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Abstract

Attack graphs have been proposed as useful tools for anglygzacurity vulnerabilities in
network systems. Even when they are produced efficienysire and complexity of at-
tack graphs often prevent a human from fully comprehendiegrtformation conveyed. A
distillation of this overwhelming amount of informationgsucial to aid network adminis-
trators in efficiently allocating scarce human and finarn@aburces. This paper introduces
AssetRank, a generalization of Google’s PageRank algonittnich ranks web pages in
web graphs. AssetRank addresses the unique semanticsesfddagey attack graphs and
incorporates vulnerability data from public database®otapute metrics for the graph ver-
tices (representing attacker privileges and vulneradsljtwhich reveal their importance in
attacks against the system. We give a stochastic intetjgnetaf the computed values in the
context of dependency attack graphs, and conduct expetsroarvarious network scenar-
ios. The results of the experiments show that the numerksrgiven by our algorithm are
consistent with the intuitive importance that the privésg@nd vulnerabilities have to an at-
tacker. The vertex ranks can be used to prioritize countasones, help a human reader to
better comprehend security problems, and provide inpuirthér security analysis tools.

Résum é

On a proposé des graphes d’attaque comme outils utileslpoatyse des vulnérabilites
de sécurité des réseaux informatiques. Méme lorsgsiiht produits de facon efficiente, la
taille et la complexité de ces graphes empéchent soungttte humain de bien saisir toute
I'information ainsi présentée. Il est essentiel de testicette masse écrasante d’informa-
tion pour aider les administrateurs de réseau a allouéagbmn efficiente leurs ressources
humaines et financieres limitées. Dans ce document, @septé I'algorithme AssetRank,
une généralisation de l'algorithme PageRank de Googlsen a classer les pages Web
dans des graphes Web. AssetRank traite la sémantiqueeudegi graphes d’attaque a
dépendances et il attribue une mesure aux sommets (qé@sesgent les privileges et les
vulnérabilités), ce qui indique leur importance dans agsques contre un systeme. Nous
donnons une interprétation stochastique des valeursléak dans le contexte des graphes
d’attaque a dépendances et nous menons des expériemmedifierents scénarios s’ap-
pliqguant aux réseaux. Les résultats des expériencesrembigiue le classement numérique
produit par notre algorithme correspond a I'importandeitive qu’un attaquant accorde
aux privileges et aux vulnérabilités. Le classemenbarte des sommets peut étre utilisé
pour établir 'ordre de priorité des contre-mesuresenigh lecteur humain a mieux cer-
ner les problemes de sécurité et fournir des entrants gfautres outils d’analyse de la
sécurité.
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Executive summary

|dentifying critical attack assets in dependency attack
graphs

Reginald Sawilla, Xinming Ou; DRDC Ottawa TM 2008-180; Defence R&D
Canada — Ottawa; September 2008.

Background: An attack graph is a mathematical abstraction of the deddifessible at-
tacks against a specific network. However, even for smallowds, attack graphs are too
large and complex for a human to fully comprehend. While a wgk quickly under-
stand that attackers can penetrate the network, it is eabgmhpossible to know which
privileges and vulnerabilities are the most important te aftackers’ success. Computer
network administrators require a tool which can distill twerwhelming amount of infor-
mation into a list of priorities that will help them to efficidy utilize scarce human and
financial resources.

This paper is an extended version df dnd a continuation of the work ir2].

Principal results: This paper introduces AssetRank, a generalization of G®§lage-
Rank algorithm which ranks web pages in web graphs. Ass&tBamsumes a listing of
assets and their dependencies and generates an undergtahtheir value by assigning
a ranking to the assets based upon the system dependenaiedirsOcontribution al-
lows AssetRank to treat vertices typed as AND and OR cogrditbed on their logical
meanings. The second contribution is a generalization géRank’s single system-wide
damping factor to a per-vertex damping factor. This geieatbn allows AssetRank to ac-
curately model the various likelihoods of an attacker’digbio obtain privileges through
means not captured in the graph (out-of-band attacks). Aikedontribution is leveraging
publicly available vulnerability informatione(g. Common Vulnerability Scoring System
(CVSS)) through parameters in AssetRank so that the impoetaf security problems
is computed with respect to vulnerability attributes sustatiack complexity and exploit
availability. The fourth contribution is that our generald ranking algorithm allows net-
work defenders to obtain personalized AssetRanks to reéflecmportance of attack assets
with respect to the protection of specific critical netwosdsets. The fifth contribution is
an interpretation of the semantics of AssetRank valuesdarcdimtext of attack graphs.

Significance of results: The numeric value computed by AssetRank is a direct indicato
of how important the attack asset represented by a vertexaspiotential attacker. The
algorithm was empirically verified through numerous expemts conducted on several
example networks. The rank metric will be valuable to usdrattack graphs in better
understanding the security risks, in fusing publicly aaflé attack asset attribute data, in
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determining appropriate mitigation measures, and as itgpiuirther attack graph analysis
tools.

Future work: We would like to explore the fusing of business priorities @amplementa-
tion costs with AssetRank values so that the resulting mean be used immediately by
a system administrator to generate a course of action omedtcally implement security
hardening measures. We would also like to conduct expetsr@moperational networks
to better understand the advantages and limitations of myogsed algorithm, along with
ways of improving it. Finally, we would like to determine AgRank’s rate of convergence
and its stability under perturbations.
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Sommaire

|dentifying critical attack assets in dependency attack
graphs

Reginald Sawilla, Xinming Ou; DRDC Ottawa TM 2008-180; R & D pour la
défense Canada — Ottawa; septembre 2008.

Contexte : Un graphe d’attaque est une abstraction mathématiqueé&la#sdd’attaques
possibles contre un réseau particulier. Toutefois, mpoeg de petits réseaux, la taille et
la complexité des graphes ainsi obtenus sont trop gramul@squ’un étre humain puisse
comprendre pleinement I'information qu’ils contiennedh utilisateur peut comprendre
rapidement que des attaquants peuvent pénétrer daesdau,” mais il est essentiellement
impossible de savoir quels sont les privileges et les enabilités qui ont le plus d'im-
portance pour les attaquants. Les administrateurs daué&s# besoin d’un outil qui peut
distiller la masse écrasante d’information de facon&ecne liste de priorités qui les
aidera a utiliser de facon efficiente leurs ressourcesdimgs et financieres limitées.

Ce document est une version allongée du docunigmtt[la suite du travail décrit dans le
document 2].

Principaux r ésultats : Ce document présente I'algorithme AssetRank, une géisation

de l'algorithme PageRank de Google, qui sert a classer dgepWeb sous forme de
graphes Web. AssetRank traite une liste d’actifs ainsi guilewdrs dépendances et il établit
leur valeur en attribuant un rang aux actifs en fonction deslelépendances envers le
systeme. Notre premiére contribution permet a AssdtRlartraiter correctement les som-
mets qui sont catégorisés AND et OR en fonction de leurifiggion logique. Notre
seconde contribution est une généralisation du facteumartissement unique de Page-
Rank s’appliquant a 'ensemble du systeme afin de produiréacteur d’amortissement
propre a chaque sommet. Cette généralisation permss@tRank de modéliser avec exac-
titude les probabilités qu’un attaquant puisse obtersrdteits grace a des moyens qui ne
sont pas saisis dans le graphe (attaques hors bande). Ndgierhe contribution consiste
a tirer parti des renseignements disponibles publiquérersujet des vulnérabilité.(
ex. le Common Vulnerability Scoring System (CVSS)) au moyen deametres d’As-
setRank, ce qui a pour effet que I'importance des probleteesécurité est calculée en
fonction des attributs de vulnérabilite, comme la comipéede I'attaque et la disponibilité
de son code d’exploitation. La quatrieme contribution d&aaalgorithme de classement
généralisé permet aux défendeurs des réseaux diodesclassements d’actifs correspon-
dant a 'importance des actifs d’attaque pour la protectiactifs essentiels du réseau. La
cinquieme contribution est une interprétation de la aétque des valeurs de classement
dans le contexte de graphes d’attaque.
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Importance des résultats : La valeur numérique calculée par AssetRank est un indica-
teur direct de I'importance qu’a un actif objet d’attagueprésenté par un sommet, pour
un attaquant potentiel. L'algorithme a été vérifié engpiement au cours de hombreuses
expériences qui ont porté sur divers réseaux reprastmnt_es valeurs des rangs obtenues
seront utiles pour que les utilisateurs des graphes diatpgissent mieux comprendre les
risques sur le plan de la sécurité, pour intégrer les desmubliques sur les attributs des
actifs attaqués et pour déterminer les mesures de liedudi risque appropriées. Elles se-
ront aussi utiles comme entrants appliqués a d’autrels aldinalyse de graphes d’attaque.

Travaux futurs : Nous aimerions explorer les fagcons d’incorporer les jtésiopérationnelles
et les colits de mise en oeuvre avec les valeurs produitesgsatRank afin que les va-
leurs ainsi obtenues puissent étre utilisées immédiae par un administrateur de réseau
pour générer une marche a suivre ou mettre en oeuvre atitpreament des mesures de
durcissement de la sécurité. Nous aimerions aussi ma&seexpéeriences sur des réseaux
opérationnels pour mieux comprendre les avantages etlges de I'algorithme que nous
proposons et trouver des fagcons de I'améliorer. Enfinsremuhaitons déterminer le taux
de convergence d’AssetRank ainsi que sa stabilité empecesde perturbations.
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1 Introduction

An attack graph is a mathematical abstraction of the deddifsossible attacks against a
specific network. Various forms of attack graphs have beepgsed for analyzing the
security of enterprise network8,[4, 5, 6, 7, 8]. Recent advances have enabled computing
attack graphs for networks with thousands of machidg§][ Even when attack graphs can
be efficiently computed, the resulting size and complexitthe graphs is still too large
for a human to fully comprehen®,[10, 11]. While a user will quickly understand that
attackers can penetrate the network, it is essentially gsipte to know which privileges
and vulnerabilities are the most important to the attaclseiscess. Network administrators
require a tool which can distill the overwhelming amount oformation into a list of
priorities that will help them to secure the network, makefficient use of scarce human
and financial resources.

The problem of information overload can occur even for sraaéd networks. The ex-
ample network shown in Figurkis from recent work by Ingolst al. [4]. Machine A is
an attacker’s launch pad (for example, the Internet). MahB, C, and D are located in
the left subnet and machines E and F are in the right subnetfifgwall FW controls the
network traffic such that the only allowed network accessvbenh the subnets is from C
and D to E. All of the machines have a remotely exploitablegtdbility.

We applied the MulVAL attack graph tool suité][to the example network. The resulting
attack graph can be found in Appendix Even for a small network, the attack graph is
barely readable on a full page. Assuming the attack graplbeaead, it is still difficult for

a human to capture the core security problems in the simp¥eonke. Essentially, the soft-
ware vulnerabilities on hosts C and D will enable an attafroen A to gain local privileges
on the victim machines, and use them as stepping stones &iraenthe firewall, which
only allows through traffic from C and D. In this example, atmachines can potentially
be compromised by the attacker, and all the vulnerabildiethe hosts can play a role in
those potential attack paths. However, the vulneralslite C and D, and the potential

allow C > E
allow D > E

Figure 1: An example network
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compromise of those two machines, are crucial for the agtattk successfully penetrate
into the right subnet, presumably a more sensitive zone. aftaek graph produced by
MulVAL does reflect this dependency, but a careful readinghefgraph is necessary to
understand which graph vertices are the most importanttgider. When the network
size grows and attack paths become more complicated, isusnmountably difficult for a

human to digest all the dependency relations in the attaadgand identify key problems.

Besides the dependency relations represented in an attgak, ginother important factor in
determining the criticality of an identified security prebi is the likelihood the attack path
can lead to a successful exploit. For example, both hostsi®aan be exploited remotely
by the attacker on host A. Assume that the vulnerability ost Iidis only theoretical and
no one has successfully produced a proof-of-concept axpitiereas the vulnerability
on host D has a publicly available exploit that works mostha time. Obviously the

vulnerability on D is more likely to be exploited than the metability on C and so its

elimination deserves prioritization.

In the past five years, significant resources have gone iatwlatdizing the definition of
the attributes of reported security vulnerabilities. Mastably, the Common Vulnerability
Scoring System (CVSS)is a standard for sharing the attributes of discovered #gcur
vulnerabilities among IT security professionals. It reggmts not just a single numeric
score, but a metric vector that describes various aspeeatsulherability such as its access
vector, access complexity and exploitability. The CVSSrmatector is included in the
National Vulnerability Database (NVB)for every vulnerability reported in NVD. The
metrics provide crucial baseline information for autondasecurity analysis. However,
the metrics themselves can only give limited informatiothwut an understanding of the
global security interactions in an enterprise environmeat example, further assume that
the vulnerability on B is the same as the one on D. Since B dotbave access into the
right subnet, its vulnerability is less critical than theean D. In the scenario just described,
our algorithm gives first priority to the vulnerability on Bllowed by the vulnerability on
B, and then C. This prioritization is intuitive since D is gde exploit and gives access
to the right subnet; B is easy to exploit and gives access tand;since only proof-of-
concept code exists to exploit C, it warrants the lowestrfiyio All of the parameters
in our algorithm can be tuned to model attackers of variousl$eof sophistication and
technique.

In order to determine the relative importance of securigbpgms in a network, both the
dependency relationships in the attack grapt the attributes of the security problems
need to be considered. We present an approach which autathatligests the depen-
dency relations in an attack graph as well as the baselioennation of the vulnerability
attributes to compute the relative importance of attacksets (the graph vertices) as a
numeric metric. The metric gauges the importance of a geélor vulnerability to an

1. http://wwv first.org/cvss/
2. http://nvd.nist.gov/cvss.cfm

2 DRDC Ottawa TM 2008-180


http://www.first.org/cvss/
http://nvd.nist.gov/cvss.cfm

attacker (and hence the defender). Our approach fuseg gttgehs and baseline security
metrics such as CVSS, to make both of them more useful in ggamalysis. The product
is primarily a defensive tool which gives the advantage ttwoek defenders since they
have full information about their network and can build a pbste attack graph whereas
attackers will usually have incomplete information.

Our algorithm is based on the Google PageRank algorift#rwhich ranks the importance
of web pages. It is important to note that our work is signiftbadifferent from previous
work in applying Google PageRank algorithm to attack grdaBk

First, we have approached the problem using dependenak ataphs which have very
different semantics from the state-enumeration attacklgraised in the previous work
(see Sectio). PageRank is a generic graph data-mining algorithm thelbban applied to
various types of directed graphs but it has not yet beeneghpdidependency attack graphs.
The interpretation of the computed rank values are conlglditferent for different graph
semantics and it is important to understand what the valwsrim any new context.

Second, our work extends the original PageRank algorithrgdmeralizing its damping
factor and providing the ability to operate on heterogesapaphs with both AND and OR
vertices. Our work shows how our PageRank generalizattbesjependency matrix, and
personalization vector can be set to obtain rich securgight from the fusion of attack
graphs with attack asset attributes, such as the maturigxptoit code. Our extended
PageRank algorithm is named AssetRank.

Dependency attack graphs contain both AND and OR verticks.nfetric the AssetRank
algorithm computes indicates the value of an attack assgtaf@ah vertex) to a potential
attacker. Attack assets consist of privileges, such aslitigéyao execute code on a par-
ticular machine, and facts, such as the existence of vubteesaftware on a host. We give
a stochastic interpretation of the asset ranks in the confexetwork attacks and conduct
experiments on various network settings. The results oégperiments show that the ver-
tex ranks computed by our algorithm are consistent, frontargg point of view, with the
relative importance of the attack assets to an attacker.asbet ranks add value to both
attack graphs and CVSS vulnerability data. The asset raarkbe used to prioritize coun-
termeasures, help a human reader to better comprehendtggroblems, and provide
input to further security analysis tools.

2 Attack Graphs

There are basically two types of attack graphs. In the fingétyeach vertex represents
the entire network state and the arcs represent state transitiongadaysan attacker's
actions. Examples are Sheyner's scenario graph based oel ctuetking 4], and the
attack graph in Swiler and Phillips’ workLf]. This type of attack graph is sometimes

DRDC Ottawa TM 2008-180 3



called astate enumeration attack graph [9]. In the second type of attack graph, a vertex
does not represent the entire state of a system but rathetensgondition in some form
of logical sentence. The arcs in these graphs represenatisality relations between the
system conditions. We call this type of attack graplegendency attack graph. Examples
are the graph structure used by Ammaal. [3], the exploit dependency graphs defined

by Noelet al. [5, 9], the MulVAL logical attack graph by Ouet al. [6], and themultiple-
prerequisite graphs by Ingolset al. [4].

The key difference between the two types of attack graplssiti¢he semantics of their
vertices. While each vertex in a state enumeration attaggtgencodes all the conditions

in the network, a vertex in a dependency attack graph enadexg)le attack asset of the
network. A paths; — s, — s3 in a state enumeration attack graph means that the system’s
state can be transitioned from to s, and then tos; by an attacker. But the condition
that enables the transition — s3 may have already become true in a previous state, say
s1. The reason the attacker can get to stgtes encoded in some state variablesinbut

the arcs in the graph do not directly show where these camditwere first enabled. In

a dependency attack graph, however, the dependency relaimong various assets are
directly represented by the arcs.

For example, Figur® is a simple dependency attack graph. The vertjges., p; are
assets to an attacker and e, are exploits an attacker can launch to gain privileges. The
arcs from a vertex in a dependency attack graph can form ome&afogical relations:
“OR” or “AND”. An “OR” vertex represents conditions which npdoe enabled by any one
of its out-neighbours. An “AND” vertex represents an expioithe attack graph requiring
all of the preconditions represented by its out-neighbtmtse met. In our figures we use
diamonds to symbolize OR vertices, ellipses to symbolizeDANrtices, and boxes for
SINK vertices (vertices with no out-neighbours). The defesty attack graph in Figuge
shows that attackers can gain privilegethrough one of two ways. They can launch
exploit e; if all of the conditionsp,, p» andps are true. Or they can launch expleit if
conditionsp; andp, are true. Each of the conditiops, ..., p, could be some other privilege
the attackers need to gain first, or some configuration inddion such as the existence of
a software vulnerability on a host.

In this paper we have chosen to use dependency attack gr@pingjoal is to compute a
numeric value representing the importance of each attasst & an attacker and as such
the semantics of dependency attack graphs are better guitibis purpose. Intuitively, the
more a vertex is depended upon, the more important it is tdtaoker. This is analogous
to PageRank’s use in the World Wide Web where the more the wpbrdls upon a page
(evidenced by links to it) the more important the page is.

4 DRDC Ottawa TM 2008-180



P1 P2 P3 P4

Figure 2: Vertices and arcs in a dependency attack graph

3 AssetRank for Attack Graphs

Internet web pages are represented in a directed graphisweseatalled aveb graph. The
vertices of the graph are web pages and the arcs are URL lioksdne page to another.
Google’s PageRank algorithmig] computes a page’s rank, not based on its content, but
on the link structures of the web graph. Pages that are gbtotey many pages or by a
few important pages have higher ranks than pages that aneeddb by a few unimportant
pages. In this paper, we introduce AssetRank, a geneiahizaftthe PageRank algorithm,
which can handle the semantics of vertices and arcs of depegdttack graphs. Our first
contribution allows AssetRank to treat the AND and OR veditn a dependency attack
graph correctly based on their logical meanings, wheregeRank is only applied to OR
vertex graphs. The second contribution is a generalizatfdPageRank’s single system-
wide damping factor to a per-vertex damping factor. Thisagalization allows AssetRank
to accurately model the various likelihoods of an attackebility to obtain privileges
through means not captured in the graph (out-of-band atjackhe third contribution is
leveraging publicly available vulnerability informatigag. CVSS) through parameters in
AssetRank so that the importance of security problems ipeed with respect to vulner-
ability attributes such as attack complexity and explo#ikability. The fourth contribution
is that our generalized ranking algorithm allows networfedders to obtain personalized
AssetRanks to reflect the importance of attack assets wsfiert to the protection of spe-
cific critical network assets. The fifth contribution is ateirpretation of the semantics of
AssetRank values in the context of attack graphs.

The AssetRank algorithm presented here could be appliedytgi@ph whose arcs repre-
sent some type of dependency relation between verticesctnweb graphs are a special
case of dependency graphs since a web page’s functiormaliigrt depends on the pages it
links to.

DRDC Ottawa TM 2008-180 5



A dependency attack graghis represented as = (V, A, f, g, h) whereV is a set of ver-
tices; A is a set of arcs represented(asv), meaning that vertex depends on vertex;, f

Is a mapping of positive weights to verticgds a mapping of non-negative weights to arcs;
andh is a mapping of vertices to their type (AND, OR, or SINK). Tdwg-neighbourhood

of a vertexv is defined asV*(v) = {w € V : (v,w) € A}, andin-neighbourhood of v

is defined asV—(v) = {u € V : (u,v) € A}. The cardinality of a seX is denoted X |
and its L1-norm is denoteldlX ||;. Without loss of generality, we require the vector of all
vertex weightsf (1) to sumto 1.

AssetRank is computed by solving for the principal eigetmed’ in the following equa-
tion.

AX = (DA 4+ ~yPe") X (1)

Where\ is the principal eigenvalueX is the vector of AssetRanks (scaled to sum to 1),
D is the transpose of the square adjacency matrix of a dependgtack graphG (an
AND/OR directed graph)A is a diagonal matrix of vertex-specific arc-weight damping
factors where each value is in the rangel], v € (0, 1] is the vertex-weight damping
factor, P = f(V) is a personalization vector composed of the vertices’ pei&ation
values (that is, the vertex weights), ants the all-ones vector.

Equation () reduces to the original PageRanki\it= 1, A = §I (wherel is the identity
matrix ands is PageRank’s damping factor),= 1 — 4, and all vertices are required to be
OR vertices.

3.1 AND Vertices

Dependency attack graphs contain both AND and OR verticesOR vertex can be sat-
isfied by any of its out-neighbours, whereas an AND vertexedep onall of its out-
neighbours. For example, the simple dependency attackgnabigure3(a) shows that
attackers attaining the gogd depend upon their ability to obtain both privilegesandp;.

po is an AND verteX and it requires the two vulnerabilities:; andvul,. ps is an OR
vertex and it requires only one of eithetls or vul,. In this example we assume all the
arcs have the same weight.

Since any of an OR vertex’s out-neighbours can enable itjrttportance of each out-
neighbour decreases as the number of out-neighbours s&sesance the vertex can be
satisfied by any one of them. This reduced dependency isumbdfrAND vertices. Since
all the out-neighbours of an AND vertex are necessary tolenglt is intuitively incorrect
to lessen the amount of value flowed to each out-neighboureasrtumbers grow.

3. In our figures, AND vertices are represented by ovals, Ofices are represented by diamonds, and
SINK vertices are represented by rectangles.
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Vertex | AssetRank

@ ” 0.1722
D 0.1680

D3 0.1680

@ vuly 0.1639
vulsy 0.1639

vuls 0.0820

vuly vuly vuls vuly vuly 0.0820

(a) (b)
Figure 3: AssetRank computation for an AND/OR graph

Rather than splitting the value of an AND vertex veplicate it to its out-neighbours. Each
out-neighbour of an AND vertex receives the full value frdme wertex multiplied by the
vertex’s damping factor. That is, for every outgoing edgev) from an AND vertexu,
the corresponding matrix entd®,,, 4 is 1. We now have the following restrictions on the
graph’s arc weights:

IN*(v)|, if h(v) = AND
> glvw) =41, if h(v) = OR 2)
weN*(v) 0, if h(v) = SINK

A unique principal eigenvectaX in Equation () exists (up to scalar multiplication) and
follows from Perron’s theorem (see, for examplig]), and the fact thatDA + vPe”

is positive. Thus, convergence using the power method isagteed. The computation
using the power method with the terms optimized to take atdwepgnof the sparsity abA
follows.

1

Step 1:X; = DAX, , +~vP; Step2:X; = W
11

Xi 3)

Figure3(b) displays the result of applying the above algorithm to thegpgrin Figure3(a).
For this example, we use a single constant damping factar-ef0.857 and P is such that
only the goal vertey, has a non-zero personalization value.

AssetRank givesthe expected relative importance for the four vulnerabditvul, and

4. As a shorthand notation we usandv in D, to represent the column and row indices corresponding
to the respective vertices.

5. All of the experiments in this paper required a computatime of less than one second on a typical
desktop PC and converged in 78 iterations or less. The caitplaf the power method depends upon
the complexity of matrix multiplication and the number odraitions required. The complexity of naive
matrix multiplication isO(n?). Speed improvements for PageRank computation can alsd speessetRank
computation as long as they do not require the principalrsigieie to be 1.
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vuly are twice as important asul; andvul, since patching one aful; or vuly, has an
equivalent effect in denying the goal as patching bothul; andvuly.

3.2 Vertex-Specific Damping

In the case of PageRank applied to web pages, the systendaming factop gives the
probability that surfers will stop surfind.¥]. They could stop surfing for any number of
reasons including having found the desired informatiomaoentering a poor quality web
page. The reality is that not all web pages have an equailikedl to be the end point of
a user’s surfing. On some web pages almost all of the surférgavitinue surfing (for
example, search results) while on other pages, almost alieoSurfers will stop surfing
(for example, a local weather page).

An analogous situation exists for attack graphs. An “atialekiner” will more likely stop
traversing the attack graph if the vertex represents alegeithat can be easily obtained
“out-of-band”. For example, attackers requiring the a@pild execute code on a user desk-
top could use out-of-band methods such as social engimgeeiner than purely technical
exploits ®

In general, the damping factor measures the likelihoodahatttack planner will continue
traversing the graph. We improve the accuracy of the ranksobgssuming that the plan-
ners are equally likely to stop traversing the graph regasiof the vertex they are visiting.
Rather than using a single damping factor, we introduceexespecific damping factors
and assemble them into the diagonal damping matrix diag(d:, d2, . . ., jv|)-

3.3 Personalization Vector

It is insufficient to consider only the dependency relatiand damping factors in deter-
mining a vertex’s value. Network defenders place a high@rity on defending critical
servers than non-critical PCs. Similarly, some assets are wvaluable than others to at-
tackers. We use vertex weights apeasonalization value to represent a vertex’s inherent
value to network attackers or defenders. Network defencheng identify the assets they
desire to deny the attacker by assigning them a persoriahzatlue that reflects their im-
portance to the defender’s operations. The remainingkaisgets are assigned a value of 0
which then causes the computed AssetRank values to refectrtiportance only in so far
as they are likely to be used by an attacker to obtain thelastegets identified as critical.

6. The attack graphs we use in this paper include only teeheiploits.
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4 Parameter Assignment

Attack graph dependencies and attack asset attributemiatoon (such as CVSS metrics
obtained from the NVD database) supply the three key compuerie, A, and P of the
AssetRank matrixd = DA +~Pe”. In this section we explain how to obtain and set these
values. In Sectiob we will demonstrate their effect on the asset ranks. Thenpeier

~ sets the influence of the personalization vector which hastfect of opting to favour
attack assets closer to the goal versus favouring attaeksadeser to the attacker.

4.1 Dependency Matrix ( D)

To model attacker preferences, we assiguaess likelihood s(v) to every vertex. The
success likelihood has a slightly different meaning for ttimee types of vertices: AND,
OR, and SINK.

The SINK vertices represent the ground facts that MulVALsusken deriving attack paths.
The ground facts include the existence of vulnerable soéwaetwork routes and the
services running on each machine. Every ground fact is mesdig success likelihood.
To simplify the demonstration in this paper we assign thesss likelihood 1 to all non-
vulnerability SINK vertices. That is, we assume that if asga exists, it is always up, and
that network paths are stable.

CVSS is a standard for specifying vulnerability attribut®s/o attributes that are particu-
larly useful in prioritizing attack assets are the base imefrAccess Complexity (AC) and
the temporal metric of Exploitability (E). For the AC metriulnerabilities are assigned
a value of high, medium, or low, to indicate the existencepafcsalized access conditions
such as a race condition or configuration setting. When denisig the E metric, vulnera-
bilities are assigned a value of unproven, proof-of-condempctional, or high, to indicate
the current state of exploit maturity. If one attack pathha attack graph depends upon
an unproven vulnerability and another attack path depepds a vulnerability with func-
tional exploit code, the attack assets in the latter attatk (all vulnerabilities and network
routes) are more likely to be involved in an attack and so Hreymore valuable to attack-
ers. Consequently, they also deserve a higher degree atiattdy network defenders.
In our experiments we assign a success likelihe@d to each vulnerability vertex ac-
cording to Tablel. The success likelihood indicates the probability that tac&er will
successfully exploit the vulnerability.

MulVAL attack graphs also containul e vertices. These are AND vertices that specify
how a privilege may be obtained. The parameter for AND vertices models the pref-

7. Users could assume mobile devices are present intenthjt&nd hence assign a success likelihood
to network routes for mobile devices that represent thditiked that the device will be connected to the
network.
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Table 1: CVSS Exploitability Metrics and Success Likelihoods

CVSS Exploitability Metric| Success Likelihood(v)
Unproven 1%
Proof-Of-Concept 40%
Functional 80%
High 99%

erence of attackers for different attack strategies. Fangie, two of the rules describe
how network access may be obtained. In the first case, diegatonk access to a host is
obtained if an attacker has a machine and a network routesdsagn that machine to the
intended host. In the second case, multi-hop network adoeashost is obtained if an
attacker can execute code of his choosing on a victim ma@mndea network route exists
from that machine to the intended host. Since an attack igptoated by multi-hop ac-
cess, we assume that the attacker prefers direct routes agsign a preference score of
1.0 to the direct route and 0.5 to the indirect route. In alsinmanner, other rules may
be assigned a preference score indicating attackers’rprefes. These rule preferences
would be set by experts to model different types of attackiersexample, script kiddies
or black-hat criminals).

Finally, MulVAL attack graphs contain derived attack assdthese are OR vertices in an
attack graph and they represent choices that an attacker beder to obtain the attack as-
set. For example, MulVAL-generated attack graphs inchxae Code( machi ne, account)
vertices stating that an attacker could obtain the abiigxecute arbitrary code amchi ne

at the privilege okccount . However, theexecCode attack asset might be obtained through
a choice of multiple routes in the attack graph. These maltiputes are represented by
multiple outgoing arcs from thexecCode vertex, an OR vertex. Not all of these routes are
equally difficult to obtain and we make the assumption thaickers prefer easier methods
of obtaining the derived attack asset. For example, attackeuld favour routes that may
be exploited with reliable tool§.

Attack paths will contain several ground facts (SINK vesti, rules (AND vertices), and
derived attack assets (OR vertices). Weights of the outggaics are computed by perco-
lating the success likelihoods throughout the graph byregit u, v) = m(v) where

s(v), if h(v) = SINK
(o) = s(v) weg(v)m(w), if h(v) = AND @
gjlvagg )m(w), if h(v) =OR

8. Users of our system can make their own assumptions aliaakat preferences and could, for exam-
ple, assume that attackers will favour routes that utiliotetical vulnerabilities that do not have published
exploit code.
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In words, the arc weight from vertaxto v is the success likelihood of if v is a SINK
vertex, the attacker’s preference for the attack type mligtl by the product of all of the
paths required for if v is an AND vertex, and the easiest path fronfi v is an OR vertex.
Finally, the arc weights are normalized according to Equrafz).

4.2 Damping Matrix ( A)

In Section3.2 we introduced vertex-specific damping factors. This extenallows the
modeling of out-of-band attacks for derived attack as<ef® yertices). For example, the
ability to execute code on a victim’s machine can be gaineoldtgining the victim’s login
credentials through social engineering — a non-technitatk that is not captured in the
attack graph. If attackers gain the attack assSgy means outside the graph, they will not
require the dependenciesotaptured in the attack graph so those dependencies are less
valuable to the attacker and so deserve less attention fetwork defenders.

For MulVAL attack graphs, specifying a damping factor isyosénsible for OR vertices

(derived attack assets). The damping factor has no effe@NK vertices because they
have no out-going arcs. Also, AND vertices are fundamentabjuired in the attack graph
and cannot be obtained out-of-band so the damping fact@xNd vertices is setto 1 (no

damping).

The success likelihood of obtaining a derived asset oltamid for an OR vertex is de-
noteds(v). An example of an out-of-band attack is an attacker obtgimiruser’s login
credentials through social engineering. The successHid@ll depends upon the level of
awareness and training of the user. A network defender aaaifgghe success likelihood
based upon the type of user account. For example, root useld loe assigned a low like-
lihood score such as 20% while standard users could be assegscore of 80%. Security
experts will be relied upon to provide metrics for out-ofabattacks.

The degree to which attackers will use out-of-band attaekgdds upon both the projected
success of the out-of-band attack and the difficulty of otata@ the attack asset by using
the means specified in the attack graph. If the attack assebmabtained with certainty
using the attack graph then the attacker will use those medss, if out-of-band attacks
are impossible or are certain to fail, the attacker will neit ¢he graph to attempt the
out-of-band means but will use the means in the attack gaplbtain the privilege. The
following equation captures these requirements. For an @kexwv with an out-of-band
success likelihood(v), the damping factos, is given by

9y = (1 —s(v)) + s(v)m(v) . (5)

The damping matrix is a diagonal matrix constructed from bgex-specific damping
factors by setting\ = diag(61, ds, . . ., djv)-
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4.3 Personalization Vector ( P)

The personalization vectd? represents the network defender’s desire to deny an attack
asset to attackers. If a defender is only interested in dgrgisingle goal vertex then its
personalization valug(g) is set to 1 and all other vertices are set t8 @ the defender
desires to deny several vertices (for example,ethex Code privilege on all servers) then
the values will be set for the vertices in a manner that regmsgthe defenders (conversely,
the attackers) interest in those vertices. It is expectattht®e defender will set the person-
alization values based upon the organization’s operdtmnarities.

5 Experiments

In this section we present several experiments we conddotstidy 1) AssetRank’s ef-

ficacy in giving results consistent with the importance ofattack asset to a potential at-
tacker; and 2) how the AssetRank metric may be used to bettlrstand security threats
conveyed in a dependency attack graph, as well as in choapprgpriate mitigation mea-

sures.

In our experiments, we use the MulVAL attack-graph tooletit compute a dependency
attack graph based upon a network description and a usey. demrexample, a user may
ask if attackers can execute code of their choosing on amverseiThe attack graph is

exported to a custom Python module. The Python module naresahe input data, com-

putes the AssetRank values, and visualizes the attack gisipg the graph visualization

software Graphviz18].

5.1 Experiment 1

The first experiment demonstrates the effect of arc weightsvertex-specific damping
factors on a small network. Figueshows the network for experiments 1a and 1b. The
attacker has access to both PC1 and PC2. Userl is on PC1 wadsclumerability Vull
and User2 is on PC2 which has vulnerability Vul2. PC1 and P& faccess to the goal
machine but not to each other.

In experiment 1a we assume that Vull has functional expboistavailable and Vul2 has
only proof-of-concept code available. Hence, we assigeesglikelihood metrics of 0.8
and 0.4, respectively. A uniform damping factor of 0.99 iplagal to all vertices. We
expect that Vull will have a higher rank metric than Vul2 girtice attacker is more likely
to prefer it. Figureb shows the attack graph coloured according to the assetstRank

9. Technically, the non-goal vertices are setto an arlilgremall e > 0 and the goalis settb—(|V|—1)e.
This ensures that the AssetRank mattix- DA+~ Pe® is positive, a condition that guarantees the existence
of a unique positive eigenvector according to Perron’s tbeo
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Figure 4: Scenario for experiments 1a and 1b

values and Tabl@ shows the rank metrics for the two vulnerabilities Vull and2/ The
vertex colours range from blue to red with blue indicatingtices with relatively lower
ranks and red indicating vertices with higher ranks. Oupalgm computes a value of
0.0579 for Vull and a value of 0.0289 for Vul2 which is consigtwith the higher value
that Vull has to the attacker.

Table 2: AssetRanks for Experiment 1a

Attack Asset Rank
vulExists(pcl,vull,service,. . |)0.0579
VUlEXxists(pc2,vul2,service,. . |)0.0289

In experiment 1b we assign both Vull and Vul2 a success fikelil of 1.0. However, we
assume that itis 80% likely that PC1 will be compromised bysvaot shown by the attack
graph (for example, obtaining Userl’s log-in credentibl®tigh social-engineering), and
PC2 is 40% likely to be compromised in such ways. Perhaps2Jsas received more
training and so is more security-vigilant than Userl). Wpeet that Vull will be ranked
lower than Vul2 since the attacker has a lower dependenae itipéppendixB shows the
attack graph coloured according to the assets’ rank valodsrable3 shows a selected
portion of the vertices and their scores. As we can see, Vafescore of 0.0414 and
Vull has a score of 0.0310. This ranking is intuitively cotr&nce attackers have a greater
chance of obtaining PC1 without exploiting its vulneraljliso Vull is less important to
them.
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Damp: 0.99 Likelihood: 1.0

Figure 5: Attack graph for the Experiment 1a scenario

Table 3: AssetRanks for Experiment 1b

Attack Asset Rank
vulExists(pcl,vull,service,. . |)0.0310
VulEXxists(pc2,vul2,service,. . )0.0414

5.2 Experiment 2

We now demonstrate the results of applying AssetRank totthekagraph for the example
network in Figurel. In the first scenario, we assume all the vulnerabilitiesehtéie same
exploitability difficulty level, represented by identicaiccess likelihood metrics.

A portion of the resulting ranking is shown in Tablgand the complete attack graph with
coloured vertex ranking can be found in Appen@ixX® The ranking is consistent with the
intuitive importance of the various attacker assets. Ngwelnerabilities on C and D are

more important than the one on B, since these two machinestepping stones into the

right subnet. Likewise, the attacker’s reachability to @ &nis ranked higher than that to
B.

10. In MulVAL, a tuplevul Exi st s(Host, Vul ID, Account, AccessVector, Consequence) means
“machine Host has the vulnerability VullD in software rungias Account that is exploitable via AccessVec-
tor with the result Consequence.” A tuglecl (H1, H2, Protocol, Port) means“machine H1 can reach
machine H2 through Protocol and Port.”
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Table 4: AssetRanks for Experiment 2a
Attack Asset Rank

vulExists(c,vulid2, ...)| 0.0323
vulExists(d,vulidl, ...) 0.0323
vulExists(e,vulid4, ...) 0.0274

vulExists(f,vulid5, ...) | 0.0219
vulExists(b,vulidl, ...) 0.0174

hacl(e,f,tcp,80) 0.0267
hacl(a,d,tcp,80) 0.0240
hacl(a,c,tcp,80) 0.0240
hacl(d,e,tcp,80) 0.0167
hacl(c,e,tcp,80) 0.0167
hacl(a,b,tcp,80) 0.0129

Now suppose the vulnerability vulid2 on machine C is veryidift to exploit, and the
other vulnerabilities are easy to exploit. We thereforegasthe metric).2 to vulid2 and
the other vulnerabilities a metric 8. The result of the new configuration is given in
Table5 and the full coloured attack graph is in Appendix

Table 5: AssetRanks for Experiment 2b

Attack Asset Rank
vulExists(d,vulidl, ...) 0.0453
vulExists(e,vulid4, ...) 0.0303
vulExists(f,vulid5, ...) | 0.0229
vulExists(b,vulidl, ...) 0.0188
vulExists(c,vulid2, ...)| 0.0127

hacl(a,d,tcp,80) 0.0406
hacl(d,e,tcp,80) 0.0304
hacl(e,f,tcp,80) 0.0287
hacl(a,b,tcp,80) 0.0168
hacl(a,c,tcp,80) 0.0097
hacl(c,e,tcp,80) 0.0076

What is remarkable in the new ranking is that the vulnergbdn machine C is ranked
much lower than before, since it is hard to exploit. Now maeHD becomes much more
valuable to the attacker since it is likely to be the only fielesstepping stone into the
right subnet, which is manifested by the boosted values dh th® vulnerabilities and

reachability relations involving D. Note that the vulneitdéyp on machine B is the same as
the one on machine D. But since B cannot directly help thelttapenetrate deeper into
the network, its vulnerability’s rank is lower than that of D
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5.3 Experiment 3

To study how AssetRank works in a more complicated realssiting, we tested it on a
network scenario adapted from a real control-system né&tvebrown in Figureb. In this
network, an enterprise network is protected by a firewathftbe Internet. Only machines
in the DMZ subnet can be directly accessed from the Interoeé¢z The machines in the
CORRP internal subnet can freely access the Internet. Ordynoachine in the network,
the Citrix server, can access the control-system subnetHtlergy Management System,
or EMS) which is protected by another firewall, and it may cexdgess the Data Historian.
Assuming the attacker is on the Internet and wants to obtaiigges on the Communica-
tions Servers in the EMS subnet, there are two obvious erdggs\ior him: the web server
and the VPN server, both of which can be directly accessed fhe Internet.

We introduced hypothetical vulnerabilities into this saga and assigned metrics for them
based on our understanding of typical security problem&im tiype of network!! We
applied AssetRank on this example and the resulting cotbatiack graphs can be found
in AppendixE. The ranking identifies the two most critical vulnerabdgiin the network.
One is a remote buffer overflow vulnerability on the web semwhich would allow a re-

11. Inreal applications, this information will automatigde furnished by data collection agents installed
on the machines and the CVSS metrics provided by the NVD.
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mote attacker to gain code execution privilege in the DMZmn&ibThe other is a browser
vulnerability on the user workstation. Since outboundicdfom the CORP Internal zone
is not restricted, an unsuspecting user may browse to aimaigvebsite and compromise
his machine. This compromise will yield privileges on theemal network to the attacker.
There are many other vulnerabilities in the network andelage other ways to penetrate
into the system (for example, through the VPN server). Batwo critical problems iden-
tified by the AssetRank algorithm are consistent with a husnanclusion after spending
an extensive amount of time studying the information resedly the complicated 129
vertex attack graph with 185 dependencies.

6 Interpretation of AssetRank

In this section we describe a stochastic interpretationtfemumeric value computed by
AssetRank on dependency attack graphs. Stochastic iatatijon has been used to give the
original PageRank a semantic meaning in a random walk maéel f]. A random walker
surfs the web graph in the following manner. At each timerirgk with probabilitys it
will follow one of the links in the current page with equal pebility; with probabilityl —§

it will “get bored” and jump to one of the pages in the web grapth equal probability.
Under this interpretation, the equilibrium point of seqcer3) will be the probability a
random surfer is on a page. This random-walk model cannoppbea to dependency
attack graphs, primarily because it does not handle AND aRdv€rtices differently. In
this section we give an interpretation of AssetRank thatidies meaningful semantics in
the context of dependency attack graphs.

Our interpretation is inspired by the model used by Bianicitial. [17]. Imagine a poten-
tial attacker has the attack grajgtand is planning how to attack the system. He does so
by dispatching an army of “attack planning agents” whosk ia$o learn how to obtain
the privileges represented by the vertices. Every ageravashin the following manner:
at each moment an agent considers only one vertex in thekataph. We use;(t) to
denote the vertex agenis contemplating at timeé. Letv = v;(¢). If v is a sink vertex,
agent; has finished his job and stops working. Otherwise he willhyeitobabilitys,,, plan
how to satisfy the requirements forbased on the attack graph; with probability- ¢,
he stops traversing the graph and decides to obtain thdgg@w through other means
not encoded in the attack graph (for example, through bamisdaiready installed in the
system or social engineering). In the latter case, the aggnalso finished his planning
and stops working.

With probability §,,, the agent uses the attack graph and follows the out-gorgyfesm
v to satisfy its preconditions. Two cases need to be congiddfe is an OR vertex, the

12. In reality an attack graph should never be leaked to atkat; however, in evaluating security we
assume that the attacker has the attack graph since sebwoitygh obscurity is not true security.
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agent will choose one of its out-neighboursvith the following probability.

Privi(t+1)=w]|v(t) =v]=g(v,w) (6)

If vis an AND vertex, the agent must plan how to satefythe out-neighbours af. Thus
he must move along all the out-going arcs simultaneouslyma@el this by allowing the
agent to replicate itself with each replica moving to one of the out-neighbours indepe
dently. More precisely, at step+ 1 agenti will becomer = |N*(v)| agentsiy, ..., i,
each of which is assigned one of the verticesvin(v) so that every element iVt (v) is
covered.

The potential attacker has an unlimited number of such ageihis disposal. Every time he
dispatches an agent to a vertex in the attack graph, the agletny to find a way to attack
the system such that the goal represented by the startitexwen be achieved. When the
agent (and all his clones) finishes the job, an attack plafméeas made. Each time he may
find a different attack path due to the probabilistic cholvesnakes along the way. At each
time interval, the potential attacker will dispatch new@igavith probabilityy and the new
agents will start from one of the graph vertices with the atmlity distribution specified
by the personalization vectdt. The number of new agents4gimes the number of active
agents currently in the system.

Let the vectorX, = [ X}, ..., XtW']T whereX/ is arandom variable representing the number
of active agents planning an attack for verteat timet. E(X}) is the expected value of the
random variableX?. We useE(X,) to representE(X}), ..., E(X!VD]". Let E(X,) = P
which corresponds to the attacker dispatching the first tagesording to the probability
distribution given byP. The following equation then holds for> 0.

E(Xy) = DAE(X;1) +9(|E(Xi 1)L P (7)

After normalization, this is precisely the sequence spetifiy (). The normalized value
of E£(X,) converges to a unique solutiontas- oo and the AssetRank value computed will
represent the portion of active attack planning agents oh eartex in the attack graph.

Under this attack-planning-agents interpretation, a éighssetRank value for a vertex
indicates there will be a larger portion of planning agensealvering how to obtain the
asset represented by the vertex. Thus, our AssetRank rdig&ratly implies the importance
of the privilege or vulnerability to a potential attackehelarc weighty(v, w) indicates the
desirability of the attack stefw,w) with respect to achieving the capability since a
higherg(v, w) means a planning agent will be more likely to choasaswv’s enabler. A
vertex’'s personalization value represents the desitglofithe privilege to an attacker. A
higher personalization value indicates the vertex is mangoirtant to the attacker and so

13. Analogous to the UNIXor k() command.
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he is more likely to dispatch a planning agent to determing tmachieve the goal. A
lower , indicates the attacker is more likely to gain privileges by-of-band means and
thus will not follow the attack graphy indicates the rate at which the attacker dispatches
new agents.

7 Discussion

A very useful aspect of AssetRank in the context of attacklgsas to assist in prioritizing
further analysis and understanding of the threats. We hsgd the AssetRank values to
colour the attack graph vertices so that a user’s atteniammediately focussed on the
most critical portion. The lowest ranked vertices are caddblue and the highest ranked
vertices are coloured red. This colouring is intended totadagous to water faucets where
the hot (and dangerous) tap is coloured red and the cold tgasrred blue. The values
could also be use to incrementally show the vertices in atlatyjraph, with the highest
ranked vertices shown first followed by the lower-rankedsonBletwork defenders can
work through the ranked attack graph addressing the thneaisder of their criticality.
Since the full attack graph is often too cumbersome for a tesanderstand, this type of
incremental analysis should be useful in practice.

As discussed in Sectio® the asset ranks correspond to the expected percentagaak at
planning agents working on each vertex. The vertices inttiaelagraph represent specific
vulnerabilities on specific machines. For example, theieest/ul Exi st s(pcl, vul 1),
vul Exi sts(pcl, vul 2), vul Exi st s(pcl, vul 3), andvul Exi sts(pc2, vul 1) could ap-
pear in an AssetRanked attack graph. Further analysis czorigleicted on the rank metrics
to further understand how mitigation measures should b®ipzed. In this case, the val-
ues for all of the vertices connectedpol can be summed to produce a total that indicates
the number of attack planning agents that are seeking to immge that machine. If
a machine is especially vulnerable then the network defsnctguld decide to remove it
from the network or separate its functionality amongst ssveew machines in order to
reduce the quantity of software on the single machine. &nhgjlthe rank metrics for each
specific vulnerability may be summed (for example, sum athefrank values related to
vul 1) to learn which vulnerability overall is the most importaotattackers. Since rolling
out patches is not generally performed on a single machiheather across the entire net-
work, network defenders could prioritize patch roll-outttwe sum of the asset ranks for
each vulnerability.

We have shown that arc weights are a flexible instrument tioat ¢he user to take attacker
preferences into account. In our paper we used the weigliégsonir attacks with mature
exploitation techniques over unproven attacks. Alteuedyj the metric can be used to
denote other attack characteristics or a combination ofithe

e Stealthiness of an attack — allows the inclusion of IDSs miodel by giving a
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penalty for attacks leaving evidence (log entries or systeashes for example) or
detectable attacks over links monitored by an IDS.

e Resources required — gives the ability to penalize resotmosuming attacks (for
example, attacks that require password cracking or largdvaiath).

8 Related Work

Mehtaet al. apply the Google PageRank algorithm to state enumeratiackagraphs13].
Aside from the generalizations of PageRank presentedsmptper, the key difference from
their work is that AssetRank is applied to dependency atigaghs which have very dif-
ferent semantics from the state enumeration attack gragmsrgted by a model checker.
First, a vertex in a dependency attack graph describes #egevattackers use or a vul-
nerability they exploit to accomplish an attack. Henceknag a vertex in a dependency
attack graph directly gives a metric for the privilege ornerability. Ranking a vertex in
a state enumeration attack graph does not provide this sms18amce a vertex represents
the state of the entire system including all configuratiattirsgs and attacker privileges.
Second, the source vertices of our attack graphs are theketsa goals as opposed to the
source vertex being the network initial state, as is the aasbe work of Mehtaet al.
Since our source vertices are the attackers’ goals, valws filmm them and the computed
rank of each vertex is in terms of how much attackee] the attack asset to achieve their
goals. Thus our rank is a direct indicator of the main attatkbéers and where security
hardening should be performed. The rank computed in Mettdh’'s work represents the
probability a random attacker (similar to the random walkehe PageRank model) is in
a specific state, in particular, a state where he has achiesagbal. But the probability a
random attacker is in the goal state may decrease as the nofrditack paths increases
— simply because there are more states to split the disivilbuAs a result, contrary to
what was proposed in their paper, this rank cannot serve &drecrfor the system’s overall
vulnerability.

Recent years have seen a number of efforts that apply nusesigity metrics to attack
graphs. For example, Wargy al. studied how to combine individual security metrics
to compute an overall security metric using attack gradi®. [ Dewri et al. proposed
configuration optimization methods that are based on agesghs, numeric cost functions,
and genetic algorithm2{)]. The goal of our work is different. We aim to use standardize
security metrics and a unified algorithmic framework to ramd prioritize the security
problems revealed by an attack graph.

There have been various forms of attack graph analysis pegpim the past. The ranking
scheme described in this paper is complementary to thosksward could be used in
combination with existing approaches. One of the factoas las been deemed useful for
attack graphs is finding a minimal set of critical configusatsettings that enable potential
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attacks since these could serve as a hint on how to elimihatattacks. Approaches to
find the minimal set have been proposed for both dependetagkajraphs] and state-
enumeration attack graph®, R1]. Business needs usually do not permit the elimination of
all security risks so the AssetRank values could be usedyaide minimal-cut algorithms
to selectively eliminate risk. In the experiment in Sectiof the highest ranked vertices
(compromise/vulnerability on host C and D) happen to be amahset that will cut the
attack graph in two parts. AssetRank can incorporate stdrmal security metrics such as
CVSS, and compute the relative importance of each attaek based on both the metrics
and the attack graph. A binary result from the minimal-cgbathm does not provide this
capability, which we believe is important in realistic segumanagement.

It has been recognized that the complexity of attack graftes prevents them from being
useful in practice and methodologies have been proposeetterlvisualize themd, 10,
11, 22]. The ranks computed by our algorithm could be used in coatlmn with the
techniques in those works to help further the visualizapiatess, for example by coloring
the visualization based on the computed ranks.

9 Conclusion

In this paper we proposed the AssetRank algorithm, a geratiah of the PageRank algo-
rithm, that can be applied to rank the importance of a vertexdependency attack graph.
The model adds the ability to reason on heterogeneous gcapitaining both AND and
OR vertices. It also adds the ability to model various typesttackers. We have shown
how to incorporate vulnerability attribute informatiortarthe arc weights. Similarly, users
could compute attack asset ranks derived from metrics daggattack noisiness, attack
path length, or resource utilization. We have also shown tcomodel the existence of
out-of-band attacks into vertex-specific damping weigtMs.incorporated personalization
values to allow network defenders to specify the assetsrtiast desire to deny attackers
and thus obtain a personalized attack asset ranking basedhsgir operational priorities.

The numeric value computed by AssetRank is a direct indicdtioow important the attack
asset represented by a vertex is to a potential attacker. aloeithm was empirically
verified through numerous experiments conducted on sesgaahple networks. The rank
metric will be valuable to users of attack graphs in bettelanstanding the security risks, in
fusing publicly available attack asset attribute data,etecmining appropriate mitigation
measures, and as input to further attack graph analysis. tool
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Annex A: Full Attack Graph
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Annex C: Experiment 2a Attack Graph

2. RULE § (diect network accs
Rank: 002175
Damp: 10 Likelinood: 10

3 hacla . 1op.80)
Rank: 002401

Damp: 1.0 Likelihood:

1 execCode( senviceaccoun)
Rank: 0.02209
Qamp: 0:8131072 Likelihood. 0.

o.osssas

RULE 2 (remote expioit of a server progia
Rank: 0.01983
Damp: 10 Lieliood: 10

T
Rank 00219
Damp: 10 Likelioog: 10

Rank 00219
Damp: 10 Likelinood: 08

bpoeasz

4 RULE 5 (muthop acce:
Rank: 002419
Damp: 10 Likeiood:

Ranic 002671

N
Damp: 10 Likelnood: 0. Qamp: 084096 Likelood: 0

b.201e

RULE 2 (remote exploi of a server prog
Rank:0.02481

Damp: 10 Likeivood: 10

Rank: 00274
Damp: 10 Likelinood: 0.0

Rank: 00274
Damp: 10 Liklihoos: 08

fozss azs6

47: RULE 5 (multhop acc
Rank 001513
Damp: 1.0 Likelhood: 0

10 haci(c.e16p,80)
Rankc 0.0167;
p

671
10 Likelhood: 0

8: haci(d e.cp 80)
Rank: 001671
Damp: 10 Likeinood: 0.

RULE 2 (remote explot of a server prod
R

ank: 0,02
Damp: 10 Lieliood: 1.0

o
Rank: 003229 ‘ ‘

Damp: 10 Likelhood: 0.0 Damp: 10 Likelinood: 10 Damp: 10 Lielihood: 08

5
Rank: 001739
amp: 10 Likeinood: 00

Lol
Rank:0
Damp: 10 Likelivood: 10

36: hacl(ab cp.80)
Rankc 001204
Damp: 1.0 Likeinood: 0.

25: execCode(d ool)

amp: 0.928 Likeliood: 0

7 RULE 2 (imote expiot of a server progi
‘Rank: 002924
Damp: 10 Likelihood: 1.0

Rank: 003229
Damp: 1.0 Likelinood: 08

50 RULE 6 (drect etwork accs?
0217

Damp: 1.0 Likeiood: 10

Figure C.1: Attack graph for the Experiment 2a scenario

DRDC Ottawa TM 2008-180



28

This page intentionally left blank.

DRDC Ottawa TM 2008-180



Annex D: Experiment 2b Attack Graph
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Figure D.1: Attack graph for the Experiment 2b scenario
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Annex E: Experiment 3 Attack Graph

Figure E.1: Attack graph for the Experiment 3 scenario
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