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Abstract. This chapter presents the design and initial simulation re-
sults for a prototype moving-target defense (MTD) system, whose goal
is to significantly increase the difficulty of attacks on enterprise net-
works. Most networks are static, which gives attacker’s a great advan-
tage. Services are run on well-known ports at fixed, easily identifiable
IP addresses. The goal of an MTD system is to eliminate the static na-
ture of networks by continuously adapting their configuration over time
in ways that seems random or chaotic to attackers, thus negating their
advantage. The novelty of our approach lies in the use of runtime models
that explicitly capture a network’s operational and security goals, the
functionality required to achieve those goals, and the configuration of
the system. The MTD system reasons over these models to determine
how to make changes to the system that are invisible to users but appear
chaotic to an attacker. Our system uses these runtime models to ana-
lyze both known and unknown vulnerabilities to ensure that adaptations
occur often enough and in the right ways to protect the system against
external attacks.

Keywords: Runtime models, moving target defense, adaptive systems,
network security.

1 Introduction

In cyber space, attackers have time to study our networks to determine potential
vulnerabilities and choose the time of attack to gain the maximum benefit. Ad-
ditionally, once an attacker acquires a privilege, that privilege can be maintained
for a long time without being detected [4]. The static nature of current networks
makes it easy to attack and breach a system and to maintain illegal access priv-
ileges for extended periods of time. To combat this advantage, a promising new
approach to network security has been suggested called the moving target de-
fense (MTD) [20]. While there are many facets of MTD, for computer networks,
one can broadly interpret MTD as the fact that the network constantly changes
its configuration to reduce/shift the attack surface area available for exploita-
tion by attackers. An MTD system will make attacking a system more difficult
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because the attacker will spend more time scanning the network for potential
vulnerabilities and will not be able to maintain illegally acquired privileges for
long. While promising, little research has been done to show that MTDs can
work effectively in realistic networked systems.

Current approaches to network defense rely on reacting to attacker’s efforts
to penetrate the system. Similarly, current adaptive systems react to a variety
of stimuli (e.g., system failure or new tasks) to trigger their adaptations. Thus,
to be effective, MTD research must push beyond the existing state-of-the-art in
both network security and adaptive systems in order to allow the system to adapt
proactively without negatively affecting system functionality. Our vision is that
an MTD system should be able to reason about its current configuration and
make changes that are invisible to a valid user but appear chaotic to an attacker.
In order to reason about its current configuration, runtime models that reflect
the current configuration are needed that capture the modifiable aspects of the
system and their relationship to the overall goals of the system. The modifiable
aspects of the system are parts of the configuration that may be changed such
as IP addresses, ports, firewall settings, host assignments, protocols, routing,
virtual machines used, and software application type, versions, etc.

The research challenges in MTD systems are significant. First, we must find
a way to model both the requirements, design, and current configuration (im-
plementation) of the system in such a way as to allow automated reasoning.
Second, we must provide a mechanism that supports automated reconfiguration
of the system to include reassigning host addresses and returning the services to
known good configurations. Third, we provide a mechanism that allows services
to find the services they depend on in the midst of wide-spread system recon-
figuration. Fourth, we must provide an adaptation mechanism (algorithm) that
can adapt multiple aspects of the network’s configuration in a way the mitigates
the effect of attacks against critical network resources. And finally, we must inte-
grate intrusion detection and risk assessment methodologies so that the system
adaptation can respond to attack and risk indicators in a way that continues
to appear random and chaotic to the attacker. This paper seeks to describe our
initial approach at modeling the network requirements and design and demon-
strate that an MTD based approach has potential for significantly increasing the
difficulty of attacks on enterprise networks.

2 Moving Target Defense System

The high-level architecture of a simple MTD system that adapts randomly is
shown in Figure 1 within the dashed box. Here, an Adaptation Engine orders
(what appears to be) random adaptations to the network configuration at ran-
dom intervals. These adaptations are carried out by a Configuration Manager
that controls the configuration of the Physical Network. The key to these ap-
parently random adaptations is that they are based on a Logical Mission Model,
which is a runtime model that captures the Physical Network’s current configura-
tion as well as the functional requirements of the network. Since purely random
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Fig. 1. Moving Target Defense System

adaptations would quickly yield the system inoperable, the adaptations must
be made with an understanding of the requirements of the system in light of
the current configuration. Specifically, the Logical Mission Model includes two
runtime models: an organization model and a goal model. The organizational
model captures the current configuration including the required functionalities
in the system and the physical hardware capabilities. The goal model captures
the system level requirements and the importance of the various requirements.
We use the Organizational Model for Adaptive Complex Systems (OMACS) de-
veloped previously [10] for the organizational model and a new goal model, the
Value-based Goal Model (VGM) [11], which is designed to capture requirements
of long-lived, service-based systems.

While a simple MTD system holds promise, our ultimate vision for MTD
systems uses apparently random changes in conjunction with intelligent con-
trol, where adaptations can occur randomly or based on risk indicators such as
vulnerability scanning results and alerts from intrusion detection systems. The
intelligent MTD system architecture extends the simple MTD architecture in
Figure 1 by adding an Analysis Engine that takes real-time events from the
Physical Network and the current configuration from the Configuration Man-
ager to determine possible vulnerabilities and on-going attacks. The Adaptation
Engine is extended to look at the network’s current state along with its security
state, as captured in the Logical Security Model. The Logical Security Model also
consists of two runtime models: a goal model and a model of system vulnerabil-
ities. The goal model uses the VGM like the Logical Mission Model; however,
instead of capturing required functionalities, the Logical Security Model’s VGM
is used to capture the security goals of the system. The system vulnerability
model is captured in the form of a novel Conservative Attack Graph (CAG),
which captures both known and unknown system vulnerabilities and how an
attacker might move through the system to gain specific privileges. If there are
security issues that need to be addressed, the Adaption Engine uses these two
models to determine an appropriate set of adaptations and sends them to the
Configuration Manager (along with “random” adaptations) to implement.
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2.1 Nomenclature

The terminology differences between enterprise networks, network security, and
the abstract models we use in our research can be confusing. Therefore, for the
remainder of the paper, we try to consistently use the following terms. We use
the term role to refer to network services (e.g., web server, e-mail server, db
servers) and the term resource to refer to the physical components of the system
(e.g., computer hosts, firewalls, servers). The term resources is also equated to
agents when referring to the OMACS model discussed in Section 4.2.

2.2 Resource Mapping System

One problem with a “moving” system is ensuring that system resources can lo-
cate each other after adaptations occur. Thus, to make these changes invisible
to the system itself, a Resource Mapping System (RMS) is required, which also
serves as a hardened system core that the attacker must penetrate to exploit
the system. Current networks are so complex that even their system adminis-
trators have no clear understanding of the service dependencies [6,3,15]. In such
complex systems, attacks can follow many patterns making their identification
and prevention difficult. This is evidenced by research that shows an exponential
increase in the number of attack paths in even moderate-sized networks [21,17].
The RMS interacts with the Configuration Manager, which pushes the current
configuration to the RMS components. All communication between system roles
must go through the RMS so that communications can be maintained even as
the location of the roles change.

As shown in Figure 2, each role is assigned to a single virtual machine (VM),
which has a dedicated RMS component that handles all communication with
other roles. Each dedicated RMS component only knows the locations of the roles
it needs to communicate with as defined by the role’s communication require-
ments in the Role model (See Section 5). All communications between mission
critical roles are controlled by RMS even as their locations change dynamically.
In some sense the RMS functions like an end-host firewall with highly restric-
tive policies for critical roles; critical roles can be isolated on VMs with only
the minimal ports open. Compared with traditional firewalls, the RMS provides
flexibility for non-critical roles, while increasing protection for critical roles.

In modern virtual environments, isolating individual services on separate VMs
provides the ability to tailor the VM’s operating system to specific services and
thus limit potential vulnerabilities. We believe that tailoring a VM’s security en-
vironment while controlling communications via the RMS will provide a highly
tailored security environment that will make successful attacks more difficult.
However, due to its knowledge of the entire system configuration, the Configu-
ration Manager is the key vulnerability of our design. We currently assume the
Configuration Manager runs on a trusted host and significant resources are used
to ensure its safety.
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2.3 Adaptation Engine

The assignment of roles to resources allows the system to adapt autonomously
while ensuring all mission goals are still supported. In traditional adaptive sys-
tem, the adaptation algorithm would attempt to provide optimal or near optimal
configurations [4]. However, since the goal of MTDs is to produce non-predictable
configurations, we must consider alternative approaches. Instead of seeking op-
timal configurations (in terms of system performance), which tends to produce
the same configuration over and over, we must develop algorithms that find near
optimal configurations that are significantly different in some aspect.

Since the Adaptation Engine is the main decision making apparatus for the
MTD, it must be able to control the various modifiable aspects of the system such
as the assignment of roles to resources, IP addresses and ports, firewall settings,
applications (types, versions, etc.), VM types, and protocols between roles. The
assignment of roles to resources is similar to our existing reassignment algorithms
[10] and is based on ensuring the resources have the appropriate capabilities
to play the role. Since we use unique VMs for each role, we can assign any
available IP address on the network to a new VM. If the role’s communication is
supported by the RMS, the port number can also be randomly selected. Firewall
settings can be updated based on the knowledge of which VMs actually need to
communicate. Specific application types (e.g., Apache, Oracle, Hiawatha, etc.),
versions, or VM types can also be specified by the Adaptation Engine. Finally, we
can consider adapting the protocols for various critical roles that communicate
via the VM. Such protocol changes could be minor while still allowing the RMS
to easily detect compromised VMs or physical resources. A further discussion
of how the models are used in the adaptation process is given in 4.5 after the
models are presented.
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2.4 Analysis Engine

The Analysis Engine is based on Dr. Ou’s existing work on MulVAL [22,21] and
SnIPS [23,28]. The purpose of the Analysis Engine is to infer the most critical
vulnerabilities and most likely attack activities so the Adaptation Engine can
make intelligent adaptation choices. The Analysis Engine outputs a CAG that
is derived from the Role model (see Section 5) dependencies and incorporates
real-time evidence to infer the network’s security state.

Traditional enterprise security risk assessment uses vulnerability scans and
firewall configurations to identify potential attack paths into the system. This
has a number of disadvantages, such as the inability to mitigate risk due to un-
known threats (e.g., zero-day vulnerabilities). Intrusion detection system (IDS)
and Security Information and Event Management System (SIEM) are typically
deployed for the purpose of situational awareness and forensics. The analysis
engine in our envisioned system will take input from these traditional sources
but map them to the unique conservative attack graph (CAG) model due to the
dynamic nature of the adaptation. The unique advantage moving-target brings
to security analysis is that the usable attack surface is greatly reduced due to
shifting, and the false-positive challenge in intrusion detection can be mitigated
by proactively adapting the system even with less than certain attack indicators.

The CAG model is also used in our simulation study of the effectiveness of
the system against both known and unknown attacks. In our model we assume
each host could contain exploitable vulnerabilities and for this reason there is no
distinction between known and unknown vulnerabilities in our simulation. When
a CAG is used in deployed systems, however, such distinctions will matter and
we intend to build models to capture the impact of both known and unknown
vulnerabilities in the moving-target system as part of our future work.

3 Example System

To demonstrate that MTD systems can be effective for network security defense,
we simulated an MTD system using a simple military mission planning system
that allows authorized users to access a mission planner. We provide an overview
of that system here and use it to illustrate our proposed runtime models in Sec-
tion 4. The mission planning system, shown in Figure 3, supports users located
both inside and outside the local network. The system allows users to access
three different databases in order to construct a specific mission. The databases
that the planner accesses are an asset database that includes the types and num-
bers of assets available to carry out planning, a target database that includes the
intelligence on targets of interest, and a geographical database that includes maps
and geographical information about the areas required for planning appropriate
ingress, target attack, and egress routes.

In this system, the likely targets of interest are not the Authorizer or Planner
systems, but the data behind them. Specifically, the TargetDB and AssetDB
have the most potentially important data, thus, they would likely be the targets
of an attack. In our simulation, we assume the TargetDB is the main focus.
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4 Runtime Models

The key to our MTD approach lies in novel runtime models based on human
organizations that explicitly capture a system’s goals, the functionality required
to achieve those goals, and the logical and physical configuration of the system.
These runtime models allow the system to reason about its current state and
make changes that are invisible to the user but appear chaotic and significantly
increase the difficulty for an attacker. Key runtime models include:

– a Value-based Goal model (VGM) that captures the system’s mission and
security requirements

– an OMACS model that captures the physical resources in the system, their
capabilities, the software functions available carry out system goals, and the
current assignment of functions to physical resources

– a Conservative Attack Graph (CAG) that captures both known and unknown
vulnerabilities based on the current system configuration

4.1 Value Based Goal Model (VGM)

It has recently been recognized by the adaptive systems community that the
key to highly efficient and effective adaptive systems is explicitly modeling the
requirements or objectives of the system [5,25], a position we have espoused for
several years [9,10,12]. Specifically, we capture the system objectives as goals,
which allows the system to adapt while still ensuring it can support its overall
goals. As there are trade offs during adaptation, understanding which goals are
the most important is critical to ensuring the system adapts appropriately. Thus
we capture the system’s mission and security goals in a novel Value-based Goal
model (VGM), which allows us to determine the effect of attacks and adaptations
on system functionality and security [18].

Formally, a VGM is a tree whose nodes are value-based goals rooted at goal
g0, as shown in Figure 4 where g0 is the Mission Goal. Typically, g0 represents
the overall operational goal of the network or the overall goal of system security.
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Goals are typically defined as some desired state of the world, and this is true of
value-based goals as well. However, value-based goals are not achievement goals
whose state must be attained by the system, but instead are maintenance goals
whose state must be preserved by the system [8]. Thus instead of achieving goals,
the objective of a value-based system is to maintain the maximal value of a set
of goals expressed in a unique decomposition and value aggregation approach.

The key to determining the overall value of a VGM tree is to know which goals
are currently maintained. Thus, we define a set called the maintained set that
captures the current set of goals maintained by the system. The maintained set
is computed by first determining the leaf goals in the maintained set and then
computing the parent goals that are in the maintained set. The value of a VGM
is based on the current set of goals in the maintained set. Thus, the current value
of the VGM as well as future values of the VGM with different maintained sets
can be computed. The current value of any goal that is not maintained is zero.

The root goal, g0, of a value-based goal model represents the overall value
of the system. Goal g0 is always a value goal, which is decomposed into a set of
sub-goals, each of which are assigned a maximum value. The current value of
the g0 is simply the sum of the values of its children, which can range from 0 to
their maximum values. The root value goal is decomposed into one or more of
the following types of goals: Composition, AND, OR, or Leaf.

If a goal is a Composition goal, all of its sub-goals contribute a percentage to its
value. Thus, each sub-goal of a Composition goal has an associated contribution
value and the contributions of all sub-goals of a Composition goal must equal 1.0.
The current value of a Composition goal is the sum of the sub-goal contributions
that are currently maintained.

An AND goal denotes the case when all sub-goals must be maintained in order
for the parent goal to be maintained and contribute its maximum value. In some
cases, the current values of an AND goal’s sub-goals may be maintained, but not
at the maximum value. Thus, we define the current value of an AND goal to be
the minimum value of all its sub-goals (if one is not maintained its value is 0).
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The maximum values of each sub-goal of an AND goal is the maximum value of
the AND goal since the failure to maintain any one of the sub-goals reduces the
value of the parent to zero.

An OR goal is similar to an AND goal as its value is based on a Boolean
operator, in this case logical OR. Thus, if any sub-goal of an OR goal is main-
tained, then the OR goal itself is maintained. However, unlike the AND goal,
each sub-goal has an individual contribution value associated with it, stated in
terms of a percentage (0 to 100) of the OR goal’s maximum value. The notion
of an OR goal is that there may be multiple ways to maintain a specific goal,
although some may be better than others.

Leaf goals have no sub-goals and contribute to the overall value of the goal tree
based on their parent’s type. Actually, only Leaf goals are actively maintained
by the system. As the system maintains (or fails to maintain) Leaf goals, the
overall value is aggregated based on parent goal types until a final value for the
system is computed. Using the description above, it should be noted that the
value of a system is not simply the value of all its Leaf goals and thus care should
be taken when using the values of Leaf goals independently of their parent goals.
In many cases, the value of a Leaf goal (that are sub-goals of AND/OR goals
directly or indirectly) can only be computed in light of a specific configuration.

In an MTD, a VGM captures the relative importance of the system goals
in case trade-offs must be made. As shown in Figure 4, our example system’s
objectives are decomposed into two main goals: allowing external users access
to the system (Authorizer) and allowing users to plan missions (Plan Mission).
The Plan Mission goal is decomposed into a set of subgoals, where each subgoal
is weighted to express its contribution to its parent goal. Thus, based on the
system’s VGM, if there are not enough resources to achieve all goals, the Plan
Mission goal is more important than the Authorize Access goal and thus the
system should try to support the Plan Mission goal.

4.2 Organization Model for Adaptive Complex Systems (OMACS)

The Organization Model for Adaptive Computational Systems (OMACS) [10]
is a model that defines the knowledge required to allow a team of agents to
reorganize in response to agent failure or changing team goals. While adapt-
ing to failure and changing goals can be a benefit in a network-based system,
our objective in using OMACS as the basis for our MTD system is to use this
knowledge to ensure the adaptations carried out in a defensive effort do not
inhibit the system’s ability to achieve its goals. As shown in Figure 5, the key
entities in OMACS include a set of goals, roles, agents, and capabilities. For our
MTD system, the goals represent the functional requirements of the system, roles
represent services (such as the applications, web servers and database servers),
agents represent physical resources such as computer hosts, and capabilities rep-
resent agent attributes such as memory, bandwidth, and installed software. This
information is used to compute the assignments (configurations) that tell agents
the roles they are assigned to play in order to achieve system goals.
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Organizations are generally formed with some specific objective or goal in
mind. In OMACS, the overall goal of an organization is represented by a set of
goals that the organization is trying to achieve. The relationship between the
various goals is not handled directly by OMACS but is entrusted to the VGM.
More specifically, OMACS goals are the leaf goals in a VGM model. Goals are
achieved by agents playing specific roles within the organization.

Every OMACS organization has a set of agents, which in a computer network
are the physical computer hosts available for use. Agents possess capabilities
that are required to play roles for the network.

In general, OMACS roles denote a set of responsibilities or the expected behav-
iors. In our approach, we use roles to describe services such as the applications,
web servers and database servers required to support (and thus maintain) vari-
ous system goals as shown in Figure 6. Each role has two types of characteristics
that are critical to effective system adaptation: requirements and attributes. The
specific requirements and attributes of each role are used by the Adaptation En-
gine to select the appropriate agent to carry out those roles. Each role has a set
of required capabilities such as processing power, memory amount, bandwidth,
and installed software. In a minor extension to OMACS, MTD roles also con-
tain a set of attributes that give the RMS and the assigned physical resource
(and its VM) precise directions on how to setup and run that role. To support
the assignment process, OMACS defines the achieves function, which takes as
input a goal and a role, and returns a value that reflects how well the given role
achieves the given goal type.

Roles are defined in a Role model as shown in Figure 6. The Role model
not only captures the requirements and attributes of each role, but also defines
the communications that must be allowed between roles, which is critical to the
definition of the CAG and the operation of the RMS system. In our example
system, each mission leaf goal from Figure 4 is supported by a role, namely the
Planner, AssetDB, TargetDB, GeoDB, and Authorizer roles. The relationship
between goals and roles is formally captured in the achieves relation. When the
system is running, these roles are assigned to physical resources such hosts or
VMs while their communications are supported by the RMS.

Before a role is assigned to an agent (i.e., before a service is deployed on a
host), the agent must meet the requirements for that role. Capabilities are essen-
tial in determining the roles that each agent is capable of playing. Capabilities
are used to represent a wide variety of abilities. In a computer network, capa-
bilities are used to model the hardware and software capabilities of a network
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resource such as processing power, memory amount, bandwidth, and installed
software. If an agent has all the required capabilities to play a role, the role
capability function (rcf) is used to compute how well the agent can play that
role, thus allowing designers to indicate the importance of specific capabilities
to each role.

To determine the best overall set of assignments (configurations) for a specific
set of goals, OMACS defines an organization assignment function (oaf). The oaf
determines the effectiveness of a given set of assignments and assigns it a value.
In normal systems, the optimal oaf value is selected when a reorganization (in
our case an adaptation) is required. However, in an MTD system, we must use
non-optimal configurations since our goal is to produce a constantly changing
attack surface. A complete definition of OMACS can be found in [10].

4.3 Physical Resource Model

The capabilities of OMACS agents are taken from the Physical Resource model,
which captures the configuration of available resources (e.g., computers, firewalls,
servers, etc.) that support the operational system. Each resource in the physical
resource model has a particular set of capabilities that can be used to play roles
in the operational system. A role’s physical capability requirements and the
assigned role attributes are compared with resource capabilities to determine
if the role can be assigned to that resource. In addition, role communication
requirements are used to modify firewall (RMS) configuration as needed. With
the advent of virtual machines (VMs), virtual resources can be created when
and where (logically) required. The use of VMs supports the movement of roles
between physical resources. In addition, the use of VMs allows a single role to
be executed on a single VM and thus makes the security configuration of the
VMs simpler and more secure.

As a side benefit, the ability to adapt by changing the mapping of goals to
roles to physical resources also allows the MTD to respond effectively to changes
and failures in the physical configuration of the network. If a role is running
on a resource that fails, the MTD must identify that a goal is no longer being
supported and assign that role to a new resource.
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4.4 Conservative Attack Graphs

An integral effect of MTDs is that an attacker must continually regain the knowl-
edge and privileges obtained through prior attacks. This effect invalidates the
typical monotonicity assumption found in most attack-graph work where an
attacker cannot lose a privilege after gaining it. In an MTD, it becomes impor-
tant to model losing privileges due to constant changes in the system configu-
ration. The frequency and type of adaptations affect how far an attacker can
move forward in a system. Modeling such dynamism requires a state-machine
model, rather than the commonly used dependency attack graph. Previous state-
enumeration attack graphs were not scalable to large attack graphs. However,
we do not need to apply a fine-grained attack-graph models to analyze the ef-
fect of MTDs since MTDs do not attempt to counter known vulnerabilities,
but use dynamism to counter assumed vulnerabilities at every node. Thus, we
use a conservative attack graph (CAG), which assumes the existence of unknown
vulnerabilities without enumerating all possible vulnerabilities. This assumption
actually makes the model smaller and lends itself to stochastic analysis through
a state-machine model.

Figure 7 shows the CAG for our example. The topology of the CAG is partially
derived from the dependencies specified in the Role model. As shown in Figure 6,
the Authorizer role initiates interactions (depicted by the arrows between roles)
with the Planner role, which initiates interactions with the TargetDB, GeoDB,
and AssetDB roles. Because the RMS system limits communication between
system roles, we can assume that the only paths between roles are those allowed
by the RMS. Thus, the only legitimate access paths in the system are (1) from the
Internet to the Authorizer, (2) from the Authorizer to the Planner, and (3) from
the Planner to the three database servers (TargetDB, GeoDB, and AssetDB).
Thus, our CAG captures these logical access paths.

The RMS components on the VMs implement the network communication
policy derived from the Role model to adhere to the logical paths. If an RMS
component is compromised, the attacker would potentially be able to bypass
this control and try to access roles not exposed to the VM. However, in such
situations the compromised RMS would not know the location of those roles and
thus the attacker would have to correctly guess the IP and address (among other
aspects), which is a low-probability event. Thus, if an RMS is compromised, the
only realistic attack path is along the paths of the CAG.

4.5 Model-Driven Adaptation

This section shows how the Adaptation Engine uses the models to make adap-
tations to the system configuration. All adaptations are initiated by a triggering
mechanism. In an MTD system, the trigger could be a timer (for random adap-
tations), a goal modification (addition, deletion, or changing of various goal
values), or a change in the current state of the system (either software/hardware
failure or identification of a potential intrusion). The end goal of an adaptation
is to produce a configuration that ensures that system goals are achieved at the
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highest possible value. Here we assume all goals are achievable by the available
roles and agents; however, if they are not, the least valuable goals can be dropped
until a valid configuration is obtained.

For the initial configuration, a role (a service) is selected that achieves each
goal and is assigned to an agent (a host) that provides the capabilities required
to carry out that role. This configuration is given to the Configuration Manager,
who makes the physical assignments and provides the appropriate knowledge to
the RMS components.

If a failure occurs, goals that are no longer being achieved due to the failure are
reassigned to new role-agent pairs. If a potential intrusion is detected, the goals
and roles of the agents that are involved in the potential intrusion (source or
destination) are reassigned to new role-agent pairs. When goals are added, new
assignments must be made while when goals are deleted, old assignments may
be removed. When a random adaptation is triggered, the Adaptation Engine
selects a specific goal-role-agent assignment in the system to modify along with
a specific modifiable aspect and a new assignment for the goal is generated. In
all cases, the changes determined by the Adaptation Engine are passed on to
the Configuration Manager who makes the appropriate changes in the physical
system.

The key to random adaptation is ensuring that adaptations are as unpre-
dictable as possible within a reasonable cost. Ideally, the probability of adapting
a particular aspect and agent would be represented as a uniform probability dis-
tribution across the entire domain of the configuration space, thus maximizing
the entropy of the system [27]. However, a system with maximum entropy would
likely degrade system performance to the point where the system performance
would be unusable. Therefore, we plan to investigate approaches that allow for
a trade off between system entropy and performance/cost.
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5 Simulation Results

To determine if our approach has merit, we developed three high-level simula-
tions to reflect the MTD approach discussed above. The first simulation, which
we call the RMS-only Simulation, was developed to evaluate the effectiveness
of our MTD approach using an existing network simulator called NeSSi2 [26].
NeSSi2 is an open-source, discrete-event based network security simulator with
extensive support for constructing complex application-level scenarios based on
a simulated TCP/IP protocol stack [26]. In this simulation, we assumed the user
had full knowledge of the logical system configuration and only attacked through
the RMS system. In the second and third simulations (which we term broad at-
tack simulations), while the attacker still has full knowledge of the logical system
configuration, the attacker also attempts attacks between nodes not directly con-
nected via the RMS system. For these broad attack simulations, we developed a
unique event-driven simulator. In the first two simulations, we assumed only a
basic MTD system that adapted randomly at a specified time interval. However,
in the last simulation, we upgraded the MTD to an intelligent MTD system that
could detect when attacks were attempted outside the RMS system.

The overview of the simulated network is shown in Figure 8. The edges in the
graph (with the exception of the Internet to Authorizer edge) show the valid
paths supported by the RMS. We assume the attacker is located at the Internet
node and wishes to attack the TargetDB. In the first simulation, we assume the
attacker can only attack along the valid RMS paths. However, in the second
and third simulations, we assume that attacker attempts to attack through valid
RMS paths as well as directly between hosts (e.g., Authorizer to TargetDB).

To simplify our simulations, we made several assumptions.

1. Adaptations are applied at a specified time interval and are random in nature
(which is extended in the third simulation to include intelligent adaptation).

2. Adaptations are limited to VM refreshing, which also includes changing the
VM’s IP address.
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3. All VMs assigned to play a given role have the same configuration except
for its ID and IP address.

4. Once a node is compromised, the attacker can immediately use the RMS to
attack the next node in the attack path.

5. The attacker knows the basic system architecture as defined by the Logical
Mission Model and thus the attack is restricted to the VMs playing those
five roles.

6. The attacker knows immediately when a resource it has compromised has
been refreshed.

While these assumptions make the simulation easier, they are also tilted to-
ward the attacker since we do not use advanced variability techniques (software
versions, operating systems, etc.), which would make compromises more diffi-
cult, and we assume the attacker knows the system design and can immediately
compromise the RMS.

5.1 RMS-only Attack Simulation

The three main components of the RMS-only testbed include the Defense com-
ponent, the Attack component and the Ground Truth component as shown in
Figure 9. The Defense component contains the Configuration Manager, three
physical resources (hosts) and five active VMs, which can be assigned to play
host to any of the five roles: Authorizer Planner, TargetDB, AssetDB, or GeoDB.
At a preset time interval, Δt, the Configuration Manager selects an adaption by
randomly picking an existing role and refreshing its VM which includes modi-
fying its address. Then, the Configuration Manager notifies the affected hosts
of the changes and updates the Ground Truth component with new current
configuration.

The Attack component simulates the attacker and uses the CAG shown in
Figure 8 to allow it to know exactly where to attack to achieve its goal, the
TargetDB. Since the only available attack path is to penetrate from the Internet
to the Authorizer, from the Authorizer to the Planner, and then from Planner to
the TargetDB. The edge values in the CAG denote the attacker’s probability of
attack success between nodes assuming both nodes remain static. As shown, the
attacker has a 40% chance of compromising the TargetDB if (1) it has already
compromised the Planner and (2) the Configuration Manager does not adapt
either the Planner or the TargetDB during the time step. In a real system, these
probabilities would be based on the current probability of unknown and known
vulnerabilities of the roles and would likely increase over time. The success of
attacks is determined randomly based on the probabilities in the CAG as well
as whether or not the nodes in the attack have been refreshed during the attack.

The Ground Truth component maintains the current CAG. The Ground Truth
component receives adaptation information from Configuration Manager and
updates the CAG as required. It also supplies the current CAG to the Attack
component when requested. The Attack component, Defense component, and
Ground Truth component are implemented as NeSSi2 components along with
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the three host resources: hostA, hostB, and hostC. These six components are
loaded onto the corresponding nodes as shown in Figure 9. The hosts do not
actually perform their assigned role responsibilities, but merely exist to give the
attacker something to attack. The results of our initial experiments are presented
in the next section.

RMS-only Attack Simulation Results. We conducted two different experi-
ments (denoted 1a and 1b) to see how the frequency of system adaptation would
impact attack success. Within each experiment, we included a control scenario
where no adaptation occurred. Attacks were launched from the Internet towards
the TargetDB. Each attack consisted of single step attacks from the Internet
to the Authorizer, the Authorizer to the Planner, and from the Planner to the
TargetDB. Once the TargetDB was compromised, the attack was counted as a
successful. If a single step attack failed, the attacker remained at the current
VM and retried the attack until successful or until the MTD system refreshed
the VM. In each experiment, we performed 1000 single step attacks with a fixed
Δt between each single step attack of 100 time intervals. We ran the 1000 single
step attacks against an MTD system using 5 different time intervals (20, 50,
100, 200 and ∞) between each adaptation. Note that an ∞ adaptation interval
corresponds to a completely static system.

In the experiment 1a, we assumed that in order to stop a single step attack
from succeeding, the MTD must refresh either the node under attack or the
node from which the attack was launched during the attack (100 time intervals).
Therefore, if there was an single step attack occurring from the Planner to the
TargetDB, it could be stopped if either the Planner, or TargetDB roles were
refreshed by the MTD system during the attack. However, the attacker would
remain on the network unless the actual VM it was residing on was refreshed.
Figure 10 shows the ability of the MTD to deter a successful attack from the
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Internet through the Authorizer and the Planner to the TargetDB. When the
configuration is static, the number of successful attacks (of each round of 1000
single step attacks) is 183. Essentially, since no refreshing was going on, this
is maximum number of successful attacks given the probabilities of single step
attack success. Once the MTD system is activated, the number of successful
attacks decrease. With an adaptation interval of 200, the number of successful
attacks is reduced to 123, while an interval of 100 reduces it to 57, and an interval
of 20 eliminates all successful attacks against the TargetDB. Figure 10 clearly
shows that as the adaptation interval is reduced, the effect of the MTD defense
is clearly visible.

In the experiment 1b, we assumed that in order to stop an attack from suc-
ceeding, the MTD could refresh any node on the path to the node being attacked
during the attack (100 time intervals). Thus in this version, if there was an single
step attack occurring from the Planner to the TargetDB, it could be stopped
if either the Authorizer, Planner, or TargetDB roles were refreshed during the
attack. Figure 11 shows the ability of the MTD to deter a completed attack from
the Internet through the Authorizer and the Planner to the TargetDB. When
the configuration is static, the number of completed attacks (out of 1000) is 168,
while an adaptation interval of 200 reduces that number to 107, 100 reduces it
to 41, and an adaptation interval of 20 again eliminates all successful attacks
against the TargetDB. Again, Figure 11 clearly shows that as the adaptation
interval is reduced, the effect of the MTD defense is obvious.

5.2 Broad Attack Simulation System

In the broad attack simulation, the attacker is again attempting to compromise
the TargetDB. Since the attacker knows the details of the system configuration,
it can use the RMS to its advantage; however, the attacker also attacks outside
the RMS to stress the MTD defenses. For these simulations, we assume a sophis-
ticated attacker who automatically attacks each available node in the network
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from its current location using the RMS or by attempting to guess the address
and port of an available node. Therefore, the attacker is not limited to the RMS
routes and thus the attack routes form a completely bidirectionally connected
graph (except for the Internet node, which only has arrows to nodes into the
network) as shown in Figure 12. However, since the RMS will not respond to
standard network requests for mapping information, this eliminates the ability
for the attacker to automatically map the address space.

The probabilities associated with each attack depend on the node from which
the attack originates and the node being attacked. All attacks along the RMS
maintain their probabilities as shown in Figure 12. However, the dashed lines,
which denote attacks outside the RMS, have a much lower probability due to
the fact that the attacker must guess the appropriate port for the attack to
even have a chance to succeed. Therefore, each dashed line has an attack success
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probability of p/65, 536 where p is the probability of successfully attacking that
node through the RMS. Thus, all attacks against the TargetDB from any node
but the Planner would have a 0.4/65, 536 probability of success. While this might
seem like a very low probability, we believe that it is actually the upper bound
for such an attack. Since the VMs addresses are being modified over time, the
attacker will also have to guess the VM address. However, since it is hard to
determine the specific range over which the addresses be assigned, we assume
the attacker can guess that in some way (once again giving the benefit to the
attacker as opposed to the MTD system).

The simulation starts with the attacker at the Internet node. From the Internet
node, the attacker attempts to attack each node in the network. The success of
each attack is determined based on the probability of success of the attack and
whether either the node being attacked and the node from which the attack
originated was refreshed during the attack. If any of the attacks were successful,
the newly compromised nodes are used to mount new attacks. Again, we assume
we try to attack all uncompromised nodes from each newly compromised node.
This process continues until the TargetDB becomes compromised, or the attacker
has no compromised nodes in the network (other than the Internet).

Broad Attack Simulation Results. We conducted 1000 runs (as opposed to
single step attacks used in the RMS only experiments) of the broad attack sim-
ulation against various frequencies of MTD adaptation to determine its impact
against attack success. Since the broad attack simulation allowed the attacker to
keep attempting to attack network nodes as long as the attacker had access to a
compromised network node, each run consisted of a sequence of attacks starting
with the initial attack from the Internet to the Authorizer node and continuing
until either (1) the attacker did not have access to a compromised node in the
network or (2) the attacker successfully compromised the TargetDB. As with the
previous experiments, we included a static control scenario where no adaptation
occurred. In each experiment, we again assumed a fixed Δt between each attack
of 100 time intervals. For each experiment, we ran the 1000 runs using 5 different
adaptation intervals (20, 50, 100, 200 and ∞).

Figure 13 shows the ability of the MTD to deter an attack from the Internet
through the network to the TargetDB. When the configuration is static, the
number of completed attacks (out of 1000) is 588, which is close the expected
60% rate given that the probability of compromising the Authorizer node from
the Internet is 0.6. This is due to the fact that if the attacker compromised
the Authorizer node on the first attack, with a static network, the attacker
will remain on the Authorizer node attacking various network nodes until the
TargetDB is eventually compromised. We also noted that no attacks outside the
RMS actually succeeded, which was expected given the extremely low probability
of success. When we introduced our random adaptations, we found that an
adaptation interval of 200 reduced the number of successful attacks against the
TargetDB to 421, an adaptation interval of 100 reduced that number to 57, an
adaptation interval of 50 allowed only 24 successful attacks, and an adaptation
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interval of 20 totally eliminated the ability of the attacker to compromise the
TargetDB. Once again, Figure 13 clearly shows that as the adaptation interval
is reduced, the effect of the MTD defense is clearly visible.

5.3 Intelligent MTD Simulation System

To help determine the effect of an intelligent MTD system, we again used our
broad attack simulation where the attacker attempts to compromise the Tar-
getDB. In fact, the experimental setup was the same as for the broad attack
simulation presented above with one exception. To simulate an intelligent MTD
system, we assumed that whenever the attacker attempted an attack outside
the RMS, that such an attack could trigger an alert based on some probability
of detection, pd. Since the RMS is set up to allow only communication from
known nodes on exactly one port, we believe the implementation of such de-
tectors would be both practical and efficient. When detected, alerts would be
sent directly to the Adaptation Engine, which would request that Configuration
Manager immediately refresh the VM from which the detected attack originated.
In addition, random adaptations continued to occur at the same predetermined
intervals Δt as used in the previous experiments.

Intelligent MTD Simulation Results. The result of the intelligent MTD
simulation is shown in Figure 14; note that the graph is logarithmic to show
proper detail. Since the attacker indiscriminately attacks all nodes in the net-
work without necessarily attempting to go through the RMS system, thus raising
many alerts, the success rate of the attacker is reduced significantly. At a 100%
probability of detection, the attacker is always immediately detected and re-
moved from the system, thus the attack success rate is 0%. However, even with
lower pd values, the reduction in attack success is significant. Even in the static
case, with a pd of 50%, the number of successful attacks is reduced from 616
(61.2%) to 32 (3.2%). We believe this shows the power of using an RMS with an
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intelligent MTD system. The RMS minimizes the attack surface to such a degree
that attacks outside the RMS are easily detected and significantly decrease the
attackers likelihood of success.

When compared with the attack success rate of the simple MTD system
(which is represented by the line in Figure 14 with pd = 0%), we see that the
intelligent MTD system performs significantly better since the simple MTD sys-
tem. We do see a slight anomaly in the data since at an adaptation interval of
20, when the pd is both 15% and 25%, we see 1 successful attack while there
are 0 successful attacks with a pd of 0%. Although the probability of success is
extremely low, the attacker can succeed. We believe that with more runs (than
1000) the data would have normalized. Overall, while not conclusive, this exper-
iment clearly shows the need for further investigation into the costs and benefits
of intelligent MTD systems.

5.4 Discussion

The design of our MTD is based on knowing the current situation, which is
captured in a set of runtime models. These runtime models allow the system to
reason over the current state of the system and produce adaptations to confuse
and rebuff potential attackers. The system design shows how a set of runtime
models can be combined to model and reason over multiple aspects of a complex
problem. Specifically, this system includes models for the system configuration,
the system objectives (operational and security), and entities external to the
system (the attackers).

The simulation presented here is our first, and one of the first anywhere, sim-
ulation of an MTD architecture for enterprise network security. As such, the
simulation implemented only a simple MTD system and did not use the full
power of its runtime models. However, the results demonstrate the potential
effectiveness of MTDs for enterprise computer networks. Therefore, we plan to
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continue to simulate more complex systems (in terms of nodes and intercon-
nections), increase the sophisticated of the attackers, and integrate in the full
power of an intelligent MTD system based on runtime models. In addition, we
are currently building a real world MTD test bed using existing visualization
technologies.

This system also demonstrates the applicability of the OMACS model to
new and novel applications. The OMACS model was originally envisioned as
a metamodel to capture multiagent systems. However, it quickly became clear
that by looking at existing research on human organizations, the model could
be made much more general. Since its inception, OMACS has been applied to
multiagent systems, cooperative robotics, human-robot teams, sensor networks,
and power distribution systems. In fact, the claim could be made that OMACS
can be applied to any domain in which distributed agents (natural or artificial)
need to coordinate their actions to achieve shared objectives and adapt to the
current state of the environment or their problem solution.

6 Related Work

6.1 State of Practice

Network configuration currently tends to be static and routine assumptions are
made about the location of services in terms of fixed URL’s or IP addresses.
Such static configuration is largely due to the use of legacy system components.
The benefit of static configurations appear to be ease of management and pro-
gramming. However, it has been observed that the static network configurations
(i.e, service dependencies) have actually made it harder to manage systems,
especially when changes must be made [3,15,6]. The state of the practice in
computer network defense relies upon firewalls in both network and application
layers, intrusion detection and prevention systems, and anti-malware products
that provide defense in depth. Unfortunately, once a method is found to circum-
vent these mechanisms, the attacker can keep attained privileges until discovered.
In addition, the attacker can generally use the same methods to circumvent other
similar defenses. Here, the lack of dynamism is an important contributor to the
ease with which an attacker can launch a successful cyber attack.

6.2 Moving Target Defenses

Most of the prior work on MTDs in a network context has been related to low-
level techniques such as IP address shifting and network routing and topology
control. In the late 90s, BBN developed approaches to active network defense
[16,2] that gave the illusion that the addresses and port numbers used by the
network’s computers changed dynamically. While these techniques significantly
increased the attacker’s effort by making it almost impossible to map the network
[16], they required all trusted computers be shielded by special processes and
displayed had several application interoperability issues [19]. More recently, a
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network address space randomization scheme to thwart hit list worms [1], which
configured DHCP servers to expire the leases of hosts at various intervals to
support address randomization. In [7], an approach to dynamically changing
network packet routes so that observable traffic patterns change was proposed
to make network mapping more difficult and to make packet sniffing less effective.
In each of these cases, only the network addresses were changed or made to look
like they changed and only served to confuse attackers without the ability to
automatically remove them from the system once they compromised a resource.

In a different approach to MTD, Roeder and Schneider [24] propose to use
proactive obfuscation to create application replicas with identical functional-
ity but dissimilar vulnerabilities that react differently to identical attacks. The
authors showed that with sufficient entropy in the executables, the approach ef-
fectively thwarted known attacks without greatly increasing costs. We anticipate
that proactive obfuscation could be employed in our MTD approach to increase
the difficulty of initial compromise as well as the ease with which attackers could
reacquire resources after being removed from the system.

7 Conclusions

In this paper we presented a preliminary design of an MTD system that uses run-
time models of a network’s requirements, design, and implementation to allow it
to adapt its configuration to increase the difficulty of attacks on the network. We
conducted several simulation-based experiments to study the effects of randomly
adapting the system in reducing attacker’s success likelihood. Our results showed
a reduction in attack success as the rate of adaptation increased. In addition,
we conducted simulations that showed the effect of adding intelligence to the
decision of when and where to adapt in the form of detectors that could detect
when an attack occurred outside the normal RMS system. Our results showed
that even with less than perfect detectors, significant improvements in network
security can be made. These results clearly demonstrate the potential for both
simple and intelligent MTD systems and are preliminary steps toward developing
a comprehensive evaluation and analysis framework for MTD systems.
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