
Effective Network Vulnerability Assessment
through Model Abstraction

Su Zhang1, Xinming Ou1, and John Homer2

1 Kansas State University, {zhangs84,xou}@ksu.edu
2 Abilene Christian University, jdh08a@acu.edu

Abstract. A significant challenge in evaluating network security stems
from the scale of modern enterprise networks and the vast number of
vulnerabilities regularly found in software applications. A common tech-
nique to deal with this complexity is attack graphs, where a tool au-
tomatically computes all possible ways a system can be broken into by
analyzing the configuration of each host, the network, and the discovered
vulnerabilities. Past work has proposed methodologies that post-process
“raw” attack graphs so that the result can be abstracted and becomes
easier for a human user to grasp. We notice that, while visualization is
a major problem caused by the multitude of attack paths in an attack
graph, a more severe problem is the distorted risk picture it renders to
both human users and quantitative vulnerability assessment models. We
propose that abstraction be done before attack graphs are computed,
instead of after. This way we can prevent the distortion in quantitative
vulnerability assessment metrics, at the same time improving visualiza-
tion as well. We developed an abstract network model generator that,
given reachability and configuration information of a network, provides
an abstracted model with much more succinct information about the
system than the raw model. The model is generated by grouping hosts
based on their network reachability and vulnerability information, as well
as grouping vulnerabilities with similar exploitability. We show that the
attack graphs generated from this type of abstracted inputs are not only
much smaller, but also provide more realistic quantitative vulnerability
metrics for the whole system. We conducted experiments on both syn-
thesized and production systems to demonstrate the effectiveness of our
approach.

Keywords: enterprise network security, attack graph, quantitative vul-
nerability assessment, abstraction

1 Introduction

Network security control is an issue that increases in difficulty with growths
in network size and the number of vulnerabilities. Automated approaches are
needed to quickly and reliably evaluate the current security state of the network.
Attack graphs are a common approach to security evaluation [1–3, 8, 10–13, 17–
21, 23, 24, 26]. They show how an attacker can combine multiple vulnerabilities

in a system to launch multi-stage attacks to gain privileges in the system. At-
tack graphs are often used in conjunction with risk assessment tools to provide
recommendations to system administrators on how to mitigate the discovered
problems [4, 6, 9]. There are two main utilities of attack graphs: visualization and
risk assessment. A major obstacle in these utilities is the size and complexity
of attack graphs from even moderate-size networks. The large number of attack
paths towards the same target not only makes the graph too dense to read, but
also distorts risk assessment results by ignoring the fact that many of the attack
steps are similar and not independent.

Figure 1 shows a simple network. An attacker could launch attacks from the
Internet against the web server, which then provides him a stepping stone to
exploit the database server in the internal network. The lower part of the figure
shows a MulVAL attack graph [18, 19] generated from this network model. The
labels of the graph nodes are shown at the right-hand side. Diamond-shaped
nodes represent privileges an attacker could gain in the system; circle nodes
represent attack steps that achieve the privileges; rectangular nodes represent
network configuration settings.

Figure 2 shows the topology and attack graph of a similar scenario, but with
five identical servers in the DMZ zone. We can see that the attack graph gets
very complicated. Human users, like a system administrator, may have difficulty
tracing through the many identified attack paths. An abstracted view of the
attack graph can highlight the real underlying issues in the network. We must
also consider whether the multitude of attack paths shown in this attack graph
reflects a realistic risk picture. The dotted lines in the network topology illustrate
a subset of the attack paths identified in the graph. There are five ways to attack
the database server, utilizing five different sources in the DMZ. However, the five
servers in DMZ are identically configured. Thus if an attacker can exploit any
one of them, he can exploit the others as well. In this case, having four more
servers will not significantly increase the attacker’s chance of success.

Prior research has proposed various techniques to address the visualization
challenge [7, 15, 30]. However, we have not found substantial discussion in the
literature addressing the distortion problem in risk assessment caused by the
redundancy in attack graphs, especially in the context of quantitative security
assessment. Traditional approaches [6, 27, 28] would assess all the attack paths to
the attacker’s target without taking the similarities of these paths into consider-
ation. Consequently, the explosion in the attack-graph’s size could yield high risk
metrics, often misleading the system administrator’s judgment. While one could
post-process the graph and remove such redundancy, like in previous works [15,
30], we believe a better approach is to pre-process the input to attack-graph gen-
eration so that such redundancy is removed by abstracting the network model,
instead of the attack graph. There are a number of benefits of abstracting the
network model:

– From a human user’s perspective, removing redundancy in the network de-
scription provides a better high-level view of both the system and the secu-
rity vulnerabilities identified therein. The semantics of the abstract network

Example one

Perimeter
firewall

Database

Web Server

Internal
DMZ

Internet

1:0.54

11:1 18:1

2:0.9

3:0.6

4:1

5 6:0.6

9:1

7:0.6

8:1.0

10

12

13:1

14 15

1617

19

20 21

1: execCode(database,user)
2: remote exploit of CVE-2009-2446
3: netAccess(database,tcp, 3306)
4: multi-hop access
6: execCode(webServer,user)
7: remote exploit of CVE-2009-1918
8: netAccess(webServer,tcp,80)
9: multi-hop access
11: multi-hop access
13: direct network access
15: attackerLocated(Internet)
18: multi-hop access

Fig. 1. Scenario of example one and its attack graph

Legend

Example two

Perimeter
firewall

Database

Web
Server1

InternalDMZ

Web
Server5

Web
Server2

Web
Server4

Web
Server3

0
50

J

F
o
o

Attack path

Physical link

Internet

1:0.890784

59:166:1 74:184:196:1110:1

2:0.9

3:0.98976

4:1

56:0.6

9:116:1 25:136:1 49:1

7:0.6

8:1.0

10

11:1

1213:0.6

18:1 27:138:1 51:1102:1

14:0.6

15:1.0

17

19

20:1

2122:0.6

29:140:1 53:1 90:1104:1

23:0.6

24:1.0

26

28

30

31:1

3233:0.6

42:1 55:180:1 92:1 106:1

34:0.6

35:1.0

37

39

41

43

44:1

45 46:0.6

57:1 72:182:1 94:1 108:1

47:0.6

48:1.0

50

52

54

56

58

60

61:1

6263

68:1 76:186:1 98:1

64 65

67 69

7071

73

75 77

7879

81

83

85 87

88 89

91

93

95

97 99

100101

103

105

107

109

111

112 113

Fig. 2. Scenario of example two and its attack graph

model matches better with how a human would manage a large network
system, and as a result the output of the attack-graph analysis is natural to
communicate to human users.

– After abstracting the network model, the distortion in quantitative security
assessment results due to repetitive similar attack paths will be rectified.

We design algorithms to create abstract network models for large-scale enter-
prise networks, based on network reachability and host configuration informa-
tion. The algorithms make reasonable assumptions about available input describ-
ing the network structure and host configuration information. The abstracted
models dramatically reduce the complexity of attack graphs, improving the vi-
sualization and also correcting skewed quantitative vulnerability assessment re-
sults. Moreover, by using the abstracted models, the quantitative vulnerability
assessment process is hastened. We evaluate our methods on both synthesized
and production systems, demonstrating the effectiveness of the approach.

The rest of the paper is organized as follows. Section 2 discusses the abstrac-
tion criteria and algorithms. Section 3 describes experimental evaluation of the
abstraction method. Section 4 discusses related work and section 5 concludes.

2 Network model abstraction

2.1 Abstraction criteria

Similarity among hosts For large enterprise networks, it is not unusual to
have thousands of machines in a subnet with same or similar reachability and
configuration. If an attacker could compromise one of the machines, he is likely
able to do the same for the others. This would result in a large number of similar
attack paths in the attack graph. These attack paths should not be considered
independent when assessing the system’s security risk: if the attacker failed in
compromising one of the hosts, he would probably fail on the others with the
same properties (reachability and configuration) as well. Network reachability
and host configuration determine to a large extent the exploitability of a host
machine. For this reason, the machines with the same reachability and similar
configurations can be grouped and treated as a single host.

Similarity among vulnerabilities A single host may contain dozens or even
hundreds of vulnerabilities, each of which may appear in a distinct attack path
to further compromise the system. However, not all these paths provide unique
valuable information since many vulnerabilities are similar in nature. They may
belong to the same application, require the same pre-requisites to be exploited,
and provide the same privilege to the attacker. From a human user’s perspective,
it is more important to know, at a higher level, that some vulnerability in the
application could result in a security breach, rather than enumerating all the
distinct but similar attack paths. Since vulnerabilities in the same application
are often exploited by the same or similar mechanisms, if the attacker fails in

exploiting one of them, it is reasonable to assume a low chance of successful
attack by similar exploits. For this reason, these vulnerabilities can be grouped
together as a single vulnerability and an aggregate metric can be assigned as
the indicator on the success likelihood of exploiting any one of them, instead
of combining them as if each exploit can be carried out with an independent
probability. For example, when a host has 10 vulnerabilities in Firefox, we can
say with X likelihood an attacker can successfully exploit any one of them,
where X is computed based on each vulnerability’s CVSS score [14], taking into
consideration the similarity among the 10 vulnerabilities. One simple approach
would be to use the highest risk probability value as representative of the whole
set.

2.2 Abstraction steps

Our network model abstraction process is carried out in three steps.

1. Reachability-based grouping. Hosts with the same network reachability (both
to and from) are grouped together.

2. Vulnerability grouping. Vulnerabilities on each host are grouped based on
their similarities.

3. Configuration-based breakdown. Hosts within each reachability group are fur-
ther divided based on their configuration information, specifically the types
of vulnerabilities they possess.

Reachability-based grouping We group all the hosts based on their reacha-
bility information. We first give two definitions.

Definition 1. reachTo(H) is a set of triples (host, protocol, port) where H can
reach host through protocol at port. Similarly, reachFrom(H) is a set of triples
(host, protocol, port) where host can reach H through protocol and port.

Definition 2. Let H1 and H2 be two hosts. We say H1 ≡r H2 if reachTo(H1)
= reachTo(H2) ∧ reachFrom(H1) = reachFrom(H2)

We put hosts into the same reachability group if they belong to the same
equivalence class ≡r. Then all the hosts in the same reachability group can
be abstracted as a single node. Figures 3(a) and 3(b) illustrate this idea, and
Algorithm 1 explains the grouping process. The grouping is applied to all the
machines in a subnet. We interpret a subnet as a collection of machines communi-
cation among which is unfiltered. We incrementally add reachability information
into a set. If host H’s reachability has been recorded, we find the existing group
through a hash map and put H into the corresponding group. Otherwise we store
the reachability information, create a new group label and map it to a singleton
set with H in it. We do this for all the hosts in each subnet. The time complexity
for this algorithm is O(n2) where n is the number of hosts in the network. We
need to go over all the hosts within the subnet and for each host we need linear
time to identify its reachability information.

Different colors
suggest different
reachability groups.

Internet

(a) Before reachability-based grouping

Different colors suggest
different reachability
groups. Same-colored
nodes are merged.

Internet

(b) After reachability-based grouping

Fig. 3. Before and after reachability-based grouping

Algorithm 1 Pseudocode for reachability-based grouping

Input: A set of (reachTo(h), reachFrom(h)) for each host h in a subnet.
Output: A hash map L, which maps a group label α to a list of hosts having the same

reachability (reachTo and reachFrom).
Lr ← {} {Lr is a set of triples (α, reachToSet, reachFromSet).}
Queue Q ← all the hosts of the given subnet
L ← empty map {initialize the return value}
while Q is not empty do
n← dequeue(Q)
if Lr contains (α, reachTo(n), reachFrom(n)) then

L[α] ← L[α]∪{n} {if the reachability of n is the same as some other host that
has been processed, add n to its equivalent class.}

else
create a fresh α
Lr← Lr ∪(α, reachTo(n), reachFrom(n)) {Otherwise put its reachability infor-
mation into Lr}
L[α]← {n}

end if
end while
return L

Vulnerability grouping We group vulnerabilities on each machine based on
the application they belong to. Typically vulnerabilities in one application will
be of the same type (local, remote client or remote service). For example, vulner-
abilities of Adobe Reader are remote client since they are always triggered when
a user opens the application on a malicious input, possibly sent by a remote
attacker. Security holes in IIS, on the other hand, most likely belong to remote
service vulnerabilities. After grouping based on applications, we can provide the
system administrator a clearer view of the system’s vulnerabilities — instead of
showing a long list of CVE ID’s, we show the vulnerable applications that affect
the system’s security. One issue that needs to be addressed is how to assign an
aggregate vulnerability metric to the virtual vulnerability after grouping. Such
vulnerability metrics, like CVSS scores, are important in quantitative assessment
of a system’s security. Intuitively, the more vulnerabilities in an application, the
more exploitable the application is. But the degree of exploitability does not
simply grow linearly since many of the vulnerabilities will be similar. Our cur-
rent grouping algorithm (Algorithm 2) simply takes the highest value, but it will
be straightforward to plug in a different aggregation method.

Algorithm 2 Pseudocode for vulnerability grouping

Input: A set of ungrouped vulnerabilities on a machine (Su)
Output: A hash map L that maps an application to its vulnerability score

Lr ←{} {Lr is a set of applications that have appeared so far}
L ← empty hash map
while Su 6= {} do

take v from Su

if Lr contains (v.application) then
if L[v.application] < v.score then

L[v.application] = v.score
end if

else
L[v.application] = v.score
Lr.add(v.application)

end if
end while
return L

Configuration-based breakdown For hosts in the same reachability group,
their configurations could be different from one another. Thus, if an attacker is
able to exploit one host within the group, it does not mean he could compromise
the others as well. This means grouping based on reachability alone is too coarse.
In order to reflect differences in attackability, we need to “break down” the
merged node based on configuration settings. In our current implementation,
we have only included software vulnerability as the configuration information.
When deployed on production systems, one can rely upon package management

systems to decide whether two hosts have the same or similar software set up.
Algorithm 3 shows the process of configuration-based grouping. The algorithm
iterates over all the hosts in a reachability group and records its configuration
information. If a host’s configuration matches one previously recorded, meaning
some other hosts have the same types of vulnerabilities, this host will not be
recorded in the set. At the end of the algorithm, the returned set only contains
one representative host for each group of hosts with the same reachability and
configuration. The complexity of the algorithm is linear in the number of hosts.

Algorithm 3 Pseudocode for configuration-based break down

Input: A list L, each element of which is a set of machines belonging to the same
reachability group, and with the vulnerabilities grouped.

Output: Further-refined group Sc based on vulnerability information. Each element
in Sc is a representative for a group of hosts with the same reachability and config-
uration.
while L6={} do

remove h from L
Lr ← empty map; {Lr is a set of pairs (hostname, configuration). It is used to
store the distinct configurations that have appeared so far.}
if Lr contains (, h.configuration) then

continue {if its configuration has appeared before, skip}
else

Lr.add((h, h.configuration)) {if its configuration has not appeared before, record
it}

end if
end while
Sc =

⋃
(h,)∈Lr

h {collect all representative hosts in Lr and put them into Sc}

return Sc

3 Experimentation Result

To evaluate the effect of model abstraction on quantitative security assessment of
computer networks, we apply probabilistic metric models [6, 27] on the generated
attack graphs. In such metric models, each attack step is associated with a
(conditional) probability indicating the success likelihood of the exploit when its
pre-conditions (predecessor nodes) are all satisfied. The model then computes
the absolute probability that a privilege can be obtained by an attacker based
on the graph structure. We use MulVAL [18, 19] attack-graph generator in the
evaluation. Our security metric implementation follows Homer’s algorithm [6].

We created one scenario to illustrate the visualization effect and rectification
on the distortion in metric calculation generated by the large number of similar
attack paths. The topology information of the example is shown in Fig. 5. There
are three subnets: Internal Servers, DMZ, and Normal Users. Each subnet has

Each color represents a
group of hosts having the
same reachability and
configuration.

Internet

Fig. 4. After configuration-based breakdown.

 DMZ

Internet (attacker location)

Network Topology

Configuration Note

Different shapes of computers in each subnet
suggest different configurations. Machines
within the same group have same reachability.

 Internal Servers

Group1

Group2

Group1 Group2

Group3 Group4

Normal Users

Group3

Group1 Group2
Legend

 (Duplicated) Attack path

Fig. 5. Network topology.

Table 1. Reachability Table

source destination
protocol port

subnet group subnet group

Internet DMZ 1 tcp 80

DMZ 1 Internet tcp 25

Internet DMZ 4 tcp 80

DMZ 4 Internal 2 tcp 1433

User 2 Internet tcp 80

User 3 Internet * *

Internet User 2 tcp 80

User 1 Internet * *

User 1 Internal 1 nfs

User 1 Internal 1 Tcp 3306

ten machines, evenly divided into two different types of configuration (one is
Linux and the other Windows). Machines with different shapes represent differ-
ent configurations. Machines in the same group have the same configuration and
reachability. There are two types of vulnerabilities on each host, and the types of
vulnerabilities could be either local, remote server or remote client. The reacha-
bility relations among those host groups can be found in Table 1. The table does
not include reachability within a subnet, which is unfiltered. If a group does not
have any inter-subnet reachability, it will not show up in the table.

3.1 Attack graph generation

We created the input for MulVAL based on the configuration of the network,
and we ran our abstraction model generator to generate an abstracted input. We
ran MulVAL with both original and abstracted input and obtained two different
attack graphs, shown in Figures 6(a) and 6(b). The size of the attack graph was
reduced significantly after abstraction (281 arcs and 217 vertices, to 55 arcs and
47 vertices). We verified that all the “representative” attack paths leading to the
attacker goal are retained in the abstracted model.

3.2 Quantitative security metrics

We compared the quantitative metrics results obtained from the original in-
put and the abstracted input. There is a significant difference between the risk
metrics on the original network (0.802) and the abstracted one (0.486) for a
three-hop attack which is the deepest chain in this experiment (illustrated in
the red dotted lines in Fig. 5). This attack chain includes three sets of attack
steps: 1) from Internet to Group2 in the “Normal Users” subnet, via client-side
vulnerabilities; 2) from Group2 to Group 1 in the “Normal Users” subnet, via
service vulnerabilities; 3) from Group1 in the “Normal Users” subnet to Group1
in the “Internal Servers” subnet, via service vulnerabilities. Each group here

1:0.8017056

4:1 11:1 20:1 173:1186:1

2:0.9

3:0.890784

5

6:1

7 8:0.8017056

13:1 22:1 175:1188:1

9:0.9

10:0.890784

12

14

15:1

16 17:0.8017056

24:1 177:1190:1 210:1

18:0.9

19:0.890784

21

23

25

26:1

27 28:0.890784

123:1129:1137:1147:1159:1179:1192:1204:1 212:1

29:0.9

30:0.98976

31:1

32 33:0.6

47:1 66:179:1 94:1 111:1

34:0.6

35:1.0

36:1

3738:0.48

64:177:1 92:1 109:1

39:0.6

40:0.8

41:0.8

42

54:0.8 125:1131:1139:1 149:1161:1

4344

45 46

48

49:1

50 51:0.48

68:181:1 96:1 113:1

52:0.6

53:0.8

5556

57 58

59:1

60 61:0.6

70:1 83:1 98:1 115:1165:1

62:0.6

63:1.0

65

67

69

71

72:1

73 74:0.6

85:1 100:1 117:1153:1167:1

75:0.6

76:1.0

78

80

82

84

86

87:1

88 89:0.6

102:1 119:1143:1155:1169:1

90:0.6

91:1.0

93

95

97

99

101

103

104:1

105106:0.6

121:1135:1 145:1 157:1171:1

107:0.6

108:1.0

110

112

114

116

118

120

122

124

126

127 128

130

132

133134

136

138

140

141 142

144

146

148

150

151 152

154

156

158

160

162

163164

166

168

170

172

174

176

178

180

181:1

182183:0.8017056

194:1 200:1206:1 214:1

184:0.9

185:0.890784

187

189

191

193

195

196197

198199

201

202 203

205

207

208 209

211

213

215

216 217

(a) Attack graph of the original model (281 arcs and 217 vertices).

1:0.486

40:144:1

2:0.9

3:0.54

4:1

5 6:0.54

32:138:1

7:0.9

8:0.6

9:1

10 11:0.6

30:1

12:0.6

13:1.0

14:1

1516:0.7296

17:0.6

18:0.8

19:0.8

20

27:0.834:1

21 22

2324

25:0.6

26:0.8

28

29

31

33

35

36 37

39

41

4243

45

46 47

(b) Attack graph of the abstracted model (55 arcs and 47 vertices).

Fig. 6. Comparison of attack graphs from original and abstracted models

refers to a set of hosts with the same reachability and configuration (vulnerabili-
ties). Usually there are multiple attack paths between two groups since there are
multiple hosts within each group and they have similar configurations; thus the
multiple attack paths have similar natures. From a pure probabilistic semantics,
the more paths between two groups, the higher success likelihood the attacker
will gain in moving on these paths. However, these paths are not independent
and failure on one of them would likely indicate failures on the other; therefore
the higher risk metrics are not justified. Moreover, the hosts in the two groups
are equivalent in terms of the network access they provide the attackers. Due to
the above reasons, the attack paths should be merged into one, before quanti-
tative risk assessment. By removing redundancy in the attack graphs through
model abstraction, we avoid distortion in the risk assessment result.

To demonstrate the effect of vulnerability grouping on the quantitative secu-
rity assessment result, we used the network topology shown in Fig. 1, assuming
there are five client-side vulnerabilities (from the same application) on the web
server and the remote service vulnerability has been patched. We then com-
puted the likelihood that the web server could be compromised through any of
the client-side vulnerabilities, assuming the client program may occasionally be
used on the server. The nature of client-side vulnerabilities from the same appli-
cation are similar from both attacker and the victim’s perspective, because the
victim would open the same application to trigger the exploits, and due to the
similar functionalities (and therefore program components) of the same applica-
tion, the security holes are also similar. If an attacker knows the structure of the
application very well, he should be able to utilize the vulnerability easily; if he
does not understand the mechanism of the software, he probably will not be able
to utilize any of the security holes with ease. Therefore viewing the same type
(client-side or service) of security holes on an application as one is more realistic
than treating them independently. We compared the results before and after
grouping vulnerabilities. It is obvious that the complexity of the attack graph
is reduced significantly from Figure 7(a) to Figure 7(b). More importantly, the
quantitative metrics indicating the likelihood that the server can be compro-
mised through one of the client-side vulnerabilities drops from 0.71 to 0.45. This
is a more realistic assessment, since the five client-side vulnerabilities are similar
and should not significantly increase the attacker’s success likelihood.

4 Related Work

Attack graphs have been developed for the purpose of automatically identify-
ing multi-stage attack paths in an enterprise network [1–4, 8–13, 17–21, 23, 24,
26]. It has been observed that attack graphs are often too large to be easily
understood by human observers, such as system administrators. In order to re-
duce the complexity of attack graphs to make them more accessible to use by
system administrators, various approaches have been proposed to improve the
visualization through abstraction, data reduction, and user interaction [7, 12, 13,
15, 30]. However, not much work has been done to study the effect of attack

1:0.7126272

23:1

2:0.9

3:0.791808

4:1

56:0.791808

7:0.6

8:0.8

15:0.617:0.6 19:0.621:0.6

9:0.8

10 11 12

1314 1618 2022

24

25 26

(a) Attack graph of a single machine before vulnerability grouping.

1:0.4536

17:1

2:0.9

3:0.504

4:1

56:0.504

7:0.6

8:0.84

9:0.8

10

13:0.2

1112 14

15 16

18

19 20

(b) Attack graph of a single machine after vulnerability grouping.

Fig. 7. Effect of vulnerability grouping on a single host

graph complexity on quantitative security assessment approaches based on at-
tack graphs. Our study found that complexity caused by repetitive information
commonly found in attack graphs not only increases the difficulty for the sys-
tem administrator in digesting the information provided by the graph, but also
distorts the risk picture by unrealistically casting the attack success likelihood
for some privileges under probability-based security assessment. We show that
such distortion can be avoided by abstracting the input to the attack-graph gen-
erator, i.e., the network model, so that such redundancy is removed a priori. By
performing abstraction directly on the network model, the attack graph result
can also be rendered on a higher level of system description which is easier to
grasp by a human user.

Quantitative security assessment methods based on attack graphs have been
proposed to indicate the severity levels of various vulnerabilities [5, 6, 16, 22, 25,
27–29]. Such methods typically utilize the dependency relations represented in
an attack graph to aggregate individual vulnerability metrics to reflect their cu-
mulative effects on an enterprise network. However, not all dependency relations
are explicitly presented in an attack graph, particularly the similarities among
large numbers of attack paths leading to the same privilege. Not accounting for
the existence of this dependency on a large scale will significantly skew the anal-
ysis results. One method of dealing with such hidden dependency is to introduce
additional nodes and arcs in the graph to model them, but this will make the
visualization problem even more severe. We proposed a method based on model
abstraction to remove the redundancy, and thus the hidden dependency resulted
from it, so that it is no longer a problem for realistic risk assessment.

The size of enterprise networks could make vulnerability scanning prohibitively
expensive [31]. Our abstraction technique provides a possible angle to address
this problem. Prioritization can be applied based on the abstract model for iden-
tifying scanning which host can potentially provide critical information on the
system’s security. For example, if a host in the same abstract group has already
been scanned, scanning one more host in the group may not provide the most
useful information about the system’s security vulnerabilities.

5 Conclusion and Future Work

We have presented an abstraction technique to aid in network security assess-
ment based on attack graphs. We show that the large amount of repetitive
information commonly found in attack graphs not only makes it hard to digest
the security problems, but also distorts the risk picture by disproportionately
amplifying the attack likelihood against privileges that have a large number
of similar attack paths leading to them. We proposed an approach to abstract
the network model so that such repetitive information is removed before an at-
tack graph is generated. The abstraction happens at both the network and the
host level, so that machines that have the same reachability relation and simi-
lar configurations with respect to vulnerability types are grouped together and
represented as a single node in the abstracted model. Our experiments show

that such abstraction not only effectively reduces the size and complexity of the
attack graphs, but also makes the quantitative security assessment results more
conforming to reality. This shows that appropriate abstraction on the input is a
useful technique for attack graph-based analysis.

The abstraction techniques we have proposed are mostly suitable for risk
assessment on the macroscopic level of an enterprise network. Abstraction un-
avoidably loses information and in reality no two hosts are completely identical.
The abstracted network model can help in identifying security risks caused by
the overall design and structure of the network, but may lose subtle security
breaches that may occur due to, e.g. misconfiguration of a single host that is
mistakenly deemed identical to a group of other hosts since the details of the
differences may have been abstracted away. In general the more homogeneous
the system is, the more pronounced the effect of abstraction will be. However,
since no two hosts are really completely identical, the process is a balancing act.
Being overly detailed about a host’s configuration may lead to no possibility of
abstraction and result in a huge attack graph where important security problems
are buried. On the other hand, overly abstract models may lose the important
information for subsequent analysis. More research is needed in identifying the
most effective abstraction granularity for attack graph-based analysis.

Acknowledgment

This material is based upon work supported by U.S. National Science Foundation
under grant no. 1038366 and 1018703, AFOSR under Award No. FA9550-09-1-
0138, and HP Labs Innovation Research Program. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation,
AFOSR, or Hewlett-Packard Development Company, L.P.

References

1. Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based
network vulnerability analysis. In Proceedings of 9th ACM Conference on Com-
puter and Communications Security, Washington, DC, November 2002.

2. Marc Dacier, Yves Deswarte, and Mohamed Kaâniche. Models and tools for quan-
titative assessment of operational security. In IFIP SEC, 1996.

3. J. Dawkins and J. Hale. A systematic approach to multi-stage network attack anal-
ysis. In Proceedings of Second IEEE International Information Assurance Work-
shop, pages 48 – 56, April 2004.

4. Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley. Optimal
security hardening using multi-objective optimization on attack tree models of
networks. In 14th ACM Conference on Computer and Communications Security
(CCS), 2007.

5. Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring
network security using dynamic Bayesian network. In Proceedings of the 4th ACM
workshop on Quality of protection, 2008.

6. John Homer, Xinming Ou, and David Schmidt. A sound and practical approach
to quantifying security risk in enterprise networks. Technical report, Kansas State
University, 2009.

7. John Homer, Ashok Varikuti, Xinming Ou, and Miles A. McQueen. Improving
attack graph visualization through data reduction and attack grouping. In The
5th International Workshop on Visualization for Cyber Security (VizSEC), 2008.

8. Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph
generation for network defense. In 22nd Annual Computer Security Applications
Conference (ACSAC), Miami Beach, Florida, December 2006.

9. Sushil Jajodia and Steven Noel. Advanced cyber attack modeling analysis and
visualization. Technical Report AFRL-RI-RS-TR-2010-078, Air Force Research
Laboratory, March 2010.

10. Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network
attack vulnerability. In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Manag-
ing Cyber Threats: Issues, Approaches and Challanges, chapter 5. Kluwer Academic
Publisher, 2003.

11. Wei Li, Rayford B. Vaughn, and Yoginder S. Dandass. An approach to model
network exploitations using exploitation graphs. SIMULATION, 82(8):523–541,
2006.

12. Richard Lippmann and Kyle W. Ingols. An annotated review of past papers on
attack graphs. Technical report, MIT Lincoln Laboratory, March 2005.

13. Richard P. Lippmann, Kyle W. Ingols, Chris Scott, Keith Piwowarski, Kendra
Kratkiewicz, Michael Artz, and Robert Cunningham. Evaluating and strengthen-
ing enterprise network security using attack graphs. Technical Report ESC-TR-
2005-064, MIT Lincoln Laboratory, October 2005.

14. Peter Mell, Karen Scarfone, and Sasha Romanosky. A Complete Guide to the
Common Vulnerability Scoring System Version 2.0. Forum of Incident Response
and Security Teams (FIRST), June 2007.

15. Steven Noel and Sushil Jajodia. Managing attack graph complexity through visual
hierarchical aggregation. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pages 109–118,
New York, NY, USA, 2004. ACM Press.

16. Steven Noel, Sushil Jajodia, Lingyu Wang, and Anoop Singhal. Measuring security
risk of networks using attack graphs. International Journal of Next-Generation
Computing, 1(1), July 2010.

17. Rodolphe Ortalo, Yves Deswarte, and Mohamed Kaâniche. Experimenting with
quantitative evaluation tools for monitoring operational security. IEEE Transac-
tions on Software Engineering, 25(5), 1999.

18. Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to
attack graph generation. In 13th ACM Conference on Computer and Communica-
tions Security (CCS), pages 336–345, 2006.

19. Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A logic-
based network security analyzer. In 14th USENIX Security Symposium, 2005.

20. Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-
vulnerability analysis. In NSPW ’98: Proceedings of the 1998 workshop on New
security paradigms, pages 71–79. ACM Press, 1998.

21. Diptikalyan Saha. Extending logical attack graphs for efficient vulnerability analy-
sis. In Proceedings of the 15th ACM conference on Computer and Communications
Security (CCS), 2008.

22. Reginald Sawilla and Xinming Ou. Identifying critical attack assets in dependency
attack graphs. In 13th European Symposium on Research in Computer Security
(ESORICS), Malaga, Spain, October 2008.

23. Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M.
Wing. Automated generation and analysis of attack graphs. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 254–265, 2002.

24. Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-
attack graph generation tool. In DARPA Information Survivability Conference and
Exposition (DISCEX II’01), volume 2, June 2001.

25. Mathias Ekstedt Teodor Sommestad* and Pontus Johnson. A probabilistic rela-
tional model for security risk analysis. Computer & Security, 29:659–679, 2010.

26. T. Tidwell, R. Larson, K. Fitch, and J. Hale. Modeling Internet attacks. In
Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,
West Point, NY, June 2001.

27. Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. An
attack graph-based probabilistic security metric. In Proceedings of The 22nd An-
nual IFIP WG 11.3 Working Conference on Data and Applications Security (DB-
SEC’08), 2008.

28. Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring network security
using attack graphs. In Third Workshop on Quality of Protection (QoP), 2007.

29. Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring the overall security
of network configurations using attack graphs. In Proceedings of 21th IFIP WG
11.3 Working Conference on Data and Applications Security (DBSEC’07), 2007.

30. Leevar Williams, Richard Lippmann, and Kyle Ingols. An interactive attack graph
cascade and reachability display. In IEEE Workshop on Visualization for Computer
Security (VizSEC 2007), 2007.

31. Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian. Canvus:
Context-aware network vulnerability scanning. In Proceedings of the 13th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID)), November
2010.

