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Abstract cess. Amid this growing complexity, it is increasingly diffit

for a human to fully and accurately understand the state Bf ne
Mitigation of security risk is an important task in entegarinet- work security.
work security management. However it is presently a skill ac ¢y rently, the evaluation and mitigation of security riskan
quired by individual experience, more an art than a scielibe. - gnerprise network is more an art than a science. Systenmadmi
biggest challenge in the problem is a quantitative modeldba st at0rs operate by instinct and experience, often wittaoy
jectively measures the likelihood a breach can be accohgglis 5y 1o evaluate the full ramifications of any changes. Witrau
This paper presents a sound and practical approach to Sucf,@ctive measurement of risk, there is no straightforvaaire-
quantitative model. We utilize existing work in attack ghaand  jiapje method to answer fundamental questions, such as f&Vhe
individual vulnerability metrics, such as CVSS, and appigtp s our network most vulnerable?”, “If we change A, will ourtne
abilistic reasoning to produce a sound risk measuremené Th,k be more or less secure as a result?”, and “How secure is my
problem requires a careful coordination of attack grap@dat gy stem?”. These questions are important to answer whestinve
account for cyclic and shared dependencies. We recogrize iy precious resources to improve the security of an eriterpr
networks commonly have many host interconnections and ngkyyork. Often times improvement of security also comed wit
work privileges could be gained in many ways. This factoda 5 cost at functionality or ease of use; thus it is importanirie
to cycles in an attack graph, which must be identified and Proferstand how much reduction in overall security risk a peagb
erly treated when measuring risk to prevent distortion efri change can achieve. To answer these questions requiresti qua

sults. We also recognize that multiple attack paths leattiiie 56 model of security with clear measurements of riskeasy
same network privilege will often share some dependencids %omparison of different network states.

so a valid assessment cannot simply treat these paths gemde
dent. Our approach is provably sound and ensures that sﬂl&re%
pendencies have a proportional effect on the final cal@ragénd 9
that cycles are handled correctly so that privileges ariated
without any self-referencing effect. We also present prilary
experimental results on our algorithm and identify direas for
future improvement.

Much work has already been done in analyzing network con-
uration data and identifying network vulnerabilities ¢on-
struct aggregate attack graphsl [2[ 7|8, 13,1417l 18, 1,9, 26
24,128 303136, 37,88, 140]. Attack graphs illustrate the c
mulative effect of attack steps, showing how individuapstean
potentially enable an attacker to gain privileges deepiwithe
network. The limitation of attack graphs, however, is theuasp-
tion that a vulnerability that exists can be exploited. Ialitg,

i there may be a wide range of probabilities that differerscit
1 Introduction steps could be profitably exploited by an attacker, depermen

Enterprise networks have become essential to the operatiorfh® Skill of the attacker and the difficulty of the exploit. tA¢k
companies, laboratories, universities, and governmesndigs. graphs show what is possible without any indication of whkat i

As they continue to grow both in size and complexity, networlkely-

security has become a critical concern. Vulnerabilities rag- Recently, there has been significant progress in standagdiz
ularly discovered in almost every software applicationefa and developing metrics for individual vulnerabilitieschuas the
moderately-sized network can have many different attackspaCommon Vulnerability Scoring System (CVS$)[24] 35]. This
which an attacker could exploit to gain unauthorized nekvem- is known as a&omponent metricessentially a risk measurement
indicating the likelihood that a vulnerability can be sussfally
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information about the availability of exploit. This infoation the metrics.
can be used to assign a probability that the vulnerability vel One common criticism of security metrics arises from thé fac
exploited successfully when exposed to an attacker. Thérkey that the input to the metric model (component metrics in this
itation of CVSS is that the computed scores represent omly thase) is often imprecise. And since there is no way to make
likelihood of success for individual attack steps, withoahsid- the input numbers “correct”, whatever the model can compute
eration of the probability of actions performed to attaia five- is meaningless. We disagree. While it is true that the corapbn
conditions necessary for an attack step. It is easy to sea inmaetrics, and as a result the computed cumulative metries, ar
attack graph how an attacker might perform multi-step &tacinevitably imprecise, that does not mean the result doegmot
to penetrate deeper into a network than may seem immediat@tfe any useful information on security. Even if we can orggu
possible. The probability of success for a multi-step &ttac the numbers in the comparative nature that is already a bjg st
actually an aggregate calculation over the probabilittesshch forward. One may not care about the difference between 30%
individual step in the path. Because each score reflectstbaly and 35%, but probably will notice a difference when seein30
probability of a single step, CVSS (or any comparable compand 90%. We contend that it is necessary to make initial steps
nent metric system) is insufficient in itself to fully quagtrisk  toward quantitative risk assessment, rather than rengaicon-
in an enterprise network. For example, a vulnerability mayen strained to precisely measurable properties such as cauitie
a high CVSS score (indicating it represents high risk to #&$ys number of vulnerabilities. Those precisely measurablerioset
when the vulnerability is exposed to an attacker). But thie viunay be “correct”, but they are not useful since they do noecefl
nerability may reside at a location that is highly difficutt fan  important properties people take into consideration whak-m
attacker to access. Likewise, a vulnerability may have a&towing security decisions. For example, knowing that a “hig:r
CVSS score but reside at a location that is relatively easgifio vulnerability is more likely to be successfully exploitetan a
attacker to approach. To accurately measure securitymiski “medium-” or “low-risk” vulnerability is important when dzd-
enterprise environment, both measurement at individuakra-  ing upon which one to patch first. Even though these valuation
bilities’ properties and their interplay must be taken iatzount. are at best rough estimates, that does not mean that thelgshou
Since attack graphs represent logical inter-relationsiipng not be used in practice. Work continues to progress in refinin
multiple attack steps, it is natural to combine attach grapéh metrics for better capturing the properties of network eudtbil-
individual vulnerability metrics like CVSS to achieve corep ities. A sound model for combining these component met@es ¢
hensive measurement of risk in an enterprise network. actually help make them more useful and even more precise: a
There have been some attempts at measuring network secuitinulative assessment that is thought to be faulty can bedra
risk by combining attack graphs and individual vulnerdpitnet- back to the imprecision in the input component metrics, jokov
rics. Frigaultet al. [9, [10] propose converting attack graphs anthg a feedback loop for refinement and calibration.
the individual metrics into Bayesian Networks (BN) for camyp ~ Developing a sound metric model based on attack graphs is
ing the cumulative probability. While a BN can correctlyauot not simple. Enterprise networks are typically laid out irctsu
for shared dependencies in an attack graph, the major tiotita a way as to include a great deal of interconnectedness betwee
of using BN is that it does not allow cycles which are commometwork hosts. Thus, multiple attack paths leading to argnes-
in attack graphs. While it is possible to “unfold” the attaplaph work privilege are rarely independent but more likely whilase
into an acyclic representation, that approach is impratbe- some dependencies. Furthermore, this interconnectedriless
cause the dramatic increase in the size of graph structdre witen lead to the appearance of cycles in an attack grapharbut
likely make BN reasoning inefficient. For example, an attackccurate assessment of the probability that some prividegtl
graph for a realistic network model with nine hosts cont&ifis be gained by an attacker should obviously not include a &teor
non-configuration nodes with 180 arcs; the unfolded attaggly cal attack path in which an attacker can reach that priviédter
for that same network contains 1,720 non-configuration sodeaving already gained it. Assuming monotonicity in the asigu
with 2598 arcs. Wanggt al. [41] recognize the presence of cy-tion of network privileged[2], this attack path should belexled
cles in an attack graph and present useful ideas about papag from the calculations. We propose to treat both cyclic arydie
probability over cycles. However, their probability calmion attack graphs with proper management of shared dependencie
seems to assume that probabilities along multiple patitiriga and with a provably sound semantics. More specifically, mssu
to a node are independent, which does not hold in attack grapimg the input component metrics are correct, our model wik p
In this paper, we propose a sound and practical approachdtéce an accurate assessment of the probability that arkettac
quantitatively measuring risk within an enterprise nefwarti- can succeed in achieving a privilege.
lizing the attack graph structure in conjunction with thengm- One may wonder why a sound model for combining compo-
nent metric input to calculate cumulative risk metrics gading nent metrics is so important given that the input is inevita-
probability that a specific network privilege would be obtd precise. Could an unsound model still provide useful rebalt
by an attacker. Our major contribution isaundmodel for com- is within the error bound inherent in the input? We think that
puting cumulative risk metrics on attack graphs. The modsl han approximation algorithm witprovable error boundsvould
a well-defined semantics and a practical algorithm for caingu be useful if that can turn into better performance and sdalab



ity. But we have not seen any development of such a modeldnccessor nodes (must be privilege nodes), hereafteredfar
the literature. This paper presents a first step in that tinec as “branch nodes”, i&s C Gp.
with the development of provably soundnodel and algorithm ~ Two examples of attack graphs are shown in Figdks 1
for computing security risk in enterprise networks. Resean and2. Circular-shaped nodes are attack-step nodes andmiiiam
approximation algorithms will be explored in future work. shaped nodes are privilege nodes. In both exan@les= F,.

In Sectior 2, we will broadly describe the issues faced imguaP; is a branch node in both graphs.
titative risk assessment and, in Secfibn 3, show how oucaopr
handles these issues. We present some experimental results
Section# and address scalability concerns. We will review r
lated works in Sectiofil5 and conclude in Secfibn 6 with a discu
sion of future work.

2 Problem Overview

Figure 1: An attack graph without a cycle

An accurate assessment of security risk within an enterpes-
work must consider the structure and interconnectednetigeof
network. Much work has already been done in attack graphs to @ @
identify vulnerabilities within a network and to show hovete
vulnerabilities may be sequentially exploited to enableaén @ ° @ @ @
tacker to gain privileges deep within the network. We calizati
attack graphs as a structural basis for risk assessment.sé/e u
the MulVAL attack graph toolkit[1iZ, 27] in our work but ourap @ @
proach should be easily transferrable to other tools thadymre
attack graphs with similar semanti€s[LL3] L4}, 31]. Figure 2: An attack graph with a cycle

A full attack graphG will include three types of nodes: (1)
attack-step nodes (collectively, s@t), represented within the A component metric is associated with each attack-step.node
graph as logical AND-nodes. Each node in this set represent§he metric represents the conditional probability thatdimgle
single attack step which cannot be carried out unless ajpptee attack step will succeed when all of the prerequisite caorafit
decessors (preconditions to the attack which are eithdigien are met. For example, the component metric Agrrepresents
ration settings or network privileges) are satisfied; (2)ifgge the probability that the attack step can succeed when arkatta
nodes (collectively, s& p), represented within the graph as logalready obtained privileg®;. We useG), to denote the set of
ical OR-nodes. Each node in this set represents a singleretwelevant component metric valuesdg, based on a CVSS score);
privilege which can be achieved when at least one of theitgre each attack-step node= G will have an assigned metric value
cessors is achieved. The predecessors represent varigasavadenoted as7,,[c]. Thus, for some attack-step noeavith pre-
obtain the privilege; (3) configuration nodes, representi¢hin  decessor seP, the probability ofe given setP is equal to the
the graph as source nodes which have no predecessors. Eachponent metric valuePr[e|P] = G[c]. Additionally, the
node in this set represents a fact about the current netvaork cattack graph will have an assumed prior risk valGe;, repre-
figuration which is known to be true. For the purpose of risk asenting the probability of an attack being attempted agaires
sessment the configuration nodes can be removed since they metwork. Gy is associated with the root node of the graph and
no variance in probability, leaving us with an AND/OR graph. we assumé&y = 1 in the subsequent discussion.
such an AND/OR graph an attack-step node is always preceded
by privilege_npdes and always has exactly one sucgessdegév 2.1 Handling shared dependency
node. A privilege node, however, may have multiple sucaesso
attack-step nodes, representing different options fahé&rrat- In an attack graph, it is common to see multiple attack paths
tacking the system. leading to a single network privilege. In Figutk 1, for exam-

A new privilege node will be added to serve as the root noghte, privilege P, can be obtained by an attacker using either
in the graph; the new root of the grafghiz € Gp, represents no of two attack steps A, or As. Privilege Py will be unob-
network privilege and there is an edge fraig to all the attack- tainable if an attacker cannot successfully carry out thaaaix
step nodes that do not require any prior privilege, the nodes A, or As. If the paths toA, and A5 are independent, where
in G¢ that has no predecessors after the configuration nodes BréA,] and Pr[A5] are the probabilities that, and A5, respec-
removed. In the subsequent technical discussion we asSimetively, can be successfully carried out, we can easily dateu
is the attacker’s starting point, but the model will work fomy the probability that an attacker might gain privilegg to be:
node as assumed starting point. The set of all nodes withptault Pr[P,] = Pr[A4] + Pr[As] — Pr[A4] - Pr[As].



However, it is incorrect to assume thaf, and A; are inde- Theorem 2 Let D, N be node sets such that d-separates any
pendent. Looking at Figufé 1, it is easily seen that attaglrdt,  pair of nodes inN. Then all nodes: € N are conditionally
is potentially affected by privilegé’ and attack stepls fully independengivenD: Pr[N|D] = H Prn|D].
depends upon it. Because of this shared dependené,at, neN
and A5 are not independent and the above formula would skew
the effect that privilegé® has on the final result. In other words, This theorem follows directly from the property of d-
assuming that all attack paths in an attack graph are indigmen Separation and conditional independence.

will lead to urlwsound reSL;It in L's'( z:\jszessmgnt. ) Using the above two theorems, we find a way to calculate
To correc.ty account for shared dependencies among att"ilﬁg joint probability Pr[A,4, As], which is needed to calculate

paths, we will employ the n_ot|on af-separatiorwithin a causal Pr[Py]. By Theoren{lL, we can sum over all possible values

network (such as a Bayesian Network)I[15]. The concept of gf d-separating setP, P, } to solve Pr[A,, As], and, applying

separation can be utilized to establish conditional inddpace TheoreniR, we can decompose a joint conditional distrilutio
between node sets. The risk assessment problem on attmgrgingleton cé)nditional probabilities

is a more specific problem than generic Bayesian reasoning;
therefore, the concept of d-separation is specialized foemrur
specific application. Pr[Py] = 1-— Pr[A4,As]

Definition 1 Within an attack graph, for the purposes of risk as- 1- Z Pr{Ay, As|Po, P1] - Pr{Po, 7]

sessment, two distinct nodesets A and B are d-separated by an Poby _
intermediate nodesdt C Gp (distinct from A and B) if along 1= Z Pr{As| Py, Pr] - Pr(As| Py, Pr]-
every diverging path between A and B, there is serael” such Po,Pr
thatv is the point of divergence.

Because of the structure of the attack graph’ (Bhiared de- The formation and use of calculations will be discussed in
pendenciegpoints of divergence in shared paths) need to be cd#eater detail in later sections.
sidered in the construction of a d-separating set. For elgnmp
Figure[l, there is a diverging path, — P, — Az between 2 2 Handling cycles
nodesA, and As; the point of divergencep;, d-separates these
two nodes. Even thougH, and A; are not independent (they/n Figure [2, some graph nodes comprise a cycle -
are both influenced b§, ), whenP, is fixed they become condi- {2, A1, P53, As}.  When evaluating the probability of a
tionally independent. node within a cycle, such aBr[P:], we must be careful that

In an attack graph with the configuration nodes removed, tRede % does not affect its own probability of occurrence.
divergence nodes must be the branch nodes, which are &l priccording to the graph, it is possible that an attack can use
lege nodes. Then the d-separating/3dor two nodesets must be attack stepA to obtain privilegeP,, then use attack steds
a subset of3 3 and the elements i must “block” all diverg- to obtain privilegePs, and then use attack stefy to obtain
ing paths between the two node sets. That means to find odtrivilege % again. Although this path does technically exist
set of nodes that d-separates two node sets, we only need-to ¥gthin the graph, it is meaningless for risk assessment and
sider branch nodes along the paths to the nodes. AalkendA; should have no influence on the probability that privilelge
in F|gureﬂ as an examp|e; we On|y need to consider the bra[{al'ght be obtained by an attacker. We must be able to evaluate
nodes along the paths t, andA; whichisD = {Py, P }. We nodes within the cycle while eliminating any cyclic influesc It
can see from the graph tha d-separatest, and 45, and once IS possible to unfold any cyclic graph into an equivalentcicy
the nodes irD are fixed,4, and A5 become conditionally inde- 9raph such that each node appears exactly once in any path. Bu

pendent. This makes the calculation of joint distributiasye ~ this procedure is not necessary if we apply a data flow arglysi
to the cyclic nodes so that we can evaluate the same praiegili

PT‘[Po,Pl]

Theorem 1 VD, N C Gy, Pr[N] = Z Pr[N|D] - Pr[D] as on the unfolded graph but without actually unfolding it.
D
Proof: .
3 Risk Assessment Approach
> Pr[N|D]- Pr[D] = Y Pr[N,D] o
D D 3.1 Definitions
= Pr[N]

For describing our approach of sound risk assessment, diis ¢

By Bayes theoremPr[N|D] - Pr[D] produces the joint prob- venient to define and employ the following notations.
ability Pr[N, D]. Summing over all possible values of will

marginalizeD from the joint distributionPr[N, D] and we get Function 1 For a noden € Gy, ¢(n) represents the abso-
Pr[N]. lute probability that node: is true (i.e., the probability that the



privilege/attack step represented by nodean be successfully 3.2 Formal specification of risk assessment
gained/ launched). Similarlyp(n) represents the probability
that noden is false.¢(n) + ¢(7) = 1. Foranode setV C G, The following propositions set forth recursively-defineglia-

#(N) represents the probability that eache N will be true or tions for the calculation of the functions defined in the foes
false as specified in séf. section. The root node of the attack gragh, will be initialized

at the beginning of the algorithm and will serve as an ancbior f

For example, in Figur 1(P;) is the probability that nod®, the ¢ recursion. When calculating(A, n), the recursion must
is true, whileg(P,) is the probability that?; is false. SinceP, reach a point where € A (so thatn must be true)n € A (so
must be either true or false, these two values must have a surif@tn must be false), oA N x(n) = 0 (so thatn is condition-
one. ally independent ofd); these base cases will serve to halt the

¢(A,, As) is the joint probability that noded, and 45 are recursion. The validity of the propositions and the terrtiora
both false; since there are shared dependencies betwesn tREthe recursive calculations has been formally proved $ubt
nodes, calculating the precise value/f,, 45) would require included in the paper due to space limitation.
computing the conditional probability given a d-sepamgtet.

Proposition 1 For any privilege node: € Gp with immediate
Function 2 Foranoden € Gy andnode setl C Gy, ¥(A,n) predecessor sév/,
represents the conditional probability that nodds true if the

values of alla € A are fixed as specified in sdt For a node set d(n) =1— ¢(W)
N C Gn, ¥(A, N) represents the conditional probability that —
eachn € N will be true or false as specified in saf if the ¥(A,n) =1-9(4,W)
values of alla € A are fixed as specified in sét x(n) = U x(w)
weW

For example, in Figur€l1y({ Py, P}, P,) is the probabil- 5(n) = m 5(w)
ity that P, is true given thatP, and P, are true. This elimi-
nates any influence that; has on nodé%. Y({Fo, P}, P») = wew
ea + e — ezeq. Another exampley({ Py, P1}, P,) is the prob-
ability that P, is true given thatP, is true andP; is false.
V({Py, P1}, P2) = eg. A privilege noden will be true when at least one of its prede-

cessors are true; conversely, it will be false only when it

Function 3 For a noden € Gy, x(n) = {b| b € G andb predecessors are false. Theset forn is the set of branch nodes
appears in at least one attack path leading to nede that affect at least one path to somec W and so at least one

path ton; theé set forn is the set of branch nodes that affadit
x(n) is the set of all branch nodes within the graph that appeRaths ton (and so logically dominate). Since the predecessors
in at least one path ta and so may affect the probability af Of a privilege node are all attack nodes, they cannot be branc
For example, in Figui8 & (As) = { Py} andx(A42) = { Py, P }. hodes themselves.

Definition 2 Within the attack graph, for any node a logical  propgsition 2 For any privilege node: € G with immediate
dominator is any nodé such thatr is true only ifd is true. This  predecessor setw},

relationship is denoted <« n.

: ¢(n) = o(w)
Function 4 For anoden € Gy, d(n) ={d|d € Gg and
den) v(Am) = (A, w)
x(n) = x(w)
d(n) is the set of all branch nodes that logically dominate (ap- §(n) = §(w)

pear in all attack paths ta), so thatvd € §(n), ¥(d,n) = 0. In
other wordsy: is false if anyd € §(n) is false. In Figur€ll, node  pygpositionP is obviously a special case of Proposifibn 1,
Py < Aj sinceA; is true only whenP is true: all attack paths yhere the computation of values is simplified upon the as-
to A; must first accomplisti,. But P, does not dominatéls, gymption of exactly one predecessar, By Proposition[IL,
since there is a path té, throughAg which does not requiré; . d(n) = 1 — ¢(w), but sinced(w) + ¢(w) = 1, we know
Clearly, the set of nodes that must affects a subset of the all

: ¢(n) =1—(1—=¢(w) = ¢(w). x(n) = |J x(w) = x(w).

the nodes that may affeat sod(n) C x(n). i

Employing these notations, we will now consider how to capince all paths ta lead through, 3(n) = &(w).
culate the probability values for every node within an d&tac
graph. Proposition 3 For any attack-step node € G with immediate



predecessor sét/, one predecessorp(A4s) = Gur[Ag] - ¢(Po) = eg - 1 = eg;
X(46) = 6(46) = {Fo}-

p(n) = Gun] - (W) We cannot yet evaluate nod®, because not all of its pre-
V(A n) = Garln] - (A, W) decessors have been evaluated. We will return, then, te eval
uate nodeA;. Similar to the calculation fords, ¢(A;) =
x(n) = ( EJWX(UJ)) U(GenWw) GulA1] - d(Po) = e1; x(A1) = 6(A1) = {P}.
3(n) = (|J o) u(@Grnw) _
wEP Table 1: Values calculated while solving fofA4, As)
N P(N)
. {Po, P} el
When all predecessors are true, an attack step ndddrue —
with conditional probabilityG s, [n]. Similarly, given set4, n is {50’ P} | 1-e
true with conditional probability>s,[n] when all predecessors| {Po, P1} 0
are conditionally true. The set forn is the set of branch nodes (p; P} 0
that affect at least one of its predecessors together witlohits = =
predecessors that are branch nodes themselves. ‘siecgiires D V(D Ad) | $(D,As)
that all predecessors be true, theet forn is the set of branch | {Fo, P1} | (1 —ea(e2 +es —e2e6)) | (1 —eses)
nodes that logically dominatny predecessor (and so logically {Py,P1} (1 — eqeq) 1
dominaten) as well asanyone of its predecessors that are bran n{ﬁo, Py 1 1
nodes. —
{Po, P1} 1 1
Proposition 4 For any attack-step node € G¢ with immediate
predecessor sgtw},
d(n) = Gurln] - p(w) Table 2: Risk assessment calculations for Fidilire 1
W(A,n) = Guln] - (A, w) N | ¢(N) §(N) X(V)
X(n) = X(w) U (@5 1 {w}) A 0 [0
§(n) = 6(w) U (Gp N {w}) P | e {Po} {Po}
Py | (e1e2 +es — e1ezeq) {Po} {Po, Pr}
Proposition[# is obviously a special case of Proposifibn 3/ | eies {Po, Pr} | {Po, Pr}
where the computation of values is simplified upon the assumpp, (ese6 + €1(ezeq + ese5) — {Py} {P, P}
tion of exactly one predecessar, e1e2e4€6
— ereseqes (e + e — ezeq))
3.3 Example - Figure[l A e {Po} {Po}
We will now work through the sample graph shown in Figidre ,A2 e (P} (P, 1}
demonstrating our approach and showing its effectiventassa A3 | eres {(Fo, 1} | {5, P}
ognizing and correctly handling shared dependenciesmitie | As | es(erea + e — e1e2e5) {P} {Poy, P}
graph. This graph is acyclic, so we can recursively caleuta¢ As | ereses (P, P} | {P, P}
probability value for each node, utilizing previously aakted 1 Iz 2
individual probability values and computing joint probiitiss 6] 4 {1} {0}

only as needed. To simplify the presentation, we &st® de-
note the component metric value for each attack-step ahde  We can now evaluate nodd . PropositioifR specifies the cal-
i.e. VA; € Go,GulAi] = e;. Atable showing all calculated culation for a privilege node with exactly one predecestbus,
values will be included at the end of this example. d(P1) = ¢p(A1) =e1; x(P1) = 6(P1) = { R}
We begin with the root nodd}y. The probability that nodé, From this point, we could evaluate eithés or A;. Let us next
is true isGy which is assumed to be. Thus¢(FPy) = 1. As calculate fords. ¢(As) = Guy[As] - ¢(P1) = e - e1 = eqes;
the root node P, has no preceding nodes, §0F) = { } and x(As) = 6(A42) = { Py, P1}.
0(Py) =11} Now both predecessors 8, have been solved and we can
Now that we have calculatef Py), we can calculate for ei- calculate for this node. Propositifih 1 specifies the cafimria
ther A, or Ag. Let us next calculate forls. Proposition[¥ for a privilege node with multiple predecessors. 30P) =
specifies the calculation for an attack-step node with déact — ¢({As, Ag}). In previous cases with single predecessors,



we already knew the probability of the predecessor, butim thn Table[2, together with the andJ sets for each node. In
case we do not yet know the joint probability ¢f{ A2, As}) our implementation, joint and conditional probability wab are
and so must solve for it. To calculaté{ A, As}), we must find calculated only as needed, to reduce the amount of compntati
a d-separating set for these two nodes so that we can utitiee Tperformed. We also apply dynamic programming techniques to
orem2 andIl. One such set can be found by taking the interseaehe the calculated values to avoid repeating the samewzomp
tion of the sets for these nodes, so that= x(A42) N x(4s) = tation.

{Py}. D contains all branch nodes that diverge to paths lead-

ing to As and Ag, which should be sufficient to d-separate the )

nodes (DefinitiorIL). Using the sdé?, we can now solve for 3-4 Example - Figure[2

o({42, As}): In the previous example, we showed that the probabilities fo
graph nodes depend on the probabilities of their predecgsso
P(Ay, Ag) SO a recursive approach can be employed for this calculation
_ Within a cycle, however, recursing backward through predec
- ZM{PO}’ Az, 46)9({F0}) (Theorem) gor sets will create an infinite loop. It is clear that a diffietr
Po approach is needed for cyclic nodes.
= Z Y({Po}, A)V({ Py}, Ag)d({Po}) (TheoremB)  Figurel2 contains an attack graph that we will now use as an
Py aid to explain and demonstrate quantitative risk assessoven
=p({Po}, A ({Po}, Ag)p({Po}) + an attack graph containing cycles. This attack graph cositaie
R — S — — cycle, node sef P, P, Ay, As}. Figurel3 shows an equivalent
Y({Po}, A2)v({Po}, As)¢({Po}) representation of the same attack graph. This unfoldedkatta
= (1 —ere2)(1 —eg)(1) + (1)(1)(0) (Propositionsdl—4) graph is acyclic, containing all of the unique, acyclic sathat
=1—e1e9 —eg + e1e264 traverse the cycle. Nod®,, for example, can be reached@s,
o or P, g; the dotted-line arcs indicate that reaching either oféhes
Then,p(P:) = 1-¢({A2, As}) = 1—(1—e1ea—es+e1e2e6) =  instances means th&t has been reached. In other wordhs
e1eg +eg —erezes. AlSo, X (P) = x(A2)Ux(4s) = {FPo, P}, andP,p can be viewed as “partial values” fét, and P, is true
andé(P,) = 6(A2) Nd(As) = {Fo}. when either of them is true.

NodesAs, Ay, A5, P; are calculated very similarly to nodes
we've already seen here, so we will skip over the details e$¢h
The resulting values are in Talile 2.

Finally, we evaluate for nod&,, a privilege node with multi-
ple predecessors, so again we will apply Proposiilop(®y) =
1 — ¢({A4, A5}). The d-separating set fdrd,, As} is D =
x(A4) Nx(45) = { Py, P1}. The term values for this calculation
are shown in Tablgl1.

Figure 3: Example: Cyclic Attack Graph - Unfolded
P(Ay, As) = Z V({Po, Pr}, A)p({ Po, P1}, As)p({ Fo, P })
Po,Py We will now work through the sample graph shown in Fig-

=({Po, P}, A)0({Py, P}, A5)d({Po, P1}) + urel2, demonstrating our approach and showing its effeutis®
P17 P17 — at recognizing and correctly handling cycles within thepdr.aA
({Fo, Pr}, A ({Fo, Pi}, As)o({Po, P1}) + qaple showing all calculated values will be included at the ef
)(

(
({Po, P}, A)Y({Po, P}, As)o({ Py, P1}) +  this example.
(

W({Po, P}, A0 ({Po, P1}, A5)d({Po, P1}) Intuitively, we will identify all acyclic paths traversinie cy-
_(1— 4 oo — D@ — Jer)+ cle and use this knowledge to logically identify unique plolss

(1= ealex+ s —eacs))(1 = eses)(er instances of cyclic nodes. We can then d-separate over the se

(1 —eqeq)(1)(1 —e1) + (1)(1)(0) + (1)(1)(0) of reaching paths to calculate the probability that theicymbde
=1—e1ese4 + €1€2€466— will be reached.

Nodes Py, A1, P, Ao, A3 will be calculated very much as

e1eses — eqep + e1ezeqes(ex + eg — eaeq) L 2 X
demonstrated in Sectidn_B.3 and so we will not go through the

Then,¢(Py) = 1 — ¢(A4, As) = eqes + e1(ezeq + ezes) —  detailed calculations for those nodes. Once these havedagen
erezeseq — e1ezeqes(ea + eg — eaeg). Also, x(Ps) = x(A4) U culated, however, the remaining graph nodes comprise @ cycl
X(As) = {Po, P1}, andd(Py) = 0(A2) N§(Ag) = {Fo}- and therefore must be handled differently. In our impleraent

We have now solved for the probability of each node in th@n, we have chosen to use Tarjan’s algorithm for the idieati
graph, and the computeédvalues for individual nodes are showrtion of strongly connected graph componehts [39].



We can simplify the handling of cycles by calculating values There are two unique instances of na@ein this logical un-
only for cyclic nodes with multiple immediate predecesq@E]. folding of the graph,P>;4 and P.p. The probability that node
Considering Propositiofi$ 2 afill 4, it is easily seen thattbkas P, is true will equal the probability that at least one of thase i
bility for a node with exactly one predecessor is dependelyt o stances is true, af(P2) = 1 — ¢(Paa, Pa3g).
on the value of that predecessor, so that when the prolyadilit
that predecessor node is known, the recursion in the cailcnla Definition 3 For some se’ C G'x comprising a strongly con-
of the probability for a single-predecessor node will stoghat nected component (cycle) within the graph, émry nodesare
predecessor. Thus, the potential for an infinite recurdionugh the set of node§) such thatQ) N C = {} andVq € Q,3c €
the cycle (as with a multi-predecessor node) is elimindtethis  C, (¢,¢) € Gg. Thatis, the entry nodes are not in the cycle, but
example, the cyclic nodes with multiple predecessorsharand  each entry node does have an arc leading into the cycle.

Ps.

’ To calculatep(P24, P2 ), we must calculate the joint proba-

bility of the set of entry node$A,, A5} and we will also need

Table 3: Values calculated while solving fo(P2 4, Pog) to identify a d-separating sdé? within the cycle, to ensure that
N H(N) the instances oP, are conditionally independent. In this case,
D = Path(P:4) N Path(P,p) = 0; because the cycle is so
{AQ’é3} €162 small, these partial paths are already conditionally irdei@nt,
{As, A3} erez(l —e3) given the entry points into the cycle. The formula of computa
{Ay, A3} eres(1 — eq) tion is shown below and the values calculated for each term in

Ay, A} | er(1—ca)(1 —ea) the equations are shown in Table 3.

= = Pou, P
D ’l/J(D,PQA) w(DaPQB) ¢( 2A 23) B B
{AQ,Ag} 0 1—es5 = AZA ¢({A27A3})w({A25A3}aP2A)w({A27A3}3PQB)
{A,, 43} 0 1 >
(A, A5 e e = ¢({As, As}V({A2, A3}, Poa)y({A2, A3}, Pap) +
{ZQ’Zg} 1 1 ¢({ Az, A3})Y({A2, A3}, P2a)¥({ A2, A3}, Pap) +
o({Az, A3}V ({A2, A3}, Poa)({Az, A3}, Pap) +
Table 4: Risk assessment calculations for Fidilire 2 S({Az, AsV)o({As, As}, Poa)({As, A}, Pon)
—— o) 1 x(N) = (0)+ (0) + (exes(1 — e2))(1)(1 — ea)+
b b U (ex(1 = e2)(1 = 5) + 1 — e1)(1)(1)
P e {} {} = 1—e1e9 —eje3eq4 + €1€62€3€4
Py | e1es + ejezeq — e1e2e3€4
P | ejes + ereaes — ereseses _ _ So, ¢( ) =1- (1 — e1eg — e1e3e4 + 61626364) = e1€2 +
e 0 0 ereseq — ejeseseq. By a similar calculationg(Ps) = ejes +
L e1eses — e1eeges. Once these have been solved, itis easy to see
Ay | erer (P} | {2} thatp(As) = Gar[Aa] - #(Ps) = es(eres + erezes — erezeses)
As | eres {Pl} {Pl} and¢(A5) = GM[A5] . ¢(P2) = e5 (6162 +ejezeq — 61626364).
Ay | esleres + ereses — eresezes) | — _ The full results are shown in Talbld 4. NodBs, Ps, A4, As
do not havey or § sets, because these values are not used for
As | es(eres +ereseq — ereneseq) | — - evaluation within a cycle.

First, we will trace all acyclic paths through the cycle, &iet- 3 5 Algorithms
mine all valid ways that these nodes can be reached. This trac . _ _
essentially performs a logical unfolding of the graph, nagk Although space constraints prevent us from including thieafu

unique passes through each node. The acyclic paths thrbisgh orithms for the implementation and the formal proofs stmgwi
cycle are: the correctness of our approach, we stress that this agpreac

sound and will always return accurate probabilities, basethe
network model and the component metrics given as input. In
Pyy = {A} Psq = {Ay, Paa, Ay} the Appendix we show part of the pseudocode of our algorithms
. . that correspond to the four propositions described edrli¢gne
Psp = {4s} Pop = {43, Py, A5} section. Below we give an informal description of the whdle a
gorithm.



Our algorithm first initializes the root nodeé(Gr) = Gy ) ntermet
and then identifies all graph cycles. The algorithm iterates = DMZ
the set of nodes in the attack graph, seeking in each iteratio —
node or set of nodes ready for evaluation. A single nedeot :L @L
contained within a cycle) is ready for evaluation when alitef 3 ven B vser )
immediate predecessol have been evaluated. A cyclic sét @J eroup
is ready for evaluation when all of its entry nod@shave been
evaluated.
If a noden is ready to be evaluated, then its probability is Group 2
calculated using its predecessor Bétemploying the principles
set forth in PropositionBI[l}4. If is a single-predecessor node Figure 4: Example enterprise network
(W = {w}), then the probability of: is based upow(w) and,
if n € Geo, Galn]. If nis a multiple-predecessor nodd/ (=
{wo, ..., wn}), then ad-separating sktis identified for allw €  the database server through the firewall. The VPN servegiwhi
W. If n € Gp, theng(n) = 1 — ¢(W); the joint probability also serves as a firewall to protect internal subnets, istalse-
¢(W) is calculated by marginalizing the effect BfoverWW. If  cess the two subnets of user workstations, Group 1 and Group
n € Ge, theng(n) = Gu[n] - ¢(W); the joint probabilityp(W) 2. Although there are multiple machines in each of these sub-
is also calculated using d-separating Bet nets, we model each group as a single host since the hosts have
If a cyclic subseC is ready to be evaluated, then the algorithmyjentical configurations. Groups 1 and 2 also have perntissio
calculates the probability for each of the nodes within WE access the database server, each through a unique ammaﬂ

First, all unique, acyclic paths from the entry nodes to s9d€’  port. The database server is permitted to access the uskf wor
are traced and stored as sets. Next, each multi-predecesd®r station subnets.

m € C'is evaluated, using the different enabling paths '[hroug/hI bilities: All of th hi in thi Kh |
C to identify unique instances of, and d-separating over these’ " ' & lities: ATl of the machines in this network have at least

paths, so that node is reachable whenever at least one instan&&'® vulnerability that potentlal!y aIIo_vv_s for remote exjuddion,
of m is reachable. Finally, each single-predecessolC is eval- given an attacker code-execution privileges on the macfihe
uated using Propositioﬂ’ 2 afid 4, by which the probability ofdatabase server actually hosts three vulnerabilities ooneach

. - . f the active applications accessed by the web server, Gtpu
relies on the (already calculated) probability of its saledeces- 0 PP y . ! P
sor ( y )P y and Group 2. Any one of these faults are sufficient for an k¢tac

Once a cycle has been evaluated, the set of cyclic nodes cafdgdin control of the database server.

removed from the attack graph and replaced with a virtuaenod We will assume that an attacker’s goal is to gain code-
representing that set. This node can be added tq tedo sets execution privileges on the database server. The full MUNVA
for successor nodes to maintain an acyclic graph, but tiggnati generated attack graph for this enterprise network model is
set of nodes can be referenced when necessary, such as veenvn in Figurdds. The attack graph includes twelve privleg
calculating the likelihood for a node with multiple predssers nodes, fourteen attack-step nodes, and twenty-two comatigur

in the cycle. nodes.

It can be proven that in each iteration, some nad® cyclic For simplicity, we will assume that every vulnerability imet
setC' is ready for evaluation. When all nodes have been evaletwork has a component metric ©f75. In other words, for
uated, the algorithm terminates. To reduce computatiove-o each vulnerability in the network, when all necessary pneio
head, conditional and joint probabilities are calculatety@s tions are met, an attacker will succeed in an exploit utilizihat
needed and all calculated values are stored for possilelerkzt  vulnerability with75% likelihood.

erence. Considering the network topology, a network administrator
would likely assume that the web server and VPN server at the
most vulnerable, while the groups of user workstations ied t
database server are more secure, since these are notydirectl
cessible from outside the network. This assumption seetus in

A preliminary implementation of our algorithms, writtentine .. .
Python language, has been the basis for our testing to digte |1_1|v_e_ly correct, _but_a careful and complete evaluat!on af phob-
' " “ability of exploitation for each machine shows a differeats of

ure[d shows a sample enterprise network, which we will useg :

N ) . airs.
demonstrate the application of our risk assessment athgosit . . .
PP The full risk assessment results for Figlite 4 are shown in the

Hosts and Accessibility: There are five hosts (or groups offirst data column in Tabl@ 5. Here we see that the databaserserv
hosts) with this enterprise network. The DMZ subnet and th& the mostvulnerable machine in the network, due to the sev-
VPN server are directly accessible from the Internet. TheZzDMeral distinct attack paths leading to an attacker gaininglege
subnet, which contains only the web server, is permittedt¢ess on this machine. Because the database server can be compro-

Database
Server

4 Implementation and Testing



Table 5: Risk assessment calculations for Fidilire 4 (coluedfitect different scenarios)

Probability Probability Probability
Host of compromise of compromise of compromise
(all component metrics (VPN metric lower) (patch vulnerability)
equal)
Web server 0.75 0.75 0.75
VPN server 0.75 0.25 0.75
User Group 1 0.5625 0.1875 0.5625
User Group 2 0.5625 0.1875 0.5625
Database server| 0.8278 0.6509 0.6064

Figure 5: Attack graph for the example

mised by a successful exploitation of one or more of these padilities, the risk assessment results for this scenargh@vn
sible attack paths, the chance that an attacker will suftdiss in the third column in TablEl5. As seen in these results, the re
gain code-execution privileges is higher than might beiiively moval of one of the three attack steps leading to privilegethe
expected. database server has noticeably reduced the probabilitgihat-
The risk assessment values are for the given component ni@gker might compromise the database server. This will beuls
rics and the current network configuration. Alterationsither information when evaluating which vulnerability to patctsfito
of these inputs can change the risk picture within the nekwogain the maximum reduction in security risk.
Consider the same scenario, except that the probabilityof s
cess for the vulnerability on the VPN serveni&5, much lower .
than the other probabilities, eabtv5. The change in this com- 4.1 Scalability
ponent metl’iC Value W|” affeCt not Only the I‘iSk assessment In order to test the Sca|abi|ity of our approach, we Conw(dlc
the VPN server itself, but also for all hosts that have atfaths  several testing models based on networks of varying sizés an
through the VPN server. complexity, created MulVAL input files representing each-ne
The second column in Tablg 5 shows the risk assessment wadrk, and evaluated them with a preliminary implementatibn
ues with the updated VPN metric value. As can be seen in these algorithms. The results of these tests are displayedliteld.
results, the lower risk value for the VPN server affects s@ve Models A, B, and C contain realistic network models. Model
attack paths leading to different nodes. The probabilit the C is based on a real control system network for power grids,
web server will be exploited remains unchanged, since no @thich cannot be revealed here. Model B is adapted from model
tack path leads from the VPN server to the web server. Tlg adding an additional host and altering the accessitulity-
other probability values have changed; the probabilityueal figurations between hosts. Model A is still more sparsely-con
are reduced for the VPN server, both user groups, and even fileéted, so that no large cycles predominate in the graph.
database server. Models D, E, and F contain cliques, in which every network
Network configuration changes can also have drastic effetisst is accessible from every other host, so a single styeng|
on the security risk. For example, suppose that the software connected component (cycle) contains almost every nodwein t
nerability in the database service accessed from the wekrseattack graph (except the configuration nodes and the pywile
is patched, so that there is now no attack path leading fr@m ttepresenting an attacker’s initial access to the netwdnkthese
web server to the database server. Employing again themnivseenarios, each host has exactly one remote-exploitabienad
sal 0.75 component metric value for all the rest of the vulnebility that can provide an attacker with code-executiomifgges.
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Table 6: Scalability test results - risk assessment

Scenario| Testing Number of Number of graph Multi-predecessor cycle Total

type model | network hosts| nodes in largest cycle node evaluation time run-time
(average)

Realistic A 9 28 < 0:01 0:04
B 10 40 0:02 0:15
models C 9 46 0:46 8:31
D 5 40 0:01 0:06
Cliques E 7 54 0:25 2:33
F 8 70 7:45 54:40

These models represent the worst-case situation in neweork [34,[47.[42[4B8"44]. Our work built upon results from some of
nectivity, because a more strongly-connected attack gvalbh these previous works and is unique in that it provides a sound
include a greater number of acyclic paths reaching to eaagbhgr model and algorithm that accurately accounts for both cyarid
node, making the assessment more complex. In a clique, eabhred dependencies in attack graphs.
additional node will dramatically increase the number gofcdic The Common Vulnerability Scoring System (CVSB1I[24, 35]
paths per node; the number of entry nodes and the size of gevides an open framework for communicating the character
d-separating set also increase. istics and impacts of IT vulnerabilities. CVSS consiststoke
The limiting factors in the current algorithm and implemenmetric groups: Base, Temporal and Environmental. Eachesigh

tation are the size of the d-separating set (the number césodroups produces a vector of compressed textual repreantat
which must be marginalized in calculating conditional @bit-  that reflects various properties of the vulnerabilityefric vec-
ity values) and the number of paths that must be consideredan). A formula takes the vector and produces a numeric score
the calculation of each multi-predecessor node within decycin the range of 0 to 10 indicating the severity of the vulndrab
As any of these increase, the number of recursive calls madeity. The most important contribution of CVSS is the metricve
the algorithm increases and so the evaluation time also grotwr: it provides a wide range of vulnerability propertieattiare
correspondingly, as seen in the table. the basis for deriving the numerical scores. The main litioita

of CVSS is that it provides scoring of individual vulneratiés

but it does not provide a methodology on how to aggregate the
5 Related Works metrics for a set of vulnerabilities in a network to provide a

overall network security score. The overall security of auoek
The issue of security metrics has long attracted much atté@nfiguration running multiple services cannot be deteeahioy
tion [186,[21,[22], and recent years have seen significantteff§imply counting the number of vulnerabilities or adding tp t
on the development of quantitative security metri¢$ 1], 20% CVSS scores. Our work provides a sound mathematical model
29,[29[32]. There is also skepticism on the feasibility @isity Pbased on attack graphs that can be used to aggregate CVSS met-
metrics given the current software and system architesfle rics to reflect the cumulative effect of vulnerabilities im enter-
While we may still be far from achieving an objective quantiPrise environment.
tative metric for a system’s overall security, a practicathod Frigaultet al. [9,[10] utilizes the combination of attack graphs
for quantifying risks in an enterprise network based on kmowand Bayesian Networks (BN) in measuring network security.
information about potential vulnerabilities is highly uable in The major limitation of using BN is that it does not allow cy-
practice. Albeit only one aspect of a system’s overall sggur cles which are common in attack graphs. Our approach does not
such risk metrics can produce highly needed automatedigegdause BN reasoning as a black box. Instead, we utilize the key
on how to spend the limited IT management resources and hoancept of d-separation in BN inference and design cusieaniz
to balance security and usability in a meaningful mannerr Oalgorithms for probabilistic reasoning on attack graphsctsan
work provides the important enabling technology for auteda approach not only can handle cycles within the context &fass
decision making through sound models and algorithms fongussessment, but also takes into consideration special pgreper
tifying security risks using attack graphs and componertio®e risk assessmengé(g.that no real-time evidence needs to be con-
such as CVSS. sidered, the monotonicity property, and so on) which cam-eli

Attack graphs have emerged as a main-stream techinqueifite some unnecessary overhead and complexity in a standar

enterprise network vulnerability analysis [2[7[8] 13,2,/18, BN inference engine.
19,126,[272B, 30, 31, 86, 1B7,138,140]. Recent years have als&ang,et al. [41] recognize the presence of cycles in an attack
seen effort on computing various metrics from attack grgibfls graph and present useful ideas about propagating protyatiér
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cycles. However, their probability calculation seems tsuase the algorithm depends less on the size of the data set thas on i

that probabilities along multiple paths leading to a nodeiar interconnectedness. A large but weakly connected dataiiet w

dependent, which is not generally true for attack graphsr Oprobably be calculated faster than a smaller but more styong

approach correctly handles both cycles and shared depeirdernconnected data set. We will study abstraction techniqudsdi

in attack graphs. ter handling larger and more strongly connected network-mod
Anwar, et al. [3] introduce an approach to quantitatively asels. In the implementation, there is also an opportunityfuat

sessing security risks for critical infrastructures. Tipprach parallelism in the algorithm to utilize multiple CPU corgseven

captures both static and dynamic properties in the netveank;  cluster computing.

tained in network and workflow models. However, the work did We plan to create a more robust implementation of this algo-

not provide a mathematical model to explain what the catedla rithm and to continue experimentation using real-worldwoek

metrics mean. Our risk metric has a clear semantics whidteis tata, to better determine the effectiveness of this appriveie-

likelihood an attacker can succeed in achieving a privilagzar-  alistic situations. Another concern in the metric systenthis

rying out an attack. Our metric model provides a sound liekageliability of the input component metrics. We believe thtze

between the input component metrics and the output cunaalatinherent soundness of our approach to calculating riskam#t-

metrics. work will serve to highlight gross errors in the input datae W
Sawilla and Ou design an extended Google PageRank algtan to study how to use our metric model to identify imprgis

rithm and apply it to attack graphs to calculate numeric sdok in the input component metrics, and methodologies for catkb

the graph nodes in terms of their importance for an attaakering the component metrics.

achieve his perceived goals [34]. Meletaal. also apply Google

PageRank on a different type of attack graghs [23]. Numeric

values computed from PageRank-like algorithms only ingicaReferences
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Algorithm 1 Pseudocode for risk assessment
Identify cyclic subsets
n < Gr {Begin with graph root node
p(n) — Gy
x(n) <0
8(n) <0
U «— Gy — n{ Initialize set of unevaluated nodés
while U # { } do { some nodes remained unevaluated
if In|nelUVp|[p,n] € Gg,p¢U then{ noden is
ready to be evaluated
P — {p|[p,n] € Gg} { Predecessors of }
if ne Gp then
#(n) = 1 — eval Prob(P)
x(n) ={J x(0)}
peEP
3(n) ={[) o)}

peP
if ne Gp then

Y(n,n) — 1
end if
else{n € G¢ }
é(n) «— Gprln] - eval Prob(P)
x(n) = (GsnP)uU | x(p)
peEP
s(n) =(GenP)u ] é(p)

peEP

end if
U «— U — n { Mark noden as evaluated
else{ a cycle is ready for evaluation

C « cyclic set ready for evaluation (all non-cyclic

predecessors evaluated)
M — evalCycle(C)
U «— U\ M { Mark node sef\/ as evaluated
end if
end while
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Algorithm 3 Pseudocode for computirgalCondProb(D, N')

Require: Parameter®, N, such that

N = {no,nl,...,nj},N C Gy, |N| > 1, such thatvn; €
N, ¢(n) has been evaluated
D = {do,ds,...,dr},D C Gy, such thatD d-separates all
neN
if (D, N) previously calculated¢hen

return (D, N) from table of stored values
end if

if |[N|>1 then
return H evalCondProb(D,{n})
nenN

elseif N = {m} then {N contains exactly negative elemént
return 1 — evalCondProb(D,{n})

else{ N = {n}, soN contains exactly positive elemeht
J —{j | j € D} { All positive elements inD }
K — {k| k € D} { All negative elements iD }

if ne J then
return 1
end if

{ If n or adominator of. is negated irD }
if ne KorKnNd(n)+#0 then

return 0
end if

{ If set D does not affect the value af }
if DNx(n)=70 then

return ¢(n)
end if

P —{p|3ne N,[p,n| € Gg} {Predecessors df }
if ne Gp then
return 1 — evalCondProb(D, P)
else{n e G¢ }
return G ps[n] - evalCondProb(D, P)
end if
end if
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