects of this
mistake could be canceled out by a subsequent mistake where
too few counts are put into bucketi. The error rate is measured
after the binning is done, thus reflecting the net effects of all

10-2

10-1

100

101

102

103

104

105

106

105 106

R
un

ni
ng

 ti
m

e
(s

ec
)

Total number of atoms

a. time for heuristic 2

1 level
2 levels
3 levels
4 levels
5 levels

unlimited

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

105 106

E
rr

or
 r

at
e

(%
)

Total number of atoms

b. heuristic 1

1 level
2 levels
3 levels
4 levels
5 levels

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

105 106

E
rr

or
 r

at
e

(%
)

Total number of atoms

c. heuristic 2

1 level
2 levels
3 levels
4 levels
5 levels

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

105 106

E
rr

or
 r

at
e

(%
)

Total number of atoms

d. heuristic 3

1 level
2 levels
3 levels
4 levels
5 levels

Fig. 20. Running time and correctness of the approximate SDHprocessing algorithm.

positive and negative mistakes. While more experiments under
different scenarios are obviously needed, investigationsfrom
an analytical angle are more urgent. We understand that the
bound given by Table V is a loose bound. The real error bound
should be described asǫ = ǫ1ǫ2 whereǫ1 is the percentage
given by Table V andǫ2 is the error rate created by the
heuristic binning.

VII. R ELATED WORK

Conventional (relational) database systems are designed
and optimized towards data and applications from the busi-
ness world. In recent years, the database community has
invested much efforts into constructing database systems
that are suitable for handling scientific data. The following
are well-known examples of such projects: the GenBank
(http://www.ncbi.nlm.nih.gov/Genbank) database for biologi-
cal sequences; the Sloan Digital Sky Survey [2] to explore
over 200 million astronomical objects in the sky; the QBISM
project [19] for querying and visualizing 3D medical images;
the BDBMS project [3] for handling annotation and prove-
nance of biological sequence data; and the PeriScope [5]
project for declarative queries against biological sequences.
The main challenges and possible solutions of scientific data
management are discussed in [1]. Traditionally, molecular
simulation data are stored in large files and queries are imple-
mented in standalone programs, as represented by popular sim-
ulation/analytics packages [?], [20]. The scientific community
has gradually moved towards using database systems for the
storage, retrieval, and analysis of large-scale simulation data,
as represented by the BioSimGrid [4] and SimDB [21] projects
developed for molecular simulations. However, such systems
are still in short of efficient query processing strategies.To
the best of our knowledge, the computation of SDH in such
software packages is done in a brute-force way.

Although the SDH problem has not been studied in the
database community, our work is deeply rooted in the phi-
losophy of using tree-based indexing for pruning the infor-
mation that is not needed. Quadtree has been a well-studied

data structure that has applications spanning databases, image
processing, GIS, and computer graphics [22] and has been a
topic for research till now: a recent work [23] showed some
performance advantages of Quadtree over R-tree in query
processing. Various metric trees [24], [25] are closely related
to our density map construction: in these structures, spaceis
partitioned into two subsets on each level of the tree. However,
the main difference between our work and these tree-based
strategies is: we consider the relative distance of cells togroup
the distance between the data in the cells while they focus
more on searching based on a similarity measure.

In particle simulations, the computation of (gravita-
tional/electrostatic) force is of similar flavor to the SDH query.
Specifically, the force (or potential) is the sum of all pairwise
interactions in the system, thus requiresO(N2) steps to
compute. The simulation community has adopted approximate
solutions represented by the Barnes-Hut algorithm that runs on
O(N log N) time [26] and the Multi-pole algorithm [27] with
linear running time. Although both algorithms use a Quad-tree-
like data structure to hold the data, they provide little insights
on how to solve the SDH problem. The main reason is that
these strategies take advantage of two features of force: 1). for
any pairwise interaction, its contribution to the force decreases
dramatically when particle distance increases; 2). the effects of
symmetric interactions cancel out. However, neither features
are applicable to SDH computation, in which every pairwise
interaction counts and all are equally important.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we argue that the SDH query is critical in
analyzing particle simulation data. To improve the efficiency
of processing this query, we take advantage of the fact that
distance calculation can be processed in a batch instead of
individually. We build a data structure based on a point region
Quadtree to systematically solve this problem. Our analysis
shows that the time complexity of our basic algorithm beats
current solutions: it runs atΘ

(
N

2d−1

d

)
with d being the data

dimension number. An approximate algorithm derived from

our approach runs at constant time while giving surprisingly
low error rates. We believe our work has provided valuable
theoretical and practical insights on the problem such that
computing PDH in large simulations has become a reality.

Our work on this topic can be extended in multiple di-
rections. First, the approximate algorithm has shown great
potential. Based on the experimental results shown in this
paper, we strongly believe there is a tighter bound on the
level of errors. Sophisticated (statistical) models should be
generated to study this error bound. Second, we should explore
more space partitioning plans in building the Quadtree in
hope to find one with the “optimal” (or just better) cell
resolving percentage. Another topic that we did not pay much
attention to is the optimization targeting at the I/O costs.The
main issue is how to pack tree nodes into pages and what
prefetching strategy we can adopt to improve I/O performance.
Finally, our discussions totally ignored another dimension in
the data - time. Simulation data are essentially continuous
snapshots (calledframes in simulation terminology) of the
simulated system. With large number of frames, processing
SDH separately for each frame will take intolerably long time
for any meaningful simulation dataset. Incremental solutions
need to be developed, taking advantage of the similarity
between neighboring frames.

ACKNOWLEDGMENT

The authors would like to thank Prof. Dan Lin of the
Department of Computer Science at Purdue University for
sharing her insights on this project.

REFERENCES

[1] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay, D. DeWitt, and
G. Heber, “Scientific Data Management in the Coming Decade,”SIG-
MOD Record, vol. 34, no. 4, pp. 34–41, December 2005.

[2] A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik, J.Raddick,
C. Stoughton, and J. vandenBerg, “The SDSS Skyserver: Public Access
to the Sloan Digital Sky Server Data,” inProceedings of International
Conference on Management of Data (SIGMOD), 2002, pp. 570–581.

[3] M. Y. Eltabakh, M. Ouzzani, and W. G. Aref, “BDBMS - A Database
Management System for Biological Data,” inProceedings of the 3rd
Biennial Conference on Innovative Data Systems Resarch (CIDR), 2007,
pp. 196–206.

[4] M. H. Ng, S. Johnston, B. Wu, S. E. Murdock, K. Tai, H. Fangohr, S. J.
Cox, J. W. Essex, M. S. P. Sansom, and P. Jeffreys, “BioSimGrid: Grid-
enabled Biomolecular Simulation Data Storage and Analysis,” Future
Generation Computer Systems, vol. 22, no. 6, pp. 657–664, June 2006.

[5] J. M. Patel, “The Role of Declarative Querying in Bioinformatics,”
OMICS: A Journal of Integrative Biology, vol. 7, no. 1, pp. 89–91,
2003.

[6] D. Frenkel and B. Smit,Understanding Molecular Simulation From Al-
gorithm to Applications, ser. Computational Science Series. Academic
Press, 2002, vol. 1.

[7] M. P. Allen and D. J. Tildesley,Computer Simulations of Liquids.
Clarendon Press, Oxford, 1987.

[8] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods.
Wiley, New York, 1992.

[9] D. P. Landau and K. Binder,A Guide to Monte Carlo Simulation in
Statistical Physics. Cambridge University Press, Cambridge, 2000.

[10] P. K. Agarwal, L. Arge, and J. Erikson, “Indexing MovingObjects,”
in Proceedings of International Conference on Principles of Database
Systems (PODS), 2000, pp. 175–186.

[11] M. Bamdad, S. Alavi, B. Najafi, and E. Keshavarzi, “A new expression
for radial distribution function and infinite shear modulusof lennard-
jones fluids,”Chem. Phys., vol. 325, pp. 554–562, 2006.

[12] J. L. Stark and F. Murtagh,Astronomical Image and Data Analysis.
Springer, 2002.

[13] A. Filipponi, “The radial distribution function probed by X–ray absorp-
tion spectroscopy,”J. Phys.: Condens. Matter, vol. 6, pp. 8415–8427,
1994.

[14] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida,
L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock,
S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F.Pearce,
“Simulations of the Formation, Evolution and Clustering ofGalaxies and
Quasars,”Nature, vol. 435, pp. 629–636, June 2005.

[15] J. A. Orenstein, “Multidimensional Tries used for Associative Search-
ing,” Information Processing Letters, vol. 14, no. 4, pp. 150–157, 1982.

[16] Y. Tao, J. Sun, and D. Papadias, “Analysis of predictivespatio-temporal
queries,”ACM Trans. Database Syst., vol. 28, no. 4, pp. 295–336, 2003.

[17] I. Csabai, M. Trencseni, L. Dobos, P. Jozsa, G. Herczegh, N. Purger,
T. Budavari, and A. S. Szalay, “Spatial Indexing of Large Multidimen-
sional Databases,” inProceedings of the 3rd Biennial Conference on
Innovative Data Systems Resarch (CIDR), 2007, pp. 207–218.

[18] M. Arya, W. F. Cody, C. Faloutsos, J. Richardson, and A. Toya,
“QBISM: Extending a DBMS to Support 3D Medical Images,” inICDE,
1994, pp. 314–325.

[19] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4:
Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular
Simulation,”Journal of Chemical Theory and Computation, vol. 4, no. 3,
pp. 435–447, March 2008.

[20] M. Feig, M. Abdullah, L. Johnsson, and B. M. Pettitt, “Large Scale
Distributed Data Repository: Design of a Molecular Dynamics Trajec-
tory Database,”Future Generation Computer Systems, vol. 16, no. 1,
pp. 101–110, January 1999.

[21] H. Samet,Foundations of Multidimensional and Metric Data Structure.
Morgan Kaufman, 2006.

[22] Y. J. Kim and J. M. Patel, “Rethinking Choices for Multi-dimensional
Point Indexing: Making the Case for the Often Ignored Quadtree,” in
Proceedings of the 3rd Biennial Conference on Innovative Data Systems
Resarch (CIDR), 2007, pp. 281–291.

[23] J. K. Uhlman, “Metric Trees,”Applied Mathematics Letters, vol. 4, no. 5,
pp. 61–62, 1991.

[24] P. N. Yianilos, “Data Structures and Algorithms for Nearest Neighbor
Search in Metric Spaces,” inProceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1993, pp. 311–321.

[25] J. Barnes and P. Hut, “A Hierarchical O(N log N) Force-Calculation
Algorithm,” Nature, vol. 324, no. 4, pp. 446–449, 1986.

[26] L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulations
,” Journal of Computational Physics, vol. 135, no. 12, pp. 280–292,
1987.

APPENDIX I
THE DERIVATION OF EQ. (15)

We accomplish this proof by studying the difference betweenA(m)
B(m) and 1

2 . First, we see

A(m) − B(m)

2
=

l∑

i=2

√
2(i− 1)2 − 1

4
− 4

l∑

i=2

θm+1

√
2(i− 1)2 − θ2

m+1

+ 2

l∑

i=2

θm

√
2(i− 1)2 − θ2

m + 8

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ2

m+1

θm+1

− 4

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ2

m

θm
− 4

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1 (21)

When l →∞, we have the results shown in (22).

l∑

i=2

√
2(i− 1)2 − 1

4
−→

l∑

i=2

√
2(i− 1)

l∑

i=2

θm+1

√
2(i− 1)2 − θ2

m+1 −→
l∑

i=2

θm+1

√
2(i− 1)

l∑

i=2

θm

√
2(i− 1)2 − θ2

m −→
l∑

i=2

θm

√
2(i− 1)

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ2

m+1

θm+1
−→

l∑

i=2

(i− 1)2 arctan2
√

2(i− 1)

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ2

m

θm
−→

l∑

i=2

(i− 1)2 arctan2
√

2(i− 1)

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1 −→
l∑

i=2

(i− 1)2 arctan2
√

2(i− 1) (22)

Plugging the left-hand side of six formulae in (22) into Eq. (21), we getA(m)− B(m)
2 −→ 0 and thusA(m) −→ B(m)

2 .

APPENDIX II
RELEVANT QUANTITIES IN 3D ANALYSIS

These formulae are listed on the last page of this paper as Eq.(23) to Eq. (25).

VB′(m) =

∫ ∫

B′

dxdy

∫ q
p2−(x− δ

2m)2−(y− δ
2m)2

+ δ
2m

δ
2

dz

=

∫ ∫

B′



√

p2 −
(

x− δ

2m

)2

−
(

y − δ

2m

)2

− δθm


 dxdy

=

∫ π
4

a

dφ

∫ c

b

(√
p2 − r2 − δθm

)
rdr

=

∫ π
4

a

[
−1

3
(p2 − r2)

3

2 − δθm

2
r2

] ∣∣∣∣∣

c

b

dφ

=

∫ π
4

a

[
− (δθm)3

3
+

1

3

(
p2 − b2

) 3

2 − δθm

2

[
p2 − (δθm)2

]
+

δθm

2
b2

]
dφ (23)

Here we havea = arctan
δθm√

p2 − 2(δθm)2
, b =

δθm

sin φ
, andc =

√
p2 − (δθm)2.

The coverable region is

f(i, m) =





4

3
πp3 + 6p

(
δ − 2δ

2m

)2

+ 3πp2δ

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)3

n = 1, m ≥ 1

4

3
π(ip)3 − 4

3
π[(i− 1)p]3 n ≥ 2, m = 1

4

3
π(ip)3 + 6ip

(
δ − 2δ

2m

)2

+ 3π(ip)2δ

(
δ − 2δ

2m

)
+

(
δ − 2δ

2m

)3

− v(i, m, p, δ) n ≥ 2, m > 1

Simplifying the above withp =
√

3δ, we get

f(i, m) =





[
4
√

3π + 6
√

3

(
1− 2δ

2m

)2

+ 9π

(
1− 2

2m

)
+

(
1− 2

2m

)3
]

δ3 n = 1, m ≥ 1

[4
√

3πi3 − 4
√

3π(i− 1)3]δ3 n ≥ 2, m = 1[
4
√

3πi3 + 6
√

3i

(
1− 2δ

2m

)2

+ 9πi2
(

1− 2

2m

)
+

(
1− 2

2m

)3

− v(i, m, p, δ)

]
δ3 n ≥ 2, m > 1

wherev(i, m, p, δ) = 16VB′(m).
Continue with the same reasoning as in Section IV-C, we have

G(l) =

∑l
i=1 g(i)

δ3
=

l∑

i=1

(
4
√

3πi3 + 6
√

3i + 9πi2 + 1
)

− 16

l∑

i=2

∫ π
4

q


− 1

24
+

1

3

(
3(i− 1)2 −

(
1

2 sinφ

)2
) 3

2

− 1

4

(
3(i− 1)2 −

(
1

2

)2
)

+
1

16

1

(sin φ)2


 dφ (24)

whereq = arctan
1
2√

3(i− 1)2 − 2
(

1
2

)2 , and the following formulae for the accumulated volume for all coverable regionsF .

∑l
i=1 f(i, m)

δ3
=





4
√

3π +

l∑

i=2

[
4
√

3i3 − 4
√

3π(i− 1)3
]

= 4
√

3πl3 , m = 1

l∑

i=1

[
4
√

3πi3 + 6
√

3i

(
1− 2

2m

)2

+ 9πi2
(

1− 2

2m

)
+

(
1− 2

2m

)3
]

−16

l∑

i=2

∫ π
4

s


−θ3

m

3
+

1

3

(
3−

(
θm

sin φ

)2
) 3

2

− θm

2

(
3− θ2

m

)
+

θm

2

(
θm

sin φ

)2

 dφ , m > 1

(25)

in which s = arctan
θm√

3(i− 1)2 − 2θ2
m

.

APPENDIX III
PROOF OFLEMMA 2

Proof: Proof is accomplished in a similar way to that of Lemma 1. While the total area of all bucket regions Eq. (10)
is still the same, Eq. (11) and Eq. (12) become the following equation for allm ≥ 1:

F (l, m, s) =

∑l
i=1 f(i, m, s)

δ2
(26)

=

l∑

i=1

[
π(ip)2 + 4ip

(
δ − 2δ

sm

)
+

(
δ − 2δ

sm

)2
]

−
l∑

i=2

(i− 1)2


8 arctan

√
2(i− 1)2 − θ′m

2

θ′m
2 − 2π


+ 4

l∑

i=2

[
θ′m

√
2(i− 1)2 − θ′m

2 − θ′m
2
]

,

which gives
α(m + 1, s)

α(m, s)
=

A(m, s)

B(m, s)
where

A(m, s) = 1 +
4
√

2(l + l2)

s1+m
− l

(
1− 2

s1+m

)2

+ 4(l − 1)

(
1

2
− 1

s1+m

)2

(27)

−4
l∑

i=2

θ′m+1

√
2(i− 1)2 − θ′m+1

2 + 8
l∑

i=2

(i− 1)2 arctan

√
2(i− 1)2 − θ′m+1

2

θ′m+1

+

l∑

i=2

√
8(i− 1)2 − 1− 8

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1

and

B(m, s) = 1 +
4
√

2(l + l2)

sm
− l

(
1− 2

sm

)2

+ 4(l − 1)

(
1

2
− 1

sm

)2

(28)

−4

l∑

i=2

θ′m

√
2(i− 1)2 − θ′m

2 + 8

l∑

i=2

(i− 1)2 arctan

√
2(i− 1)2 − θ′m

2

θ′m

+

l∑

i=2

√
8(i− 1)2 − 1− 8

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1

Following the reasoning in Appendix I, we compare the value of
A(m, s)

B(m, s)
to

1

s
. And we have

A(m, s)s−B(m, s) = (s− 1)

l∑

i=2

√
8(i− 1)2 − 1− 8(1− s)

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1 (29)

−4(1− s)

l∑

i=2

θ′m+1

√
2(i− 1)2 − θ′m+1

2

+8(s− 1)
l∑

i=2

(i− 1)2 arctan

√
2(i− 1)2 − θ′m+1

2

θ′m+1

When l →∞, we have the results shown in (30).

l∑

i=2

√
2(i− 1)2 − θ′m+1

2 −→ 1

2

l∑

i=2

√
8(i− 1)2 − 1

l∑

i=2

(i− 1)2 arctan

√
8(i− 1)2 − θ′m+1

2

θ′m+1
−→

l∑

i=2

(i− 1)2 arctan
√

8(i− 1)2 − 1 (30)

Plugging the left-hand side of the above two formulae in (30)into Eq. (29), we getsA(m, s) − B(m, s) −→ 0 and thus

A(m, s) −→ B(m, s)

s
.

