
Experimental Study of Machine Learning based
Malware Detection Systems’ Practical Utility

Yuping Li1, Doina Caragea2, Lawrence Hall3, and Xinming Ou3

1Pinterest Inc., 2Kansas State University, 3University of South Florida

Abstract—Thanks to the numerous machine learning based
malware detection (MLMD) research in recent years and the
readily available online malware scanning system (e.g., VirusTo-
tal), it becomes relatively easy to build a seemingly successful
MLMD system using the following standard procedure: first
prepare a set of ground truth data by checking with VirusTotal,
then extract features from training dataset and build a machine
learning detection model, and finally evaluate the model with a
disjoint testing dataset. We argue that such evaluation methods
do not expose the real utility of ML based malware detection
in practice since the ML model is both built and tested on
malware that are known at the time of training. The user could
simply run them through VirusTotal just as how the researchers
obtained the ground truth, instead of using the more sophisticated
ML approach. However, ML based malware detection has the
potential of identifying malware that has not been known at
the time of training, which is the real value ML brings to
this problem. We present experimentation study on how well a
machine learning based malware detection system can achieve
this. Our experiments showed that MLMD can consistently
generate previously unknown malware knowledge, e.g., malware
that is not detectable by existing malware detection systems
at MLMD’s training time. Our research illustrates an ideal
usage scenario for MLMD systems and demonstrates that such
systems can benefit malware detection in practice. For example,
by utilizing the new signals provided by the MLMD system and
the detection capability of existing malware detection systems,
we can more quickly uncover new malware variants or families.

I. INTRODUCTION

The total number of independent Android malware detection
products listed on VirusTotal [1] increased from 54 in 2015
to 71 in 2019. A significant number of the newly added
malware detection systems are known to be built with machine
learning (ML) based techniques (e.g., CrowdStrike, Endgame,
Bkav, etc.). Machine learning techniques are widely viewed as
one of the major viable solutions to combat the ever-growing
big data problem, as more and more potentially malicious
samples were collected every day. Previous work [2], [3], [4],
[5], [6] in academia has repeatedly demonstrated that machine
learning techniques can perform well [7] with prepared ground
truth testing datasets.

To create an effective machine learning based malware
detection (MLMD) system, researchers can follow a standard
procedure. Firstly, they need to prepare a large set of ground
truth data. For example, by scanning the collected samples
against a list of existing Antivirus (AV) vendors. A sample
is considered as confirmed benign if no vendor detected it
as malicious and considered as confirmed malicious if the

number of vendors detecting it as malicious was larger than a
predefined threshold. The confirmed samples are then divided
into disjoint training and testing datasets. Secondly, they need
to extract various representative features from the ground
truth training dataset and build an ML classifier. Finally,
to examine the effectiveness of the newly designed system,
the ML classifier will be evaluated against the ground truth
testing dataset. We refer to the above general process as
the traditional approach for creating and evaluating
MLMD system.

Despite the seemingly encouraging results reported by pre-
vious research, the MLMD systems designed with traditional
approach do not significantly improve malware detection
experiences from end user perspective, e.g., false positives
are still common in malware detection domain and new AV
solutions are continuously added [8] every year. If we define
malware knowledge of a particular family as whether we
can correctly detect the samples from that family, then the
traditional approach does not dramatically contribute new
malware knowledge to security community either, since the
testing malicious samples were already confirmed by existing
AV vendors. It is widely acknowledged that evaluation with
confirmed malware samples (as shown in traditional approach)
is absolutely necessary, or else we won’t know how good or
bad the newly designed malware detection system performs.
However, such evaluation does not reflect the general strengths
(e.g., signals of maliciousness) and weaknesses (e.g., lack of
specificity) of MLMD systems, and ignores the reality that we
already have a huge list of well-performing AV products.

Our evaluation is aligned with how an ML algorithm can
potentially benefit malware detection in practice, by acknowl-
edging the fact that any ML classifier has to be trained on
potentially imperfect knowledge about apps’ maliciousness,
and the reality that we already have a huge list of working
AV vendors which were used to create the ground truth labels.
This evaluation seeks to answer 1) can an ML algorithm
be helpful in producing new knowledge or value, even if
trained on imperfect knowledge, and 2) what are the dif-
ferences among a number of ML approaches with regard to
their capability of generating the new knowledge. Specifically,
we mainly examine the traditional prediction based malware
detection. Results of experiments show that both approaches
can be used to achieve verifiable zero-day malware detection,
if we combine the ML outputs with existing AV detection
capabilities. This indicates that MLMD system can produce



provable new malware knowledge to the security community
when used together with existing AV vendors.

In summary, our major contributions are as follows:
• We design a new strategy to evaluate ML system out-

puts by checking the detection of previously unknown
malware knowledge. This new evaluation strategy avoids
the pitfalls identified within traditional approaches and
illustrates an ideal usage scenario for MLMD systems.

• We demonstrate that MLMD system can consistently
generate new malware knowledge even if trained with
imperfect ground truth labels. It also indicates that a
new MLMD system can be complementary to existing
malware detection solutions and shows the real value of
ML-based malware detection system in practice.

II. MOTIVATION

Machine learning techniques have been frequently used for
malware detection. In traditional approach, the training and
testing datasets are completely separated from each other but
prepared at the same time using the same level of malware
knowledge, e.g., they were simultaneously obtained based on
scanning results from the same AV vendors. An ML model
is then created on the training dataset and evaluated on the
disjointed testing dataset, as shown in Figure 1.
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Fig. 1: Simplified Overview of Traditional Approaches

Even though it is easy to create new MLMD systems
following the traditional approach, we noticed that there
are various pitfalls. It fails to reflect the true performances
of such systems when applied in real-world, and does not
demonstrate the real added values if researchers decided to
create yet another new MLMD system. The overall procedures
for creating an ML-based desktop malware detection system
and an ML-based Android malware detection system are
very similar, and the pitfalls we describe in this section are
applicable to both domains. Thus, we do not address specific
malware analysis issues, such as desktop malware obfuscation
or Android repackaging, and the various pre-processing and
feature extraction issues. In this work, we will mainly conduct
experiments with Android application samples.

A. Pitfalls of Traditional Approach

The first pitfall is that MLMD technique is not suitable
to be used as a standalone malware detection system that
directly exposes detection results to end users. The majority
of such systems were built as a two-class classifier, which
can only predict the target sample as malicious or benign. In
practice, only providing the maliciousness outputs to end users
makes it hard to act upon receiving the “malicious” alerts.
For example, we frequently see the following generic labels
reported by various AV products: malicious (high confidence),

UnclassifiedMalware, Suspicious GEN, malicious confidence
90%, Artemis!XXX, PUA (Potentially Unwanted Application),
suspected of Trojan, and Trojan.AndroidOS.Generic. Partic-
ularly, it is very ambiguous for end users to interpret such
labels, e.g., a “confidence 60%” label and a “confidence 90%”
label does not make much difference, since both of them are
not affirmative and it will be challenging for end users to
decide whether to trust such detection or not. Additionally,
such generic malicious labels shift the burden of malware
verification to end users and dramatically reduce the usability
of malware detection systems, especially in an enterprise
environment. This does not mean MLMD systems are useless
in practice, but that we shouldn’t use and evaluate them in
the same way as the classical (e.g., signature-based) malware
detection systems.

Another pitfall derives from the way how MLMD systems
were evaluated. In particular, previous ML-based malware
detection systems were mainly evaluated by testing against
known malware samples that were confirmed by existing AV
vendors at a specific time. However, we observe that evaluating
with known malware creates a dilemma for demonstrating
the practical utility of the MLMD systems. On one hand,
the correctness of the malware detection results needs to be
verified by checking against the ground truth references. On
the other hand, if the testing apps are known malware (i.e.,
already detectable by existing AV products), such evaluation
only shows that the proposed malware detection system can
reproduce the same detection knowledge of existing AV prod-
ucts, instead of demonstrating detection knowledge superior
to them.

In addition, the evaluation results of an MLMD system
are often compared against individual existing AV vendors.
Such comparison results are very deceptive, since the training
dataset was created by using existing AV vendors’ detection
capabilities. For example, researchers often use the majority
voting information provided by existing AV vendors to prepare
a large set of ground truth training data. Training with such
dataset means the proposed ML system already utilizes the
intrinsic malware detection knowledge derived from existing
AV products, thus it will be no surprise to see that the trained
ML model (with combined malware knowledge) has better
detection results than any individual product. Such evaluation
also gives a false indication that the MLMD system was
designed to compete and replace existing ones, which is not
the case in reality (e.g., more and more malware detection
systems are added to VirusTotal) and does not demonstrate
the strength of ML-based malware detection system.

The last pitfall is that the ground truth datasets used for
training and testing usually are usually the easy to distinguish
cases and will never be representative towards the real-world
situation. The benign and malicious labels for the training
dataset are created using existing AV scanning results, which
may be highly unreliable [9], [10], and heavily depend on AV
products’ detection capabilities at a specific time. In practice,
it is difficult to completely eliminate label noises from a
training dataset, especially for the benign labels in the training



dataset if zero-day malware exists. Such “mislabels” in the
data represent the imperfect knowledge security community
has at the training time, and it will impact the quality of the
classifier created from it. The target samples in real-world will
definitely be more challenging to analyze than those included
in the well-labeled testing dataset, e.g., more borderline cases.
Therefore, evaluation with well-labeled testing datasets (as in
traditional approach) produces misleading results.

B. Real Values of MLMD System

As discussed in the previous section, there are various
pitfalls for following the traditional approach to create MLMD
systems. Fundamentally, there is a mismatch between how the
ML system has been evaluated in the traditional approach,
and the true purpose of using ML system in practice. The
goal of applying ML is not to reproduce or verify the same
potentially imperfect malware knowledge, but rather to pro-
duce something that is better — closer to the ultimate ground
truth about the apps’ maliciousness.

If malware is already flagged by AV products, there is not
much use for an ML classifier to tell us the same thing. Thus,
the ideal and meaningful application of an ML-based malware
classifier in practice is to triage apps that are yet to be flagged
by any existing AV products. For example, a security company
may receive a large number of suspicious apps on a daily
basis, which are not known by any of the AV products to be
malicious. An ML-based approach should be used to predict
the likelihood the apps may be new malware (excluding those
that are also detected by existing AV vendors), so precious
human analyst time can be prioritized to the more likely novel
malware samples.

In this application setting, the value of an ML-based clas-
sifier lies in whether it can generate new malware knowledge,
e.g., malware that has yet to be flagged by any AV products.
That is, to evaluate the effectiveness of an ML approach for
malware triaging, we shall test the classifier on samples that
are not yet known to be malware at the time the classifier
is trained. Specifically, for the problem of Android malware
detection, if a classifier is trained based on some existing
knowledge, its utility can only be demonstrated by how well
it can predict that an app, not yet known by the existing
knowledge to be malware, is actually malware.

III. ALTERNATIVE EVALUATION APPROACHES

Observing the mismatch between how ML systems have
been evaluated in previous malware detection research and
the true purpose of malware detection in practice, we argue
that the usefulness of a real-world machine learning system is
not in verifying or reproducing what has already been known
(e.g., confirmed malware). Rather, it is most helpful if it can be
used to produce verifiable results that are previously unknown
(e.g., zero-day malware), which arguably is the very goal of
using machine learning techniques in this problem domain.

Therefore, we proposed to evaluate machine learning out-
puts by checking zero-day malware detection with a collec-
tion of old Android samples. Real-world malware detection is

very time-sensitive and heavily relies on existing knowledge
about the malware family. A malware app is a zero-day mal-
ware if no AV products can detect it at a specific time t. Once
the malware has been studied, it becomes known to the public
as malicious and the malware shouldn’t be considered as zero-
day anymore. Note that the zero-day malware described in this
paper is not exactly the same as the zero-day concept well-
known in the security community, which often refers to those
samples that no AV products can detect at the current time.

We prepared two sets of ground truth knowledge labels
to confirm the correctness of real zero-days. For example,
given a large number of Android apps, we scan them against
VirusTotal at time t1 to get the first set of ground truth labels,
and scan them at time t1 + δ to get the second set of ground
truth labels for the same dataset. The intuition is that if we wait
a period of time and rescan the samples again, we may find that
some apps’ scanning results changed from benign to malicious
due to AV vendors’ updated malware detection capabilities,
indicating that the app was a zero-day malware earlier but
later detected as malicious by the AV vendors. Therefore, the
second set of labels have higher quality and would be closer
to the ultimate ground truth about apps’ maliciousness.

For the set of malicious samples that were detected by
MLMD system, we compare them against the first set of
ground truth labels to identify the list of potential
zero-days; then compare the potential zero-days against
the second set of ground truth labels to obtain the list of
confirmed zero-days. By examining old Android sam-
ples and their corresponding evolving AV scanning labels, we
can retrospectively inspect whether an ML-based system can
identify zero-day malware at an earlier time, i.e., if we conduct
the in-depth analysis with the potential zero-days at time t1,
we could have identified those real zero-days by then.

A. Malware Prediction

Existing ML-based malware detection systems [2], [3], [4],
[5], [6], [7] are commonly referred to as malware classifica-
tion or malware prediction. During the malware prediction
process, an ML model is built upon the provided ground truth
training dataset, and the ML model is then used to analyze
the target samples and generate a prediction for each sample
indicating its maliciousness.

In addition to the well-known ML algorithms, we de-
scribe a special algorithm called Label Regularized
Logistic Regression (LR-LR) which can be used for
malware prediction scenario. The LR-LR approach is a semi-
supervised variant of Logistic Regression, training over only
positive and unlabeled data. It was recently applied to Android
malware detection as a means for potentially detecting inaccu-
racies in existing VirusTotal-labeled ground truth [11]. Instead
of using the benign class as negative examples and attempting
to learn the difference between positive and negative classes,
LR-LR trains upon the positive data, and then regularizes the
class distribution in the unlabeled data towards an expected
distribution. Specifically, an expert-provided p̃ constant is
used, which represents the expected proportion of positives



in the unlabeled dataset. The optimization function then reg-
ularizes the current expectation of positives in the unlabeled
class into what it should be, as defined by p̃. Eventually, a
classifier that can predict positives and negatives is trained
only upon positive data, unlabeled data, and an expectation
of how many positives exist in the unlabeled set. The novelty
of the approach is that it allows utilization of benign data as
unlabeled data, thus avoiding relying upon benign labels which
are inevitably noisy.
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Fig. 2: Malware Prediction Experiment Overview

We show the experiment overview of using malware pre-
diction techniques for zero-day malware detection in Figure 2.
The major characteristic for the malware prediction approach
is that the ML model is trained and applied on disjoint datasets.
In order to show verifiable zero-day detection results, we use
the first set of ground truth labels to get the potential zero-day
detection results and use the second set of ground truth labels
to verify the zero-day detection results.

B. Noise Identification

In practice, we can create a cleaner malicious training
dataset by tuning the maliciousness decision threshold. For
example, only consider the samples as malicious if they are
detected by at least n different AV products, and exclude the
rest cases. But for the benign dataset, there is only one way
to prepare the training dataset: considering all the samples
that are not detected as malicious by any AV products to
be benign. This may result in poor performing ML models
if the benign training dataset contains noise (e.g., the zero-
day samples). Therefore, we also consider another category of
machine learning techniques called mislabel identification,
which can be used to identify and remove mislabels in the
training dataset.

We describe a special mislabel identification approach
named Active Label Noise Removal (ALNR) which
has been proposed recently in the machine learning com-
munity. ALNR is a two-stage process to identify the label
noise from the training dataset. This approach is built on top
of the SVM [12] algorithm and designed [13] based on the
observation that the maximum margin principle used in SVM
has the characteristic of capturing the mislabeled samples as
support vectors; thus the label noise examples contained in
the training dataset will likely be selected as support vectors
for the trained SVM classifier. In Stage-1, ALNR uses all

the provided malware and benign samples to build a standard
SVM classifier A and finds the support vectors for the provided
dataset. In Stage-2, it removes the support vectors (SVs)
and uses all the remaining non-SV samples to build a new
classifier B. Then, it uses classifier B to classify the benign
SVs identified from Stage-1. If B’s predicted labels are not
the same as the original provided benign labels, the algorithm
reports the sample as a mislabel in the benign dataset.

IV. EXPERIMENT PREPARATION

We collected Android apps from various sources, such as
PlayDrone [14], AndroZoo [15], VirusShare [16], internet
service providers, and security companies. The apps were
separated into the following three major categories: scanned
malicious samples, scanned benign samples, and unknown
samples.

A. Malware Samples

We used AV scanning results to prepare the malware dataset.
To obtain AV scanning results, we query the MD5 of the
samples against VirusTotal, which is an online service that
integrates more than 50 different AV scanners. Particularly,
we consider a sample detected by at least n different AV
products as confirmed malicious, a sample detected by less
than n number of AV products as unconfirmed.

In this work, we decided to use the AV detection threshold
of 10 to prepare the malicious training dataset, since the
scanning results for such malware samples are typically very
stable. We used the AV scanning reports obtained in April
2016 to prepare the malware dataset, and randomly selected
15000 malicious samples (i.e., referred to as M-2016) from
all available malicious samples. We didn’t use all available
malicious samples because: (1) it will take a significantly
longer time to conduct the experiment using all the samples.
(2) previous research [17] showed that the malware to benign
class ratio of the training dataset could impact the performance
of the trained classifier. (3) we decided to configure all of our
experiments with a tractable class ratio (malware vs benign)
around 1:10, to consider the unbalanced ratio of malware and
benign apps in reality and avoid the potential bias towards an
overwhelming number of benign samples.

We only use the confirmed malware samples for ML training
purpose, since the main focus of the experiment is zero-
day malware detection and the malicious training dataset is
prepared with high-quality (i.e., high AV detection threshold).

B. Benign Samples

A scanned benign sample means that the MD5 of the app
was queried against VirusTotal, and no malicious flags were
contained in its scanning report at the querying time. However,
since scanning data for a particular app may be outdated, the
existing scanning results may not represent the AV products’
latest malware detection capabilities. Therefore, we conducted
multiple rounds of scanning within the last four years to obtain
the upgraded ground truth labels for the same dataset.



We used the scanning reports obtained before April 2016
as the resources for preparing our benign sample dataset
and removed those samples that hadn’t been analyzed by
VirusTotal by April 2016. That is, all of the scan dates
contained in those reports are earlier than April 2016, and
none of the AV products had detected them as malicious as of
April 2016. Finally, 811649 Android samples (i.e., referred to
as B-2016) were labeled as benign since no malicious label
was returned for those samples. Note that we will use the
malicious and benign samples labeled by April 2016 scanning
results for training purpose.

For the same dataset, we again collected their scanning
reports around December 2017. We observed that the majority
of the scan dates for those samples were updated in 2017,
which means they were rescanned in 2017. According to
the newly obtained scanning reports, we observed 751804
of them were still detected as benign samples. Even though
a substantial number of samples were changed from benign
to malicious, we noticed that about 69% of them are only
detected by one AV vendor, which means the newly assigned
malicious labels may contain significant false positives.

C. Unknown Samples

We also selected unknown Android samples which were not
scanned and queried against VirusTotal before MLMD training
time (i.e., April 2016). Particularly, we checked the timestamp
of the main Dex file contained in each unscanned Android
app, and only selected those whose timestamps were later than
June 30, 2016. Thus, all of the unknown samples were newer
Android apps compared with the labeled malware samples and
benign samples. In the end, we obtained 413353 unknown
Android samples (i.e., referred to as Unknown U).

TABLE I: Summary of the Prepared Datasets

Dataset Size Label V1 Label V2
Malware M-2016 15000 Apr 2016 -
Benign B-2016 811649 Apr 2016 Dec 2017
Unknown U 413353 May 2017 Mar 2019

To sum up, we present the overall dataset in Table I. For
the rest of the paper, we refer to the 15000 malware samples
obtained using April 2016 AV scanning results as malware
dataset M-2016, the 811649 benign samples obtained using
April 2016 AV scanning results as benign dataset B-2016,
and the unknown samples (as of June 30, 2016) as unknown
dataset U. Note that the word “unknown” is a relative concept
comparing with training datasets. To conduct the zero-day
detection experiment with dataset U, we eventually scanned
a subset of those that were detected as malicious by MLMD
systems in May 2017 and March 2019.

D. Feature Construction

Since the focus of this work is not about feature con-
struction, we decided to use previously known successful
Android malware features. Particularly, we used the same
set of Android app features as defined in [17], because the
overall feature set described by them is relatively small, e.g.,

compared with Drebin [7] which may end up with millions of
unique features. Further, it contains the majority of Android
app features that have been shown to work well in previous
Android malware research [18], [19], [20].

To obtain the features, we conducted the lightweight static
analysis for the Android apps, and extracted 471 different
features which can be separated into the following categories:
critical API usage, permission requests, intent action, obfusca-
tion characteristics, native code signatures, etc. Note that the
values for all of the features are limited to 1 and 0, which is
used to indicate whether the app contains a particular feature
or not. Since the features are already condensed, we do not
further apply any feature selection process, i.e., all subsequent
experiments are conducted with the same set of feature vectors.

V. MALWARE PREDICTION (MP) EXPERIMENT

We design an experiment to check whether we can achieve
verifiable zero-day malware detection using MP techniques.
Verifiable means the samples were initially identified as be-
nign and later confirmed as malicious, thus showing that the
samples were real zero-day malware at the time when they
were detected by the ML models.

In this experiment, we used one popular classical machine
learning algorithm—Random Forests (RF)—as the first rep-
resentative MP algorithm, since it is efficient and can usually
generate good results without much tuning effort. We used the
Label Regularized Logistic Regression (LR-LR) as the second
MP algorithm since its ML model does not rely on a benign
training dataset. Because mislabel identification techniques can
be used to remove mislabels, we also used the Active Label
Noise Removal (ALNR) algorithm to firstly remove the poten-
tial mislabels from the benign training dataset, then conducted
the MP experiment with the RF approach. For simplicity, we
call the RF based malware prediction approach as RF MP, call
the LR-LR based malware prediction approach as LR-LR MP,
and call the (benign) mislabels-removed malware prediction
with RF approach as ALNR+RF MP.

A. Testing with Benign B-2016 Dataset

In this section, we show the MP experiment using the
benign B-2016 dataset as the testing dataset. Since the MP
approach needs to train and test on the disjoint datasets, we
used M-2016 and part of B-2016 for training and used the
rest of B-2016 for testing. In order to reduce the training
size and create a training dataset with an approximate malware
to benign class ratio of 1:10, we divided the benign dataset
B-2016 into 5 folds, then trained a classifier using malware
dataset M-2016 and each fold of B-2016 and tested the
classifier with the remaining folds of B-2016, hence each
sample in B-2016 was predicted 4 times. Eventually, we en-
sembled all of the predictions using a threshold of 2. Figure 3
shows the overall training and testing data composition of this
experiment. For each MP approach, there will be 5 different
ML models built to get the all-fold predictions.

We conducted parameter selection for each MP approach
using another set of training data with a similar number of



TABLE II: Confirmed zero-day malware detection results for B-2016 dataset using malware prediction techniques

Approach Predicted Potential Detection threshold n=10 Detection threshold n=5 Detection threshold n=2
Malware Zero-days Confirmed Unconfirmed Confirmed Unconfirmed Confirmed Unconfirmed

RF MP 1561 1561 457 1104 627 934 791 770
LR-LR MP 12093 12093 490 11603 815 11278 1715 10378

ALNR+RF MP 2174 2174 512 1662 753 1421 1073 1101
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Fig. 3: Setup for one round of MP experiment with B-2016

samples as the formal experiment. For example, we randomly
sampled 1/5 of the data from B-2016 as benign training data
and used this sampled benign data and all malware M-2016
data for parameter selection. We used the grid search approach
with 5-fold cross-validation to conduct parameter selection for
all ML approaches. The number of trees for RF was 200
with sqrt number of features; the p̃ (expected proportion of
positives in the unlabeled dataset) and λU (label regularization
parameter) parameters for LR-LR were 0.1 and 3, respectively;
the C parameter for standard SVM with linear kernel 1 was
0.5, which was used by the two classifiers in ALNR algorithm.

Since all samples in B-2016 were benign according to the
April 2016 VirusTotal scanning results, all of the predicted
malicious samples on B-2016 can be viewed as potential
zero-days (as of April 2016). We considered the December
2017 VirusTotal scanning reports for the B-2016 dataset as
the upgraded ground truth labels and used the new ground
truth labels to evaluate the zero-day detection results. The
overall zero-day malware detection results for different mal-
ware prediction approaches are shown in Table II, where each
entry represents the ensemble (e.g., all-fold) results for the
corresponding approach. From the table, we can see that all
MP approaches detected a substantial amount of potential and
confirmed zero-day malware samples. And cleaning the train-
ing dataset by removing the potential mislabels (e.g., using
ALNR) can help detect more confirmed zero-day malware.

Comparing with previously reported Android malware de-
tection results with regard to the detection of confirmed mal-
ware, the accuracy for zero-day malware detection is relatively
low. However, one must consider that we are training with
malware knowledge only obtainable from April 2016, when
none of the AV products was able to detect any of the later
confirmed zero-day malware at that time. We thus view it as
a positive result, since it not only shows an ML-based system
can achieve verifiable zero-day malware detection, but also
reveals the challenging reality for the problem, e.g., an analyst

1Other kernels were not used since they were not as efficient as linear
kernel and their performance improvements were very small

may need to conduct in-depth analysis for a substantial number
of candidates to identify the real zero-days.

In summary, this experiment shows that the MP-based
detection approaches indeed detected a substantial number
of zero-day samples which were confirmed by other AV
products about one and a half years later. For example, if
considering the samples that were detected by at least 2
AV products as “confirmed” malware, then about 50% of
the potential zero-days were indeed malicious for RF MP
approach and ALNR+RF MP approach. The LR-LR approach
generated a higher number of confirmed zero-day samples, but
also produced a dramatically larger number of unconfirmed
detections, which results in lower detection accuracy.

B. Testing with Unknown U Dataset

We perform the MP based zero-day detection experiment
with the unknown U dataset in this section. The high-quality
malware dataset M-2016 and benign dataset B-2016 were
used for training, and the samples in unknown dataset U were
used for testing. Figure 4 illustrates the training and testing
setup for this experiment. We used the same data split for
training datasets and the same set of optimal parameters as
obtained in Section V-A. We first trained a classifier using
the malware dataset M-2016 and each fold of B-2016, then
tested the classifier with all the samples in U. In summary,
each sample in the unknown dataset U was predicted 5 times
since there were 5 different ML models for each MP approach.
Finally, we ensembled the predictions using a threshold of 2
to get the aggregated detection results.
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B-2016 
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B-2016 
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Fig. 4: Setup for one round of MP experiment with U

For the predicted malicious samples in Dataset U, we first
checked their May 2017 AV scanning results to get the poten-
tial zero-days, then examined their March 2019 AV scanning
results to obtain the confirmed zero-day malicious samples.
The overall zero-day detection results for unknown dataset U
using MP approaches are shown in Table III. Even though
all MP approaches detected significant number of malware
in U, a large number of the predicted malware were already
confirmed as malicious by existing AV products by May 2017.



TABLE III: Confirmed zero-day malware detection results for U dataset using malware prediction techniques

Approach Predicted Potential Detection threshold n=10 Detection threshold n=5 Detection threshold n=2
Malware Zero-days Confirmed Unconfirmed Confirmed Unconfirmed Confirmed Unconfirmed

RF MP 16179 2221 30 2191 69 2152 200 2021
LR-LR MP 31366 23482 47 23435 157 23325 463 23019

ALNR+RF MP 20963 3206 39 3167 92 3114 286 2920

If we remove those malware that were already detectable
by May 2017, all MP approaches still have about 10% of
the potential zero-days got confirmed in March 2019. This
experiment shows MP approaches can generate new malware
knowledge (e.g., zero-days as of May 2017) even if trained
with old (April 2016) labeled samples. Apparently, prioritizing
the in-depth analysis within the potential zero-days will be
more rewarding than analyzing all samples in U.

VI. DISCUSSION

A. The Ideal MLMD Usage Scenario

To confirm zero-day detection during the experiments, we
obtained two sets of ground truth labels for the same dataset.
In reality, there is no value to scan the dataset with AV
products, wait for a certain period of time then scan it again to
obtain the set of confirmed “zero-day” malware. The second
stage analysis is to demonstrate that we can employ in-
depth analysis on a small set of samples that are detected
by MLMD system to identify verifiable zero-days (i.e., new
malware knowledge). In practice, such in-depth analysis could
be manual analysis or dynamic analysis techniques that can
extract more detailed behaviors or activities but are often more
time-consuming to conduct and maybe impossible to apply for
large scale dataset.

Therefore, we want to emphasize that this work is not to
design an MLMD system for zero-day detection. Rather, we
want to explore the real values of MLMD systems such that
the newly designed system can be meaningfully evaluated
and effectively applied in practice. As illustrated by the
experiments with the unknown testing dataset, we can filter
out significant number of malicious samples that are already
detectable by existing AV vendors, and only conduct the in-
depth analysis within the remaining potential zero-days. In
this way, we utilize the strengths of both the existing AV
vendors and the newly designed MLMD system. We believe
this indicates a more ideal utilization of the MLMD systems
in practice.

This usage demonstrates an effective malware triaging
process. It is particularly helpful for handling large scale
potentially malicious samples within security companies, AV
vendors, or application stores. On one hand, this process is
perfectly aligned with practical malware triaging scenario,
avoids the major pitfalls discussed in Section II-A; On the
other hand, it allows us to convert the tacit malware knowledge
(e.g., various feature combinations) captured by ML models
to more concrete malware knowledge (e.g., specific malware
signatures) in traditional AV vendors, which in turn leads to
more accurate ground truth dataset, helps to improve the ML
models.

B. False Positives and False Negatives

As shown in Section V-B, even if we use the latest AV
scanning results to evaluate the MLMD system outputs, there
are still lots of unconfirmed zero-days, those samples can be
viewed as false positives of the zero-days. And depending on
ML algorithm and parameter configuration, a large portion of
MLMD outputs may be false positives, from which we won’t
be able to derive new malware knowledge. Thus, we will need
to analyze a large number of potential zero-days to confirm
the new malware knowledge. Due to the lack of specificity
for ML models, false positives are part of the expected and
inevitable outputs for all ML-based detection systems. And it
would be better if we can handle them from the vendor side
before directly exposing such results to end users.

At the same time, different MLMD systems generated dif-
ferent sets of confirmed zero-days. Admittedly, each individual
ML-based malware detection system has a certain number of
false negatives of the real zero-days. Since the malware knowl-
edge is consistently evolving for all AV vendors, we may never
obtain the ultimate ground truth for the evaluated datasets, e.g.,
it’s possible that some real zero-days still contained in dataset
U that none of the existing AV vendors can detect due to
their highly obfuscated code or low-profile malicious activities.
Therefore, it is almost impossible to precisely quantify the
zero-day detection accuracy and the real ratio of false positives
and false negatives. Because of this, the various standard
measurements (e.g., FPR, TPR, precision, recall, etc.) adopted
by traditional approaches are less meaningful in the context of
zero-day detection. Thus, we can only obtain MLMD systems’
relative performances by checking the number and ratio of
confirmed zero-day detection for the same dataset.

Nevertheless, by confirming that MLMD systems can help
to identify new malware samples that were not detected by
any of the existing AV vendors at the training time, we
showed the real value of MLMD systems. In addition, we
can employ various strategies to reduce false positives and
false negatives. Firstly, we can create new MLMD systems by
choosing the combination of different features, ML algorithms,
and malware prediction or mislabel identification approaches.
In such manner, a new MLMD system may help to identify the
real zero-days that are missed by other systems. Secondly, we
can apply ensemble techniques to combine multiple MLMD
systems together and prioritize the potential zero-days that are
detected by more than one MLMD system or have higher
prediction confidences.

VII. RELATED WORK

Various machine learning based systems [7], [21], [19], [20]
have been proposed for Android malware detection. Drebin [7]



gathered a massive set (more than 500K) of features which
contain different types of manifest features (e.g., permissions)
and “code” features (e.g., URLs, APIs). It uses an SVM to train
a detection model which later can be uploaded to a device
to do on-device malware detection. Drebin’s performance
results are impressive. MUDFLOW [21] discovered that the
sensitive information flow pattern is different between benign
and malware apps which can be utilized to do malware
detection. The data flow information is then used as features in
a standard SVM to train classifiers. MAST [19] helps resource
intensive operations (e.g., manual analysis) to triage their
priority, thereby reducing the average computation overhead.
This system utilizes a statistical method called Multiple Corre-
spondence Analysis (MCA), and uses permissions, intents and
the presence of native code to determine the probabilities of
being malicious. DroidSIFT [20] builds the API dependency
graphs for each app and uses the graph as the feature vector.
Then the feature vectors are used to train a classifier to do
anomaly or signature detection.

Unlike these prior works which train and test their ap-
proaches both on a “known” ground truth dataset, we start with
the different goal of finding the “unknown” knowledge (i.e.,
zero-day malware), and systematically show that the various
machine learning approaches can achieve real-world zero-day
malware detection.

VIII. CONCLUSIONS

In this paper, we conducted an observational study using
a collection of old Android samples and several sets of
evolving maliciousness labels obtained during the past several
years. To demonstrate the real value of new MLMD systems,
we proposed a new strategy to evaluate ML system outputs
by checking the detection of previously unknown malware
samples. Through comprehensive evaluation, we confirmed
that MLMD systems can consistently generate new malware
knowledge, even if trained with imperfect ground truth labels.
The evaluation illustrates an ideal MLMD usage scenario
for malware triaging in practice. It also demonstrates that
MLMD systems can be complementary to existing malware
detection solutions. For instance, we could reliably uncover
new malware variants or families if we conduct in-depth
analysis within those samples that are detected by MLMD
systems but reported as benign by existing AV vendors.
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