
Deep Ground Truth Analysis
of Current Android Malware

Fengguo Wei1(B), Yuping Li1, Sankardas Roy2, Xinming Ou1, and Wu Zhou3

1 University of South Florida, Tampa, FL, USA
fwei@mail.usf.edu

2 Bowling Green State University, Bowling Green, OH, USA
3 Didi Labs, Mountain View, CA, USA

Abstract. To build effective malware analysis techniques and to eval-
uate new detection tools, up-to-date datasets reflecting the current
Android malware landscape are essential. For such datasets to be max-
imally useful, they need to contain reliable and complete information
on malware’s behaviors and techniques used in the malicious activities.
Such a dataset shall also provide a comprehensive coverage of a large
number of types of malware. The Android Malware Genome created
circa 2011 has been the only well-labeled and widely studied dataset the
research community had easy access to (As of 12/21/2015 the Genome
authors have stopped supporting the dataset sharing due to resource lim-
itation). But not only is it outdated and no longer represents the current
Android malware landscape, it also does not provide as detailed infor-
mation on malware’s behaviors as needed for research. Thus it is urgent
to create a high-quality dataset for Android malware. While existing
information sources such as VirusTotal are useful, to obtain the accurate
and detailed information for malware behaviors, deep manual analysis is
indispensable. In this work we present our approach to preparing a large
Android malware dataset for the research community. We leverage exist-
ing anti-virus scan results and automation techniques in categorizing our
large dataset (containing 24,650 malware app samples) into 135 varieties
(based on malware behavioral semantics) which belong to 71 malware
families. For each variety, we select three samples as representatives, for
a total of 405 malware samples, to conduct in-depth manual analysis.
Based on the manual analysis result we generate detailed descriptions of
each malware variety’s behaviors and include them in our dataset. We
also report our observations on the current landscape of Android malware
as depicted in the dataset. Furthermore, we present detailed documenta-
tion of the process used in creating the dataset, including the guidelines
for the manual analysis. We make our Android malware dataset available
to the research community.

1 Introduction

The Android platform continues to dominate the smartphone market with more
than 80% share according to the study by International Data Corporation [8]
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and Gartner [29]. Over the last five years, the Android world has been chang-
ing dramatically with more features added, and more sensitive operations (e.g.,
banking and wallet) becoming popular on smartphones. Along with the Android
platform’s popularity, the Android malware has been growing as well, with more
complex logic and anti-analysis techniques.

As expected, research groups across academia and industry put enormous
effort to design novel methods to detect Android malware. However, the above
effort is adversely affected by the lack of clear understanding of the latest Android
malware landscape. A reliable ground truth dataset is essential for building effec-
tive malware analysis techniques and verifying the validity of new detection
methods. For understanding the nefarious techniques used in the state-of-the-
art malware apps, detailed behavior profiles for each malware variety
must be provided in such a dataset. While creating such a dataset is a
must-do ground work, this task is extremely difficult. In particular, to provide
the rich information for malware behaviors, manual analysis is indis-
pensable. However it is not feasible to manually analyze all Android malware
at our hands (we have 24,650 from various sources). Thus the first step is to
categorize the samples into semantically equivalent groups; then we only need
to study a few samples from each group.

One can use AV scanning service like VirusTotal [7] to group malware samples
into families; however, the family labels returned are often inconsistent [16,25].
Moreover, we observe that malware samples within one family may actually
contain different varieties with different behaviors. Thus we cannot simply rely
upon the grouping provided by AV products, even after being refined by tools
like AVclass [25]. Even if grouping has been done perfectly, the amount of work
of manually analyzing representative apps from each malware variety is still
daunting. Advanced obfuscation methods are widely adopted in recent Android
malware apps, further complicating the manual analysis process.

Due to the above reasons, there has not been any effort on creating such a rich
Android malware dataset, except for the Android Malware Genome [34] project.
The Android Malware Genome dataset is no longer available to researchers due
to resource limitations.

It provided a malware dataset containing 1260 malware samples categorized
in 49 families, discovered in 2010 and 2011. We have collected a more recent
Android malware dataset from several sources (VirusShare, Google Play and
third party security companies). The malware in this collection were discovered
between 2010 and 2016. We made comparative study of the Genome dataset
with our malware samples of 2011 and later, and found that the majority of the
threats in those newer samples are not captured by the Genome samples. As a
result, we not only need a more up-to-date malware dataset for Android, we also
need one with much richer semantic information than what the Genome dataset
provided.

The main contributions of this work are as follows

1. We present a systematic method of analyzing large volumes of Android mal-
ware samples with high confidence, which helps us prepare a large ground
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truth Android malware dataset with rich profile information. This method
addresses the scalability challenge by leveraging a two-step grouping tech-
nique followed by a systematic and deep manual analysis.

2. We present a detailed guideline for performing the manual analysis so other
researchers can replicate the process on other Android malware samples in
their possession. Our manual analysis provides profiles for each variety of the
Android malware regarding their behaviors. This provides insights into the
landscape of the current Android malware.

3. We prepare a comprehensive dataset which contains 24,650 labeled Android
malware samples that are classified in 135 varieties within 71 families, whose
discovery dates range from 2010 to 2016. We publish detailed reports includ-
ing behavior information for each malware variety at our Android malware
website http://amd.arguslab.org/. We are sharing the whole dataset with the
research community.

The rest of the paper is organized as follows. Section 2 discusses the process of
preparing the dataset. Section 3 discusses in details the behaviors and techniques
of malware in our dataset, and Sect. 4 discusses our analysis and observation of
the malware evolution trends. We discuss related research in Sect. 5, and conclude
in Sect. 6.

2 Methodology

We collect Android malware apps from multiple sources, analyze the sam-
ples, and report their detailed behaviors. Figure 1 illustrates the pipeline of the
methodology, which consists of a two-step grouping process followed by a manual
procedure: (a) Group malware samples with the same family name, (b) Catego-
rize each family into semantically different varieties using a customized clustering
analysis, (c) Conduct a systematic and deep manual analysis for each variety of
malware samples to obtain the accurate and detailed behavior information for
the malware.

Fig. 1. Methodology pipeline: After malware families are identified, each family is
categorized into semantically different varieties. For each variety we generate a malware
behavior report, which is available at our Android malware website.

http://amd.arguslab.org/
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2.1 Identifying Malware Families

After raw malware samples are collected, it is an industry common practice to
assign a family name to each app and group malware into families. The family
name typically indicates the origin of the malware samples, such as in terms of
the malware writer, malicious campaign, individual characteristics, etc.

We collect sample apps from multiple sources, including VirusShare, Google
Play1, and third party security companies. Most of the malware do not have an
assigned malware family name. For such “unassigned” apps, the first step is to
identify the family name.

Challenge. Existing state-of-the-art malware scanning service such as Virus-
Total often provides multiple labels when it lists the scan result for an app using
different anti-virus tools. However, due to inconsistent naming schemes from dif-
ferent anti-virus vendors [20,21], how to reliably identify a family name for a
malware sample is a challenge.

Solution. We collected 1,464,590 unassigned app samples, and applied the fol-
lowing two steps:

(a) For each app x we get scan results of 55 antivirus products from VirusTotal
(each result is either a candidate label or not-a-malware). If at least 50% of
anti-virus products used in the VirusTotal recognize app x as a malware,
we mark x as malware and move to the second step to obtain the family
name. After this step, out of the collected apps, 1,216,885 are not labeled
as malware by any AV product; about 195,185 are labeled as malware by
some AV but did not reach the 50% threshold. We have 52,520 apps left.

(b) We obtain the family name of app x using a “dominant keyword algorithm”
as follows. First, take the scanning results of app x from VirusTotal as label
candidates. Second, normalize all the label candidates into individual Eng-
lish keywords, and meanwhile remove generic English keywords if any, e.g.,
Trojan, Android, A, B, etc. There are a few hundred English keywords
extracted and we identify the generic terms manually. Finally, we use the
dominant keyword among the remaining labels as the family name. A key-
word is dominant when: (a) the count of the keyword is greater than 50% of
the anti-virus products used in the VirusTotal result; (b) the count of the
most popular keyword is equal or more than twice of any other keyword,
i.e., there are no ambiguous labels that are highly popular at the same time.
If for an app no dominant family name is found, we filter out the app from
our dataset.

This process is very similar to AVclass [25], although we developed the app-
roach independently without the knowledge of the AVclass work. An example is
illustrated in Fig. 2, in which (1) We show VirusTotal result for an app (to save
space we show only 10 anti-virus products’ candidate labels for this app) (2) We

1 Some malware can get pass Google’s vetting system and end up in Google Play.
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Fig. 2. Dominant keyword algorithm: identifying the malware family name of app x
from VirusTotal scan results of app x. Not all AV tools are listed here to save space

extract the keywords from each of the result, and get a list of keywords such as
Android, AndroidOS, Bankum, Wroba, etc. We filter out the generic keywords
such as Android, AndroidOS, and Trojan. (3) We count the remaining keywords,
and get Bankun as the dominant keyword, which is thus considered the family
name. In particular, Bankun appeared 6 times, which is greater than 50% of the
total results (6 > 10 × 50%), and more than twice of the count of the second
dominant keyword Wroba (6 > 2 × 2).

Out of the 52,520 apps obtained from step (1), we have 24,650 samples left
after step (2). The rest are filtered out due to inconsistent family labels.

Discussion. Our goal is to provide a reliable ground truth dataset that presents
insights into the up-to-date landscape of Android malware. The more anti-virus
companies agree with the labeling for a malware sample, the more popular such
family is and thus it is a more important representative to serve our purpose.
We leave as future work to analyze those apps that as of now have no dominant
family names.

2.2 Identifying Malware Behavior Groups – Varieties

It will not be feasible to perform deep manual analysis on each of the sample
apps due to the large number of samples. How to reduce the amount of labor
while maintaining the reliability of the result is a big challenge. While one may
think that samples under the same family name should have similar behaviors,
the reality is that the family name of a malware typically does not carry much
semantic information. Anti-virus scanners name a malware with different and
often inconsistent conventions [16]. Sometimes, a scanner names a malware after
the malware writer Id; Other times the assigned family name is to highlight the
main activities of the app (e.g., FakePlayer) or main goal of the app (e.g.,
BankBot), and so on. A malware app can achieve a goal through different
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schemes. Thus the samples of a malware family can be very different in terms of
their behaviors. Hence, we have to categorize the family members into seman-
tically different groups which we call varieties. During our study, we observed
that many families have more than one varieties.

This motivates us to apply a clustering analysis for a malware family to cat-
egorize the samples into different varieties. For a given family malware apps,
we use a Android malware clustering analysis tool [18] to further categorize
the labeled malicious apps into multiple varieties (Fig. 1). Each variety of apps
reported by the clustering algorithm contains a unique version of malicious pay-
load. Then, we only need to study a few representatives of each variety (not all
apps therein) in the later manual analysis phase. This makes the whole manual
analysis process scale. Details of the clustering algorithm can be found in our
technical report [18].

2.3 Manual Analysis

We manually analyze each variety of malware samples. If a variety contains
more than three samples, we randomly select three of them for manual analysis.
Otherwise, we analyze all samples in the variety. Through a systematic study of
the samples, we generate a detailed report on the malware variety’s behavior.

Challenges

(a) Manually analyzing a malware sample warrants a systematic strategy; with-
out a strategy it is nearly impossible to understand the comprehensive pic-
ture of a malware’s behaviors.

(b) Anti-analysis/obfuscation techniques are commonly used in Android apps
as well as in malware payloads, which has an adverse impact both on static
analysis tools and to the analyst who wants to understand the semantics of
the given app.

(c) The malware app itself may not always contain the full information. Many
components could be fetched from a remote server while the malware runs
on the infected device, and those servers may have already been taken down
after the malware app was identified. Thus it may be impossible for us to
obtain those missing parts for analysis.

Assistance Tools. When manually analyzing malware apps, we leverage avail-
able tools and frameworks wherever they are relevant and helpful. A static analy-
sis tool with capability of collecting apk information and performing reachability
analysis can help the analyzer quickly prioritize the analysis process. An appro-
priate tool can help obtain the trace to critical APIs. For instance, when analyz-
ing renamed obfuscated apps, we cannot easily guess the semantics of the classes
and methods. In that case, we should locate the critical API calls (e.g., open-
Connection, sendTextMessage) and perform reachability analysis to understand
from which component this API gets invoked, and track the call chain to get
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a more clear picture of what the app is doing. To serve this purpose, we lever-
age Amandroid [28] which is a publicly available2 comprehensive static analysis
framework for analyzing Android apps.

In addition, an IDE-like editor that provides functionality of class hierarchy
resolution, def-use chain building, method invocation tracing in the decompiled
IR (intermediate representation) is also to the human analysts to understand
the code flow. We built such an analysis tool for this purpose3.

An Android app development environment is also important for manual
analysis. An analyst may need to “re-implement” certain parts of the malware
to test the real functionality, or to get the runtime value of certain variables.
For instance, many malware apps encrypt the string constant and the malicious
payloads to avoid detection. When analyzing such a malware, we first identify
the decryption routine, extract and load it in a separate app, and then provide
the encrypted content to get the plaintext information.

The Overall Strategy of Manual Analysis. With the help from the afore-
mentioned assistance tools, we performed manual analysis of 405 Android mal-
ware samples representing 135 varieties. Here we present a systematic way of
how to manually analyze Android malware, which serves as a guideline for other
people who want to reproduce our analysis results, or to analyze other Android
malware apps.

Identifying Malicious Components. An Android app is organized as a col-
lection of components. To understand the behavior of a given malware sample we
have to identify which components belong to the malware payload, or whether
the whole app is a standalone malware. As the clustering analysis (CA) tool [18]
we use is imperfect, the payload it outputs for each variety could be the full
payload or a partial payload. For the latter case, we need more effort to identify
the full payload. We get help from the following observations: (1) Since a com-
ponent is the basic functional block for an Android app, we can expect that the
full component is likely to belong to the payload, if a few of the component’s
methods or reachable methods appear in the CA-extracted payload; (2) In most
cases, the package name is a good indicator; if some of a package’s classes appear
in the CA-extracted malicious payload, then the whole package is very likely to
belong to the payload. Malware writers could also instrument the benign part
of the repackaged malware to initialize the payload, so we should also search
for any use of payload package names inside the benign components. This will
enrich our understanding of the activation strategy for this malware.

Prioritizing Component Analysis. We should not start the analysis from a
random component as that will not put the analysis in a meaningful context.
After obtaining the malicious components using the CA tool, we follow a triaging
scheme, and analyze the components in the following sequence:

2 Tool website: http://pag.arguslab.org/argus-saf.
3 Tool website: http://pag.arguslab.org/argus-cit.

http://pag.arguslab.org/argus-saf
http://pag.arguslab.org/argus-cit
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(a) Event handlers: Event handlers mostly serve as the entry points in
an Android app. More specifically, the main Activity and the Broad-
castReceiver receiving “android.intent.action.BOOT COMPLETED” event
(BootReceiver) is the initializer, which can be used to start the core com-
ponent (e.g., monitor service) of the malware, so it should be analyzed
first. Other event handlers are mainly related to monitoring user informa-
tion and the environment of infected device. They also can be considered
as entry points of certain malware. Take as example a BroadcastReceiver
which receives “android.provider.Telephony.SMS RECEIVED”. This com-
ponent is used to listen to any new incoming SMS message for this device.
When we analyze such a component, we should check how it handles the
message, whether it performs some operation related to the device inbox, if
it matches the incoming message phone number with some list (e.g., bank
phone numbers, vendor phone numbers, etc.), and aborts the SMS using
abortBroadcast() method call.

(b) The services that are started by initializers normally contain the main logic
of the malware (monitor service); thus they need to be analyzed as soon
as possible. It is the core component for most malware, which the malware
will try to keep running as long as possible. It is common to see that many
entry point components or scheduled tasks will start such service. The mon-
itor service normally is used to fetch and reply to commands from a com-
mand and control server. It is also common to schedule some TimerTask
or BroadcastReceiver to constantly check the internet connectivity, whether
an anti-virus product is running, whether itself is still alive, and so on.

(c) All remaining components. The purpose of those components vary. The
guideline is to start from such a component and trace all the reachable
code to understand: (i) what role the component plays, (ii) which other
components this component communicates with, (iii) which BroadcastRe-
ceiver this component registers, (iv) whether this component starts some
thread or AsyncTask and what is the purpose.

Building the Behavior Report. After we analyze all the relevant compo-
nents, we generate a report that includes an inter-component graph where a
node represents a component (present in the malicious payload) or a worker
thread loaded by such a component, and an edge represents the communica-
tion/interaction between two nodes. The graph also illustrates behavior descrip-
tion for each node and edge, such as the activation method, communication
message, C&C commands, etc. This gives us a comprehensive picture of the
malware on top of which we can understand its richer behavior, e.g., what is
the monetizing method, how it maintains the persistence, its main goal, and so
on. The behavior report including the inter-component graph for each malware
variety is available at the Android malware website.
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Handling Anti-analysis/Obfuscation

(a) Renaming: Class name, method name and field name are important hints
for understanding the malware’s purpose. Renaming them to meaningless
words makes manual analysis difficult. We can get help from static analysis
tools to perform a reachability analysis to see all the reachable methods
from a given component. This can help us locate the interesting APIs (as
the system API names cannot be renamed). We follow the call trace to
understand how an API gets invoked and how the calling parameters are
prepared.

(b) String encryption: Oftentimes, we understand the malware behavior based
on the strings used in the code, like URL, C&C command, class names,
phone number, etc. If those strings are encrypted, it is very difficult to
understand the semantics of those actions. To address this issue, we analyze
the malware code to figure out the decryption routine and key. We then
re-implement it in a separate app to decrypt the strings.

(c) Dynamic loading: Malware may hide its functionality in a separate apk/dex
file and load it dynamically at runtime. Even worse, apk/dex file may be
encrypted. To handle such cases, we first retrieve the decryption routine to
decrypt the apk/dex file. For either case we decompile the code to study it
as a regular app, which adds to our understanding of the malware.

(d) Native payload: Most Android static analysis tools do not handle native
code. Thus malware writers like to put some core function or data in the
native payload. For us to understand how the native payload works, we
use standard binary reverse-engineering tools including IDA [5] and hex-
dump [4].

Handling Missing Contents. Sometimes, we may not be able to obtain the
full payload of the malware, but we still have ways to maximize our understand-
ing. The basic idea is to understand how the malware leverages the missing
content. For instance, if we observe that the malware downloads an apk file, we
could see whether this malware sends an installation request for this apk or it
uses DexClassLoader to load some new classes. In the first case, we could check
the description of the installation request (which will show up on the screen to
the device user) to understand the purpose of such action. For example, this
description may say “Crucial update found for xxx.” Then we know it is mis-
leading the user to install a malware. In the second case, we know this malware
is dynamically loading some code; we should expect to see multiple java reflec-
tion calls to such code, and from those reflection calls we could infer what role
it plays.

Discussion. One may wonder what is the benefit of our study given the fact
that after a malware family is discovered, anti-virus companies usually publish a
report/bulletin on a sample app from that family. In fact, for each family under
our study (71 in total), we did find such reports on the web. However, such
reports usually only highlight the security breaches and main activities of the
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malware family and do not describe the malware behaviors in details. This is
not sufficient for malware research. In addition, those reports do not provide the
varieties for each family and the different malware behaviors from those varieties.

3 Android Malware Profiling

We present an overview of our Android malware dataset, and discuss the detailed
profiles for the samples along two main dimensions: behaviors and monetization
methods. The detailed information of each malware variety can be found at our
Android malware website.

3.1 Malware Dataset Overview

Table 1 provides an overview of the malware families in our dataset. For each
family we show the time it was first discovered. The malware type roughly indi-
cates the main purpose of the family. The table shows the number of samples,
and the number of varieties in each family. The dataset consists of 24,650 mal-
ware samples categorized in 135 varieties within 71 families.

Table 1. Dataset overview.

Family Type Samples Variety Detection

Lnk Trojan 5 1 07/2010
FakePlayer Trojan-SMS 21 2 08/2010
DroidKungFu Backdoor 546 6 05/2011
GoldDream Backdoor 53 2 07/2011
GingerMaster Backdoor 128 7 08/2011
Boxer Trojan-SMS 44 1 09/2011
Zitmo Trojan-Banker 24 2 10/2011
SpyBubble Trojan-SMS 10 1 11/2011
Fjcon Backdoor 16 1 11/2011
Steek Trojan-Clicker 12 1 01/2012
FakeTimer Trojan 12 2 01/2012
Opfake Trojan-SMS 10 2 01/2012
FakeAngry Backdoor 10 2 02/2012
FakeInst Trojan-SMS 2172 5 05/2012
FakeDoc Trojan 21 1 05/2012
MobileTX Trojan 17 1 05/2012
Nandrobox Trojan 76 2 07/2012
Mmarketpay Trojan 14 1 07/2012
UpdtKiller Trojan 24 1 07/2012
Vidro Trojan-SMS 23 1 08/2012
SmsZombie Trojan-Spy 9 1 08/2012
Lotoor HackerTool 333 15 09/2012
Penetho HackerTool 18 1 10/2012
Ksapp Trojan 36 1 01/2013
Winge Trojan-Clicker 19 1 01/2013
Mtk Trojan 67 3 02/2013
Kyview Adware 175 1 04/2013
SmsKey Trojan-SMS 165 2 04/2013
Obad Backdoor 9 1 06/2013
Vmvol Trojan-Spy 13 1 06/2013
AndroRAT Backdoor 46 1 07/2013
Stealer Trojan-SMS 25 1 07/2013
Boqx Trojan-Dropper 215 2 07/2013
Bankun Trojan-Banker 70 4 07/2013
Mseg Trojan 235 1 08/2013
FakeUpdates Trojan 5 1 08/2013

Family Type Samples Variety Detection

Minimob Adware 203 1 09/2013
Tesbo Trojan-SMS 5 1 09/2013
Gumen Trojan-SMS 145 1 10/2013
Svpeng Trojan-Banker 13 1 11/2013
Spambot Backdoor 15 1 12/2013
Utchi Adware 12 1 02/2014
Airpush Adware 7843 1 03/2014
FakeAV Trojan 5 1 04/2014
Koler Ransom 69 2 05/2014
SimpleLocker Ransom 173 4 06/2014
Cova Trojan-SMS 17 2 06/2014
Jisut Ransom 560 1 06/2014
Univert Backdoor 10 1 07/2014
Aples Ransom 21 1 07/2014
Finspy Trojan-Spy 9 1 08/2014
Erop Trojan-SMS 46 1 08/2014
Andup Adware 45 1 11/2014
Ramnit Trojan-Dropper 8 1 11/2014
Kuguo Adware 1199 1 02/2015
Youmi Adware 1301 1 02/2015
Dowgin Adware 3385 1 02/2015
Fobus Backdoor 4 1 03/2015
BankBot Trojan-Banker 740 8 03/2015
Roop Ransom 48 1 05/2015
Ogel Trojan-SMS 6 1 06/2015
Mecor Trojan-Spy 1820 1 07/2015
Ztorg Trojan-Dropper 20 1 08/2015
Gorpo Trojan-Dropper 37 1 08/2015
Leech Trojan-SMS 128 3 09/2015
Fusob Ransom 1277 2 10/2015
Kemoge Trojan-Dropper 15 1 10/2015
SlemBunk Trojan-Banker 174 4 12/2015
Triada Backdoor 210 1 03/2016
RuMMS Trojan-SMS 402 4 04/2016
VikingHorde Trojan-Dropper 7 1 05/2016

Total: 71 24650 135
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3.2 Malware Behaviors

Table 2 illustrates the behaviors of malware families4 we analyzed. Due to space
constraint we only present part of the analysis result. The more detailed informa-
tion can be found at our Android malware website. Behavior tags in one category
may not be mutually-exclusive — some apps may present multiple behaviors in
a category.

Composition. There are three ways an Android malware is composed: a stand-
alone app where the malware was written from scratch, a repackaged app
where the malware was repackaged within a legitimate app, and library where
the malicious components exist in the library code of an otherwise legitimate
app. For the library case, this is the common way adware gets on the user’s
device. The difference between this method and repackaging is that the mali-
cious payload here may get tagged on the app by the app developer (who may
not be aware of the malicious activity inside the library) as opposed to being
repackaged by a malware writer.

In our dataset, we observe that 63% of malware varieties and 35% of malware
apps (shorthanded 63%/35% thereafter) are standalone, 30%/7% of malware are
repackaged, and in 7%/58% of malware the malicious payload is installed as a
library of the “legitimate” app. This means repackaging is no longer the domi-
nant method for composing Android malware. The reason could be that malware
writers nowadays put more effort in Android, and have started to design more
comprehensive and sophisticated malware from scratch. For instance, FakeAV
is a fake anti-virus family; its behavior looks exactly the same as a typical anti-
virus application and its appearance looks very professional. Bankun masquer-
ades as the legitimate Korean bank app – in fact it looks exactly the same as
the legitimate one.

Even in decline repackaging is still frequently used in distributing malware.
We define two types of repackaging: isolated repackaging and integrated repack-
aging.

Isolated repackaging means the malware payload is packaged into a legiti-
mate application x but not in any way connected with x ’s original functionality.
It declares its own event handler as the activation component, and does all the
malicious tasks on its own without affecting x ’s functionality.

Integrated repackaging is the more advanced way where the malware author
modifies the workflow of (or injects code into) the host app, and lets the payload
run together with the host app. This makes the malware more stealthy, and
more likely to be activated. For instance, VikingHorde [22] replaces the app’s
launcher Activity with its own launcher; the launcher will activate its monitoring
service and then start the host app’s launcher component.

4 Table 2 aggregates the behaviors over all malware varieties in a family. The more
specific per-variety breakdown can be found at our Android malware website.
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Table 2. Malware behaviors.

Legend
Composition Standalone (ST) Repackaging (RPKG): Isolated (O), Integrated (T) Library (LIB) Installation Drop (DR) Drive-by Download (DD)
Activation Event (EV) By Host App (BHA) Scheduling (SC) Info Stealing Device Info (DI) Personal Info (PI)

Persistence Stealthy (TH): Block (BL), Clean (CL), Hide Icon (HI), Rootkit (RK)
Prevent destroy (PD): Hide Admin (HA), Kill AV (KA), Lock Device (LD), Monitor Destroy Action (MDA), Reinstall (RI), System App (SYS)

Privilege Request Admin (RA) Root Exploit (RE)
C&C Internet (IN) Command Encoding (CE): JSON (J), Java Script (JS), XML (X), Custom Protocol (P)

Anti-analysis Renaming (RN) String Encryption (SE) Dynamic Loading (DL) Native Payload (NP)
Evade Dynamic Analysis (EDA): Check Device Info (CDI), Encrypt Communication (EC), Check Installed App (CIA)

Family
Composition Installation Activation Info Stealing Persistence Privilege C&C Anti-analysis

ST RPKG LIB DR DD EV BHA SC DI PI TH PD RA RE IN SMS CE RN SE DL NP EDA

Airpush � � � � � � J �
AndroRAT � � � � � � � P
Andup � � � � � � �
Aples � � � � LD � � P
BankBot � � � � � � � BL&HI MDA � � � J&P � � � CDI
Bankun � � � � � � � BL&HI � � J&X CDI
Boqx O � � �
Boxer � � � � �
Cova � � � � � BL � JS �
Dowgin � � � � � � J � � � EC
DroidKungFu � O&T � � � � � � KA � � J&P � � �
Erop � � �
FakeAV � � � BL
FakeAngry O � � � � P � �
FakeDoc � � � � BL �
FakeInst � � � � BL � J&P � �
FakePlayer � � BL �
FakeTimer � � � � �
FakeUpdates T � � � � � X � �
Finspy � � � � HI � P � EC
Fjcon O � � � BL � X
Fobus � � � � BL&HI � � � X � � EC
Fusob � � � � LD&MDA � � J � � �
GingerMaster O&T � � � � � � � � P � �
GoldDream � T � � � � � P
Gorpo O � � � � J � � EC
Gumen T � � � � BL � X � DI
Jisut � � LD
Kemoge O � � � � � P
Koler � � � � LD&MDA � � JS&P � CDI
Ksapp T � � � � � � � P EC
Kuguo � � � � � � � P �
Kyview � � � � � � J � �
Leech T � � � � � � BL MDA � � J � � � EC
Lnk T � �
Lotoor � � � � � � �
Mecor � � � � � JS
Minimob � � � � � � � J �
Mmarketpay O � � � � � BL � P
MobileTX � � � �
Mseg O � � � � � BL � P �
Mtk O&T � � � � � � P � � �
Nandrobox T � � � � � BL � J
Obad � � � � � � � BL&HI HA � � � J � � CDI&EC
Ogel � � � � � BL � P � �
Opfake � � � � � � BL&CL&HI � P �
Penetho � �
Ramnit T �
Roop � � � HI LD � � JS �
RuMMS � � � � � � � BL&HI � � J � � �
SimpleLocker � � � � � HI LD � � � J&P �
SlemBunk � � � � � � � BL&HI � � � J � � �
SmsKey T � � �
SmsZombie � � � � � � BL&CL � � X
Spambot � � � BL �
SpyBubble � � � � � � BL&CL � X
Stealer � � � � � � BL MDA � JS �
Steek � �
Svpeng � � � � � � BL LD � � P CDI
Tesbo O � � BL&CL � X � �
Triada � � � � � CL&RK SYS � P � � � CDI&CIA
Univert � � � � � BL � J
UpdtKiller T � � � � BL KA&MDA � � X � �
Utchi � � � � � � �
Vidro � � � � � BL � J
VikingHorde T � � � � � RI � � J �
Vmvol � � � � � BL&CL � J
Winge O � � � � � X �
Youmi � � � � � � P �
Zitmo � � � � � BL&HI � P �
Ztorg T � � � � � J � � � EC

Total families: 41 24 9 40 9 64 20 34 39 58 34 15 15 8 50 9 53 39 22 11 8 14
Total varieties: 85 40 9 76 15 120 23 58 92 61 53 27 30 32 83 12 86 64 35 13 19 15
Total apps: 8567 1833 14231 9231 1218 14980 14687 12341 21333 15035 2839 3549 2823 1061 22108 367 22145 18143 7211 5072 972 4051

Malware
ST RPKG LIB DR DD EV BHA SC DI PI TH PD RA RE IN SMS CE RN SE DL NP EDA

Composition Installation Activation Info Stealing Persistence Privilege C&C Anti-analysis

Installation. Besides being installed by users, there are a couple other ways
Android malware get on a victim’s device.

Drop: There are more than 56%/37% of malware that try to download and
install applications on the victim’s device; the downloaded application could be
the malware’s real payload, upgraded version, or other risky applications. There
are different ways malware use to install applications on victim’s device. Vmvol
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will show a dialog with critical update message to trick the victim user to install
the payload as an update.

Drive-by Download: We adopt the following definition for Drive-by down-
load [3]: (1) Downloads which a person authorized but without understanding
the consequences; and (2) Any download that happens without a person’s knowl-
edge. As one example, SlemBunk [31,33] gets on the device when the user visits
some porn website. The website will show a prompt that asks the user to upgrade
the Flash Player; if the user chooses to upgrade, it will actually download the
Slembunk malware. Another example: Bankun will collect victim’s contacts,
and send a message saying “We will send you a mobile birthday invitations
http://vik6.pw” to each of the contacts. As people normally trust what they get
from their friends, the friend will likely click on the link, and the malware will
be downloaded.

Activation. Android Malware Genome only reported event-based activation
methods. Our analysis found two more options: by-host-app and scheduling.

The by-host-app option is closely related to the integrated repackaging
method, where the attacker instruments code into the host app to activate
the malware together with the host app. This is the typical way for activat-
ing adware, which we will discuss in Sect. 3.3.

The scheduling option is also frequently used to start their monitoring or
data collection in a periodic manner. Typically, the malware registers a Timer
task thread, or uses Android’s AlarmManager with PendingIntent. When certain
time goes by, the malware’s monitor service is activated to get new commands
from the C&C server. One extreme use of scheduling is in ransomware. Some
ransomware apps schedule a periodic task using a very short interval, making
the victim device non-responding. We discuss this more in Sect. 3.3.

Information Stealing. In our dataset, more than 68%/87% malware col-
lect users’ device information, such as international mobile station equipment
identity (IMEI), international mobile subscriber identity (IMSI), kernel version,
phone manufacturer, network operator, etc. We observe that information items
such as IMEI and IMSI are unique for each device and thus could be used as
an identifier to register the compromised device with the C&C server. Other
device information items, such as the OS version, the baseband version, the OS
language, and installed applications give the C&C server some idea of the target
device’s specification, based on which the C&C server can decide the strategy
for using the compromised device.

Persistence. In our dataset, 48%/22% malware use at least one persistence
technique, which shows that persistence is one of the important attributes the
malware writers consider in the app design. The longer the malware can stay
in the victim’s device, the more revenue they can produce for the adversary.
Persistence can be achieved over multiple dimensions, including:

http://vik6.pw
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(a) Making malware’s presence stealthy. We observed multiple stealthy methods
malware use to hide evidence of malicious activity: (a) Blocking the appear-
ance of items such as audio, call, notification, or SMS, (b) Cleaning items
such as call log and SMS history – important for the malware since the auto-
matically added messages or phone records may alert the victim user that
something wrong may have happened, (c) Hiding the malware’s launcher
icon despite the malware’s background service running, (d) Hooking system
APIs to mask its existence.

(b) Preventing itself from being destroyed by the system, anti-virus product, or
the user via techniques such as hiding itself from appearing in the device
administrator list, killing AV process, locking device, etc.

Privilege Escalation. Obtaining admin privilege can make the malware much
harder to remove, and can allow the malware to perform privileged oper-
ations such as changing lock-screen pin code, locking device, wiping device
data, etc. More and more malware these days try to acquire admin-privilege.
Obad leverages admin-privilege to make it disappear. Another notable mal-
ware family is Fobus. Once Fobus gets admin-privilege, it will listen to the
DEVICE ADMIN DISABLE REQUESTED event. If the user tries to disable
admin-privilege for this malware, it will lock the screen before the user can click
the confirm button. Even if the user is fast enough to click the confirm button,
it will display a message saying that if the user continues, the malware will do
a factory reset of the device resulting in all the user’s data being lost. Users
usually know that granting admin-privilege is risky. Nevertheless, malware apps
always try to convince the victim that they are security related services (e.g.,
Updtkiller), or they can make the device more efficient (e.g., Fobus). If the vic-
tim does not grant admin-privilege, many malware apps (e.g., SmsZombie) will
aggressively ask for it, which annoys the victim and makes the device unusable.

Lotoor is a generic name for a collection of hacking tools that exploit vulner-
abilities to root a device and perform privileged actions by leveraging the root
privilege. Our dataset has 15 varieties of different hacking tools under the name
Lotoor . Those tools either help user root their device, or perform actions needing
root privilege. Most rooter malware contain one to three root exploits targeting
2.x Android devices. The mostly used root exploits are Exploid, RageAgain-
stTheCage (RATC), and GingerBreak. However, Lotoor.FramaRoot changes
the story – it is the most comprehensive hacking tool containing at least eleven
exploits that target devices with all kinds of processors (e.g., Exynos, Qualcomm,
Mediatek, etc.) ranging from 2.x to 4.x. Lotoor.MasterKey does not use any
root exploit, but leverages a MasterKey vulnerability to hide its payload in a sys-
tem app and bypasses the Android cryptographic verifier to infect the victim’s
device up to 4.x.

At the end of 2014 malware with root exploits appeared again while they
still targeted devices before 4.x. Leech , Ztorg , Gorpo work together [13] and
form a kind of “malvertising botnet.” They leverage root privilege to drop new
malware on the “network” of infected devices. For instance, Triada is dropped
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by this network. Triada has some interesting behaviors. It is a modular malware
(with well-defined interfaces) with active use of root privilege. Once it is installed
on the rooted device, it will try to exchange a configuration file with the C&C
server, which contains the communication rate, the modules that need to be
downloaded, etc. The modules include downloader, SMS trojan, and banking
trojan. Triada is as sophisticated as traditional PC malware, which raises the
alert that Android malware are evolving from the more primitive form to the
next level.

Kaspersky reports [14] that Android devices running versions higher than
4.4.4 have much fewer exploitable vulnerabilities. This may explain why malware
with root exploits are becoming less popular than reported in Android Malware
Genome. However, there are still about 60% devices running old versions of
Android that are vulnerable to rooting attack. Thus root exploit is still a major
threat to Android devices.

Command and Control (C&C). 64%/90% have C&C servers. C&C increases
the functionality and flexibility of the malware, helps it adapt to its run-
ning environment, continuously monitors the victim, and makes the best strat-
egy to generate revenue. A C&C module generally contains a message builder
and a command handler. Android malware have a variety of ways to trans-
mit the collected items to the server. For example, SmsZombie builds a
formatted text message and sends it to the server via SMS; one version of
FakeAngry builds a URL like http://l.anzhuo7.com:8097/getxml.do?flagid=-
500&mediaver=7&channel=202 109&imei=xxx&... which contains information
items as the parameters; a newer version of FakeAngry puts the data into the
HTTP POST request entity; SpyBubble stores all the messages into an XML
file; RuMMS [32] encodes data into JSON format.

Upon receiving a command from the C&C server, the malware will perform
certain actions according to the command. We observe that there are at least
the following ways by which a command handler is designed.

(a) Commands can be in a standard formatted such as XML or JSON. The
decoding routine reads contents from the command and perform the tasks
accordingly.

(b) Android Webview allows the developer to specify a Javascript to Java bridge
interface [1]; when the server sends javascript code back to the Webview, it
will automatically be mapped to the corresponding Java method to perform
the task.

(c) Many malware varieties use plain text or a self-defined protocol for the
command format. A custom protocol is not necessarily less sophisticated
than the other types. One of the most notable is Ksapp, which uses a
self-designed language MDK as the command. In the malware payload, it
contains a full interpreter of MDK including a lexer, a parser, and an MDK
to Java type mapper. Whenever the malware receives a new command file,
it will first parse it, generate a function table, and start executing from
a predefined entry point function “start.” In the execution, the MDK will
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map MDK types to Java types, and for the invocation, MDK will issue
the invocation in JVM via reflection. When analyzing this kind of malware,
analysts cannot see any functionality in the malware payload, but the mal-
ware can perform whatever actions allowed by permissions specified in the
AndroidManifest.

Anti-analysis Techniques. We observe that 63%/79% of malware use at least
one anti-analysis technique.

Renaming is one of the most adopted obfuscation techniques. It translates
the original meaningful package, class, method, field, and parameter names into
some meaningless or unreadable form. This makes the manual analysis much
harder. However, it does not impact static analysis tools, and API calls cannot
be renamed.

String Encryption is also widely found in malware. Strings in the code like
server URL, JSON/XML key values, intent action, component name strings, or
reflection strings can help anti-virus product or analysts identify the malware.
Malware can use string encryption to change the constant strings to ciphertext,
which increases the difficulty of understanding the malware behavior. Normally,
malware uses the following ways or their combination to encrypt the string:
byte permutation, one-time pad, base64 encoding, DES/AES, etc. To manually
inspect those malware, we had to reimplement the decryption/decoding routine
and map the ciphertext back to the plaintext form to understand their behavior.

Fig. 3. Obad Code Snippet. The obfuscated code is on the top; the de-obfuscated
version is at the bottom.
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One notable family that extensively adopts renaming and string encryption
techniques is Obad . Figure 3 shows the code snippets in Obad and the cor-
responding translation. We can see that, the obfuscation renames all classes,
methods, fields to human unreadable forms (e.g., IljIllj, IliijIIl, etc.). Further-
more, all invoke statements in the unobfuscated bytecode are translated to java
reflection in the obfuscated version, and the name strings of such reflection are
further encrypted and stored in a byte array list “IliijIIl.” The decrypting method
“IljIllj.IliijIIl” takes the byte array from “IliijIIl” and decrypts it and makes the
reflection call. This clearly shows that the obfuscation can make both manual
analysis and static analysis extremely difficult.

Dynamic Loading dex file becomes more popular nowadays. Normally it
contains a dropper payload, which is lightweight and looks benign. But this
dropper payload will then load the real payload from its assets or resource folder
(e.g., RuMMS), or download the real payload from internet (e.g., SlemBunk).
To further complicate the analysis, the real payload can even be encrypted (e.g.,
Fobus).

Native Payload: Most of the static analysis tools focus on Dalvik bytecode.
So the native library seems to be a good place to hide malware behavior. In our
analysis, we observed that native payloads are becoming more popular. Malware
apps not only hide functionalities, but also hide sensitive strings, like server
URL, premium numbers in the native code.

Evade Dynamic Analysis: The basic idea of evading dynamic analysis is to
detect the malware’s current running environment. For example, when BankBot
[26] gets activated, it will check whether IMEI, MODEL, FINGERPRINT,
MANUFACTURE, BRAND and DEVICE are of certain value. If the running
environment satisfies the condition, it will act benignly and stop itself. Tri-
ada will check if IMEI matches some pattern, and check whether “com.qihoo.
androidsandbox” is installed. To thwart dynamic analysis that monitors the
communication channel (e.g., Internet, SMS.) of the malware, many malware
encrypt communication with their C&C servers.

Many of these anti-analysis techniques involve encryption; thus how to obtain
the key is important to the analyst. In most of the cases, the key is just hardcoded
in the application code. Some malware put the key in the manifest, a resource
XML file, or in the native payload. We also observed a few smart ways to hide
or generate the keys. Fobus reads the JVM stack trace and uses the class and
method name of the fourth entry in the stack to construct the key. Obad obtains
its key by requesting a webpage from Facebook, and reads certain location from
that webpage to generate the key.

3.3 Monetization
We observe that many malware attempt to make money from the victims as
Table 3 illustrate.

Premium Service Subscription. Subscribing to a premium service is one
of the main ways cybercriminals use to make money. In general, subscribing to
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Table 3. Monetization techniques.

Family
Premium Service

Bank Ransom
Aggressive

Subscription Advertising

Airpush Dynamic �
AndroRAT Dynamic
Andup �
Aples �
BankBot �
Bankun �
Boqx
Boxer Static
Cova Dynamic&Static
Dowgin �
DroidKungFu
Erop Static
FakeAV �
FakeAngry
FakeDoc Static
FakeInst Dynamic&Static
FakePlayer Static
FakeTimer
FakeUpdates
Finspy
Fjcon Dynamic
Fobus Dynamic
Fusob �
GingerMaster
GoldDream Dynamic
Gorpo �
Gumen Dynamic
Jisut �
Kemoge
Koler �
Ksapp
Kuguo �
Kyview �
Leech �
Lnk
Lotoor
Mecor

Family
Premium Service

Bank Ransom
Aggressive

Subscription Advertising

Minimob Dynamic �
Mmarketpay Dynamic
MobileTX Static
Mseg Dynamic
Mtk
Nandrobox Static
Obad Dynamic
Ogel
Opfake Dynamic&Static �
Penetho
Ramnit
Roop �
RuMMS Dynamic �
SimpleLocker �
SlemBunk �
SmsKey Static
SmsZombie �
Spambot Static
SpyBubble
Stealer Dynamic
Steek
Svpeng Dynamic � �
Tesbo
Triada Dynamic �
Univert Dynamic
UpdtKiller Dynamic
Utchi �
Vidro Dynamic
VikingHorde �
Vmvol Dynamic
Winge Dynamic
Youmi �
Zitmo �
Ztorg �
Total families: 30 9 8 12
Total varieties: 41 27 13 13
Total apps: 11839 1652 2166 14336

a premium service requires the malware app to send a request to the service
provider. The premium service sends back a confirmation message, which has to
be entered back to finish the subscription process. A comprehensive premium-
service-subscription module includes a premium service requester and an incom-
ing message handler. The service requester makes phone calls, sends SMS or
network request to the premium service. After that, the malware waits for the
services to reply with confirmation message. The incoming message handler inter-
cepts the confirmation message and parses it. It then applies a handler logic based
on different subscription routines, and cleans any evidence that might alert the
victim user.

In our analysis, we found the following ways to obtain the premium numbers
and handler logic: hard coded into the bytecode, hidden in the resource XML
files or native library, encrypted, and dynamically configured from C&C server.

Banking Trojan. Online payment and mobile wallet are becoming more pop-
ular nowadays. Cybercriminals are also putting much effort to increase their
revenue by designing banking trojans. In 2013, banking trojan Bankun came
into picture. Once activated this trojan will check the compromised device for
installed Korean banking applications, and try to replace them with fake ones.

Newer versions of banking trojans are capable of overlaying the on-screen
display of a legitimate banking app with a phishing window. Slembunk
falls into this category. When this malware is activated, it will schedule a



270 F. Wei et al.

Fig. 4. Slembunk Phishing Windows Fig. 5. Ransom Windows by Aples

java.lang.Runnable every 4 seconds to monitor the current running applications
by looking at the Activity at the top of the Activity stack. If the current running
Activity belongs to certain banking application, it will overlay a phishing win-
dow on top of the screen. Figure 4 shows what the phishing window looks like
for different banking applications. As an example, if the current application is
com.android.vending the left top window will be popped, and so on. Slembunk
not only overlays phishing windows, it is also capable of forwarding phone calls
and SMS from bank numbers, and applying the response logic. To effectively
conceal the arrival of text messages or phone calls from banks, it will mute the
device’s audio system. Later versions of Slembunk even apply most sophisti-
cated string encryption and dynamic loading obfuscation techniques (Sect. 3.2).
Recently, IBM and FireEye report [9,17] that the source code of SlemBunk
was leaked, which could result in the emergence of more variants.

Ransom. Ransomware locks the victim device by making it non-responsive or
encrypting its data, and then coerces the victim to pay for the restoration.

Device Locking Techniques
Svpeng is both a banking trojan and ransomware. If its C&C server

sends a command “forceLock,” it will lock the infected device by using
SYSTEM ALERT WINDOW permission and WindowManager LayoutParams
with certain flags (e.g., FLAG SCREEN, FLAG LAYOUT IN SCREEN,
FLAG WATCH OUTSIDE TOUCH, etc.) to achieve an unremovable full screen
floating window.

Aples first appeared in 2014 – when activated, it will schedule a
Runnable in every 0.1 second to load the threatening window with flag
FLAG ACTIVITY NEW TASK which looks like Fig. 5. Clicking on “PRO-
CEED” at the first window will lead to the second window that asks the victim
user to fill in a $300 MoneyPark code to unlock. Another malware family Sim-
pleLocker has applied similar techniques, at the same time also encrypting all
the data in the compromised device’s external storage using AES with a hard-
coded key.
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Jisut once activated will launch a ransom window, and override onKeyDown
method of Activity to redirect key press event (e.g., return key, volume key, menu
key, etc.) to some meaningless action to achieve the lock screen purpose.

Device UnLocking Techniques. After the victim has paid the money, the
cybercriminal will tell the victim how to unlock the device or unlock it remotely.
The most common way is to type in the pin. The pin in one variety of Sim-
pleLocker is generated by obtaining a serial number at beginning (which is a
random number), then uses some calculation logic (in one sample, the logic is key
= (serial number - 2016)*2 + 2016). The second way is using remote control.
For instance, Koler uses network command to clear a lock tag at the malware’s
shared preference. The third way is by installing an unlock app. One variety
of Jisut constantly checks whether an app with package “tk.jianmo.study” is
installed or not; if yes, it will release the lock.

Aggressive Advertising. Mobile advertising is the main revenue source for
app developers as well as malware writers. Advertising in malware is usually
more aggressive, and this kind of apps are called adware.

Potentially Unwanted Application (PUA). A PUA adware performs tasks
such as monitoring victim’s personal data, showing unwanted advertisement con-
tent, annoying victim user with aggressive advertisement push, showing and
tempting the victim to download and install potential harmful applications.
Dowgin is one adware app. It will be activated once the device connectivity
changes, user comes into presence, or a new application is installed or deleted.
Once activated, it will display unwanted advertisements in the system’s notifica-
tion bar. If the victim clicks on this notification, it will show an application wall
which attracts the victim to install new applications. At the same time, it will
send device information and the list of installed apps to a remote C&C server
using JSON, and receive commands for showing a new advertisement, upload-
ing client info etc. Many other adwares have similar behaviors, e.g., Airpush ,
Kuguo, Youmi .

Malware Dropper. Gorpo, Kemoge [30], Leech and Ztorg are some exam-
ples. Their task is to gain the root privilege on the infected device as discussed in
Sect. 3.2, and then silently drop all the active malware apps that are available on
the “malvertising campaign network” to the infected device. VikingHorde is
running in two modes: rooted and not-rooted. If the device is not rooted, it per-
forms in a regular fashion: uploading victim’s data, fetch command from C&C to
execute, etc. If the device is rooted, it will install some additional components,
which are capable of constantly and silently downloading new malware onto the
device. We include this as part of aggressive advertising even though their main
purpose is spreading malware.
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4 Evolution

We have performed a longitudinal study of our malware dataset with an attempt
to discover the trend of malware behaviors and techniques used over the years
from 2010 to 2016. For each type of behaviors and techniques, we observe the
trend in terms of percentage of malware varieties manifesting a specific behav-
ior/technique within a year. Figure 6 presents the results.

Figure 6a shows that the repackaging usage was growing until 2012, but later
standalone malware became dominant. The reason could be that there are many
effective anti-repackaging solutions made available during the last few years,
which gives cybercriminals less incentive to use such techniques. On the other
hand, the bad guys are putting more effort into designing comprehensive and
sophisticated malware apps from scratch, and their malware design skill has
matured.

Not surprising to see in Fig. 6b that listening to system events to activate
malware’s functional units is the main trick given the nature of Android system
design. Scheduling a task to periodically start its functional unit is an alarmingly
growing trend. By scheduling timer task or leveraging the AlarmManager the
malware can constantly upload victim’s information to or retrieve commands
from the C&C server; in the ransomware apps, it is also one of the techniques
to lock victim’s device.

We observe that persistence has become a core feature of Android malware
apps. Figure 6c shows that malware apps are evolving to be harder to notice by
the victim, and harder to be destroyed by the system, anti-virus solutions, or
users.

Fig. 6. Malware behavior trends
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Root exploit is becoming less popular as we have discussed in Sect. 3.2,
but obtaining device-admin-privilege seems to have become popular as seen in
Fig. 6d.

The anti-analysis techniques are one of the key weapons of cybercriminals
in the battle against security analysts. From Fig. 6e we can see that renaming
and string encryption are the most growing techniques; dynamic loading and
evading dynamic analysis are catching up while the practice of hiding behaviors
in native payload is staying at the similar level.

Figure 6f shows that banking malware is becoming the main channel for
cybercriminals to make money. Ransomware is a new threat that has started
an uptick.

5 Related Work

The Android Malware Genome [34] was the first research project that has pro-
vided the community an Android malware dataset. This dataset has been the
only well-labeled one and has been widely studied and used by the research com-
munity. Unfortunately, it has not been updated after its creation time around
2011. We comparatively studied this dataset with the new malware samples we
have, and found that the Genome dataset does not include many of the new
threats, which motivated us to carry out this work. Our dataset also provides
much more detailed information on Android malware behaviors than that in
Genome. Moreover, we provide detailed documentation of the process used in
creating the dataset, including the guidelines for the manual analysis, to help
other researchers do the same.

Recently, the AndroZoo [10] dataset has been published, which contains more
than 3 million Android apps from Google Play, other smaller markets, and app
repositories. AndroZoo’s goal is to create a comprehensive app collection for
software engineering studies. Our goal is different and we focus on (only) malware
apps to study their security related behaviors. Our dataset provides malware
labels and detailed behavior information of the malware.

There are a few other repositories for Android malware apps which
researchers can use, such as Contagio Minidump [2] and VirusShare [6]. How-
ever, they do not provide a comprehensive malware collection or comprehensive
label and behavior information on the malware.

The ANDRUBIS [19] combines static and dynamic analysis to automatically
extract feature and behaviors from Android apps, and studies the changes in
the malware threat landscape and trends among “goodware,” or benign apps,
developers. However, as many behaviors are either unknown or can evade the
automated analysis method, this work cannot give a comprehensive understand-
ing of the malware landscape as we produced through the systematic and deep
manual analysis.

AVclass [25] provides a method to extract malware family name by processing
the AV labels obtained from VirusTotal. We adopted a similar approach for
identifying malware family label. Our work is focused on deep manual analysis
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of malware samples from different malware varieties, and reporting the detailed
behavioral profiles for Android malware.

There has been quite some work on how to detect malicious apps. The
Drebin [11] work applies machine learning (ML) techniques to Android malware
detection. The authors made the set of feature vectors used in the ML work
available to the community. More recently, MassVet [15] provides a method to
detect malware apps by observing the repackaging traits (if any) compared to
that of other apps. Rastogi, et al. [24] conducted research on identifying adware
tricks and drive-by-download techniques. Harvestor [23] attempts to extract the
run-time values from obfuscated apps to detect malware. Researchers have iden-
tified ways in which Android users can be deceived to misidentify a malicious
app window as a legitimate app’s [12]. Moreover, CopperDroid [27] is a dynamic
analysis system which attempts to reconstruct the behaviors of Android mal-
ware. Our work complements these and other Android malware analysis work
by providing a comprehensive dataset of Android malware with detailed label
and behavior information, which can facilitate future research in this area.

6 Conclusion

We created a large volume of well-labeled and well-studied Android malware
dataset containing 24,650 samples, categorized in 135 varieties among 71 families
ranging from 2010 to 2016. For each variety of this dataset we conduct a compre-
hensive study to profile their behaviors and evolution trends. We document in
details the process of creating this dataset to enable other researchers to replicate
the process. We observe that Android malware are evolving towards monetiza-
tion, and becoming sophisticated and persistent. The extensive usage of anti-
analysis techniques in the malware samples shows the urgent need for advanced
de-obfuscation and dynamic analysis methods. We will make the dataset avail-
able to research community.
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