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Abstract. Attack graphs have been proposed as useful tools for analyz-
ing security vulnerabilities in network systems. Even when they are pro-
duced efficiently, the size and complexity of attack graphs often prevent
a human from fully comprehending the information conveyed. A distil-
lation of this overwhelming amount of information is crucial to aid net-
work administrators in efficiently allocating scarce human and financial
resources. This paper introduces AssetRank, a generalization of Google’s
PageRank algorithm which ranks web pages in web graphs. AssetRank
addresses the unique semantics of dependency attack graphs and incor-
porates vulnerability data from public databases to compute metrics for
the graph vertices (representing attacker privileges and vulnerabilities)
which reveal their importance in attacks against the system. The results
of applying the algorithm on a number of network scenarios show that
the numeric ranks computed are consistent with the intuitive importance
that the privileges and vulnerabilities have to an attacker. The vertex
ranks can be used to prioritize countermeasures, help a human reader
to better comprehend security problems, and provide input to further
security analysis tools.
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1 Introduction

An attack graph is a mathematical abstraction of the details of possible attacks
against a specific network. Various forms of attack graphs have been proposed for
analyzing the security of enterprise networks [1,2,3,4,5,6]. Recent advances have
enabled computing attack graphs for networks with thousands of machines [2,4].
Even when attack graphs can be efficiently computed, the resulting size and
complexity of the graphs is still too large for a human to fully comprehend [7,8,9].
While a user will quickly understand that attackers can penetrate the network
it is essentially impossible to know which privileges and vulnerabilities are the
most important to the attackers’ success. Network administrators require a tool
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Fig. 1. An example network

which can distill the overwhelming amount of information into a list of priorities
that will help them to secure the network, making efficient use of scarce human
and financial resources.

The problem of information overload can occur even for small-sized networks.
The example network shown in Figure 1 is from recent work by Ingols et al. [2].
Machine A is an attacker’s launch pad (for example, the Internet). Machines B,
C, and D are located in the left subnet and machines E and F are in the right
subnet. The firewall FW controls the network traffic such that the only allowed
network access between the subnets is from C and D to E. All of the machines
have a remotely exploitable vulnerability.

We applied the MulVAL attack graph tool suite [4] to the example network. The
resulting attack graph can be found in Appendix A. Even for a small network, the
attack graph is barely readable. Assuming the attack graph can be read, it is still
difficult for a human to capture the core security problems in the simple network.
Essentially, the software vulnerabilities on hosts C and D will enable an attacker
from A to gain local privileges on the victim machines, and use them as stepping
stones to penetrate the firewall, which only allows through traffic from C and D. In
this example, all the machines can potentially be compromised by the attacker,
and all the vulnerabilities on the hosts can play a role in those potential attack
paths. However, the vulnerabilities on C and D, and the potential compromise
of those two machines, are crucial for the attacker to successfully penetrate into
the right subnet, presumably a more sensitive zone. The attack graph produced
by MulVAL does reflect this dependency, but a careful reading of the graph is
necessary to understand which graph vertices are the most important to consider.
When the network size grows and attack paths become more complicated, it is
insurmountably difficult for a human to digest all the dependency relations in the
attack graph and identify key problems.

Beside the dependency relations represented in an attack graph, another im-
portant factor in determining the criticality of an identified security problem is
the likelihood the attack path can lead to a successful exploit. For example, both
hosts C and D can be exploited remotely by the attacker on host A. Assume
that the vulnerability on host C is only theoretical and no one has successfully
produced a proof-of-concept exploit, whereas the vulnerability on host D has a
publicly available exploit that works most of the time. Obviously the vulnera-
bility on D is more likely to be exploited than the vulnerability on C and so its
elimination deserves prioritization.
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In the past five years, significant resources have gone into standardizing
the definition of the attributes of reported security vulnerabilities. Most notably,
the Common Vulnerability Scoring System (CVSS)1 is a standard for sharing the
attributes of discovered security vulnerabilities among IT security professionals.
It represents not just a single numeric score, but a metric vector that describes
various aspects of a vulnerability such as its access vector, access complexity and
exploitability. The CVSS metric vector is included in the National Vulnerability
Database (NVD)2 for every vulnerability reported in the NVD. The metrics pro-
vide crucial baseline information for automated security analysis. However, the
metrics themselves can only give limited information without an understanding
of the global security interactions in an enterprise environment. For example,
further assume that the vulnerability on B is the same as the one on D. Since B
does not have access into the right subnet, its vulnerability is less critical than
the one on D. In the scenario just described, our algorithm gives first priority
to the vulnerability on D, followed by the vulnerability on B, and then C. This
prioritization is intuitive since D is easy to exploit and gives access to the right
subnet; B is easy to exploit and gives access to D; and since only proof-of-concept
code exists to exploit C, it warrants the lowest priority.

In summary, to determine the relative importance of security problems in
a network, both the dependency relationships in the attack graph and the at-
tributes of the security problems need to be considered. We present an approach
which automatically digests the dependency relations in an attack graph as well
as the baseline information of the vulnerability attributes to compute the rela-
tive importance of attacker assets (the graph vertices) as a numeric metric. The
metric gauges the importance of a privilege or vulnerability to an attacker (and
hence the defender). Our approach fuses attack graphs and baseline security
metrics such as CVSS, to make both of them more useful in security analysis.

2 AssetRank for Attack Graphs

Internet web pages are represented in a directed graph sometimes called a web
graph. The vertices of the graph are web pages and the arcs are URL links from
one page to another. Google’s PageRank algorithm [10] computes a page’s rank,
not based on its content, but on the link structures of the web graph. Pages
that are pointed to by many pages or by a few important pages have higher
ranks than pages that are pointed to by a few unimportant pages. In this paper,
we introduce AssetRank, a generalization of the PageRank algorithm, which
can handle the semantics of vertices and arcs of dependency attack graphs.
Our first contribution allows AssetRank to treat the AND and OR vertices in
a dependency attack graph correctly based on their logical meanings, whereas
PageRank is only applied to OR vertex graphs. The second contribution is a
generalization of PageRank’s single system-wide damping factor to a per-vertex
damping factor. This generalization allows AssetRank to accurately model the
1 http://www.first.org/cvss/
2 http://nvd.nist.gov/cvss.cfm

http://www.first.org/cvss/
http://nvd.nist.gov/cvss.cfm
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various likelihoods of an attacker’s ability to obtain privileges through means not
captured in the graph (out-of-band attacks). The third contribution is leveraging
publicly available vulnerability information (e.g. CVSS) through parameters in
AssetRank so that the importance of security problems is computed with respect
to vulnerability attributes such as attack complexity and exploit availability. The
fourth contribution is that our generalized ranking algorithm allows network
defenders to obtain personalized AssetRanks to reflect the importance of attack
assets with respect to the protection of specific critical network assets.

The AssetRank algorithm presented here could be applied to any graph whose
arcs represent some type of dependency relation between vertices. In fact, web
graphs are a special case of dependency graphs since a web page’s functionality
in part depends on the pages it links to.

A dependency attack graph G is represented as G = (V, A, f, g, h) where V
is a set of vertices; A is a set of arcs represented as (u, v), meaning that vertex
u depends on vertex v; f is a mapping of positive weights to vertices; g is a
mapping of non-negative weights to arcs; and h is a mapping of vertices to
their type (AND, OR, or SINK). The out-neighbourhood of a vertex v is defined
as N+(v) = {w ∈ V : (v, w) ∈ A}, and in-neighbourhood of v is defined as
N−(v) = {u ∈ V : (u, v) ∈ A}. The cardinality of a set X is denoted |X | and
its L1-norm is denoted ||X ||1. Without loss of generality, we require the vector
of all vertex weights f(V ) to sum to 1.

AssetRank is computed by solving for the principal eigenvector X in the
following equation.

λX = (DΔ + γPeT )X (1)

Where λ is the principal eigenvalue, X is the vector of AssetRanks (scaled to sum
to 1), D is the transpose of the square adjacency matrix of a dependency attack
graph G (an AND/OR directed graph), Δ is a diagonal matrix of vertex-specific
arc-weight damping factors where each value is in the range [0, 1], γ ∈ (0, 1] is the
vertex-weight damping factor, P = f(V ) is a personalization vector composed
of the vertices’ personalization values (that is, the vertex weights), and e is the
all-ones vector.

Equation (1) reduces to the original PageRank if λ = 1, Δ = δI (where I
is the identity matrix and δ is PageRank’s damping factor), γ = 1 − δ, and all
vertices are required to be OR vertices.

2.1 AND Vertices

Dependency attack graphs contain both AND and OR vertices. An OR vertex
can be satisfied by any of its out-neighbours, whereas an AND vertex depends
on all of its out-neighbours. For example, the simple dependency attack graph in
Figure 2(a) shows that attackers attaining the goal p1 depend upon their ability
to obtain both privileges p2 and p3. p2 is an AND vertex3 and it requires the
3 In our figures, AND vertices are represented by ovals, OR vertices are represented

by diamonds, and SINK vertices are represented by rectangles.
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p1

p2 p3

vul1 vul2 vul3 vul4

(a)

Vertex AssetRank
p1 0.1722
p2 0.1680
p3 0.1680
vul1 0.1639
vul2 0.1639
vul3 0.0820
vul4 0.0820

(b)

Fig. 2. AssetRank computation for an AND/OR graph

two vulnerabilities vul1 and vul2. p3 is an OR vertex and it requires only one of
either vul3 or vul4. In this example we assume all the arcs have the same weight.

Since any of an OR vertex’s out-neighbours can enable it, the importance of
each out-neighbour decreases as the number of out-neighbours increases since
the vertex can be satisfied by any one of them. This reduced dependency is
not true of AND vertices. Since all the out-neighbours of an AND vertex are
necessary to enable it, it is intuitively incorrect to lessen the amount of value
flowed to each out-neighbour as their numbers grow.

Rather than splitting the value of an AND vertex we replicate it to its out-
neighbours. Each out-neighbour of an AND vertex receives the full value from
the vertex multiplied by the vertex’s damping factor. That is, for every outgoing
edge (u, v) from an AND vertex u, the corresponding matrix entry Dvu

4 is 1.
We now have the following restrictions on the graph’s arc weights.

∑

w∈N+(v)

g(v, w) =

⎧
⎪⎨

⎪⎩

|N+(v)|, if h(v) = AND
1, if h(v) = OR
0, if h(v) = SINK .

(2)

A unique principal eigenvector X in Equation (1) exists (up to scalar multi-
plication) and follows from Perron’s theorem (see, for example, [11]), and the
fact that DΔ + γPeT is positive. Thus, convergence using the power method is
guaranteed. The computation using the power method with the terms optimized
to take advantage of the sparsity of DΔ follows.

Step 1: X ′
t = DΔXt−1 + γP ; Step 2: Xt =

1
||X ′

t||1
X ′

t (3)

Figure 2(b) displays the result of applying the above algorithm to the graph
in Figure 2(a). For this example, we use a single constant damping factor of
Δ = 0.85I and P is such that only the goal vertex p1 has a non-zero personal-
ization value.

4 As a shorthand notation we use u and v in Dvu to represent the column and row
indices corresponding to the respective vertices.
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AssetRank gives5 the expected relative importance for the four vulnerabilities:
vul1 and vul2 are twice as important as vul3 and vul4 since patching one of vul1
or vul2 has an equivalent effect in denying the goal p1 as patching both vul3
and vul4.

2.2 Vertex-Specific Damping

In the case of PageRank applied to web pages, the system-wide damping factor
δ gives the probability that surfers will stop surfing [12]. They could stop surfing
for any number of reasons including having found the desired information or
encountering a poor quality web page. The reality is that not all web pages have
an equal likelihood to be the end point of a user’s surfing. On some web pages
almost all of the surfers will continue surfing (for example, search results) while
on other pages, almost all of the surfers will stop surfing (for example, a local
weather page).

An analogous situation exists for attack graphs. An “attack planner” will
more likely stop traversing the attack graph if the vertex represents a privilege
that can be easily obtained “out-of-band”. For example, attackers requiring the
ability to execute code on a user desktop could use out-of-band methods such
as social engineering rather than purely technical exploits.6

In general, the damping factor measures the likelihood that an attack planner
will continue traversing the graph. We improve the accuracy of the ranks by
not assuming that the planners are equally likely to stop traversing the graph
regardless of the vertex they are visiting. Rather than using a single damping
factor, we introduce vertex-specific damping factors δv and assemble them into
the diagonal damping matrix Δ = diag(δ1, δ2, . . . , δ|V |).

2.3 Personalization Vector

It is insufficient to consider only the dependency relations and damping factors
in determining a vertex’s value. Network defenders place a higher priority on de-
fending critical servers than non-critical PCs. Similarly, some machines are more
valuable than others to attackers. We use vertex weights as a personalization
value to represent a vertex’s inherent value to network attackers or defenders.
Network defenders may identify the assets they desire to deny the attacker by
assigning them a personalization value that reflects their importance to the de-
fender’s operations. The remaining attack assets are assigned a value of 0 which
then causes the computed AssetRank values to reflect their importance only in
so far as they are likely to be used by an attacker to obtain the attack assets
identified as critical.
5 All of the experiments in this paper required a computation time of less than one

second on a typical desktop PC and converged in 78 iterations or less. The complexity
of the power method depends upon the complexity of matrix multiplication and
the number of iterations required. The complexity of naive matrix multiplication is
O(n3). Speed improvements for PageRank computation can also speed up AssetRank
computation as long as they do not require the principal eigenvalue to be 1.

6 The attack graphs we use in this paper include only technical exploits.
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3 Parameter Assignment

Attack graph dependencies and attack asset attribute information (such as CVSS
metrics obtained from the NVD database) supply the three key components D,
Δ, and P of the AssetRank matrix A = DΔ + γPeT . In this section we explain
how to obtain and set these values. In Section 4 we will demonstrate their effect
on the asset ranks. The parameter γ sets the influence of the personalization
vector which has the effect of opting to favour attack assets closer to the goal
versus favouring attack assets closer to the attacker.

3.1 Dependency Matrix (D)

To model attacker preferences we assign a success likelihood s(v) to every vertex.
The success likelihood has a slightly different meaning for the three types of
vertices: AND, OR, and SINK.

The SINK vertices represent the ground facts that MulVAL uses when deriving
attack paths. The ground facts include the existence of vulnerable software,
network routes and the services running on each machine. Every ground fact is
assigned a success likelihood. To simplify the demonstration in this paper we
assign the success likelihood 1 to all non-vulnerability SINK vertices. That is,
we assume that if a service exists, it is always up, and that network paths are
stable.7

CVSS is a standard for specifying vulnerability attributes. Two attributes
that are particularly useful in prioritizing attack assets are the base metric of
Access Complexity (AC) and the temporal metric of Exploitability (E). For
the AC metric, vulnerabilities are assigned a value of high, medium, or low, to
indicate the existence of specialized access conditions such as a race condition or
configuration setting. When considering the E metric, vulnerabilities are assigned
a value of unproven, proof-of-concept, functional, or high, to indicate the current
state of exploit maturity. If one attack path in the attack graph depends upon an
unproven vulnerability and another attack path depends upon a vulnerability
with functional exploit code, the attack assets in the latter attack path (all
vulnerabilities and network routes) are more likely to be involved in an attack
and so they are more valuable to attackers. Consequently, they also deserve a
higher degree of attention by network defenders. In our experiments we assign the
following success likelihoods s(v) to each vulnerability vertex v to indicate the
probability that an attacker will successfully exploit the vulnerability: Unproven
(1%), Proof-Of-Concept (40%), Functional (80%), High (99%).

MulVAL attack graphs also contain rule vertices. These are AND vertices
that specify how a privilege may be obtained. The parameter s(v) for AND
vertices models the preference of attackers for different attack strategies. For
example, two of the rules describe how network access may be obtained. In the

7 Users could assume mobile devices are present intermittently and hence assign a
success likelihood to network routes for mobile devices that represent the likelihood
that the device will be connected to the network.
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first case, direct network access to a host is obtained if an attacker has a machine
and a network route exists from that machine to the intended host. In the second
case, multi-hop network access to a host is obtained if an attacker can execute
code of his choosing on a victim machine and a network route exists from that
machine to the intended host. Since an attack is complicated by multi-hop access,
we assume that the attacker prefers direct routes so we assign a preference score
of 1.0 to the direct route and 0.5 to the indirect route. In a similar manner, other
rules may be assigned a preference score indicating attackers’ preferences. These
rule preferences would be set by experts to model different types of attackers
(for example, script kiddies or black-hat criminals).

Finally, MulVAL attack graphs contain derived attack assets.For example,
MulVAL-generated attack graphs include execCode(machine,account) vertices
stating that an attacker could obtain the ability to execute arbitrary code on
machine at the privilege of account. However, the execCode attack asset might
be obtained through a choice of multiple routes in the attack graph. These
multiple routes are represented by multiple outgoing arcs from the execCode
vertex, an OR vertex. Not all of these routes are equally difficult to obtain and
we make the assumption that attackers prefer easier methods of obtaining the
derived attack asset. For example, attackers would favour routes that may be
exploited with reliable tools.

The OR vertices discussed at the beginning of this section.
Attack paths will contain several ground facts (SINK vertices), rules (AND

vertices), and derived attack assets (OR vertices). Weights of the out-going arcs
are computed by percolating the success likelihoods throughout the graph by
setting g(u, v) = m(v) where

m(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(v), if h(v) = SINK
s(v)

∏

w∈N+(v)

m(w), if h(v) = AND

max
w∈N+(v)

m(w), if h(v) = OR

(4)

In words, the arc weight from vertex u to v is the success likelihood of v if v
is a SINK vertex, the attacker’s preference for the attack type multiplied by
the product of all of the paths required for v if v is an AND vertex, and the
easiest path from v if v is an OR vertex. Finally, the arc weights are normalized
according to Equation (2).

3.2 Damping Matrix (Δ)

In Section 2.2 we introduced vertex-specific damping factors. This extension
allows the modeling of out-of-band attacks for derived attack assets (OR ver-
tices). For example, the ability to execute code on a victim’s machine can
be gained by obtaining the victim’s login credentials through social engineer-
ing — a non-technical attack that is not captured in the attack graph. If at-
tackers gain the attack asset v by means outside the graph, they will not re-
quire the dependencies of v captured in the attack graph so those dependencies
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are less valuable to the attacker and so deserve less attention from network
defenders.

For MulVAL attack graphs, specifying a damping factor is only sensible for
OR vertices (derived attack assets). The damping factor has no effect on SINK
vertices because they have no out-going arcs. Also, AND vertices are fundamen-
tally required in the attack graph and cannot be obtained out-of-band so the
damping factor for AND vertices is set to 1 (no damping).

The success likelihood of obtaining a derived asset out-of-band for an OR
vertex v is denoted s(v). An example of an out-of-band attack is an attacker
obtaining a user’s login credentials through social engineering. The success like-
lihood depends upon the level of awareness and training of the user. A network
defender can specify the success likelihood based upon the type of user account.
For example, root users could be assigned a low likelihood score such as 20%
while standard users could be assigned a score of 80%. Security experts will be
relied upon to provide metrics for out-of-band attacks.

The degree to which attackers will use out-of-band attacks depends upon
both the projected success of the out-of-band attack and the difficulty of ob-
taining the attack asset by using the means specified in the attack graph. If
the attack asset may be obtained with certainty using the attack graph then
the attacker will use those means. Also, if out-of-band attacks are impossible
or are certain to fail, the attacker will not exit the graph to attempt the out-
of-band means but will use the means in the attack graph to obtain the priv-
ilege. The following equation captures these requirements. For an OR vertex
v with an out-of-band success likelihood s(v), the damping factor δv is given
by

δv = (1 − s(v)) + s(v)m(v) . (5)

The damping matrix is a diagonal matrix constructed from the vertex-specific
damping factors by setting Δ = diag(δ1, δ2, . . . , δ|V |).

3.3 Personalization Vector (P )

The personalization vector P represents the network defender’s desire to deny
an attack asset to attackers. If a defender is only interested in denying a single
goal vertex g then its personalization value f(g) is set to 1 and all other vertices
are set to 0.8 If the defender desires to deny several vertices (for example, the
execCode privilege on all servers) then the values will be set for the vertices
in a manner that represents the defenders (conversely, the attackers) interest in
those vertices. It is expected that the defender will set the personalization values
based upon the organization’s operational priorities.

8 Technically, the non-goal vertices are set to an arbitrarily small ε > 0 and the goal
is set to 1 − (|V | − 1)ε. This ensures that the AssetRank matrix A = DΔ + γPeT is
positive, a condition that guarantees the existence of a unique positive eigenvector
according to Perron’s theorem.
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4 Experiments

In this section we present several experiments we conducted to study 1) Asset-
Rank’s efficacy in giving results consistent with the importance of an attack
asset to a potential attacker; and 2) how the AssetRank metric may be used to
better understand security threats conveyed in a dependency attack graph, as
well as in choosing appropriate mitigation measures.

In our experiments, we use the MulVAL attack-graph tool suite to compute
a dependency attack graph based upon a network description and a user query.
For example, a user may ask if attackers can execute code of their choosing
on any server. The attack graph is exported to a custom Python module. The
Python module normalizes the input data, computes the AssetRank values, and
visualizes the attack graph using the graph visualization software Graphviz [13].

4.1 Experiment 1

The first experiment demonstrates the effect of arc weights and vertex-specific
damping factors on a small network. Figure 3 shows the network for experiments
1a and 1b. The attacker has access to both PC1 and PC2. User1 is on PC1 which
has vulnerability Vul1 and User2 is on PC2 which has vulnerability Vul2. PC1
and PC2 have access to the goal machine but not to each other.

In experiment 1a we assume that Vul1 has functional exploit tools available
and Vul2 has only proof-of-concept code available. Hence, we assign success
likelihood metrics of 0.8 and 0.4, respectively. A uniform damping factor of 0.99
is applied to all vertices. We expect that Vul1 will have a higher rank metric
than Vul2 since the attacker is more likely to prefer it. Figure 4 shows the attack
graph coloured according to the assets’ AssetRank values. The vertex colours
range from blue to red with blue indicating vertices with relatively lower ranks
and red indicating vertices with higher ranks. Our algorithm computes a value
of 0.0579 for Vul1 and a value of 0.0289 for Vul2 which is consistent with the
higher value that Vul1 has to the attacker.

In experiment 1b we assign both Vul1 and Vul2 a success likelihood of 1.0.
However, we assume that it is 80% likely that PC1 will be compromised by ways

Fig. 3. Scenario for experiments 1a and 1b
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1: execCode(goal,serviceaccount)
Rank: 0.01373

Damp: 0.99  Likelihood: 1.0

2: RULE 2 (remote exploit of a server program)
Rank: 0.01867

Damp: 0.99  Likelihood: 1.0

0.8

3: netAccess(goal,tcp,80)
Rank: 0.02539

Damp: 0.99  Likelihood: 1.0

1.0

24: networkServiceInfo(goal,service,tcp,80,serviceaccount)
Rank: 0.02539

Damp: 0.99  Likelihood: 1.0

1.0

25: vulExists(goal,vul3,service,remoteExploit,privEscalation)
Rank: 0.02539

Damp: 0.99  Likelihood: 1.0

1.0

4: RULE 5 (multi-hop access)
Rank: 0.02302

Damp: 0.99  Likelihood: 0.5

0.8

14: RULE 5 (multi-hop access)
Rank: 0.01151

Damp: 0.99  Likelihood: 0.5

0.4

5: hacl(pc1,goal,tcp,80)
Rank: 0.03129

Damp: 0.99  Likelihood: 1.0

1.0

6: execCode(pc1,serviceaccount)
Rank: 0.03129

Damp: 0.99  Likelihood: 1.0

1.0

7: RULE 2 (remote exploit of a server program)
Rank: 0.04255

Damp: 0.99  Likelihood: 1.0

0.8

8: netAccess(pc1,tcp,80)
Rank: 0.05785

Damp: 0.99  Likelihood: 1.0

1.0

12: networkServiceInfo(pc1,service,tcp,80,serviceaccount)
Rank: 0.05785

Damp: 0.99  Likelihood: 1.0

1.0

13: vulExists(pc1,vul1,service,remoteExploit,privEscalation)
Rank: 0.05785

Damp: 0.99  Likelihood: 0.8

1.0

9: RULE 6 (direct network access)
Rank: 0.07866

Damp: 0.99  Likelihood: 1.0

1.0

10: hacl(a,pc1,tcp,80)
Rank: 0.10695

Damp: 0.99  Likelihood: 1.0

1.0

21: attackerLocated(a)
Rank: 0.16043

Damp: 0.99  Likelihood: 1.0

1.0

15: hacl(pc2,goal,tcp,80)
Rank: 0.01565

Damp: 0.99  Likelihood: 1.0

1.0

16: execCode(pc2,serviceaccount)
Rank: 0.01565

Damp: 0.99  Likelihood: 1.0

1.0

17: RULE 2 (remote exploit of a server program)
Rank: 0.02127

Damp: 0.99  Likelihood: 1.0

0.4

18: netAccess(pc2,tcp,80)
Rank: 0.02893

Damp: 0.99  Likelihood: 1.0

1.0

22: networkServiceInfo(pc2,service,tcp,80,serviceaccount)
Rank: 0.02893

Damp: 0.99  Likelihood: 1.0

1.0

23: vulExists(pc2,vul2,service,remoteExploit,privEscalation)
Rank: 0.02893

Damp: 0.99  Likelihood: 0.4

1.0

19: RULE 6 (direct network access)
Rank: 0.03933

Damp: 0.99  Likelihood: 1.0

1.0

1.0

20: hacl(a,pc2,tcp,80)
Rank: 0.05348

Damp: 0.99  Likelihood: 1.0

1.0

Fig. 4. Attack graph for the Experiment 1a scenario

not shown by the attack graph (for example, obtaining User1’s log-in credentials
through social-engineering), and PC2 is 40% likely to be compromised in such
ways. Perhaps User2 has received more training and so is more security-vigilant
than User1. We expect that Vul1 will be ranked lower than Vul2 since the at-
tacker has a lower dependence upon it. Due to space constraints, we are not able
to show the attack graph but Vul2 has an AssetRank of 0.0414 and Vul1 has an
AssetRank of 0.0310. This ranking is intuitively correct since attackers have a
greater chance of obtaining PC1 without exploiting its vulnerability, so Vul1 is
less important to them.

4.2 Experiment 2

We now demonstrate the results of applying AssetRank to the attack graph for
the example network in Figure 1. In the first scenario, we assume all the vul-
nerabilities have the same exploitability difficulty level, represented by identical
success likelihood metrics.

The attack graph is not shown due to space constraints but a portion of the
resulting ranking is shown in Table 1(a).9 The ranking is consistent with the
intuitive importance of the various attacker assets. Namely, vulnerabilities on

9 InMulVAL,a tuplevulExists(Host,VulID,Account,AccessVector,Consequence)
means “machine Host has the vulnerability VulID in software running as Account that
is exploitable via AccessVector with the result Consequence.” A tuple hacl(H1, H2,
Protocol, Port) means “machine H1 can reach machine H2 through Protocol and
Port.”
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Table 1. AssetRanks for Experiment 2

(a) Experiment 2a

Attack Asset Rank
vulExists(c,vulid2, . . . ) 0.0323
vulExists(d,vulid1, . . . ) 0.0323
vulExists(e,vulid4, . . . ) 0.0274
vulExists(f,vulid5, . . . ) 0.0219
vulExists(b,vulid1, . . . ) 0.0174
hacl(e,f,tcp,80) 0.0267
hacl(a,d,tcp,80) 0.0240
hacl(a,c,tcp,80) 0.0240
hacl(d,e,tcp,80) 0.0167
hacl(c,e,tcp,80) 0.0167
hacl(a,b,tcp,80) 0.0129

(b) Experiment 2b

Attack Asset Rank
vulExists(d,vulid1, . . . ) 0.0453
vulExists(e,vulid4, . . . ) 0.0303
vulExists(f,vulid5, . . . ) 0.0229
vulExists(b,vulid1, . . . ) 0.0188
vulExists(c,vulid2, . . . ) 0.0127
hacl(a,d,tcp,80) 0.0406
hacl(d,e,tcp,80) 0.0304
hacl(e,f,tcp,80) 0.0287
hacl(a,b,tcp,80) 0.0168
hacl(a,c,tcp,80) 0.0097
hacl(c,e,tcp,80) 0.0076

C and D are more important than the one on B, since these two machines are
stepping stones into the right subnet. Likewise, the attacker’s reachability to C
and D is ranked higher than that to B.

Now suppose the vulnerability vulid2 on machine C is very difficult to exploit,
and the other vulnerabilities are easy to exploit. We therefore assign the metric
0.2 to vulid2 and the other vulnerabilities a metric of 0.8. The result of the new
configuration is given in Table 1(b).

What is remarkable in the new ranking is that the vulnerability on machine
C is ranked much lower than before, since it is hard to exploit. Now machine
D becomes much more valuable to the attacker since it is likely to be the only
feasible stepping stone into the right subnet, which is manifested by the boosted
values on both the vulnerabilities and reachability relations involving D. Note
that the vulnerability on machine B is the same as the one on machine D. But
since B cannot directly help the attacker penetrate deeper into the network, its
vulnerability’s rank is lower than that of D.

4.3 Experiment 3

To study how AssetRank works in a more complicated realistic setting, we tested
it on a network scenario adapted from a real control-system network, shown in
Figure 5. In this network, an enterprise network is protected by a firewall from
the Internet. Only machines in the DMZ subnet can be directly accessed from
the Internet zone. The machines in the CORP internal subnet can freely access
the Internet. Only one machine in the network, the Citrix server, can access
the control-system subnet (the Energy Management System, or EMS) which
is protected by another firewall, and it may only access the Data Historian.
Assuming the attacker is on the Internet and wants to obtain privileges on the
Communications Servers in the EMS subnet, there are two obvious entry ways
for him: the web server and the VPN server, both of which can be directly
accessed from the Internet.
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Fig. 5. A realistic network scenario for Experiment 3

We introduced hypothetical vulnerabilities into this scenario and assigned
metrics for them based on our understanding of typical security problems in this
type of network.10 Due to space constraints we cannot show the attack graph;
however, the ranking identifies the two most critical vulnerabilities in the net-
work. One is a remote buffer overflow vulnerability on the web server, which
would allow a remote attacker to gain code execution privilege in the DMZ sub-
net. The other is a browser vulnerability on the user workstation. Since outbound
traffic from the CORP Internal zone is not restricted, an unsuspecting user may
browse to a malicious website and compromise his machine. This compromise
will yield privileges on the internal network to the attacker. There are many
other vulnerabilities in the network and there are other ways to penetrate into
the system (for example, through the VPN server). But the two critical problems
identified by the AssetRank algorithm are consistent with a human’s conclusion
after spending an extensive amount of time studying the information revealed
by the complicated 129 vertex attack graph with 185 dependencies.

5 Related Work

Attack graphs have been proposed and studied extensively to analyze the secu-
rity of enterprise networks. There are basically two types of attack graphs. In the

10 In real applications, this information will automatically be furnished by data collec-
tion agents installed on the machines and the CVSS metrics provided by the NVD.
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first type, each vertex represents the entire network state and the arcs represent
state transitions caused by an attacker’s actions. Examples are Sheyner’s scenario
graph based on model checking [14], and the attack graph in Swiler and Phillips’
work [15]. This type of attack graph is sometimes called a state enumeration attack
graph [7]. In the second type of attack graph, a vertex does not represent the entire
state of a system but rather a system condition in some form of logical sentence.
The arcs in these graphs represent the causality relations between the system con-
ditions. We call this type of attack graph a dependency attack graph. Examples are
the graph structure used by Ammann et al. [1], the exploit dependency graphs de-
fined by Noel et al. [3,7], the MulVAL logical attack graph by Ou et al. [4], and the
multiple-prerequisite graphs by Ingols et al. [2]. The work in this paper applies the
extended PageRank algorithm, AssetRank, to distill and prioritize the informa-
tion presented in a dependency attack graph.

Mehta et al. apply the PageRank algorithm to state enumeration attack
graphs [16]. Aside from the generalizations of PageRank presented in this paper,
the key difference from their work is that AssetRank is applied to dependency at-
tack graphs which have very different semantics from the state enumeration attack
graphs generated by a model checker. First, a vertex in a dependency attack graph
describes a privilege attackers use or a vulnerability they exploit to accomplish
an attack. Hence, ranking a vertex in a dependency attack graph directly gives a
metric for the privilege or vulnerability. Ranking a vertex in a state enumeration
attack graph does not provide this semantics since a vertex represents the state of
the entire system including all configuration settings and attacker privileges. Sec-
ond, the source vertices of our attack graphs are the attackers’ goals as opposed
to the source vertex being the network initial state, as is the case in the work of
Mehta et al. Since our source vertices are the attackers’ goals, value flows from
them and the computed rank of each vertex is in terms of how much attackers
need the attack asset to achieve their goals. Thus our rank is a direct indicator
of the main attack enablers and where security hardening should be performed.
The rank computed in Mehta et al.’s work represents the probability a random
attacker (similar to the random walker in the PageRank model) is in a specific
state, in particular, a state where he has achieved his goal. But the probability a
random attacker is in the goal state may decrease as the number of attack paths
increases — simply because there are more states to split the distribution. As a
result, contrary to what was proposed in their paper, this rank cannot serve as a
metric for the system’s overall vulnerability.

Recent years have seen a number of efforts that apply numeric security metrics
to attack graphs. For example, Wang et al. studied how to combine individual
security metrics to compute an overall security metric using attack graphs [17].
Dewri et al. proposed configuration optimization methods that are based on
attack graphs, numeric cost functions, and genetic algorithms [18]. The goal of
our work is different. We aim to use standardized security metrics and a unified
algorithmic framework to rank and prioritize the security problems revealed by
an attack graph.
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There have been various forms of attack graph analysis proposed in the past.
The ranking scheme described in this paper is complementary to those works
and could be used in combination with existing approaches. One of the factors
that has been deemed useful for attack graphs is finding a minimal set of critical
configuration settings that enable potential attacks since these could serve as a
hint on how to eliminate the attacks. Approaches to find the minimal set have
been proposed for both dependency attack graphs [3] and state-enumeration
attack graphs [6,19]. Business needs usually do not permit the elimination of
all security risks so the AssetRank values could be used alongside minimal-
cut algorithms to selectively eliminate risk. In the experiment in Section 4.2,
the highest ranked vertices (compromise/vulnerability on host C and D) hap-
pen to be a minimal set that will cut the attack graph in two parts. Asset-
Rank can incorporate standardized security metrics such as CVSS, and com-
pute the relative importance of each attack asset based on both the metrics
and the attack graph. A binary result from the minimal-cut algorithm does
not provide this capability, which we believe is important in realistic security
management.

It has been recognized that the complexity of attack graphs often prevents
them from being useful in practice and methodologies have been proposed to
better visualize them [7,8,9,20]. The ranks computed by our algorithm could
be used in combination with the techniques in those works to help further the
visualization process, for example by coloring the visualization based on the
computed ranks.

6 Conclusion

In this paper we proposed the AssetRank algorithm, a generalization of the
PageRank algorithm, that can be applied to rank the importance of a vertex in
a dependency attack graph. The model adds the ability to reason on heteroge-
neous graphs containing both AND and OR vertices. It also adds the ability to
model various types of attackers. We have shown how to incorporate vulnera-
bility attribute information into the arc weights. Similarly, users could compute
attack asset ranks derived from metrics regarding attack noisiness, attack path
length, or resource utilization. We have also shown how to model the existence of
out-of-band attacks into vertex-specific damping weights. We incorporated per-
sonalization values to allow network defenders to specify the assets they most
desire to deny attackers and thus obtain a personalized attack asset ranking
based upon their operational priorities.

The numeric value computed by AssetRank is a direct indicator of how im-
portant the attack asset represented by a vertex is to a potential attacker. The
algorithm was empirically verified through numerous experiments conducted on
several example networks. The rank metric will be valuable to users of attack
graphs in better understanding the security risks, in fusing publicly available at-
tack asset attribute data, in determining appropriate mitigation measures, and
as input to further attack graph analysis tools.



Identifying Critical Attack Assets in Dependency Attack Graphs 33

Acknowledgements

The authors thank Craig Burrell for many valuable discussions. We also thank
the numerous people who provided helpful comments on the paper.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of 9th ACM Conference on Computer and Com-
munications Security, Washington, DC (November 2002)

2. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: 22nd Annual Computer Security Applications Conference
(ACSAC), Miami Beach, Florida (December 2006)

3. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network
hardening via exploit dependency graphs. In: 19th Annual Computer Security Ap-
plications Conference (ACSAC) (December 2003)

4. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gen-
eration. In: 13th ACM Conference on Computer and Communications Security
(CCS), pp. 336–345 (2006)

5. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: NSPW 1998: Proceedings of the 1998 workshop on New security paradigms,
pp. 71–79. ACM Press, New York (1998)

6. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pp. 254–265 (2002)

7. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM workshop
on Visualization and data mining for computer security, pp. 109–118. ACM Press,
New York (2004)

8. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple coordinated views for net-
work attack graphs. In: IEEE Workshop on Visualization for Computer Security
(VizSEC 2005) (2005)

9. Lippmann, R., Williams, L., Ingols, K.: An interactive attack graph cascade and
reachability display. In: IEEE Workshop on Visualization for Computer Security
(VizSEC 2007) (2007)

10. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

11. Meyer, C.D.: Matrix analysis and applied linear algebra. Society for Industrial and
Applied Mathematics. Philadelphia, PA, USA (2000)

12. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Inter.
Tech. 5(1), 92–128 (2005)

13. Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G.: Graphviz-Open
Source Graph Drawing Tools. Graph Drawing, 483–485 (2001)

14. Sheyner, O.: Scenario Graphs and Attack Graphs. Ph.D thesis, Carnegie Mellon
(April 2004)

15. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph genera-
tion tool. In: DARPA Information Survivability Conference and Exposition (DIS-
CEX II 2001), June 2001, vol. 2 (2001)



34 R.E. Sawilla and X. Ou

16. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking attack graphs. In:
Proceedings of Recent Advances in Intrusion Detection (RAID) (September 2006)

17. Wang, L., Singhal, A., Jajodia, S.: Measuring network security using attack graphs.
In: Third Workshop on Quality of Protection (QoP) (2007)

18. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using
multi-objective optimization on attack tree models of networks. In: 14th ACM
Conference on Computer and Communications Security (CCS) (2007)

19. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop, Nova Scotia,
Canada, June 2002, pp. 49–63 (2002)

20. Homer, J., Varikuti, A., Ou, X., McQueen, M.A.: Improving attack graph visu-
alization through data reduction and attack grouping. In: The 5th International
Workshop on Visualization for Cyber Security (VizSEC) (2008)

Appendix

A Full Attack Graph for Example in Fig. 1.

1:execCode(f,serviceaccount)

2:RULE 3 (remote exploit of a server program)

51:networkServiceInfo(f,service,tcp,80,serviceaccount) 52:vulExists(f,vulid,service,remoteExploit,privEscalation) 3:netAccess(f,tcp,80)

4:RULE 6 (multi-hop access)

5:hacl(e,f,tcp,80) 6:execCode(e,serviceaccount)

7:RULE 3 (remote exploit of a server program)

49:networkServiceInfo(e,service,tcp,80,serviceaccount) 50:vulExists(e,vulid,service,remoteExploit,privEscalation) 8:netAccess(e,tcp,80)

9:RULE 6 (multi-hop access) 47:RULE 6 (multi-hop access)

10:hacl(c,e,tcp,80) 11:execCode(c,serviceaccount)

12:RULE 3 (remote exploit of a server program)

13:netAccess(c,tcp,80) 45:networkServiceInfo(c,service,tcp,80,serviceaccount)46:vulExists(c,vulid,service,remoteExploit,privEscalation)

14:RULE 6 (multi-hop access) 40:RULE 6 (multi-hop access)42:RULE 7 (direct network access)

15:hacl(b,c,tcp,80)16:execCode(b,serviceaccount)

17:RULE 3 (remote exploit of a server program)

18:netAccess(b,tcp,80) 38:networkServiceInfo(b,service,tcp,80,serviceaccount)39:vulExists(b,vulid,service,remoteExploit,privEscalation)

19:RULE 6 (multi-hop access) 21:RULE 6 (multi-hop access)35:RULE 7 (direct network access)

20:hacl(c,b,tcp,80) 22:hacl(d,b,tcp,80) 23:execCode(d,serviceaccount)

24:RULE 3 (remote exploit of a server program)

25:netAccess(d,tcp,80) 33:networkServiceInfo(d,service,tcp,80,serviceaccount) 34:vulExists(d,vulid,service,remoteExploit,privEscalation)

26:RULE 6 (multi-hop access) 28:RULE 6 (multi-hop access)30:RULE 7 (direct network access)

27:hacl(b,d,tcp,80) 29:hacl(c,d,tcp,80)31:hacl(a,d,tcp,80)44:attackerLocated(a)

36:hacl(a,b,tcp,80)

41:hacl(d,c,tcp,80)43:hacl(a,c,tcp,80)

48:hacl(d,e,tcp,80)

Fig. 6. Attack graph for the network in Figure 1
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