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Quantifying security risk is an important and yet difficult task in enterprise network security manage-
ment. While metrics exist for individual software vulnerabilities, there is currently no standard way of
aggregating such metrics. We present a model that can be used to aggregate vulnerability metrics in an
enterprise network, producing quantitative metrics that measure the likelihood breaches can occur within
a given network configuration. A clear semantic model for this aggregation is an important first step to-
ward a comprehensive network security metric model. We utilize existing work in attack graphs and apply
probabilistic reasoning to produce an aggregation that has clear semantics and sound computation. We en-
sure that shared dependencies between attack paths have a proportional effect on the final calculation. We
correctly reason over cycles, ensuring that privileges are evaluated without any self-referencing effect.
We introduce additional modeling artifacts in our probabilistic graphical model to capture and account
for hidden correlations among exploit steps. The paper shows that a clear semantic model for aggregation
is critical in interpreting the results, calibrating the metric model, and explaining insights gained from
empirical evaluation. Our approach has been rigorously evaluated using a number of network models, as
well as data from production systems.
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1. Introduction

Currently, the evaluation and mitigation of security risks in an enterprise network
appears to be more an art than a science. System administrators operate by instinct
and experience, often without any verifiable way to gauge the full ramifications of
any changes in the network. Without an objective measurement of risk, there is no
straightforward and reliable method to answer fundamental questions, such as: “How
likely is it that an attacker could gain privilege X?”, “Where is our network most vul-
nerable?” and “If we change A, will our network be more or less secure as a result?”
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These questions must be asked when judging how scarce resources can best be uti-
lized to improve the security of an enterprise network. Oftentimes, improvement of
security also comes with cost to functionality or ease of use; thus, it is important
to understand how much reduction in overall security risk a proposed change can
achieve. Answering these questions requires a quantitative model of security with
clear measurements of risk and easy comparison of different network states.

Much work has already been done in analyzing network configuration data and
identifying network vulnerabilities to construct attack graphs [2,6–8,15–17,19–21,
29–32,35,37,40–42,44]. Attack graphs illustrate the cumulative effect of attack steps,
showing how series of individual steps can potentially enable an attacker to gain
privileges deep into the network. One limitation of attack graphs, however, is the
assumption that any existing vulnerability can be exploited. In reality, there is a wide
range of probabilities that different vulnerabilities could be profitably exploited by
an attacker, depending on the skill of the attacker and the difficulty of the exploit.
Attack graphs show what is possible without any indication of what is likely.

Recently, there has been significant progress in standardizing and developing met-
rics for individual vulnerabilities, such as the Common Vulnerability Scoring System
(CVSS) [27]. These risk measurements consider both specific qualities of vulnera-
bilities, such as the skill necessary to exploit the weakness, and known information
about the availability of an exploit. The key limitation of such individual vulnerabil-
ity metrics is that it is not possible to capture the security interactions the vulnerabil-
ities have within the context of the enterprise network. For example, a vulnerability
may have a high CVSS score (indicating it represents high risk to a system when the
vulnerability is exposed to an attacker). But the vulnerability may reside at a location
that is highly difficult for an attacker to access. Likewise, a vulnerability may have
a lower CVSS score but reside at a location that is relatively easy for an attacker to
approach. To accurately reflect the security risks that vulnerabilities introduce to an
enterprise network, both measurement of individual vulnerabilities’ properties and
the context within which they appear must be taken into account.

Since attack graphs represent the logical inter-relationship among possible attack
steps, it is natural to combine attack graphs and individual vulnerability metrics to
calculate security risk metrics for an enterprise network. The ground-breaking work
by Dacier et al. [6] and Ortalo et al. [29] applies a Markov-chain model on an at-
tack graph (called “privilege graph” in their work) to calculate metrics such as mean
time to security failure (MTTF) and mean effort to security failure (METF). This ap-
proach needs to first transform the attack graph to an “attack state graph” suitable for
the Markovian model. Depending on the assumptions made about attacker behavior,
the attack state graph could quickly become too large to be built [20,29]. More recent
works adopt probabilistic reasoning on dependency attack graphs [3,9,45,47] which
can be generated more efficiently. Frigault and Wang adopt Bayesian networks as
the underlying model for calculating attack success likelihood on such graphs [9,10].
However, directed cycles that are commonplace in attack graphs [31,45] cannot be
handled through a black-box application of Bayesian reasoning. Wang et al. made a
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number of crucial observations about cyclic attack graphs and proposed a customized
probabilistic reasoning method that can handle cycles in the calculation [45]. How-
ever, when combining probabilities from multiple attack paths, the method uses a
formula that assumes the multiple probabilities are independent. Our observations of
attack graphs produced from production systems indicate that multiple attack paths
are rarely independent and often share some common exploits. Such dependency
needs to be accounted for to prevent distortion of results.

1.1. Contributions

Our contribution is a security metric model that can be used for aggregating vul-
nerability metrics such as CVSS. This model has clearly defined semantics and a
sound computation algorithm with respect to the semantics. The soundness ensures
that the output of the metric model has a clear meaning with respect to the input. The
input to the metric model, component metrics, represent conditional probabilities of
success for exploiting an individual vulnerability. The output of the metric model, cu-
mulative metrics, indicate the absolute probability that a specific network privilege
could be obtained by an attacker, taking into consideration all possible multi-step
attacks that can lead to that privilege.

The aggregation of individual vulnerabilities’ metrics provides a measurement of
the “exposure” of the system to attacks from a probability perspective (and can be
viewed as a measurement of attack surface as defined in the literature [22,23]). It
does not account for other important risk factors such as asset value and threat model.
Even if a system has a large attack surface, the risk is not necessarily high; this
also depends on the value of the asset in the network and the likelihood that an
adversary will seek after it. However, we believe our metric model is an important
first step towards a comprehensive security metric model for enterprise networks.
The above mentioned additional risk factors can be plugged in as extensions to the
basic model, and provide metrics useful for decision making. For example, the asset
value can be multiplied with the probability that the asset may be compromised by
the attacker, providing an expected loss in monetary term. The threat model can be
modeled as an adjuster on certain prior probabilities in the metric model. A clear
metric semantics of our aggregation method provides a solid foundation for such
extensions and comprehensive security risk metrics for enterprise networks.

1.1.1. Why a clear metric semantics is important
One challenge for security metrics is that many times the input parameters to the

metric model are inevitably imprecise. For example, knowing the likelihood that a
vulnerability can be successfully exploited is important when deciding upon miti-
gation priorities. This likelihood can be characterized as the probability of success
assuming certain attacker skills and resources. However, such probabilities are vir-
tually impossible to obtain and so we must rely upon imprecise estimates. A clear
semantic model for metric calculation makes it possible to interpret the result even
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Fig. 1. Sample attack graph showing the importance of accounting for shared dependency.

with the influence of imprecise input. Without clear semantics, one would not be able
to tell whether a seemingly unintuitive metric result is due to the fact that the input
is imprecise or that the assumptions made in the metric model are not realistic. Work
continues to progress in refining metrics for better capturing the properties of net-
work vulnerabilities. A clear metric semantic model for combining these component
metrics can actually help make them more useful and more precise: a cumulative
assessment that is thought to be faulty can be traced back to either the imprecision
in the input component metrics, or incorrect assumptions made in the aggregation
model. This provides an important feedback loop for refinement and calibration.

Once a semantic model is chosen, it is important that the metric computation algo-
rithm adhere to the semantics. One may think that a slightly “unsound” calculation
may not affect the result greatly and so question the importance of ensuring that the
model’s calculation is accurate, especially when the input is imprecise. In Fig. 1, we
present an attack graph segment with a situation commonly found in attack graphs
generated from production systems we studied. The attacker’s initial privilege is p0.
He can launch exploit e1 to achieve privilege p1. Given p1, he can launch one of the
exploits e2, . . . , e6 to gain privilege p2. In this example, we assume that each exploit
has a success likelihood of 0.5 – the conditional probability for him to succeed in that
attack step given that the pre-condition privilege has been achieved. The probability
that the attacker is able to achieve p2 can be calculated as:

Pr[p2] = Pr[p2|p1] · Pr[p1] =
(
1 − 0.55) · 0.5 = 0.48.

The probability for achieving p2 is the product of the probability of achieving
p1 and the conditional probability that the attacker can achieve p2 given that p1 is
achieved. However, if we assume all the attack paths from p0 to p2 are independent
and combine the probabilities from each path (0.25) in a simplistic way, we would
get the following result:

(
1 − 0.755) = 0.76.
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Obviously this would create a deviation significant enough to lead to different
decisions.

1.2. Challenges in metric calculation under probabilistic semantics

Enterprise networks typically enable a great deal of interconnectedness between
network hosts. Multiple attack paths leading to a given network privilege are rarely
independent but more likely share some dependencies, as in Fig. 1. This intercon-
nectedness often leads to the appearance of cycles in an attack graph. An accurate
assessment of the probability that some privilege could be gained by an attacker
should handle shared dependencies and cycles based on realistic assumptions to pre-
vent skewing the final result. Doing so while controlling the computation complexity
has been a major challenge in this work.

2. Related work

The issue of security metrics has long attracted much attention [11,24,25], and
recent years have seen significant effort on the development of quantitative security
metrics [1,4,33]. There is also skepticism on the feasibility of security metrics given
the current software and system architectures [5]. While we may still be far from
achieving objective quantitative metrics for a system’s overall security, a practical
method for aggregating vulnerability metrics in an enterprise network is highly valu-
able in practice. Although forming only one aspect of a system’s overall security
risk, such cumulative metrics can provide much needed automated guidance on how
to allocate limited IT management resources and how to balance security and usabil-
ity in a meaningful manner. Our work provides an important first step in automated
decision making through sound models and algorithms for aggregating vulnerability
metrics using attack graphs.

Attack graphs have emerged as a mainstream technique for enterprise network
vulnerability analysis [2,14,15,17,20,21,31,35,41]. Recent years have also seen ef-
fort toward computing various metrics from attack graphs [10,28,39,45,47,48]. Our
work builds upon results from some of these previous works but is unique in that it
provides a model with clearly defined probability semantics and a sound algorithm
for calculating the semantics, which we believe is critical in refining and calibrating
the metric models.

Idika and Bhargava [13] make a number of crucial observations on the limitations
of existing attack graph-based security metrics. The authors propose combining the
existing metrics when comparing two enterprise networks, and use additional metrics
(called “assistive metrics”) when the main metrics (called “decision metrics”) cannot
correctly differentiate the security levels of two systems. We believe the limitations
observed by the authors are due to the lack of clear and meaningful semantics in the
existing security metric models. We believe our approach addresses these issues and
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we demonstrate the effectiveness of our metric model by applying it on production
systems.

The Common Vulnerability Scoring System (CVSS) [27] provides an open frame-
work for communicating the characteristics and impacts of IT vulnerabilities. CVSS
consists of three metric groups: Base, Temporal and Environmental. Each of these
groups produces a vector of compressed textual representation that reflects various
properties of the vulnerability (metric vector). A formula takes the vector and pro-
duces a numeric score in the range of 0 to 10 indicating the severity of the vulner-
ability. The metric vector is a very important contribution of CVSS; it provides a
wide range of vulnerability properties that are the basis for deriving the numerical
scores. The main limitation of CVSS is that it provides scoring of individual vulner-
abilities but does not provide a methodology for aggregating the metrics for a set of
vulnerabilities in a network to provide an overall network security score. The overall
security of a network configuration running multiple services cannot be determined
by simply counting the number of vulnerabilities or summing the CVSS scores. Our
work provides a clearly defined mathematical model based on attack graphs that can
be used to aggregate CVSS metrics to reflect the cumulative effect of vulnerabilities
in an enterprise environment.

Frigault et al. [9,10] utilize the combination of attack graphs and Bayesian Net-
works (BN) in measuring network security. The major limitation of using BN is
that it does not allow directed cycles, which are common in attack graphs. Our ap-
proach does not use BN reasoning as a black box. Instead, we utilize the key concept
of d-separation in BN inference and design customized algorithms for probabilistic
reasoning on attack graphs. Our approach not only handles cycles within the context
of risk assessment but also takes into consideration special properties of our metric’s
semantics (e.g., that no real-time evidence needs to be considered, the monotonicity
property, and so on) which can eliminate some unnecessary overhead and complexity
in a general BN inference engine.

Wang et al. [45] recognize the presence of cycles in an attack graph and present
useful ideas about propagating probability over cycles. However, their probability
calculation seems to assume that probabilities along multiple paths leading to a node
are independent, which is not generally true for attack graphs. Our approach correctly
handles both cycles and shared dependencies in attack graphs.

Anwar et al. [3] introduce an approach to quantitatively assessing security risks
for critical infrastructures. The approach captures both static and dynamic proper-
ties in the network, contained in network and workflow models. However, the work
did not provide a semantic model to explain what the calculated metrics mean. Our
risk metric has a clear semantics quantifying the likelihood an attacker can succeed
in achieving a privilege or carrying out an attack. Our metric algorithm provides a
sound linkage between the input component metrics and the output cumulative met-
rics based on this semantics.

Sawilla and Ou design an extended Google PageRank algorithm and apply it to
attack graphs to rank graph nodes by usefulness to an attacker for achieving his
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perceived goals [39]. Numeric values computed from this algorithm only indicate
relative ranks and cannot be used to indicate absolute security risks. Mehta et al.
also apply Google PageRank on a different type of attack graph [26]. While this
metric could be used in calculating absolute risk based on probability semantics,
the exponential nature [31] of the underlying attack-graph model makes it difficult
to use in practice. Our work provides a more practical method for aggregating the
absolute security exposure from vulnerabilities in an enterprise network, based on a
more efficient attack-graph model.

Wang et al. [46] introduce an approach that assumes cost metrics are present
for all nodes in an attack graph and use this information to identify a minimum-
cost network hardening solution. Dewri et al. [8] formulate security hardening as
a multi-objective optimization problem, using a genetic algorithm to search for an
optimal solution based on costs of security hardening and potential damage. Homer
and Ou [12] demonstrate the effectiveness of using MinCostSAT as a basis for au-
tomated network reconfiguration, with numeric cost values being assigned to each
configuration setting and reachable privilege in the attack graph. Noel et al. [28] pro-
pose using attack graphs to calculate security risk metrics and using the metrics to
do cost-benefit analysis to support decision making. Our metric model and calcula-
tion algorithm can benefit such effort to apply security metrics in practical network
security management. Accurate probability relationship between input and output of
the metric model can improve the reliability and trustworthiness of the cost-benefit
analysis and the suggested hardening options.

3. Problem overview

We utilize the MulVAL attack graph [31] as a structural basis for aggregating
vulnerability metrics, although our approach should be easily transferable to other
tools that produce attack graphs with similar semantics [15,17,37].

3.1. An example scenario

Figure 2 shows an example enterprise network, which we will use to introduce a
number of terminologies used in our security metrics algorithm.

Host and network reachability: There are three subnets mediated by an external
and an internal firewall. The web server is in the DMZ subnet and is directly acces-
sible from the Internet through the external firewall. The database server is located
in the Internal subnet and holds sensitive data. It is only accessible from the web
server and the User subnet. The User subnet contains the user workstations used by
the company’s employees. The external firewall allows all outbound traffic from the
User subnet.
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Fig. 2. Example scenario and a simplified attack graph. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/JCS-130475.)

Vulnerabilities: The web server contains the vulnerability CVE-2006-37471 in the
Apache HTTP service, by which a remote attacker could gain privileges to execute
arbitrary code on the machine. The database server contains the vulnerability CVE-
2009-2446 in the MySQL database service, which could allow an attacker to gain ad-
ministrative access. The user workstations contain the vulnerability CVE-2009-1918
in Internet Explorer. If a user accesses malicious online content using the vulnerable
IE browser, the user workstation can be compromised. When a system admin is faced
with these vulnerabilities, the first questions he will ask is: are any of these critical
problems, and which one shall I deal with first? Without a quantitative model that
captures the vulnerabilities’ cumulative effects on the network, it is hard to answer
such questions in an objective way.

Attack graph semantics: An attack graph G consists of a set of nodes GN of three
types: (1) attack-step nodes (collectively, set GC ), represented within the graph as
circular-shaped AND-nodes. Each node in this set represents a single attack step
which can be carried out when all the predecessors (preconditions to the attack which
are either configuration settings or network privileges) are satisfied; (2) privilege
nodes (collectively, set GD), represented within the graph as diamond-shaped OR-
nodes. Each node in this set represents a single network privilege. The privilege can

1Common Vulnerabilities and Exposures (CVE) is a dictionary of common names (i.e., CVE Identi-
fiers) for publicly known information security vulnerabilities (http://cve.mitre.org/).
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be achieved through any one of its predecessors (representing attack steps leading to
the privilege); (3) configuration nodes, which are not shown in this graph. Each node
in this set represents a fact about the current network configuration that contributes
to one or more attack possibilities. For probability reasoning, however, the configu-
ration nodes can be removed since they are known to be true and have no variance
in probability. Excluding the configuration nodes leaves us with an AND/OR graph,
where an AND-node (attack-step) is only preceded by OR-nodes (privilege) and al-
ways has exactly one successor OR-node. An OR-node, however, may have multiple
successor AND-nodes, representing different attack steps requiring this privilege as
a preceding condition.

The bottom of Fig. 2 displays the MulVAL attack graph produced from the model
of this network configuration, with the configuration nodes removed. The attack
graph shows several alternative sequences for attack. For example, an attacker can
first compromise the web server and use it as a stepping stone to attack the database
server, or he can first compromise the workstation and attack the database server
from there. Node labels can be found at the right-hand side of the network dia-
gram. The label for the OR nodes is in the general form of “predicate(parameters)”.
For example, node 1’s label is “execCode(dbServer,root)”, where “execCode” is
the predicate and “dbServer” and “root” are two parameters, meaning “the attacker
can execute arbitrary code with root privilege on host dbServer”. Another exam-
ple: “netAccess(dbServer,tcp,3306)” means “the attacker has network access to host
dbServer” on port 3306 through protocol tcp”. The AND-nodes’ labels are descrip-
tors of the attack, e.g. remote exploit of a vulnerability, or user actions like browsing
a malicious website. These attack-step nodes are also associated with a probability
(following the colon), representing the likelihood of success given all preconditions;
these are explained further in the next subsection.

3.2. Component metrics

The input to the metric model are the component metrics, associated with each
attack-step node, which indicate the severity of a single vulnerability. The metric
represents the conditional probability that a single attack step will succeed when all
the prerequisite conditions are met. For example, the component metric for node 7
represents the probability that the attacker can successfully exploit the vulnerabil-
ity CVE-2006-3747 when he already has obtained the precondition for the exploit
(represented by node 8): network access to the web server which runs the Apache
service. We use the CVSS metrics to derive the component metrics for our metric
model. Specifically, we take the Access Complexity (AC) sub-metric in CVSS and
map it to a conditional probability of exploit success. The AC metric takes values
in {low, medium, high} indicating the complexity of exploiting the vulnerability. In
our experiment, we use the mapping {low → 0.9, medium → 0.6, high → 0.2}.
Intuitively, the more complex it is to exploit a vulnerability, the less likely an at-
tacker will succeed. The AC metrics for the Apache, MySQL and IE vulnerabilities
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in this example are: high, medium and low respectively. There are also a few other
component metrics that do not come from CVSS. For example, node 15 is the attack
step that involves tricking a user on a workstation into accessing malicious content.
The likelihood of succeeding in this is strongly affected by the security awareness of
users and thus is context-specific. To provide these metric values, a risk analysis tool
can conduct an initial survey asking multiple-choice questions like, “How likely is
it that a system user will visit a malicious website?” Based on the answers provided
by the user (system administrator or security analyst), a set of component metrics
representing the above likelihood can be derived and used in subsequent analyses.

This simple component-metric scheme is used for experimentation, when our fo-
cus is on the cumulative metric computation model; further research is needed on
how best to assign the component metrics. For example, time is a critical factor in
component metrics: over a longer time period, it is more likely that a user will at
some point click a malicious link. Other factors include the presumed attacker’s skill
level, resources, and so on.

3.3. Cumulative metrics

In our metric model, the cumulative metrics represent the aggregate effect of all
the vulnerabilities in the network. Specifically, we would like to capture the likeli-
hood a privilege can be obtained by a dedicated attacker, who will try all possible
paths identified by the attack graph to achieve the privilege. The cumulative metric
indicates the probability that he will succeed in achieving the privilege in at least one
of the paths.

Here we give some basic notations used in formulating the calculation of the cu-
mulative metrics. We use GM to denote the set of relevant component metric values;
each attack-step node c ∈ GC will have an assigned metric value denoted as GM [c].
Thus, for some attack-step node e with predecessor set P , the probability of e given
set P is represented by the component metric value: Pr[e|P ] = GM [c]. Addition-
ally, the attack graph will have an assumed prior risk value, GV , representing the
probability that attacks will be attempted against the network. GV is associated with
the root node of the graph, GR (here, node 0). We will assume GV = 1 in the
subsequent discussions.

3.3.1. Handling shared dependency
In an attack graph, it is common to see multiple attack paths leading to a single

network privilege. In the example attack graph of Fig. 2, node 3 has two paths lead-
ing into it, both of which depend upon node 11. Such shared dependency must be
correctly accounted when calculating the joint probability that the attacker succeed
in both paths, to prevent distortion of results (see Fig. 1).

To simplify discussion, we use a hypothetical attack graph shown in Fig. 3, in
which privilege P4 can be obtained by an attacker using either of two attack steps –
A4 or A5. Privilege P4 will be unobtainable if an attacker cannot successfully carry
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Fig. 3. An attack graph without a cycle.

out either A4 or A5. Pr[A4] and Pr[A5] are the probabilities that A4 and A5, respec-
tively, can be successfully carried out. If the paths to A4 and A5 are independent,
we would calculate the probability that an attacker might gain privilege P4 to be:
Pr[P4] = Pr[A4] + Pr[A5] − Pr[A4] · Pr[A5]. However, it is incorrect to assume
that A4 and A5 are independent. Looking at Fig. 3, it is easily seen that attack step
A4 is potentially affected by privilege P1, and attack step A5 fully depends upon it.
Because of this shared dependence on P1, A4 and A5 are not independent and the
above formula would skew the effect that privilege P1 has on the final result. In other
words, assuming that all attack paths in an attack graph are independent will lead
to biased results in aggregating vulnerability metrics.

To correctly account for shared dependencies among attack paths, we will em-
ploy the notion of d-separation within a causal network (such as a Bayesian Net-
work) [18]. The concept of d-separation can be utilized to establish conditional in-
dependence between node sets. The metric aggregation problem on attack graphs
is a different problem than generic Bayesian Network reasoning (see Section 3.3.3);
therefore, the concept of d-separation is customized here for our specific application.

Definition 1. In an attack graph, two distinct node sets S1 and S2 are d-separated by
an intermediate node set V ⊆ GN (distinct from S1 and S2) if along every diverging
path between S1 and S2, there is some v ∈ V such that v is the point of divergence.

A d-separating set for two nodes always exist; naively, the set of graph nodes in
the two nodes’ Markov blankets [34] together d-separate the two nodes. Practicality,
however, requires that a minimal set be found to reduce calculation time. Because of
attack graphs’ semantics, only shared dependencies (points of divergence in shared
paths) need to be considered in the construction of a d-separating set. For example,
in Fig. 3, there is a diverging path A2 ← P1 → A3 between nodes A2 and A3; the
point of divergence, P1, d-separates these two nodes. Even though A2 and A3 are not
independent (they are both influenced by P1), when P1 is fixed they become condi-
tionally independent. The determination of a minimal d-separating set is addressed
in Section 4.1.

Nodes with multiple successor nodes are called “branch nodes”; the set of all
branch nodes is denoted as GB . Since the configuration nodes have been removed
and attack-step nodes have exactly one successor each, the set of branch nodes must
necessarily be a subset of the privilege nodes – GB ⊆ GD. The d-separating set D
for two node sets will then be a subset of GB , so that the elements in D “block” all
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diverging paths between the two node sets. To identify a minimal set of nodes that
d-separates two node sets, we only need to consider branch nodes along the paths
from the root node GR to the nodes. Consider A4 and A5 in Fig. 3 as an example;
here, we only need to consider the branch nodes along the paths to A4 and A5, which
is D = {P0,P1}. We can see from the figure that D d-separates A4 and A5. Once
the nodes in D are fixed, A4 and A5 become conditionally independent, and we can
then calculate the joint distribution.

Theorem 3.1. Let D,N be node sets such that D d-separates any pair of nodes
in N . Then:

Pr[N ] =
∑
D

( ∏
n∈N

Pr[n|D]

)
· Pr[D].

Proof.

Pr[N ] =
∑
D

Pr[N ,D]

=
∑
D

Pr[N |D] · Pr[D]

=
∑
D

( ∏
n∈N

Pr[n|D]

)
· Pr[D].

By Bayes theorem, Pr[N |D] · Pr[D] produces the joint probability Pr[N ,D]. Sum-
ming over all possible values of D will marginalize D from the joint distribution
Pr[N ,D]. Since D d-separates any pair of nodes in N , all nodes n ∈ N are condi-
tionally independent given D: Pr[N |D] =

∏
n∈N Pr[n|D].

Using the above theorem, we have a way to calculate the joint probability
Pr[A4,A5], which is needed to calculate Pr[P4]. We can sum over all possible val-
ues of d-separating set {P0,P1} to solve Pr[A4,A5], and we can decompose a joint
conditional distribution to singleton conditional probabilities:

Pr[P4] = 1 − Pr[A4,A5]

= 1 −
∑
P0,P1

Pr[A4|P0,P1] · Pr[A5|P0,P1] · Pr[P0,P1].

The formation and use of calculations will be discussed in greater detail in later
sections. �
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Fig. 4. An attack graph with a cycle.

3.3.2. Handling cycles
It is also common to find cycles in attack graphs. The example attack graph in

Fig. 2 contains a cycle (6-21-14-12-11-9-8-7-6). To simplify discussion, we use an-
other small hypothetical attack graph shown in Fig. 4, where some graph nodes com-
prise a cycle – {P2,A4,P3,A5}. When evaluating the probability of a node within a
cycle, such as Pr[P2], we must be careful that node P2 does not affect its own prob-
ability of occurrence via cyclic attack paths. According to the graph, it is possible
that an attacker can use attack step A2 to obtain privilege P2, then use attack step
A4 to obtain privilege P3, and then use attack step A5 to obtain privilege P2 again.
Although this path does technically exist within the graph, one must take care so
that the existence of such cycles do not distort the probability calculation result. For
example, even though an attacker could traverse a cycle to return to a prior privilege,
this shall not increase his success likelihood in obtaining the privilege. We must be
able to evaluate nodes within the cycle while eliminating any cyclic influence in the
probability calculation. One straightforward approach is to unfold any cyclic graph
into an equivalent acyclic graph such that each node appears exactly once in any
path, but this procedure typically results in an exponential blowup in the size of the
unfolded graph. Unfolding the graph is actually not necessary if we apply a data
flow analysis to the cyclic nodes so that we can evaluate the same probabilities as
on the unfolded graph, but without actually unfolding it. Through dynamic program-
ming and other optimizations in the data flow analysis process, we can avoid some
increase in the complexity of the calculation.

3.3.3. Relationship to Bayesian networks
Our method conducts Bayesian reasoning on attack graphs for the purpose of cal-

culating the cumulative metrics under the dedicated-attacker semantics. Existence
of directed cycles in attack graphs preclude direct application of Bayesian Network
(BN) reasoning systems, which require the graphical model to be acyclic. Our algo-
rithm does adopt the core concept of Bayesian Network reasoning, d-separation, in
calculating the probability metrics. It handles directed cycles (which cannot be han-
dled by a general BN system) based on the application semantics, and utilizes spe-
cific features of our metric semantics to simplify computation. Thus our algorithm is
neither a specialization nor a generalization of the standard Bayesian Network rea-
soning system. It overlaps with BN in that both utilize the notion of d-separation in
calculating probabilities.
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4. Cumulative metric computation

4.1. Definitions

For describing our approach of computing cumulative vulnerability metrics, it is
convenient to define and employ the following notations.

Function 1. For a node n ∈ GN , φ(n) represents the absolute probability that node
n is true (i.e., the probability that the privilege/attack step represented by node n
can be successfully gained/launched). Similarly, φ(n) represents the probability that
node n is false. φ(n) + φ(n) = 1.

For example, in Fig. 3, φ(P4) is the probability that node P4 is true, while φ(P 4) is
the probability that P4 is false. We extend the notation to represent joint probability
for multiple nodes. For example, φ(A4,A5) is the joint probability that nodes A4 and
A5 are both false.

Function 2. For a node n ∈ GN , ψ(A,n) represents the conditional probability that
node n is true given the condition A. We also extend the notation to a set of nodes
similarly as before.

For example, in Fig. 3, ψ({P0,P1},P2) is the probability that P2 is true given
that P0 and P1 are true. This eliminates any influence that A1 has on node P2.
We use ei to denote the component metric value for each attack-step node Ai, i.e.
∀Ai ∈ GC ,GM [Ai] = ei, so ψ({P0,P1},P2) = e2 + e6 − e2e6. Another example:
ψ({P0,P 1},P2) is the probability that P2 is true given that P0 is true and P1 is false.
ψ({P0,P 1},P2) = e6.

Function 3. For n ∈ GN , χ(n) = {b | b ∈ GB and b appears in at least one attack
path leading to node n}.

χ(n) is the set of all branch nodes that appear in at least one attack path to n and
so affect the probability of n. For example, in Fig. 3, χ(A2) = {P0,P1}. The χ set is
used to identify a minimal d-separating set for a node set. For any two nodes m and
n, the set {χ(m) ∩ χ(n)} includes all branch nodes that lie on paths leading to both
nodes; fixing the values of these nodes will d-separate m and n.

Definition 2. Within the attack graph, for any node n, a logical dominator is any
node d such that n is true only if d is true. This relationship is denoted d ⇐ n.

Function 4. For n ∈ GN , δ(n) = {d | d ∈ GB and d ⇐ n}.
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δ(n) is the set of all branch nodes that logically dominate (appear in all attack
paths to) n, so that ∀d ∈ δ(n), ψ(d,n) = 0. In other words, n is false if any d ∈ δ(n)
is false. In Fig. 3, node P1 ⇐ A5 since A5 is true only when P1 is true: all attack
paths to A5 must first accomplish P1. But P1 does not dominate A4, since there is
a path to A4 through A6 which does not require P1. The δ set is used to optimize
calculations over a d-separating set.

Employing these notations, we will now consider how to calculate the probability
values for every node within an attack graph.

4.2. Specification of the computation

The following propositions set forth recursively-defined equations for the calcu-
lation of the functions defined in the previous section. These propositions provide a
sound basis for the evaluation for any node n, accounting for the effect of all preced-
ing nodes in all possible paths leading to n. The root node of the attack graph, GR,
will be initialized at the beginning of the algorithm and will serve as an anchor for
the φ recursion. When calculating ψ(A,n), the recursion must reach a point where
n ∈ A (so that n must be true), n̄ ∈ A (so that n must be false), or A ∩ χ(n) = ∅
(so that n is independent of A, assuming A contains branch nodes only); these base
cases will serve to halt the recursion.

Proposition 4.1. For any privilege node n ∈ GD with immediate predecessor
set W ,

φ(n) = 1 − φ(W ),

ψ(A,n) = 1 − ψ(A,W ),

χ(n) =
⋃

w∈W
χ(w),

δ(n) =
⋂

w∈W
δ(w).

A privilege node n will be true when at least one of its predecessors is true; con-
versely, it will be false only when all of its predecessors are false. The χ set for n
is the set of branch nodes that affect at least one path to some w ∈ W and so at
least one path to n; the δ set for n is the set of branch nodes that affect all paths to
n (and so logically dominate n). Thus χ can be found by a union over the χ sets for
all predecessors, and δ can be found by intersecting the δ sets for all predecessors.
Since the predecessors of a privilege node are all attack nodes, they cannot be branch
nodes themselves.
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Proposition 4.2. For any attack-step node n ∈ GC with immediate predecessor
set W ,

φ(n) = GM [n] · φ(W ),

ψ(A,n) = GM [n] · ψ(A,W ),

χ(n) =

( ⋃
w∈W

χ(w)

)
∪ (GB ∩W ),

δ(n) =

( ⋃
w∈W

δ(w)

)
∪ (GB ∩W ).

When all predecessors are true, an attack step node n is true with conditional prob-
ability GM [n]. Similarly, given set A, n is true with conditional probability GM [n]
when all predecessors are conditionally true. The χ set for n is the set of branch
nodes that affect at least one of its predecessors together with any of its predecessors
that are branch nodes themselves. Since n requires that all predecessors be true, the
δ set for n is the set of branch nodes that logically dominate any predecessor (and
so logically dominate n) as well as any one of its predecessors that are branch nodes
themselves.

Pseudocode specifications of the computation algorithms are provided below;
sample computations, presented in the Appendix, demonstrate the application of this
algorithm over both acyclic and cyclic graphs.

4.3. Algorithm for cumulative metric computation

Algorithm 1 presents the core algorithm for vulnerability metric aggregation over
an attack graph. This algorithm consists primarily of a controlling loop that will
iteratively consider each individual non-cyclic node or set of cyclic nodes in the
graph. This loop will terminate only when a risk assessment evaluation has been
performed for every node.

The algorithm assumes a MulVAL attack graph node set, with configuration nodes
removed and a new privilege node (representing the attacker’s starting point) added
to serve as a root node for the graph. Cycles in the graph are identified using Tarjan’s
algorithm for strongly connected components [43]. We also use dynamic program-
ming to store partial results of the computation to improve efficiency.

Before entering the control loop, the data set is initialized for the graph root node.
The probability that this node is true is exactly the same probability that the network
will be attacked: GV . Because this is the root node, the χ and δ sets are empty; no
other nodes will affect the root node.

Within the loop, we attempt to find an individual, non-cyclic node n that is it-
self unevaluated but for which all predecessors have already been evaluated. Then,
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Algorithm 1. Pseudocode for cumulative metric computation

1: Identify cyclic subsets
2: n ← GR {Begin with graph root node}
3: φ(n) ← GV
4: χ(n) ← ∅
5: δ(n) ← ∅
6: U ← GN − n {Initialize set of unevaluated nodes, excluding root node}
7: while U �= { } do {some nodes remained unevaluated}
8: if ∃n | n ∈ U ,∀p | [p,n] ∈ GE , p /∈ U then {node n is ready to be

evaluated}
9: P ← {p | [p,n] ∈ GE} {Immediate predecessors of n}

10: if n ∈ GD then
11: φ(n) = 1 − evalProb(P ) {Call Algorithm 2}
12: χ(n) = {

⋃
p∈P χ(p)}

13: δ(n) = {
⋂

p∈P δ(p)}
14: if n ∈ GB then
15: ψ(n,n) ← 1
16: end if
17: else {n ∈ GC}
18: φ(n) ← GM [n] · evalProb(P ) {Call Algorithm 2}
19: χ(n) = (GB ∩ P ) ∪

⋃
p∈P χ(p)

20: δ(n) = (GB ∩ P ) ∪
⋃

p∈P δ(p)
21: end if
22: U ← U − n {Mark node n as evaluated}
23: else {a cycle is ready for evaluation}
24: C ← cyclic set ready for evaluation (all non-cyclic predecessors eval-

uated)
25: M ← evalCycle(C) {Call Algorithm 4}
26: U ← U \M {Mark node set M as evaluated}
27: end if
28: end while

depending on whether the node is a privilege or attack step node, we calculate the
probability of n and the χ and δ sets based on Proposition 4.1 or Proposition 4.2
respectively. If n is a branch node, we also set up the base case for ψ(n,n).

Definition 3. For some set C ⊂ GN comprising a strongly connected component
(cycle) within the graph, the entry nodes are the set of nodes Q such that Q∩C = {}
and ∀q ∈ Q,∃c ∈ C, (q, c) ∈ GE . That is, the entry nodes are not in the cycle, but
each entry node does have an arc leading into the cycle.
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Algorithm 2. Pseudocode for computing evalProb(N )

Require: Parameter N , such that
N = {n0,n1, . . . ,nj} ⊆ GN , such that ∀ni ∈ N ,φ(n) has already been evalu-
ated

1: {Find d-separating set D for node set N}
2: D ←

⋃
m,n∈N χ(m) ∩ χ(n)

3: if D = ∅ then
4: return

∏
n∈N φ(n)

5: else
6: return

∑
D evalCondProb(D,N ) · evalProb(D)

7: end if

If no individual node n can be found ready for evaluation, it must be the case that
at least one cycle in the graph is ready for evaluation. A cycle C is “ready” for eval-
uation when all entry nodes to the cycle (Definition 3) have been evaluated. In this
case, Algorithm 4 will be called to handle the cyclic node set C; the return value will
be set M ⊂ C, the subset of nodes in set C that have multiple immediate prede-
cessors. Once these are solved, all remaining (single-predecessor) cyclic nodes can
be solved without consideration of the cycle [45]. After a cycle has been evaluated,
it will be abstracted to a single node for representation in the graph. In this way,
successor nodes following the cycle can be treated acyclically.

After each loop iteration, a single node n or a node set M will be removed from the
set of remaining, unevaluated nodes. The loop will re-iterate at this point, continuing
until calculations have been made for all nodes in the graph.

Algorithm 2 calculates φ(N ) – the joint probability of an acyclic node set N ,
when each element of N ’s probability has already been calculated. Dynamic pro-
gramming is used in the implementation; thus if the size of N is 1 the value of φ(N )
is already computed and the cached result will be returned immediately. Otherwise
the algorithm finds a d-separating set D such that all n ∈ N are conditionally in-
dependent given D. Based on Definition 1, it suffices to construct D by finding all
branching nodes that may affect two or more elements in N . If D is an empty set,
then all n ∈ N are fully independent. In this case, the probability of N is equal to
the product of the probabilities of all n ∈ N . Otherwise, the probability is calculated
according to Theorem 3.1.

Algorithm 3 – evalCondProb(D,N ) – calculates the conditional probability of
node set N given d-separating set D. If the node set N contains multiple nodes, then
the conditional probability of N given D is equal to the product of the conditional
probability of n given D, over all n ∈ N . This is due to the nature of d-separating
set D, so that all n ∈ N are conditionally independent given D. When N contains
exactly one element, the algorithm first checks whether a base case has been reached
(line 8, 12, 16). If none of the base cases is reached, the algorithm recursively calls
itself on the predecessors of n (line 21 and 23).
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Algorithm 3. Pseudocode for computing evalCondProb(D,N )

Require: Parameters D,N , such that
N ⊆ GN , |N | � 1, such that ∀ni ∈ N ,φ(n) has been evaluated
D ⊆ GN , such that D d-separates all n ∈ N

1: if |N | > 1 then
2: return

∏
n∈N evalCondProb(D, {n})

3: else if N = {n} then {N contains exactly one negative element}
4: return 1 − evalCondProb(D, {n})
5: else {N = {n}, so that N contains exactly one positive element}
6: J ← {j | j ∈ D} {All positive elements in D}
7: K ← {k | k ∈ D} {All negative elements in D}
8: if n ∈ J then
9: return 1

10: end if
11: {If n or a dominator of n is negated in D}
12: if n ∈ K or K ∩ δ(n) �= ∅ then
13: return 0
14: end if
15: {If set D does not affect the value of n}
16: if D ∩ χ(n) = ∅ then
17: return φ(n)
18: end if
19: P ← {p | [p,n] ∈ GE} {Immediate predecessors of n}
20: if n ∈ GD then
21: return 1 − evalCondProb(D,P )
22: else {n ∈ GC}
23: return GM [n] · evalCondProb(D,P )
24: end if
25: end if

4.3.1. Handling cycles
Figure 4 contains an attack graph that we will now use as an aid to explain and

demonstrate cumulative metric computation over an attack graph containing cycles.
This attack graph contains one cycle, node set {P2,P3,A4,A5}. Figure 5 shows an
equivalent representation of the same attack graph. This unfolded attack graph is
acyclic, containing all the unique, acyclic paths that traverse the cycle. Node P2, for
example, can be reached as P2A or P2B ; the dotted-line arcs indicate that reaching
either of these instances means that P2 has been reached. In other words, P2A and
P2B can be viewed as “partial values” for P2 and P2 is true when either of them is
true. Intuitively, we will identify all acyclic paths traversing the cycle and use this
knowledge to logically identify unique possible instances of cyclic nodes. We can
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Fig. 5. Cyclic attack graph (left, from Fig. 4) shown with cycle unfolded (right).

then d-separate over the set of reaching paths to calculate the probability that the
cyclic node will be reached.

We can simplify the handling of cycles by calculating values only for cyclic nodes
with multiple immediate predecessors [45]. For a node N with only one immediate
predecessor P , P necessarily dominates N and thus N cannot have any influence on
P ’s probability. The probability of N is then completely dependent on the probability
of P according to Propositions 4.1 and 4.2, without double-counting any node’s
influence. For this reason, once we have computed the probabilities for the nodes
with multiple predecessors, the rest of the nodes can be handled in the same manner
as in the acyclic case.

Algorithm 4 controls probability calculation for certain nodes within a cyclic node
set C. This algorithm is called from the main algorithm (Algorithm 1) to consider
cyclic components within the attack graph. Given a cyclic node set C, this algorithm
first identifies all acyclic reaching paths that lead from outside of the cycle to a node
within the cycle (Algorithm 5). It then calculates a risk assessment value for each
m ∈ C such that m has multiple predecessors (multiple arcs leading to m).

For each multi-predecessor node m ∈ C, there is a set V of “partial values”,
or different instantiations of m reached by different paths. The node m will be true
except when all of these “partial values” are unreachable. To find a d-separating set D
within the cycle for all v ∈ V , the algorithm identifies all attack-step nodes appearing
on multiple paths in P , excluding the entry nodes Q (which are not in the cycle).
Recall that the d-separating set for any node is earlier stated to be a subset of GB
(Section 3.3.1). However, each node B ∈ GB ⊂ GD along a specified partial path
will have probability equal to its preceding attack-step node (Proposition 4.1); the
attack-step nodes appearing on multiple paths will precede any branching nodes and
thus, for purposes of calculation, represent a sufficient set to determine a d-separating
set D. Because all possible acyclic paths are considered, the set of attack-step nodes
lying along each path is unique to that path. We will not use the full probability
of these nodes, but only the individual component metrics associated with them,
calculating the likelihood of success for each path within the cycle. Together with a
set of cycle entry nodes Q, we can now solve for the probability of node m.

If m is a privilege node, then m is true except when all v ∈ V are false. To find
this value, we must marginalize over sets Q and D, eliminating their conditional
influence on m. If m is an attack-step node, it is similarly computed, considering
also the individual component metric value GM [m]. Because we are using only
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Algorithm 4. Pseudocode for evalCycle(C) – assessment over nodes in cycle

Require: Parameters C, such that
C = {c0, c1, . . . , ck} ⊂ GN comprises a strongly connected component in G

1: {Trace all acyclic reaching paths}
2: AllPaths ← ∅
3: for all {(p, a) | p /∈ C, a ∈ C, [p, a] ∈ GE} do
4: AllPaths ← AllPaths ∪ tracePaths(a, {p},C) {Algorithm 5}
5: end for
6:

7: {Solve all nodes in cycle with multiple predecessors}
8: Q ← set of entry nodes (non-cyclic nodes, leading into cycle)
9: M ← {m | m ∈ C, ∃p, q.(p �= q, [p,m] ∈ GE , [q,m] ∈ GE)}

10: for all m ∈ M do
11: P ← {p | p ∈ AllPaths and p ends with m}
12: V ← set of possible instances of m (such that each v ∈ V is attainable by

exactly one path p ∈ P )
13: {Find set of nodes appearing in multiple acyclic paths in set P}
14: T ←

⋃
p,q∈P (p ∩ q)

15: {Identify d-separating set within cycle for all paths to m}
16: D ← (GC ∩ T ) \Q
17: {Find the probability of m, transitively d-separating by Q and D}
18: if m ∈ GD then { m is an OR-node }
19: φ(m) ← 1 −

∑
Q(evalProb(Q) ·

∑
D[(

∏
d∈D(GM [d])) ·

evalCycleNode(Q ∪D,V )])
20: else {m is an AND-node}
21: φ(m) ← GM [m] · [1 −

∑
Q(evalProb(Q) ·

∑
D[(

∏
d∈D(GM [d])) ·

evalCycleNode(Q ∪D,V )])]
22: end if
23: end for
24: return M

the component metric values for D, the order and derivation of each attack path is
unimportant; only the product of the individual probabilities is needed.

Once probabilities have been calculated for all multi-predecessor nodes M ⊂ C,
the set M will be returned to the main algorithm to be marked as evaluated. Again,
all single-predecessor cycle nodes will be treated as acyclic, to reduce overall run-
time of the algorithm. In this way, the cycle is properly evaluated, so that no node
influences its own probability.

Algorithm 5 – tracePaths(n,P ,C) – performs a logical “unfolding” of the strongly
connected graph component C, comparable to the graphical unfolding discussed in
Section 3.3.2 in that all acyclic reaching paths are identified for each node c ∈ C.
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Algorithm 5. Pseudocode for tracePaths(n,P ,C) – tracing acyclic paths through cycle

Require: Parameters n,P ,C, such that
n ∈ C, a strongly connected component
P = {p0, p1, . . . , pm} ⊂ Q∪C is a sequence of nodes comprising a simple path
to node n

1: P ← P :: n {Append n to P}
2: Paths ← {P}
3: {Get set of successors to n not appearing in path set P}
4: S ← {s | s ∈ C, s /∈ P , [n, s] ∈ GE}
5: for all s ∈ S do
6: Paths ← Paths ∪ tracePaths(s,P ∪ n,C)
7: end for
8: return Paths

The paths are primed by cycle entry nodes. As a node is visited, a unique, non-
cyclic path set (sufficient for obtaining one instance of that node) will be saved for
future reference, representing one non-cyclic path to that node. This algorithm will
never produce duplicate paths to any one node. Whenever the algorithm discovers a
connecting node that is already in the path set P , this avenue of exploration is ceased,
to prevent cyclic paths from occurring. In this way, all of the exploratory paths will
eventually end, so the algorithm will terminate successfully. These partial paths and
values are stored for use in calculating probability for multi-predecessor cycle nodes
in Algorithm 4.

Algorithm 6 – evalCycleNode(D,N ) – calculates conditional probability for a set
N of node instances given a d-separating set D. D is the union of the set of cy-
cle entry nodes and the attack-step nodes appearing on multiple partial paths within
the cycle. This algorithm is called from evalCycle(N ) (Algorithm 4). It is similar in
many respects to evalCondProb(D,N ) (Algorithm 3), but utilizes the acyclic reach-
ing paths identified within the cycle to perform its probability calculations.

If node set N contains multiple nodes, then the product of the conditional prob-
ability for all n ∈ N is calculated and returned. If node set N contains exactly one
node n, and that node is disabled, then n holds except when n is conditionally true.
This value, the inverse, will be calculated and returned.

If node set N contains exactly one node n, and that node is enabled, we must
calculate a conditional probability for n given D. Set P contains all attack-step nodes
in entry nodes or cycle nodes that lie along the acyclic reaching path to node instance
n. If some node in path P is negated in D, then n cannot be reached by path P and
so has probability zero. Otherwise, we must remove from P all nodes that are forced
true in D, since these can have no effect on the probability of n by path P .

Once all such fixed values have been accounted for, we know that the node is
reachable along path P . Because the attack-step nodes in P are treated indepen-
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Algorithm 6. Pseudocode for evalCycleNode(D,N )

Require: Parameters D,N , such that
D d-separates all n ∈ N , and
N = {n0,n1, . . . ,nj} are partial values for some node n ∈ C

1: if |N | > 1 then
2: return

∏
n∈N evalCycleNode(D, {n})

3: else if N = {n} then
4: return 1 − evalCycleNode(D, {n})
5: else {N = {n}, so that N contains exactly one element, enabled}
6: P ← partial path (set of attack-step nodes) leading to node instance n
7: J ← {j | j ∈ D} {All enabled nodes in D}
8: K ← {k | k ∈ D} {All disabled nodes in D}
9:

10: {If node in path is negated, n cannot be reached by path P}
11: if K ∩ P �= ∅ then
12: return 0
13: end if
14:

15: {Discard any path nodes forced true}
16: P ← P \ J
17:

18: return
∏

p∈P GM [p]
19: end if

dently, knowing the probability that all will jointly succeed gives us the likelihood
that an attacker will succeed along path P . The algorithm therefore calculates the
product of the component metric values for all remaining nodes in path P ; this value
is the probability that n is true by path P , given set D.

5. Evaluation results

We have implemented our cumulative metric algorithm in the Python language. To
evaluate the effectiveness of using the metric model for risk assessment, we carried
out three lines of study:

• Testing how the metrics can help making security hardening decisions.
• Evaluation on a production system to gain empirical experience of the metric

model.
• Testing the scalability of metric computation.
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Table 1

Probabilities of compromise for hosts in Fig. 2 (columns reflect different scenarios)

Host Initial Patch web Patch db Patch Change network

scenario server server workstations access

Web server 0.2 0 0.2 0.2 0.2

Database server 0.47 0.43 0 0.12 0.12

Workstations 0.74 0.72 0.74 0 0.74

5.1. Evaluating the use of metrics to guide hardening decisions

For this evaluation, we used the small example network in Fig. 2. For this con-
figuration, the cumulative metrics result is shown in the “Initial scenario” column of
Table 1. In the table, the numbers indicate the likelihood various machines can be
successfully compromised by an attacker.

Consider again the sample network configuration (and associated attack graph)
shown in Fig. 2. When considering improvements in network security, a network ad-
ministrator is constrained in terms of money and time. For example, some changes,
though preferable, may not be feasible because of the time necessary to make the
change and the system downtime that would occur while the change was made. Con-
sidering the network topology in this example, it is not immediately clear which of
the vulnerabilities should be patched first, assuming that a fix is available for each of
the three, or what other changes could be made to reduce security risk. The columns
in Table 1 show new metric values based on various mitigation options: patching
different vulnerabilities or changing the network access rules so that the user work-
stations cannot access the database server.

Patching the vulnerability on the web server would eliminate the known risk of
compromise for the web server, but have little effect on the other two hosts. The web
server does not contain sensitive information, so protecting this host first may not be
the best choice.

Patching the vulnerability on the database server would eliminate the known risk
of compromise for the database server, but have no effect on the risk in the other two
hosts, since privileges on the database server do not enable new attacks on the other
hosts. This option would secure the sensitive data on the database server, which may
be most desirable, but at the cost of having a period of downtime on the database
server which may affect business revenues.

Patching the vulnerability on the user workstations would eliminate the risk to the
workstations, as well as significantly reduce the risk to the database server, but the
risk to the web server would remain unchanged. This may be a more feasible solution
since downtime on the workstations is less costly than on the server, especially if the
patching can be done outside of normal working hours.

Network configuration changes can also have drastic effects on the security risk.
The final column in the table shows the effect of blocking network access from the
workstations to the database server. This option eliminates an attack path to the
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database server that depends on privileges on the workstations, lowering the risk
of compromise for the database server, but it leaves the web server and workstations
vulnerable. Depending on other resource constraints and asset valuations, this may
also be a viable solution.

There may not be a single “best” option for all organizations. Indeed, different
administrators could easily make different choices, based on the perceived impor-
tance of the hosts and the expected time necessary to enact proposed changes, as
well as human resources available. The quantitative security metrics make clear the
effects emerging from each of these possible changes, thereby providing a network
administrator with objective data beneficial for judging the relative value of each op-
tion. Our cumulative metrics could also be combined with quantitative asset values
and costs of various mitigation options and used as input in an optimization engine
such as proposed by earlier works [12,28,38,46] to automatically compute optimal
hardening options.

5.2. Insights gained from evaluation on a production system

To study how the metric model works on production systems, we have conducted
an OVAL vulnerability scan on all the Windows servers and workstations in the
CIS departmental network of Kansas State University. OVAL2 is part of the SCAP
standard [36] for communicating security information. It is a language for reporting
discovered known vulnerabilities on a host. The OVAL scan is performed periodi-
cally, and the vulnerability assessment reports are automatically sent to a central data
repository, providing continuous fresh data for evaluating our metric model.

The departmental network has a fairly simple network topology. There is no fire-
wall control in the internal network, so all the servers can talk to each other. The
servers are well-managed so that most of the service program vulnerabilities have
been patched. However, there are still a large number of client-side and local vulner-
abilities on each machine. These vulnerabilities pose relatively low perceived risk,
since it is very unlikely that a user will access the server to launch those client pro-
grams, and as long as no user is compromised, the local vulnerabilities cannot pose
any danger to the systems. For this reason, these systems are good candidates for
evaluating the security metric methods – there is a significant amount of residual risk
that needs to be quantified. The calculated security metrics can be used in compari-
son to the system administrator’s rationale for delayed patching of these non-critical
vulnerabilities.

As we ran our metric algorithm on the model, a problem quickly became obvious.
It is best illustrated by the results in Fig. 6, which shows the attack graphs for two
servers.3 Server (a) has many more vulnerabilities than (b), as can be seen immedi-
ately from the density of the attack graphs. The attack graph for (a) is so wide that

2http://oval.mitre.org/.
3The square nodes are configuration nodes which have been omitted in the previous attack-graph ex-

amples.
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Fig. 6. Attack graphs from two production servers.

it is shown almost like a line in the limited space on paper. However, when it comes
to cumulative security metrics results, the two do not show a significant difference:
0.99 vs. 0.89. Indeed, most of the machines we have evaluated had at least a dozen
attack paths, which raises the likelihood of attack success to almost 1. This neces-
sarily prompts the question: is this a realistic measurement of risk? We presented the
result to the system administrator. His opinion was that it depends on the underly-
ing differences in the existing vulnerabilities. A machine with 10 vulnerabilities in
a single application has a lower risk than a machine with 10 vulnerabilities in 10
different applications, because vulnerabilities in the same application may not give
an attacker significant advantage in exploiting them. The exploits for these vulner-
abilities may not be truly independent: if the attacker lacks skill or experience in
exploiting a specific application, the presence of more vulnerabilities in that appli-
cation will not help a lot. On the other hand, if the 10 vulnerabilities are dispersed
across 10 different applications, the chance that the attacker possesses the skill to
exploit at least one of them will be significantly higher. This dependency among
exploits based on the similarity of applications is not captured by the attack-graph
structure. For the attack graph in (a), there are only four vulnerable applications but
67 distinct vulnerabilities, of which 62 are in the same application (Firefox). For (b),
there are four vulnerabilities in two applications. Intuitively, (a) has a much higher
risk than (b), more than the difference between the two calculated metric numbers
indicate.



J. Homer et al. / Aggregating vulnerability metrics in enterprise networks 587

This observation has also led to another manifestation of the hidden-correlation
problem. Suppose the same vulnerability appears on two different hosts and the at-
tacker needs to exploit both of them in a multi-stage attack. If he has succeeded in
exploiting the first one, he will very likely succeed with the second. This dependency
also is not captured by the attack graph, which could lead to a lower evaluation of
risk than really exists. If the chance of success for the attacker to exploit the vulnera-
bility is 0.6, the likelihood for him to succeed in the two-stage attack chain should be
very close to 0.6, since a successful attack in the first step will lead, with a likelihood
of almost 1, to success in the second. Based on the attack-graph model, however, our
metric algorithm will produce a result of 0.36, by multiplying the two probabilities.

5.2.1. Modeling artifacts for capturing hidden correlations
To correctly account for such hidden correlations among attack steps, we intro-

duced additional modeling artifacts in attack graphs so that the hidden correlations
become explicit. Essentially, we grouped vulnerabilities for the same application and
introduced a virtual modeling node to capture the case in which an attacker has suc-
ceeded in exploiting the application. This applies to both vulnerabilities on the same
host (Fig. 7(a)) and on different hosts (Fig. 7(b)). The success likelihood of exploit-
ing this vulnerability is associated with the added virtual exploit node Av , and the
original exploit nodes are associated with a likelihood of 1. This makes the hidden
correlation explicit in the graphical model. In (a), if the attacker fails in exploiting
the vulnerability, he will fail on all four instances A1, . . . ,A4, thus avoiding an in-
correct increase in the success likelihood of P1 to almost 1. In (b), if the attacker
succeeds in exploiting the vulnerability, he will succeed in both attacks A2 and A4,
thus correctly evaluating the success likelihood of the two-step chain.

After this revision of the graphical model, our risk assessment algorithm produces
significant different metrics for the two systems: 0.98 vs. 0.73; the difference be-

Fig. 7. Modeling artifacts for capturing hidden correlations. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/JCS-130475.)
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Fig. 8. Attack graphs with modeling artifacts for capturing hidden correlations.

tween the two values is more consistent with the intuitive assessment provided by
experienced system administrators. Moreover, the number of applications that enable
an attacker to compromise the system also became obvious in the new attack-graph
model. The results of this grouping are shown in Fig. 8.

However, the new metric numbers would still imply that both hosts were at high
risk and the vulnerabilities should be addressed. This was not adopted by the system
administrator, after looking at the applications that had the vulnerabilities – most of
them existed in client applications rarely used on the servers. Thus the likelihood a
user will launch one of those vulnerable programs was very low. In our evaluation
we used a fixed value (0.8) to represent this likelihood, resulting in the high metric
values. This indicates that to obtain more realistic security metrics, we need to as-
sign this input parameter based on the knowledge of whether and how often a client
application is used, which we leave as future work.

We stress that the reason we can refine our metric model and interpret the results
based on such empirical observations is largely due to the fact that the metric calcu-
lation is sound. This ensures that when we get a non-intuitive result, we can easily
trace it back to the root cause, without having to wonder whether it was due to errors
introduced in the calculation.



J. Homer et al. / Aggregating vulnerability metrics in enterprise networks 589

5.3. Testing scalability

In order to test the scalability of our approach, we constructed several testing mod-
els based on networks of varying sizes and complexity, created MulVAL input files
representing each network, and evaluated them with the current implementation of
our algorithm. Figure 9 indicates the general network topology of the hypothetical
network configurations used in our testing. The reachability information between
various groups of machines is given in Table 2 (* is wild card). The vulnerability
information can be found in Table 3. We performed our tests based on abstracted
network models. In an abstracted model, each host represents a group of hosts hav-
ing the same network reachability and similar configuration features (e.g., they may

Fig. 9. General network topology. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/JCS-130475.)

Table 2

Network reachability

Source Destination Protocol Port

Webservers Database servers tcp 3306

Internet Webservers tcp 80

Workstations1 Internet * *

Workstations1 Fileservers nfs

Workstations2 Internet * *

Workstations2 Historians * *

Workstations2 Fileservers nfs

Workstations2 Mailservers tcp 25

Mailservers Internet tcp 25
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Table 3

Host vulnerabilities

Host # of vulnerabilities

Local Remote client Remote server

Webservers 0 1 1

Database servers 0 0 1

Workstations1 0 1 1

Fileservers 1 0 1

Workstations2 0 1 1

Historians 0 0 1

Mailservers 0 0 1

Table 4

Scalability of risk assessment

Num of host groups per subnet Depth of the deepest inter-subnet attack hops

1 2 3

10 2 s 2 s 3 s

100 1 m 38 s 16 m 14 s 46 m 36 s

be under the same software package management server). Therefore, every machine
in Table 2 and Fig. 9 represents a group of hosts. The run-time for metric computa-
tion of this network model was extremely short (less than a second).

To further test the limit of the algorithm’s scalability, we picked 10 and 100 as
the number of host groups in each subnet, where every machine can reach another
subnet. Each time, we ensure that the host group with the deepest attack path (the
one having the largest number of inter-subnet hops from the initial location of the
attacker) is in the set of attack goals. The deepest goal will take the longest running
time on the metric calculation. We also added 10 vulnerabilities per host with all
three types (local, remote client and remote server). The running time of the algo-
rithm for these scenarios is shown in Table 4.

The limiting factors in the current algorithm and implementation are the size of
the d-separating set (the number of nodes which must be marginalized in calculat-
ing conditional probability values) and the number of paths that must be considered
in the calculation of each multi-predecessor node within a cycle. As either of these
increases, the number of recursive calls made by the algorithm increases, and the
evaluation time grows correspondingly. In the worst case, the computational increase
could be exponential. However, as Table 4 shows, for realistic network settings, our
algorithm can finish metric calculation for sufficiently large network configurations.
The biggest case in the configuration consists of 100 host groups per subnet, 3 inter-
subnet attack steps in the longest attack path, and 10 vulnerabilities of all three types
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per host. We believe this is a reasonable estimation on the large cases the tool will
need to handle in reality. It is believed that most enterprise intrusions will take no
more than three inter-subnet steps. After grouping and abstraction, 100 host groups
per subnet and 10 vulnerabilities with all types per host represents a significantly
large scenario for risk assessment analysis. For the worst-case scenario, our imple-
mentation of the algorithm can finish computation in less than an hour.

6. Conclusion

We have presented an approach to aggregating vulnerability metrics in an enter-
prise network through attack graphs. Our approach is sound in that, given component
metrics which characterize the likelihood that individual vulnerabilities can be suc-
cessfully exploited, the model computes a numeric value representing the cumulative
likelihood that an attacker could succeed in gaining a specific privilege or carrying
out an attack in the network. Our method handles both cyclic and shared dependen-
cies in attack graphs correctly, surpassing previous efforts on this problem. Prelimi-
nary testing results show the effectiveness and practicality of the approach and how
it can be used to help system administrators decide between risk mitigation options.
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Appendix. Sample symbolic computations

A.1. Computation for acyclic graph

We will now work through the sample graph shown in Fig. 3, demonstrating our
approach and showing its effectiveness at recognizing and correctly handling shared
dependencies within the graph. This graph is acyclic, so we can recursively calculate
the probability value for each node, utilizing previously calculated individual prob-
ability values and computing joint probabilities only as needed. A table showing all
calculated values will be included at the end of this example.
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We begin with the root node, P0. The probability that node P0 is true is GV which
is assumed to be 1. Thus φ(P0) = 1. As the root node, P0 has no preceding nodes,
so χ(P0) = { } and δ(P0) = { }.

Now that we have calculated φ(P0), we can calculate for either A1 or A6. Let us
next calculate for A6. A6 has exactly one predecessor, P0. So, φ(A6) = GM [A6] ·
φ(P0) = e6 · 1 = e6; furthermore, χ(A6) = δ(A6) = {P0}.

We cannot yet evaluate node P2, because not all of its predecessors have been
evaluated. We will return, then, to evaluate node A1. Similar to the calculation for
A6, φ(A1) = GM [A1] · φ(P0) = e1; χ(A1) = δ(A1) = {P0}.

We can now evaluate node P1. Node P1 also has only one predecessor. Thus,
φ(P1) = 1 − φ(Ā1) = φ(A1) = e1; χ(P1) = δ(P1) = {P0}.

From this point, we could evaluate either A2 or A3. Let us next calculate for A2.
φ(A2) = GM [A2] · φ(P1) = e2 · e1 = e1e2; χ(A2) = δ(A2) = {P0,P1}.

Now both predecessors to P2 have been solved and we can calculate for this node.
Proposition 4.1 specifies the calculation for a privilege node with multiple prede-
cessors. So, φ(P2) = 1 − φ({A2,A6}). In previous cases with single predecessors,
we already knew the probability of the predecessor, but in this case we do not yet
know the joint probability of φ({A2,A6}) and so must solve for it. To calculate
φ({A2,A6}), we must find a d-separating set for these two nodes so that we can uti-
lize Theorem 3.1. One such set can be found by taking the intersection of the χ sets
for these nodes, so that D = χ(A2) ∩ χ(A6) = {P0}. D contains all branch nodes
that diverge to paths leading to A2 and A6, which should be sufficient to d-separate
the nodes (Definition 1). Using the set D, we can now solve for:

φ
(
{A2,A6}

)
=

∑
P0

ψ
(
{P0},A2,A6

)
φ
(
{P0}

)

=
∑
P0

ψ
(
{P0},A2

)
ψ
(
{P0},A6

)
φ
(
{P0}

)

= ψ
(
{P0},A2

)
ψ
(
{P0},A6

)
φ
(
{P0}

)
+ ψ

(
{P 0},A2

)
ψ
(
{P 0},A6

)
φ
(
{P 0}

)
= (1 − e1e2)(1 − e6)(1) + (1)(1)(0)

= 1 − e1e2 − e6 + e1e2e6.

Then, φ(P2) = 1−φ({A2,A6}) = 1−(1−e1e2−e6+e1e2e6) = e1e2+e6−e1e2e6.
Also, χ(P2) = χ(A2) ∪ χ(A6) = {P0,P1}, and δ(P2) = δ(A2) ∩ δ(A6) = {P0}.

Nodes A3,A4,A5,P3 are calculated very similarly to nodes we have already seen
here, so we will skip over the details of these. The resulting values are in Table 5.

Finally, we evaluate for node P4, a privilege node with multiple predecessors, so
again we will apply Proposition 4.1: φ(P4) = 1− φ({A4,A5}). The d-separating set
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Table 5

Risk assessment calculations for Fig. 3

N φ(N ) δ(N ) χ(N )

P0 1 {} {}

P1 e1 {P0} {P0}

P2 (e1e2 + e6 − e1e2e6) {P0} {P0,P1}

P3 e1e3 {P0,P1} {P0,P1}

P4 (e4e6 + e1(e2e4 + e3e5) {P0} {P0,P1}

− e1e2e4e6 − e1e3e4e5(e2 + e6 − e2e6))

A1 e1 {P0} {P0}

A2 e1e2 {P0} {P0,P1}

A3 e1e3 {P0,P1} {P0,P1}

A4 e4(e1e2 + e6 − e1e2e6) {P0} {P0,P1}

A5 e1e3e5 {P0,P1} {P0,P1}

A6 e1 {P0} {P0}

for {A4,A5} is D = χ(A4)∩χ(A5) = {P0,P1}. Using the set D, we can now solve
for:

φ
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ψ
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φ
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(
{P0,P 1},A4
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ψ
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{P0,P 1},A5
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φ
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(
{P 0,P1},A4
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ψ
(
{P 0,P1},A5
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φ
(
{P 0,P1}

)
+ ψ

(
{P 0,P 1},A4

)
ψ
(
{P 0,P 1},A5

)
φ
(
{P 0,P 1}

)
=

(
1 − e4(e2 + e6 − e2e6)

)
(1 − e3e5)(e1)

+ (1 − e4e6)(1)(1 − e1) + (1)(1)(0) + (1)(1)(0)

= 1 − e1e2e4 + e1e2e4e6

− e1e3e5 − e4e6 + e1e3e4e5(e2 + e6 − e2e6).

Then, φ(P4) = 1−φ(A4,A5) = e4e6 +e1(e2e4 +e3e5)−e1e2e4e6 −e1e3e4e5(e2 +
e6−e2e6). Also, χ(P4) = χ(A4)∪χ(A5) = {P0,P1}, and δ(P2) = δ(A2)∩δ(A6) =
{P0}.

We have now solved for the probability of each node in the graph. The computed
φ values for individual nodes are shown in Table 5, together with the χ and δ sets
for each node. In our implementation, joint and conditional probability values are
calculated only as needed, to reduce the amount of computation performed. We also
apply dynamic programming techniques to cache the calculated values.
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A.2. Computation for cyclic graph

In the previous example, we showed that the probabilities for graph nodes depend
on the probabilities of their predecessors, so a recursive approach can be employed
for this calculation. Within a cycle, however, recursing backward through predeces-
sor sets will create an infinite loop. It is clear that a different approach is needed for
cyclic nodes.

We will now work through the sample graph shown in Fig. 4, demonstrating our
approach and showing its effectiveness at recognizing and correctly handling cycles
within the graph. A table showing all calculated values will be included at the end of
this example.

Nodes P0,A1,P1,A2,A3 will be calculated very much as demonstrated in Sec-
tion A.1 and so we will not go through the detailed calculations for those nodes.
Once these have been calculated, however, the remaining graph nodes comprise a
cycle and therefore must be handled differently.

First, we will trace all acyclic paths through the cycle, to determine all valid ways
that these nodes can be reached. This trace essentially performs a logical unfolding
of the graph, marking unique passes through each node. The acyclic paths through
this cycle are:

P2A = {A2}, P3A = {A2,P2A,A4},

P3B = {A3}, P2B = {A3,P3B ,A5}.

There are two unique instances of node P2 in this logical unfolding of the graph,
P2A and P2B . The probability that node P2 is true will equal the probability that at
least one of these instances is true, or φ(P2) = 1 − φ(P 2A,P 2B).

To calculate φ(P 2A,P 2B), we must calculate the joint probability of the set of
entry nodes {A2,A3} and we will also need to identify a d-separating set D within
the cycle, to ensure that the instances of P2 are conditionally independent. A cyclic
d-separating set can be found by intersecting the sets of possible paths leading to the
node instances and identifying common attack-step nodes within the cycle. In this
case, a cyclic d-separating set is not needed for nodes P2A and P2B ; because the
cycle is so small, these partial paths are already conditionally independent, given the
entry points into the cycle. The formula of computation is shown below.
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Table 6

Risk assessment calculations for Fig. 4

N φ(N ) δ(N ) χ(N )

P0 1 {} {}

P1 e1 {} {}

P2 e1e2 + e1e3e4 − e1e2e3e4 − −
P3 e1e3 + e1e2e5 − e1e2e3e5 − −
A1 e1 {} {}

A2 e1e2 {P1} {P1}

A3 e1e3 {P1} {P1}

A4 e4(e1e3 + e1e2e5 − e1e2e3e5) − −
A5 e5(e1e2 + e1e3e4 − e1e2e3e4) − −

= (0) + (0) +
(
e1e3(1 − e2)

)
(1)(1 − e4)

+
(
e1(1 − e2)(1 − e3) + 1 − e1

)
(1)(1)

= 1 − e1e2 − e1e3e4 + e1e2e3e4.

So, φ(P2) = 1− (1−e1e2−e1e3e4+e1e2e3e4) = e1e2+e1e3e4−e1e2e3e4. By a
similar calculation, φ(P3) = e1e3+e1e2e5−e1e2e3e5. Once these have been solved,
it is easy to see that φ(A4) = GM [A4] · φ(P3) = e4(e1e3 + e1e2e5 − e1e2e3e5) and
φ(A5) = GM [A5] · φ(P2) = e5(e1e2 + e1e3e4 − e1e2e3e4).

The full results are shown in Table 6. Nodes P2, P3, A4, A5 do not have χ or δ sets,
because these values are not used for evaluation within a cycle. Once a cyclic node
set is calculated, however, successor nodes can include a virtual node representing
the cycle in their χ and δ sets.
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