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ABSTRACT
This paper presents an analytical model for determining the
effectiveness of moving target defense (MTD) systems in an
enterprise network environment. The goal of our model is
not to predict the exact probabilities involved with a MTD
system, but to provide insight to designers that allows them
to make better design decisions when designing their enter-
prise networks. We validate the model using a simulation-
based of attackers and the MTD system.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access—
Management of computing and information system

Keywords
moving target defense, enterprise network security

1. INTRODUCTION
Currently, enterprise network configurations tend to be

static, which gives attackers time to study our networks and
vulnerabilities before attacking. Additionally, once they ac-
quire a privilege, they can maintain it for a long time. A
promising approach that eliminates this situation is called
the moving target defense (MTD), which involves changing
various aspects of the network over time to shift the net-
work’s attack surface.

While several research efforts have focused on developing
MTD techniques (e.g, [1]) and network level systems (e.g., [3,
5]), very little work has actually looked at characterizing the
potential effectiveness of MTD systems. In this paper, we
present an initial model that attempts to do just that: char-
acterize the effectiveness of MTD systems in an enterprise
network based on several system and attacker parameters.

For example, consider the scenario that can be represented
by the graph shown in Figure 1. As shown, there are eight
nodes in the network (i is external) with limited accessibility
as shown by the edges. Thus, for attackers to compromise a
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Figure 1: Example Network Graph

specific node, say node h, they must follow the appropriate
path, i.e., i → a → c → f → h, where the probability that
attackers can compromise a node from a previous node is
given on the edges, e.g. pia.

The goal of our model is not to compute the absolute
probability of compromising a specific node, but rather to
create a model that can easily compute a variety of such
probabilities based on several parameters. This way, system
designers can compare the use of different design parameters
to compare the results in order to gain insight into how best
to protect their critical nodes with an MTD system.

2. ANALYTICAL MODEL
To be useful, our model must be computationally efficient,

simple, and scalable, all while clearly demonstrating the re-
lationships between the key system parameters. Our goal is
to enable a deeper understanding about how the key MTD
parameters impact the security provided, which can be used
to guide MTD implementation and deployment.

A key challenge in developing our MTD analytical model
lies in the non-monotonic nature of MTD systems. The
typical assumption that an attacker can take time to dis-
cover, compromise, and exploit an enterprise network is no
longer valid within MTD systems. Using techniques such as
virtual machine replacement, the attacker may lose gained
privileges at any time during an intrusion attempt as the
MTD system proactively adapts the network. Thus, when
attacking an MTD system, the attacker must remain ac-
tive to even remain in the system. Thus, we model diligent
attackers that work inexhaustibly until they either compro-
mise the target node or are totally removed from the system.

We first attempted to model the effect of an MTD using
Markov Chains; however, as the network grew larger the
state space exploded. In addition, the non-monotonicity of
MTD systems breaks the Markov Chain assumption that
state Xi only depends on Xi−1 and is independent previ-
ous states. Next, we modeled nodes as states, compromises
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as transitions to new states, adaptations as transitions to
previous states. Again, we ran into modeling problems as
the network size increased since an attacker can actually be
pushed back to any previously obtained node. From these
attempts we decided to avoid backward transitions and focus
only on forward and self-transitions, which represent com-
promising the next adjacent node and the attacker staying at
current node. We capture backward transitions indirectly.

2.1 Applicability
Our model presented is suited for non-cyclic graphs such

as Figure 1, although we discuss an extension in Section 4.1.
However, the model is easily scalable. We also assume that
communication between nodes is limited to specific paths.
As discussed in [5], network-based MTD systems must en-
sure that system services can locate each other given the
constant adaptations. This requirement, coupled with vir-
tual machines and software controlled switches, enables the
MTD to easily restrict the communications to valid paths.

As discussed above, we assume attackers have a specific
target (node) in the network, e.g. a database, and must com-
promise the target in order to exploit it for their purposes.
While attackers are limited to valid communications paths
(or otherwise face easy detection, see [4]), we do assume they
know those paths and continue diligently to compromise the
next node in the path.

We also assume that the adaptations available to the MTD
system work on particular nodes and that the adaptations
not only keep the node from being compromised, but will
remove attackers that have gained privileges on that node.
Real world examples of such adaptations include virtual ma-
chine refreshing or replacement.

2.2 Parameters
There are five basic inputs to our model.

• Attack Interval (Ta). The time it takes to compromise
a node from an adjacent node.
• Adaptation Interval (Tr). The time interval between

each system adaptation.
• Number of Nodes (n). The number of nodes in the

system that can be adapted by the MTD system.
• Adaptations per Adaptation Interval (k). The num-

ber of nodes (k ≤ n) adapted during each adaptation
interval (Tr).
• Attack Success Likelihood (pij). The likelihood that

node j is compromised if attacked from node i in a
static system. For example, in Figure 1, pab represents
the likelihood of compromising node b from the node
a assuming neither node is adapted.

The output of our analytical model is Px, or the likelihood
of intrusion success from outside the system (node i) to a
specific node x. For example, in Figure 1, Pg represents the
likelihood of intrusion success from node i to node g.

2.3 Model
To motivate our model, we use the example given in Fig-

ure 1, where the attacker tries to compromise node c by
going through node a. (The same analysis can be applied to
nodes b and d as well). The key concepts are illustrated in
Figure 2. The values p1, p2, and p3 represent the transition
probabilities from i to a, a to a, and a to c that include
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Figure 2: Transition Model for i→ a→ c→ f

the possibility of MTD adaptation. These probabilities are
based on pia, paa, and pac, which assume no adaptations.

The transition probability p1 from node i to node a is de-
rived as follows. The probability that node a gets adapted
during any adaptation interval Ta is k

n
, thus the probability

that a is not adapted during an adaptation is 1 − k
n

. Also

during any attack interval Ta, there are Ta
Tr

adaptations oc-
cur. Since we assume all adaptations are independent of
previous adaptations, the probability that node a does not

get adapted during Ta is (1 − k
n

)
Ta
Tr . Putting these all to-

gether, the likelihood of a successful compromises of a from
i is given by Equation 1.

p1 = pia × (1− k

n
)
Ta
Tr (1)

Once inside the system (i.e., the attacker has compromised
node a), the attacker can launch Tr

Ta
attacks during each time

period Tr. Therefore, the probability that all attacks from

a to c fail is (1− pac)
Tr
Ta and, thus, the the probability that

an attack from a to c succeeds during Tr is 1− (1− pac)
Tr
Ta .

An attacker may remain at a (following the transition
from a to a) in one of two ways during time period Ta. First,
the attacker may fail to penetrate from a to c and node a is
not adapted. This results in a probability of staying at a of

(1− pac)
Tr
Ta × (1− k

n
)
Ta
Tr . Second, the attacker may success-

fully compromise node c, node a does not get adapted but
node c does get adapted. This results in a second probability

of staying at node a of (1− (1− pac)
Tr
Ta )× (1− k

n
)
Ta
Tr × (1−

(1− k
n

)
Ta
Tr ). Summing these two probabilities, the ultimate

probability of remaining at a is shown in Equation 2.

p2 = (1− pac)
Tr
Ta × (1− k

n
)
Ta
Tr +

(1− (1− pac)
Tr
Ta )× (1− k

n
)
Ta
Tr × (1− (1− k

n
)
Ta
Tr )

= (1− k

n
)
Ta
Tr − (1− (1− pac)

Tr
Ta )× (1− k

n
)
2Ta
Tr (2)

Similarly, the attacker can successfully compromise c from
a when both a and c do not get adapted and the attacker
can follow the edge from a to c with probability 1 − (1 −
pac)

Tr
Ta . Combined, this gives us the probability p3 as shown

in Equation 3.

p3 = (1− (1− pac)
Tr
Ta )× (1− k

n
)
2Ta
Tr (3)

Once we know p1, p2, p3, we can compute the probabil-
ity of an intrusion from i to c being successful as shown
in Equation 4, which relies on the simplification that since
0 < p2 < 1, then p02 + p12 + p22 + . . . + p∞2 = 1

1−p2
.
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Pc = p1 × [p02 + p12 + . . . + p∞2 ]× p3

= pia × (1− k

n
)
Ta
Tr × 1

1− p2
×

(1− (1− pac)
Tr
Ta )× (1− k

n
)
2Ta
Tr

=
1

1− p2
× pia × (1− (1− pac)

Tr
Ta )× (1− k

n
)
3Ta
Tr (4)

Next, we consider node f in Figure 1 as the target of the
attacker. (The following analysis can also similarly apply to
nodes f and g.) Note that the analysis for p1, p2, and p3
remains the same. Therefore, we focus on the probabilities
p4 and p5, which represents the transition probability from
c → c and c → f . These probabilities can be calculated
using the same analysis as for p1, p2, and p3 above.

p4 = (1− k

n
)
Ta
Tr − (1− (1− pcf )

Tr
Ta )× (1− k

n
)
2Ta
Tr (5)

p5 = (1− (1− pcf )
Tr
Ta )× (1− k

n
)
2Ta
Tr (6)

Equation 7 gives the final probability of a successful in-
trusion from node i to node f . This same process can also
be used to compute the likelihood of a successful intrusion
from i to e and g as well.

Pf =
1

1− p2
× 1

1− p4
× pia × (1− (1− pac)

Tr
Ta )×

(1− (1− pcf )
Tr
Ta )× (1− k

n
)
5Ta
Tr (7)

These derivations show that the probability of a success-
ful intrusion to any target node is the summation of the
probabilities of all possible paths to the target, which illus-
trates a key tenet of our analytical model. As long as the
attacker can stay on a compromised node, new attacks can
be launched until the target has been compromised.

2.4 General Form
To simplify applying our model to a variety of networks,

we have created a general representation of the transition
probabilities for any node plus the overall intrusion success
probability for any target. Equation 8 captures the gen-
eral form for forward transitions from node x to node y,
Equation 9 captures the general form for self-transitions,
and Equation 10 captures the general form for the intru-
sion success likelihood from i to target t. In these equations
i→ a→ b→ . . .→ t represents the path from i to t, where
Vp represents the nodes in the path and Ep represents the
edges in this path. Here p′xy and p′xx represent the transi-
tion probabilities that include adaptation (e.g., p1 . . . p5 in
Equations 1 - 6) and we use T xy

a instead of Ta to remove the
implicit assumption that all values of Ta are identical.

3. VALIDATION
To verify our analytical model, we performed an evalu-

ation of the intrusion success likelihood for various targets
against results from the MTD simulator described in [4]. We
used the network shown in Figure 1 and selected the targets
of c, f , h. We ran experiments for each possible target with
a fixed attack interval Ta of 100 and varied the adaptation
interval Tr (20, 30, 50, 70, 80, 90, 100, 200, 300, 400, 500,

Table 1: Model versus Experiment
c f h

max deviation 0.039401 0.025922 0.027851
std deviation 0.023689 0.013295 0.012639

600, 700, 800, and 1,200,000 - which represents a static net-
work). We randomly selected 1 (k) of the 8 (n) node to
adapt during each adaptation interval and each static tran-
sition probability was set at 0.6. For each Tr value, we ran
20,000 intrusions against one of the specified target (c, f
and h). An intrusion continued until the target was compro-
mised or the adaptations completely removed the attacker
from the system back to node i. We computed the percent
of successful intrusions and compared it to the values from
our analytical model.

Figure 3 compares the calculations from our model (using
Equation 10) and the experimental results for node c, f and
h respectively. The first two bars in each adaptation inter-
val represent the experimental and model values for c, the
second two bars represent values for f , and the last two bars
represent values for h. As expected, the likelihood of intru-
sion success increases as the adaptation interval increases
for both the model and the experiments.

Table 1 shows the comparison between curves produced by
our model against the experimental values for target nodes
c, f and h. Here, the accuracy of the model is measured
as the deviation between the model and the mean of the
experimental results for each value of Tr. As we see, the
maximum deviation for c is approximately 3.9% while the
standard deviation is around 2%. These difference is even
smaller for f and h, which have maximum deviation around
2.4% and standard deviation around 1.2%. We believe this
accuracy is acceptable for our goal of providing insight to
system designers and will support quantitative evaluation of
alternative designs.

The results also clearly show the effect of path length on
the intrusion success. For example, when the adaptation in-
terval is 70, we see the effect clearly as Pc is around 30%, Pf

is around 20%, and Ph is around 13%. This trend is evident
throughout, although the differences between various node
length decreases as the adaptation interval increases.

4. DISCUSSION AND FUTURE WORK
Our objective is not to predict the exact probabilities of an

MTD system, but to provide insight to designers that allows
them to make better design decisions when designing their
enterprise networks. For instance, if critical data is stored
at node b, a designer might want to know how to improve
the security provided by the MTD system for that particu-
lar node. If we are assuming the attack interval Ta is 100,
then we can pick a reasonable adaptation interval Tr and the
number of adaptations per adaptation interval k, consistent
with our performance requirements, to provide the required
security. Another alternative would be to insert a node be-
tween a and b to increase the security. Our model will allow
designers the luxury of analyzing that alternative without
having to resort to expensive trial and error or simulations.

The three key parameters in our model that lie within the
control of the network/MTD designer include the network
node configuration (e.g., Figure 1) along with adaptation
interval Tr and number of nodes adapted in each interval,
n. Designers can use these along with a characterization of
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p′xy =

pxy × (1− k
n

)
T

xy
a
Tr if x = i;x, y ∈ Vp;x→ y ∈ Ep

(1− (1− pxy)
Tr

T
xy
a )× (1− k

n
)
2T

xy
a

Tr if x 6= i;x, y ∈ Vp;x→ y ∈ Ep

(8)

p′xx = (1− k

n
)
T

xy
a
Tr − (1− (1− pxy)

Tr
T

xy
a )× (1− k

n
)
2T

xy
a

Tr if x 6= i;x→ y ∈ Ep (9)

Pt =
∏
x∈Vp
x6=i,t

1

1− p′xx
×

∏
x→y∈Ep

p′xy (10)
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Figure 3: Model vs Experiment – Target c, f , and h

expected attack types to help tune their system.
Notice that the model is useful without knowing the exact

values of the attack success likelihood between nodes. While
values are required to compute the values of Px for each x,
the model can be computed against a variety of values to
reveal useful insights. Likewise different values of attack in-
tervals, Ta, may be used as well. However, there are data
sets that record the time required to exploit different vulner-
abilities, which can help with characterizing Ta. In addition,
research on time-to-compromise models also exists [2].

4.1 Future Work
This paper represents our first foray into modeling the

effectiveness of MTD systems in an enterprise network set-
ting. As such, we have made many simplifications and as-
sumptions. One such assumption is that the network node
configuration does not contain loops. A potential solution is
to consider all unique paths to the target and then sum their
probabilities. Additionally, we plan to extend the model
to incorporate different attack types and adaptations. One
area that will require additional work is modeling how dif-
ferent classes of attacks affect model parameters such as Ta

and how they are affected by different adaptation types. For
instance, changing the IP address of a node may inhibit cer-
tain types of attacks, but it will not affect an attacker who
has already compromised that node as would the node’s vir-
tual machine being refreshed or replaced. In addition, we
are planning on validating the model against a real-world
implementation of a MTD currently under development.
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