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Abstract

Mitigation of security risk is an important task in enterprise net-
work security management. However it is presently a skill ac-
quired by individual experience, more an art than a science.The
biggest challenge in the problem is a quantitative model that ob-
jectively measures the likelihood a breach can be accomplished.
This paper presents a sound and practical approach to such a
quantitative model. We utilize existing work in attack graphs and
individual vulnerability metrics, such as CVSS, and apply prob-
abilistic reasoning to produce a sound risk measurement. The
problem requires a careful coordination of attack graph data to
account for cyclic and shared dependencies. We recognize that
networks commonly have many host interconnections and net-
work privileges could be gained in many ways. This factor leads
to cycles in an attack graph, which must be identified and prop-
erly treated when measuring risk to prevent distortion of the re-
sults. We also recognize that multiple attack paths leadingto the
same network privilege will often share some dependencies and
so a valid assessment cannot simply treat these paths as indepen-
dent. Our approach is provably sound and ensures that sharedde-
pendencies have a proportional effect on the final calculation, and
that cycles are handled correctly so that privileges are evaluated
without any self-referencing effect. We also present preliminary
experimental results on our algorithm and identify directions for
future improvement.

1 Introduction

Enterprise networks have become essential to the operationof
companies, laboratories, universities, and government agencies.
As they continue to grow both in size and complexity, network
security has become a critical concern. Vulnerabilities are reg-
ularly discovered in almost every software application. Even a
moderately-sized network can have many different attack paths
which an attacker could exploit to gain unauthorized network ac-
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cess. Amid this growing complexity, it is increasingly difficult
for a human to fully and accurately understand the state of net-
work security.

Currently, the evaluation and mitigation of security risksin an
enterprise network is more an art than a science. System admin-
istrators operate by instinct and experience, often without any
way to evaluate the full ramifications of any changes. Without an
objective measurement of risk, there is no straightforwardand re-
liable method to answer fundamental questions, such as “Where
is our network most vulnerable?”, “If we change A, will our net-
work be more or less secure as a result?”, and “How secure is my
system?”. These questions are important to answer when invest-
ing precious resources to improve the security of an enterprise
network. Often times improvement of security also comes with
a cost at functionality or ease of use; thus it is important toun-
derstand how much reduction in overall security risk a proposed
change can achieve. To answer these questions requires a quanti-
tative model of security with clear measurements of risk andeasy
comparison of different network states.

Much work has already been done in analyzing network con-
figuration data and identifying network vulnerabilities tocon-
struct aggregate attack graphs [2, 7, 8, 13, 14, 17, 18, 19, 26,
27, 28, 30, 31, 36, 37, 38, 40]. Attack graphs illustrate the cu-
mulative effect of attack steps, showing how individual steps can
potentially enable an attacker to gain privileges deep within the
network. The limitation of attack graphs, however, is the assump-
tion that a vulnerability that exists can be exploited. In reality,
there may be a wide range of probabilities that different attack
steps could be profitably exploited by an attacker, dependent on
the skill of the attacker and the difficulty of the exploit. Attack
graphs show what is possible without any indication of what is
likely.

Recently, there has been significant progress in standardizing
and developing metrics for individual vulnerabilities, such as the
Common Vulnerability Scoring System (CVSS) [24, 35]. This
is known as acomponent metric, essentially a risk measurement
indicating the likelihood that a vulnerability can be successfully
exploited when all necessary preconditions are met. These risk
measurements consider both specific qualities of vulnerabilities,
such as the skill necessary to exploit the weakness, and known
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information about the availability of exploit. This information
can be used to assign a probability that the vulnerability will be
exploited successfully when exposed to an attacker. The keylim-
itation of CVSS is that the computed scores represent only the
likelihood of success for individual attack steps, withoutconsid-
eration of the probability of actions performed to attain the pre-
conditions necessary for an attack step. It is easy to see in an
attack graph how an attacker might perform multi-step attacks
to penetrate deeper into a network than may seem immediately
possible. The probability of success for a multi-step attack is
actually an aggregate calculation over the probabilities for each
individual step in the path. Because each score reflects onlythe
probability of a single step, CVSS (or any comparable compo-
nent metric system) is insufficient in itself to fully quantify risk
in an enterprise network. For example, a vulnerability may have
a high CVSS score (indicating it represents high risk to a system
when the vulnerability is exposed to an attacker). But the vul-
nerability may reside at a location that is highly difficult for an
attacker to access. Likewise, a vulnerability may have a lower
CVSS score but reside at a location that is relatively easy for an
attacker to approach. To accurately measure security risk in an
enterprise environment, both measurement at individual vulnera-
bilities’ properties and their interplay must be taken intoaccount.
Since attack graphs represent logical inter-relationshipamong
multiple attack steps, it is natural to combine attach graphand
individual vulnerability metrics like CVSS to achieve compre-
hensive measurement of risk in an enterprise network.

There have been some attempts at measuring network security
risk by combining attack graphs and individual vulnerability met-
rics. Frigaultet al. [9, 10] propose converting attack graphs and
the individual metrics into Bayesian Networks (BN) for comput-
ing the cumulative probability. While a BN can correctly account
for shared dependencies in an attack graph, the major limitation
of using BN is that it does not allow cycles which are common
in attack graphs. While it is possible to “unfold” the attackgraph
into an acyclic representation, that approach is impractical be-
cause the dramatic increase in the size of graph structure will
likely make BN reasoning inefficient. For example, an attack
graph for a realistic network model with nine hosts contains86
non-configuration nodes with 180 arcs; the unfolded attack graph
for that same network contains 1,720 non-configuration nodes
with 2598 arcs. Wang,et al. [41] recognize the presence of cy-
cles in an attack graph and present useful ideas about propagating
probability over cycles. However, their probability calculation
seems to assume that probabilities along multiple paths leading
to a node are independent, which does not hold in attack graphs.

In this paper, we propose a sound and practical approach to
quantitatively measuring risk within an enterprise network, uti-
lizing the attack graph structure in conjunction with the compo-
nent metric input to calculate cumulative risk metrics indicating
probability that a specific network privilege would be obtained
by an attacker. Our major contribution is asoundmodel for com-
puting cumulative risk metrics on attack graphs. The model has
a well-defined semantics and a practical algorithm for computing

the metrics.
One common criticism of security metrics arises from the fact

that the input to the metric model (component metrics in this
case) is often imprecise. And since there is no way to make
the input numbers “correct”, whatever the model can compute
is meaningless. We disagree. While it is true that the component
metrics, and as a result the computed cumulative metrics, are
inevitably imprecise, that does not mean the result does notpro-
vide any useful information on security. Even if we can only use
the numbers in the comparative nature that is already a big step
forward. One may not care about the difference between 30%
and 35%, but probably will notice a difference when seeing 30%
and 90%. We contend that it is necessary to make initial steps
toward quantitative risk assessment, rather than remaining con-
strained to precisely measurable properties such as counting the
number of vulnerabilities. Those precisely measurable metrics
may be “correct”, but they are not useful since they do not reflect
important properties people take into consideration when mak-
ing security decisions. For example, knowing that a “high-risk”
vulnerability is more likely to be successfully exploited than a
“medium-” or “low-risk” vulnerability is important when decid-
ing upon which one to patch first. Even though these valuations
are at best rough estimates, that does not mean that they should
not be used in practice. Work continues to progress in refining
metrics for better capturing the properties of network vulnerabil-
ities. A sound model for combining these component metrics can
actually help make them more useful and even more precise: a
cumulative assessment that is thought to be faulty can be traced
back to the imprecision in the input component metrics, provid-
ing a feedback loop for refinement and calibration.

Developing a sound metric model based on attack graphs is
not simple. Enterprise networks are typically laid out in such
a way as to include a great deal of interconnectedness between
network hosts. Thus, multiple attack paths leading to a given net-
work privilege are rarely independent but more likely will share
some dependencies. Furthermore, this interconnectednesswill
often lead to the appearance of cycles in an attack graph, butan
accurate assessment of the probability that some privilegecould
be gained by an attacker should obviously not include a theoreti-
cal attack path in which an attacker can reach that privilegeafter
having already gained it. Assuming monotonicity in the acquisi-
tion of network privileges [2], this attack path should be excluded
from the calculations. We propose to treat both cyclic and acyclic
attack graphs with proper management of shared dependencies
and with a provably sound semantics. More specifically, assum-
ing the input component metrics are correct, our model will pro-
duce an accurate assessment of the probability that an attacker
can succeed in achieving a privilege.

One may wonder why a sound model for combining compo-
nent metrics is so important given that the input is inevitably im-
precise. Could an unsound model still provide useful resultthat
is within the error bound inherent in the input? We think that
an approximation algorithm withprovable error boundswould
be useful if that can turn into better performance and scalabil-
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ity. But we have not seen any development of such a model in
the literature. This paper presents a first step in that direction,
with the development of aprovably soundmodel and algorithm
for computing security risk in enterprise networks. Research on
approximation algorithms will be explored in future work.

In Section 2, we will broadly describe the issues faced in quan-
titative risk assessment and, in Section 3, show how our approach
handles these issues. We present some experimental resultsin
Section 4 and address scalability concerns. We will review re-
lated works in Section 5 and conclude in Section 6 with a discus-
sion of future work.

2 Problem Overview

An accurate assessment of security risk within an enterprise net-
work must consider the structure and interconnectedness ofthe
network. Much work has already been done in attack graphs to
identify vulnerabilities within a network and to show how these
vulnerabilities may be sequentially exploited to enable anat-
tacker to gain privileges deep within the network. We can utilize
attack graphs as a structural basis for risk assessment. We use
the MulVAL attack graph toolkit [12, 27] in our work but our ap-
proach should be easily transferrable to other tools that produce
attack graphs with similar semantics [13, 14, 31].

A full attack graphG will include three types of nodes: (1)
attack-step nodes (collectively, setGC ), represented within the
graph as logical AND-nodes. Each node in this set representsa
single attack step which cannot be carried out unless all thepre-
decessors (preconditions to the attack which are either configu-
ration settings or network privileges) are satisfied; (2) privilege
nodes (collectively, setGD), represented within the graph as log-
ical OR-nodes. Each node in this set represents a single network
privilege which can be achieved when at least one of their prede-
cessors is achieved. The predecessors represent various ways to
obtain the privilege; (3) configuration nodes, representedwithin
the graph as source nodes which have no predecessors. Each
node in this set represents a fact about the current network con-
figuration which is known to be true. For the purpose of risk as-
sessment the configuration nodes can be removed since they have
no variance in probability, leaving us with an AND/OR graph.In
such an AND/OR graph an attack-step node is always preceded
by privilege nodes and always has exactly one successor privilege
node. A privilege node, however, may have multiple successor
attack-step nodes, representing different options for further at-
tacking the system.

A new privilege node will be added to serve as the root node
in the graph; the new root of the graph,GR ∈ GD, represents no
network privilege and there is an edge fromGR to all the attack-
step nodes that do not require any prior privilege,i.e., the nodes
in GC that has no predecessors after the configuration nodes are
removed. In the subsequent technical discussion we assumeGR

is the attacker’s starting point, but the model will work forany
node as assumed starting point. The set of all nodes with multiple

successor nodes (must be privilege nodes), hereafter referred to
as “branch nodes”, isGB ⊆ GD.

Two examples of attack graphs are shown in Figures 1
and 2. Circular-shaped nodes are attack-step nodes and diamond-
shaped nodes are privilege nodes. In both examplesGR = P0.
P1 is a branch node in both graphs.

Figure 1: An attack graph without a cycle

Figure 2: An attack graph with a cycle

A component metric is associated with each attack-step node.
The metric represents the conditional probability that thesingle
attack step will succeed when all of the prerequisite conditions
are met. For example, the component metric forA2 represents
the probability that the attack step can succeed when an attacker
already obtained privilegeP1. We useGM to denote the set of
relevant component metric values (e.g., based on a CVSS score);
each attack-step nodec ∈ GC will have an assigned metric value
denoted asGM [c]. Thus, for some attack-step nodee with pre-
decessor setP , the probability ofe given setP is equal to the
component metric value:Pr[e|P ] = GM [c]. Additionally, the
attack graph will have an assumed prior risk value,GV , repre-
senting the probability of an attack being attempted against the
network. GV is associated with the root node of the graph and
we assumeGV = 1 in the subsequent discussion.

2.1 Handling shared dependency

In an attack graph, it is common to see multiple attack paths
leading to a single network privilege. In Figure 1, for exam-
ple, privilegeP4 can be obtained by an attacker using either
of two attack steps -A4 or A5. PrivilegeP4 will be unob-
tainable if an attacker cannot successfully carry out the exploit
A4 or A5. If the paths toA4 andA5 are independent, where
Pr[A4] andPr[A5] are the probabilities thatA4 andA5, respec-
tively, can be successfully carried out, we can easily calculate
the probability that an attacker might gain privilegeP4 to be:
Pr[P4] = Pr[A4] + Pr[A5]− Pr[A4] · Pr[A5].

3



However, it is incorrect to assume thatA4 andA5 are inde-
pendent. Looking at Figure 1, it is easily seen that attack stepA4

is potentially affected by privilegeP1 and attack stepA5 fully
depends upon it. Because of this shared dependence onP1, A4

andA5 are not independent and the above formula would skew
the effect that privilegeP1 has on the final result. In other words,
assuming that all attack paths in an attack graph are independent
will lead to unsound result in risk assessment.

To correctly account for shared dependencies among attack
paths, we will employ the notion ofd-separationwithin a causal
network (such as a Bayesian Network) [15]. The concept of d-
separation can be utilized to establish conditional independence
between node sets. The risk assessment problem on attack graphs
is a more specific problem than generic Bayesian reasoning;
therefore, the concept of d-separation is specialized herefor our
specific application.

Definition 1 Within an attack graph, for the purposes of risk as-
sessment, two distinct nodesets A and B are d-separated by an
intermediate nodesetV ⊆ GB (distinct from A and B) if along
every diverging path between A and B, there is somev ∈ V such
thatv is the point of divergence.

Because of the structure of the attack graph, onlyshared de-
pendencies(points of divergence in shared paths) need to be con-
sidered in the construction of a d-separating set. For example, in
Figure 1, there is a diverging pathA2 ← P1 → A3 between
nodesA2 andA3; the point of divergence,P1, d-separates these
two nodes. Even thoughA2 andA3 are not independent (they
are both influenced byP1), whenP1 is fixed they become condi-
tionally independent.

In an attack graph with the configuration nodes removed, the
divergence nodes must be the branch nodes, which are all privi-
lege nodes. Then the d-separating setD for two nodesets must be
a subset ofGB and the elements inD must “block” all diverg-
ing paths between the two node sets. That means to find out a
set of nodes that d-separates two node sets, we only need to con-
sider branch nodes along the paths to the nodes. TakeA4 andA5

in Figure 1 as an example; we only need to consider the branch
nodes along the paths toA4 andA5 which isD = {P0, P1}. We
can see from the graph thatD d-separatesA4 andA5, and once
the nodes inD are fixed,A4 andA5 become conditionally inde-
pendent. This makes the calculation of joint distribution easy.

Theorem 1 ∀D,N ⊆ GN , P r[N ] =
∑

D

Pr[N |D] · Pr[D]

Proof:
∑

D

Pr[N |D] · Pr[D] =
∑

D

Pr[N,D]

= Pr[N ]

By Bayes theorem,Pr[N |D] · Pr[D] produces the joint prob-
ability Pr[N,D]. Summing over all possible values ofD will
marginalizeD from the joint distributionPr[N,D] and we get
Pr[N ].

Theorem 2 LetD,N be node sets such thatD d-separates any
pair of nodes inN . Then all nodesn ∈ N are conditionally
independentgivenD: Pr[N |D] =

∏

n∈N

Pr[n|D].

This theorem follows directly from the property of d-
separation and conditional independence.

Using the above two theorems, we find a way to calculate
the joint probabilityPr[A4, A5], which is needed to calculate
Pr[P4]. By Theorem 1, we can sum over all possible values
of d-separating set{P0, P1} to solvePr[A4, A5], and, applying
Theorem 2, we can decompose a joint conditional distribution to
singleton conditional probabilities.

Pr[P4] = 1− Pr[A4, A5]

= 1−
∑

P0,P1

Pr[A4, Ā5|P0, P1] · Pr[P0, P1]

= 1−
∑

P0,P1

Pr[A4|P0, P1] · Pr[A5|P0, P1]·

Pr[P0, P1]

The formation and use of calculations will be discussed in
greater detail in later sections.

2.2 Handling cycles

In Figure 2, some graph nodes comprise a cycle -
{P2, A4, P3, A5}. When evaluating the probability of a
node within a cycle, such asPr[P2], we must be careful that
node P2 does not affect its own probability of occurrence.
According to the graph, it is possible that an attack can use
attack stepA2 to obtain privilegeP2, then use attack stepA5

to obtain privilegeP3, and then use attack stepA4 to obtain
privilege P2 again. Although this path does technically exist
within the graph, it is meaningless for risk assessment and
should have no influence on the probability that privilegeP2

might be obtained by an attacker. We must be able to evaluate
nodes within the cycle while eliminating any cyclic influences. It
is possible to unfold any cyclic graph into an equivalent acyclic
graph such that each node appears exactly once in any path. But
this procedure is not necessary if we apply a data flow analysis
to the cyclic nodes so that we can evaluate the same probabilities
as on the unfolded graph but without actually unfolding it.

3 Risk Assessment Approach

3.1 Definitions

For describing our approach of sound risk assessment, it is con-
venient to define and employ the following notations.

Function 1 For a noden ∈ GN , φ(n) represents the abso-
lute probability that noden is true (i.e., the probability that the
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privilege/attack step represented by noden can be successfully
gained/ launched). Similarly,φ(n) represents the probability
that noden is false.φ(n) + φ(n) = 1. For a node setN ⊆ GN ,
φ(N) represents the probability that eachn ∈ N will be true or
false as specified in setN .

For example, in Figure 1,φ(P4) is the probability that nodeP4

is true, whileφ(P 4) is the probability thatP4 is false. SinceP4

must be either true or false, these two values must have a sum of
one.
φ(A4, A5) is the joint probability that nodesA4 andA5 are

both false; since there are shared dependencies between these
nodes, calculating the precise value ofφ(A4, A5) would require
computing the conditional probability given a d-separating set.

Function 2 For a noden ∈ GN and node setA ⊆ GN , ψ(A, n)
represents the conditional probability that noden is true if the
values of alla ∈ A are fixed as specified in setA. For a node set
N ⊆ GN , ψ(A,N) represents the conditional probability that
eachn ∈ N will be true or false as specified in setN if the
values of alla ∈ A are fixed as specified in setA.

For example, in Figure 1,ψ({P0, P1}, P2) is the probabil-
ity that P2 is true given thatP0 andP1 are true. This elimi-
nates any influence thatA1 has on nodeP2. ψ({P0, P1}, P2) =
e2 + e6 − e2e6. Another example:ψ({P0, P 1}, P2) is the prob-
ability that P2 is true given thatP0 is true andP1 is false.
ψ({P0, P 1}, P2) = e6.

Function 3 For a noden ∈ GN , χ(n) = {b | b ∈ GB andb
appears in at least one attack path leading to noden}.

χ(n) is the set of all branch nodes within the graph that appear
in at least one path ton and so may affect the probability ofn.
For example, in Figure 1,χ(A6) = {P0} andχ(A2) = {P0, P1}.

Definition 2 Within the attack graph, for any noden, a logical
dominator is any noded such thatn is true only ifd is true. This
relationship is denotedd⇐ n.

Function 4 For a noden ∈ GN , δ(n) = {d | d ∈ GB and
d⇐ n}.

δ(n) is the set of all branch nodes that logically dominate (ap-
pear in all attack paths to)n, so that∀d ∈ δ(n), ψ(d, n) = 0. In
other words,n is false if anyd ∈ δ(n) is false. In Figure 1, node
P1 ⇐ A5 sinceA5 is true only whenP1 is true: all attack paths
to A5 must first accomplishP1. But P1 does not dominateA4,
since there is a path toA4 throughA6 which does not requireP1.
Clearly, the set of nodes that must affectn is a subset of the all
the nodes that may affectn, soδ(n) ⊆ χ(n).

Employing these notations, we will now consider how to cal-
culate the probability values for every node within an attack
graph.

3.2 Formal specification of risk assessment

The following propositions set forth recursively-defined equa-
tions for the calculation of the functions defined in the previous
section. The root node of the attack graph,GR, will be initialized
at the beginning of the algorithm and will serve as an anchor for
theφ recursion. When calculatingψ(A, n), the recursion must
reach a point wheren ∈ A (so thatn must be true),̄n ∈ A (so
thatn must be false), orA ∩ χ(n) = ∅ (so thatn is condition-
ally independent ofA); these base cases will serve to halt the
recursion. The validity of the propositions and the termination
of the recursive calculations has been formally proved but is not
included in the paper due to space limitation.

Proposition 1 For any privilege noden ∈ GD with immediate
predecessor setW,

φ(n) = 1− φ(W )

ψ(A, n) = 1− ψ(A,W )

χ(n) =
⋃

w∈W

χ(w)

δ(n) =
⋂

w∈W

δ(w)

A privilege noden will be true when at least one of its prede-
cessors are true; conversely, it will be false only when all of its
predecessors are false. Theχ set forn is the set of branch nodes
that affect at least one path to somew ∈ W and so at least one
path ton; theδ set forn is the set of branch nodes that affectall
paths ton (and so logically dominaten). Since the predecessors
of a privilege node are all attack nodes, they cannot be branch
nodes themselves.

Proposition 2 For any privilege noden ∈ GD with immediate
predecessor set{w},

φ(n) = φ(w)

ψ(A, n) = ψ(A,w)

χ(n) = χ(w)

δ(n) = δ(w)

Proposition 2 is obviously a special case of Proposition 1,
where the computation of values is simplified upon the as-
sumption of exactly one predecessor,w. By Proposition 1,
φ(n) = 1 − φ(w), but sinceφ(w) + φ(w) = 1, we know

φ(n) = 1− (1 − φ(w) = φ(w). χ(n) =
⋃

w∈W

χ(w) = χ(w).

Since all paths ton lead throughw, δ(n) = δ(w).

Proposition 3 For any attack-step noden ∈ GC with immediate
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predecessor setW,

φ(n) = GM [n] · φ(W )

ψ(A, n) = GM [n] · ψ(A,W )

χ(n) = (
⋃

w∈W

χ(w)) ∪ (GB ∩W )

δ(n) = (
⋃

w∈P

δ(w)) ∪ (GB ∩W )

When all predecessors are true, an attack step noden is true
with conditional probabilityGM [n]. Similarly, given setA, n is
true with conditional probabilityGM [n] when all predecessors
are conditionally true. Theχ set forn is the set of branch nodes
that affect at least one of its predecessors together with any of its
predecessors that are branch nodes themselves. Sincen requires
that all predecessors be true, theδ set forn is the set of branch
nodes that logically dominateanypredecessor (and so logically
dominaten) as well asanyone of its predecessors that are branch
nodes.

Proposition 4 For any attack-step noden ∈ GC with immediate
predecessor set{w},

φ(n) = GM [n] · φ(w)

ψ(A, n) = GM [n] · ψ(A,w)

χ(n) = χ(w) ∪ (GB ∩ {w})

δ(n) = δ(w) ∪ (GB ∩ {w})

Proposition 4 is obviously a special case of Proposition 3,
where the computation of values is simplified upon the assump-
tion of exactly one predecessor,w.

3.3 Example - Figure 1

We will now work through the sample graph shown in Figure 1,
demonstrating our approach and showing its effectiveness at rec-
ognizing and correctly handling shared dependencies within the
graph. This graph is acyclic, so we can recursively calculate the
probability value for each node, utilizing previously calculated
individual probability values and computing joint probabilities
only as needed. To simplify the presentation, we useei to de-
note the component metric value for each attack-step nodeAi,
i.e. ∀Ai ∈ GC , GM [Ai] = ei. A table showing all calculated
values will be included at the end of this example.

We begin with the root node,P0. The probability that nodeP0

is true isGV which is assumed to be1. Thusφ(P0) = 1. As
the root node,P0 has no preceding nodes, soχ(P0) = { } and
δ(P0) = { }.

Now that we have calculatedφ(P0), we can calculate for ei-
ther A1 or A6. Let us next calculate forA6. Proposition 4
specifies the calculation for an attack-step node with exactly

one predecessor.φ(A6) = GM [A6] · φ(P0) = e6 · 1 = e6;
χ(A6) = δ(A6) = {P0}.

We cannot yet evaluate nodeP2, because not all of its pre-
decessors have been evaluated. We will return, then, to eval-
uate nodeA1. Similar to the calculation forA6, φ(A1) =
GM [A1] · φ(P0) = e1; χ(A1) = δ(A1) = {P0}.

Table 1: Values calculated while solving forφ(A4, A5)

N φ(N)

{P0, P1} e1

{P0, P 1} 1− e1

{P 0, P1} 0

{P 0, P 1} 0

D ψ(D,A4) ψ(D,A5)

{P0, P1} (1 − e4(e2 + e6 − e2e6)) (1− e3e5)

{P0, P 1} (1− e4e6) 1

{P 0, P1} 1 1

{P 0, P 1} 1 1

Table 2: Risk assessment calculations for Figure 1

N φ(N) δ(N) χ(N)

P0 1 {} {}

P1 e1 {P0} {P0}

P2 (e1e2 + e6 − e1e2e6) {P0} {P0, P1}

P3 e1e3 {P0, P1} {P0, P1}

P4 (e4e6 + e1(e2e4 + e3e5)−
e1e2e4e6
− e1e3e4e5(e2 + e6 − e2e6))

{P0} {P0, P1}

A1 e1 {P0} {P0}

A2 e1e2 {P0} {P0, P1}

A3 e1e3 {P0, P1} {P0, P1}

A4 e4(e1e2 + e6 − e1e2e6) {P0} {P0, P1}

A5 e1e3e5 {P0, P1} {P0, P1}

A6 e1 {P0} {P0}

We can now evaluate nodeP1. Proposition 2 specifies the cal-
culation for a privilege node with exactly one predecessor.Thus,
φ(P1) = φ(A1) = e1; χ(P1) = δ(P1) = {P0}.

From this point, we could evaluate eitherA2 orA3. Let us next
calculate forA2. φ(A2) = GM [A2] · φ(P1) = e2 · e1 = e1e2;
χ(A2) = δ(A2) = {P0, P1}.

Now both predecessors toP2 have been solved and we can
calculate for this node. Proposition 1 specifies the calculation
for a privilege node with multiple predecessors. So,φ(P2) =
1 − φ({A2, A6}). In previous cases with single predecessors,
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we already knew the probability of the predecessor, but in this
case we do not yet know the joint probability ofφ({A2, A6})
and so must solve for it. To calculateφ({A2, A6}), we must find
a d-separating set for these two nodes so that we can utilize The-
orem 2 and 1. One such set can be found by taking the intersec-
tion of theχ sets for these nodes, so thatD = χ(A2)∩ χ(A6) =
{P0}. D contains all branch nodes that diverge to paths lead-
ing to A2 andA6, which should be sufficient to d-separate the
nodes (Definition 1). Using the setD, we can now solve for
φ({A2, A6}):

φ(A2, A6)

=
∑

P0

ψ({P0}, A2, A6)φ({P0}) (Theorem 1)

=
∑

P0

ψ({P0}, A2)ψ({P0}, A6)φ({P0}) (Theorem 2)

= ψ({P0}, A2)ψ({P0}, A6)φ({P0}) +

ψ({P 0}, A2)ψ({P 0}, A6)φ({P 0})

= (1 − e1e2)(1 − e6)(1) + (1)(1)(0) (Propositions 1− 4)

= 1− e1e2 − e6 + e1e2e6

Then,φ(P2) = 1−φ({A2, A6}) = 1−(1−e1e2−e6+e1e2e6) =
e1e2 + e6− e1e2e6. Also,χ(P2) = χ(A2)∪χ(A6) = {P0, P1},
andδ(P2) = δ(A2) ∩ δ(A6) = {P0}.

NodesA3, A4, A5, P3 are calculated very similarly to nodes
we’ve already seen here, so we will skip over the details of these.
The resulting values are in Table 2.

Finally, we evaluate for nodeP4, a privilege node with multi-
ple predecessors, so again we will apply Proposition 1:φ(P4) =
1 − φ({A4, A5}). The d-separating set for{A4, A5} is D =
χ(A4)∩χ(A5) = {P0, P1}. The term values for this calculation
are shown in Table 1.

φ(A4, A5) =
∑

P0,P1

ψ({P0, P1}, A4)ψ({P0, P1}, A5)φ({P0, P1})

= ψ({P0, P1}, A4)ψ({P0, P1}, A5)φ({P0, P1}) +

ψ({P0, P 1}, A4)ψ({P0, P 1}, A5)φ({P0, P 1}) +

ψ({P 0, P1}, A4)ψ({P 0, P1}, A5)φ({P 0, P1}) +

ψ({P 0, P 1}, A4)ψ({P 0, P 1}, A5)φ({P 0, P 1})

= (1 − e4(e2 + e6 − e2e6))(1 − e3e5)(e1)+

(1− e4e6)(1)(1− e1) + (1)(1)(0) + (1)(1)(0)

= 1− e1e2e4 + e1e2e4e6−

e1e3e5 − e4e6 + e1e3e4e5(e2 + e6 − e2e6)

Then,φ(P4) = 1 − φ(A4, A5) = e4e6 + e1(e2e4 + e3e5) −
e1e2e4e6 − e1e3e4e5(e2 + e6 − e2e6). Also,χ(P4) = χ(A4) ∪
χ(A5) = {P0, P1}, andδ(P2) = δ(A2) ∩ δ(A6) = {P0}.

We have now solved for the probability of each node in the
graph, and the computedφ values for individual nodes are shown

in Table 2, together with theχ and δ sets for each node. In
our implementation, joint and conditional probability values are
calculated only as needed, to reduce the amount of computation
performed. We also apply dynamic programming techniques to
cache the calculated values to avoid repeating the same compu-
tation.

3.4 Example - Figure 2

In the previous example, we showed that the probabilities for
graph nodes depend on the probabilities of their predecessors,
so a recursive approach can be employed for this calculation.
Within a cycle, however, recursing backward through predeces-
sor sets will create an infinite loop. It is clear that a different
approach is needed for cyclic nodes.

Figure 2 contains an attack graph that we will now use as an
aid to explain and demonstrate quantitative risk assessment over
an attack graph containing cycles. This attack graph contains one
cycle, node set{P2, P3, A4, A5}. Figure 3 shows an equivalent
representation of the same attack graph. This unfolded attack
graph is acyclic, containing all of the unique, acyclic paths that
traverse the cycle. NodeP2, for example, can be reached asP2A

orP2B; the dotted-line arcs indicate that reaching either of these
instances means thatP2 has been reached. In other words,P2A

andP2B can be viewed as “partial values” forP2 andP2 is true
when either of them is true.

Figure 3: Example: Cyclic Attack Graph - Unfolded

We will now work through the sample graph shown in Fig-
ure 2, demonstrating our approach and showing its effectiveness
at recognizing and correctly handling cycles within the graph. A
table showing all calculated values will be included at the end of
this example.

Intuitively, we will identify all acyclic paths traversingthe cy-
cle and use this knowledge to logically identify unique possible
instances of cyclic nodes. We can then d-separate over the set
of reaching paths to calculate the probability that the cyclic node
will be reached.

NodesP0, A1, P1, A2, A3 will be calculated very much as
demonstrated in Section 3.3 and so we will not go through the
detailed calculations for those nodes. Once these have beencal-
culated, however, the remaining graph nodes comprise a cycle
and therefore must be handled differently. In our implementa-
tion, we have chosen to use Tarjan’s algorithm for the identifica-
tion of strongly connected graph components [39].
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We can simplify the handling of cycles by calculating values
only for cyclic nodes with multiple immediate predecessors[41].
Considering Propositions 2 and 4, it is easily seen that the proba-
bility for a node with exactly one predecessor is dependent only
on the value of that predecessor, so that when the probability of
that predecessor node is known, the recursion in the calculation
of the probability for a single-predecessor node will stop at that
predecessor. Thus, the potential for an infinite recursion through
the cycle (as with a multi-predecessor node) is eliminated.In this
example, the cyclic nodes with multiple predecessors areP2 and
P3.

Table 3: Values calculated while solving forφ(P 2A, P 2B)

N φ(N)

{A2, A3} e1e2e3

{A2, A3} e1e2(1 − e3)

{A2, A3} e1e3(1 − e2)

{A2, A3} e1(1− e2)(1 − e3)

D ψ(D,P 2A) ψ(D,P 2B)

{A2, A3} 0 1− e5

{A2, A3} 0 1

{A2, A3} 1− e5 1− e5

{A2, A3} 1 1

Table 4: Risk assessment calculations for Figure 2

N φ(N) δ(N) χ(N)

P0 1 {} {}

P1 e1 {} {}

P2 e1e2 + e1e3e4 − e1e2e3e4 − −

P3 e1e3 + e1e2e5 − e1e2e3e5 − −

A1 e1 {} {}

A2 e1e2 {P1} {P1}

A3 e1e3 {P1} {P1}

A4 e4(e1e3 + e1e2e5 − e1e2e3e5) − −

A5 e5(e1e2 + e1e3e4 − e1e2e3e4) − −

First, we will trace all acyclic paths through the cycle, to deter-
mine all valid ways that these nodes can be reached. This trace
essentially performs a logical unfolding of the graph, marking
unique passes through each node. The acyclic paths through this
cycle are:

P2A = {A2} P3A = {A2, P2A, A4}

P3B = {A3} P2B = {A3, P3B , A5}

There are two unique instances of nodeP2 in this logical un-
folding of the graph,P2A andP2B. The probability that node
P2 is true will equal the probability that at least one of these in-
stances is true, orφ(P2) = 1− φ(P 2A, P 2B).

Definition 3 For some setC ⊂ GN comprising a strongly con-
nected component (cycle) within the graph, theentry nodesare
the set of nodesQ such thatQ ∩ C = {} and∀q ∈ Q, ∃c ∈
C, (q, c) ∈ GE . That is, the entry nodes are not in the cycle, but
each entry node does have an arc leading into the cycle.

To calculateφ(P 2A, P 2B), we must calculate the joint proba-
bility of the set of entry nodes{A2, A5} and we will also need
to identify a d-separating setD within the cycle, to ensure that
the instances ofP2 are conditionally independent. In this case,
D = Path(P2A) ∩ Path(P2B) = ∅; because the cycle is so
small, these partial paths are already conditionally independent,
given the entry points into the cycle. The formula of computa-
tion is shown below and the values calculated for each term in
the equations are shown in Table 3.

φ(P 2A, P 2B)

=
∑

A2,A3

φ({A2, A3})ψ({A2, A3}, P 2A)ψ({A2, A3}, P 2B)

= φ({A2, A3})ψ({A2, A3}, P 2A)ψ({A2, A3}, P 2B) +

φ({A2, A3})ψ({A2, A3}, P 2A)ψ({A2, A3}, P 2B) +

φ({A2, A3})ψ({A2, A3}, P 2A)ψ({A2, A3}, P 2B) +

φ({A2, A3})ψ({A2, A3}, P 2A)ψ({A2, A3}, P 2B)

= (0) + (0) + (e1e3(1− e2))(1)(1 − e4)+

(e1(1− e2)(1− e3) + 1− e1)(1)(1)

= 1− e1e2 − e1e3e4 + e1e2e3e4

So,φ(P2) = 1 − (1 − e1e2 − e1e3e4 + e1e2e3e4) = e1e2 +
e1e3e4 − e1e2e3e4. By a similar calculation,φ(P3) = e1e3 +
e1e2e5−e1e2e3e5. Once these have been solved, it is easy to see
thatφ(A4) = GM [A4] · φ(P3) = e4(e1e3 + e1e2e5 − e1e2e3e5)
andφ(A5) = GM [A5] ·φ(P2) = e5(e1e2 + e1e3e4− e1e2e3e4).

The full results are shown in Table 4. NodesP2, P3, A4, A5

do not haveχ or δ sets, because these values are not used for
evaluation within a cycle.

3.5 Algorithms

Although space constraints prevent us from including the full al-
gorithms for the implementation and the formal proofs showing
the correctness of our approach, we stress that this approach is
sound and will always return accurate probabilities, basedon the
network model and the component metrics given as input. In
the Appendix we show part of the pseudocode of our algorithms
that correspond to the four propositions described earlierin the
section. Below we give an informal description of the whole al-
gorithm.
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Our algorithm first initializes the root node (φ(GR) = GV )
and then identifies all graph cycles. The algorithm iteratesover
the set of nodes in the attack graph, seeking in each iteration a
node or set of nodes ready for evaluation. A single noden (not
contained within a cycle) is ready for evaluation when all ofits
immediate predecessorsW have been evaluated. A cyclic setC
is ready for evaluation when all of its entry nodesQ have been
evaluated.

If a noden is ready to be evaluated, then its probability is
calculated using its predecessor setW , employing the principles
set forth in Propositions 1-4. Ifn is a single-predecessor node
(W = {w}), then the probability ofn is based uponφ(w) and,
if n ∈ GC , GM [n]. If n is a multiple-predecessor node (W =
{w0, . . . , wn}), then a d-separating setD is identified for allw ∈
W . If n ∈ GD, thenφ(n) = 1 − φ(W ); the joint probability
φ(W ) is calculated by marginalizing the effect ofD overW . If
n ∈ GC , thenφ(n) = GM [n] ·φ(W ); the joint probabilityφ(W )
is also calculated using d-separating setD.

If a cyclic subsetC is ready to be evaluated, then the algorithm
calculates the probability for each of the nodes within the cycle.
First, all unique, acyclic paths from the entry nodes to nodes inC
are traced and stored as sets. Next, each multi-predecessornode
m ∈ C is evaluated, using the different enabling paths through
C to identify unique instances ofm and d-separating over these
paths, so that nodem is reachable whenever at least one instance
ofm is reachable. Finally, each single-predecessors ∈ C is eval-
uated using Propositions 2 and 4, by which the probability ofs

relies on the (already calculated) probability of its sole predeces-
sor.

Once a cycle has been evaluated, the set of cyclic nodes can be
removed from the attack graph and replaced with a virtual node
representing that set. This node can be added to theχ andδ sets
for successor nodes to maintain an acyclic graph, but the original
set of nodes can be referenced when necessary, such as when
calculating the likelihood for a node with multiple predecessors
in the cycle.

It can be proven that in each iteration, some noden or cyclic
setC is ready for evaluation. When all nodes have been eval-
uated, the algorithm terminates. To reduce computational over-
head, conditional and joint probabilities are calculated only as
needed and all calculated values are stored for possible later ref-
erence.

4 Implementation and Testing

A preliminary implementation of our algorithms, written inthe
Python language, has been the basis for our testing to date. Fig-
ure 4 shows a sample enterprise network, which we will use to
demonstrate the application of our risk assessment algorithms.

Hosts and Accessibility: There are five hosts (or groups of
hosts) with this enterprise network. The DMZ subnet and the
VPN server are directly accessible from the Internet. The DMZ
subnet, which contains only the web server, is permitted to access
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Figure 4: Example enterprise network

the database server through the firewall. The VPN server, which
also serves as a firewall to protect internal subnets, is ableto ac-
cess the two subnets of user workstations, Group 1 and Group
2. Although there are multiple machines in each of these sub-
nets, we model each group as a single host since the hosts have
identical configurations. Groups 1 and 2 also have permissions to
access the database server, each through a unique application and
port. The database server is permitted to access the user work-
station subnets.

Vulnerabilities: All of the machines in this network have at least
one vulnerability that potentially allows for remote exploitation,
given an attacker code-execution privileges on the machine. The
database server actually hosts three vulnerabilities, oneon each
of the active applications accessed by the web server, Group1,
and Group 2. Any one of these faults are sufficient for an attacker
to gain control of the database server.

We will assume that an attacker’s goal is to gain code-
execution privileges on the database server. The full MulVAL-
generated attack graph for this enterprise network model is
shown in Figure 5. The attack graph includes twelve privilege
nodes, fourteen attack-step nodes, and twenty-two configuration
nodes.

For simplicity, we will assume that every vulnerability in the
network has a component metric of0.75. In other words, for
each vulnerability in the network, when all necessary precondi-
tions are met, an attacker will succeed in an exploit utilizing that
vulnerability with75% likelihood.

Considering the network topology, a network administrator
would likely assume that the web server and VPN server at the
most vulnerable, while the groups of user workstations and the
database server are more secure, since these are not directly ac-
cessible from outside the network. This assumption seems intu-
itively correct, but a careful and complete evaluation of the prob-
ability of exploitation for each machine shows a different state of
affairs.

The full risk assessment results for Figure 4 are shown in the
first data column in Table 5. Here we see that the database server
is themostvulnerable machine in the network, due to the sev-
eral distinct attack paths leading to an attacker gaining privilege
on this machine. Because the database server can be compro-

9



Table 5: Risk assessment calculations for Figure 4 (columnsreflect different scenarios)

Host
Probability

of compromise
(all component metrics

equal)

Probability
of compromise

(VPN metric lower)

Probability
of compromise

(patch vulnerability)

Web server 0.75 0.75 0.75

VPN server 0.75 0.25 0.75

User Group 1 0.5625 0.1875 0.5625

User Group 2 0.5625 0.1875 0.5625

Database server 0.8278 0.6509 0.6064

Figure 5: Attack graph for the example

mised by a successful exploitation of one or more of these pos-
sible attack paths, the chance that an attacker will successfully
gain code-execution privileges is higher than might be intuitively
expected.

The risk assessment values are for the given component met-
rics and the current network configuration. Alterations in either
of these inputs can change the risk picture within the network.
Consider the same scenario, except that the probability of suc-
cess for the vulnerability on the VPN server is0.25, much lower
than the other probabilities, each0.75. The change in this com-
ponent metric value will affect not only the risk assessmentfor
the VPN server itself, but also for all hosts that have attackpaths
through the VPN server.

The second column in Table 5 shows the risk assessment val-
ues with the updated VPN metric value. As can be seen in these
results, the lower risk value for the VPN server affects several
attack paths leading to different nodes. The probability that the
web server will be exploited remains unchanged, since no at-
tack path leads from the VPN server to the web server. The
other probability values have changed; the probability values
are reduced for the VPN server, both user groups, and even the
database server.

Network configuration changes can also have drastic effects
on the security risk. For example, suppose that the softwarevul-
nerability in the database service accessed from the web server
is patched, so that there is now no attack path leading from the
web server to the database server. Employing again the univer-
sal 0.75 component metric value for all the rest of the vulner-

abilities, the risk assessment results for this scenario isshown
in the third column in Table 5. As seen in these results, the re-
moval of one of the three attack steps leading to privileges on the
database server has noticeably reduced the probability that an at-
tacker might compromise the database server. This will be useful
information when evaluating which vulnerability to patch first to
gain the maximum reduction in security risk.

4.1 Scalability

In order to test the scalability of our approach, we constructed
several testing models based on networks of varying sizes and
complexity, created MulVAL input files representing each net-
work, and evaluated them with a preliminary implementationof
our algorithms. The results of these tests are displayed in Table 4.

Models A, B, and C contain realistic network models. Model
C is based on a real control system network for power grids,
which cannot be revealed here. Model B is adapted from model
C, adding an additional host and altering the accessibilitycon-
figurations between hosts. Model A is still more sparsely con-
nected, so that no large cycles predominate in the graph.

Models D, E, and F contain cliques, in which every network
host is accessible from every other host, so a single strongly-
connected component (cycle) contains almost every node in the
attack graph (except the configuration nodes and the privilege
representing an attacker’s initial access to the network).In these
scenarios, each host has exactly one remote-exploitable vulnera-
bility that can provide an attacker with code-execution privileges.
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Table 6: Scalability test results - risk assessment

Scenario
type

Testing
model

Number of
network hosts

Number of graph
nodes in largest cycle

Multi-predecessor cycle
node evaluation time

(average)

Total
run-time

Realistic

models

A 9 28 < 0:01 0:04

B 10 40 0:02 0:15

C 9 46 0:46 8:31

Cliques

D 5 40 0:01 0:06

E 7 54 0:25 2:33

F 8 70 7:45 54:40

These models represent the worst-case situation in networkcon-
nectivity, because a more strongly-connected attack graphwill
include a greater number of acyclic paths reaching to each graph
node, making the assessment more complex. In a clique, each
additional node will dramatically increase the number of acyclic
paths per node; the number of entry nodes and the size of the
d-separating set also increase.

The limiting factors in the current algorithm and implemen-
tation are the size of the d-separating set (the number of nodes
which must be marginalized in calculating conditional probabil-
ity values) and the number of paths that must be considered in
the calculation of each multi-predecessor node within a cycle.
As any of these increase, the number of recursive calls made by
the algorithm increases and so the evaluation time also grows
correspondingly, as seen in the table.

5 Related Works

The issue of security metrics has long attracted much atten-
tion [16, 21, 22], and recent years have seen significant effort
on the development of quantitative security metrics [1, 4, 6, 20,
25, 29, 32]. There is also skepticism on the feasibility of security
metrics given the current software and system architectures [5].
While we may still be far from achieving an objective quanti-
tative metric for a system’s overall security, a practical method
for quantifying risks in an enterprise network based on known
information about potential vulnerabilities is highly valuable in
practice. Albeit only one aspect of a system’s overall security,
such risk metrics can produce highly needed automated guidance
on how to spend the limited IT management resources and how
to balance security and usability in a meaningful manner. Our
work provides the important enabling technology for automated
decision making through sound models and algorithms for quan-
tifying security risks using attack graphs and component metrics
such as CVSS.

Attack graphs have emerged as a main-stream techinque for
enterprise network vulnerability analysis [2, 7, 8, 13, 14,17, 18,
19, 26, 27, 28, 30, 31, 36, 37, 38, 40]. Recent years have also
seen effort on computing various metrics from attack graphs[10,

34, 41, 42, 43, 44]. Our work built upon results from some of
these previous works and is unique in that it provides a sound
model and algorithm that accurately accounts for both cyclic and
shared dependencies in attack graphs.

The Common Vulnerability Scoring System (CVSS) [24, 35]
provides an open framework for communicating the character-
istics and impacts of IT vulnerabilities. CVSS consists of three
metric groups: Base, Temporal and Environmental. Each of these
groups produces a vector of compressed textual representation
that reflects various properties of the vulnerability (metric vec-
tor). A formula takes the vector and produces a numeric score
in the range of 0 to 10 indicating the severity of the vulnerabil-
ity. The most important contribution of CVSS is the metric vec-
tor: it provides a wide range of vulnerability properties that are
the basis for deriving the numerical scores. The main limitation
of CVSS is that it provides scoring of individual vulnerabilities
but it does not provide a methodology on how to aggregate the
metrics for a set of vulnerabilities in a network to provide an
overall network security score. The overall security of a network
configuration running multiple services cannot be determined by
simply counting the number of vulnerabilities or adding up the
CVSS scores. Our work provides a sound mathematical model
based on attack graphs that can be used to aggregate CVSS met-
rics to reflect the cumulative effect of vulnerabilities in an enter-
prise environment.

Frigaultet al. [9, 10] utilizes the combination of attack graphs
and Bayesian Networks (BN) in measuring network security.
The major limitation of using BN is that it does not allow cy-
cles which are common in attack graphs. Our approach does not
use BN reasoning as a black box. Instead, we utilize the key
concept of d-separation in BN inference and design customized
algorithms for probabilistic reasoning on attack graphs. Such an
approach not only can handle cycles within the context of risk as-
sessment, but also takes into consideration special properties of
risk assessment (e.g. that no real-time evidence needs to be con-
sidered, the monotonicity property, and so on) which can elim-
inate some unnecessary overhead and complexity in a standard
BN inference engine.

Wang,et al. [41] recognize the presence of cycles in an attack
graph and present useful ideas about propagating probability over
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cycles. However, their probability calculation seems to assume
that probabilities along multiple paths leading to a node are in-
dependent, which is not generally true for attack graphs. Our
approach correctly handles both cycles and shared dependencies
in attack graphs.

Anwar, et al. [3] introduce an approach to quantitatively as-
sessing security risks for critical infrastructures. The approach
captures both static and dynamic properties in the network,con-
tained in network and workflow models. However, the work did
not provide a mathematical model to explain what the calculated
metrics mean. Our risk metric has a clear semantics which is the
likelihood an attacker can succeed in achieving a privilegeor car-
rying out an attack. Our metric model provides a sound linkage
between the input component metrics and the output cumulative
metrics.

Sawilla and Ou design an extended Google PageRank algo-
rithm and apply it to attack graphs to calculate numeric ranks for
the graph nodes in terms of their importance for an attacker to
achieve his perceived goals [34]. Mehtaet al. also apply Google
PageRank on a different type of attack graphs [23]. Numeric
values computed from PageRank-like algorithms only indicate
relative ranks and cannot be used to quantify absolute security
risks [33]. Our work provides a sound and practical method for
quantifying the absolute security risks in an enterprise network.

Wang,et al. [8] introduce an approach that assumes cost met-
rics are present for all nodes in an attack graph and uses thisinfor-
mation to identify a minimum-cost network hardening solution.
Dewri,et al.[8] formulate security hardening as a multi-objective
optimization problem, using a genetic algorithm to search for an
optimal solution based on costs of security hardening and poten-
tial damage. Homer and Ou [11] demonstrate the effectiveness of
using MinCostSAT as a basis for automated network reconfigura-
tion, with numeric cost values being assigned to each configura-
tion setting and reachable privilege in the attack graph. The risk
metrics developed from our work can be used to derive numeric
weight inputs to these algorithms for optimal security hardening.

6 Conclusion and Future Work

We have presented an approach to quantifying security risk in an
enterprise network, using attack graphs and component metrics
such as CVSS. Our approach is sound in that given component
metrics which characterizes the success likelihood of individual
vulnerabilities, the model computes a numeric value represent-
ing the cumulative likelihood for an attacker to succeed in gain-
ing a privilege or carrying out an attack in the specific network.
Our method handles both cyclic and shared dependencies in at-
tack graphs correctly, surpassing previous efforts on thisprob-
lem. Preliminary experimental results show the effectiveness and
practicality of the approach.

For future work, we believe that opportunity exists for further
refinement of the algorithm toward lower run-time and more effi-
cient handling of cycles and larger data sets. The running time of

the algorithm depends less on the size of the data set than on its
interconnectedness. A large but weakly connected data set will
probably be calculated faster than a smaller but more strongly
connected data set. We will study abstraction techniques for bet-
ter handling larger and more strongly connected network mod-
els. In the implementation, there is also an opportunity to exploit
parallelism in the algorithm to utilize multiple CPU cores or even
cluster computing.

We plan to create a more robust implementation of this algo-
rithm and to continue experimentation using real-world network
data, to better determine the effectiveness of this approach in re-
alistic situations. Another concern in the metric system isthe
reliability of the input component metrics. We believe thatthe
inherent soundness of our approach to calculating risk in the net-
work will serve to highlight gross errors in the input data. We
plan to study how to use our metric model to identify imprecision
in the input component metrics, and methodologies for calibrat-
ing the component metrics.
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A Appendix

Algorithm 1 presents the core algorithm for risk assessmentover
an attack graph. This algorithm consists primarily of a control-
ling loop that will iteratively consider each individual non-cyclic
node or set of cyclic nodes in the graph. For individual nodes, the
calculations detailed in Propositions 1-4 are applied; forcyclic
node setsC, another algorithmevalCycle is called to assess
eachc ∈ C. The algorithm will terminate when the assessment
is complete.

Algorithm 2 calculates the joint probability of an acyclic node
setN . If the value has previously been computed, the stored re-
sult is retrieved and returned, to prevent redundant calculations.
Assuming that the needed value is not already known, the algo-
rithm identifies a d-separating setD such that alln ∈ N are con-
ditionally independent givenD (Theorem 2) and then marginal-
izes the influence ofD onN (Theorem 1).

Algorithm 3 calculates the conditional probability of some
node setN given d-separating node setD. BecauseD d-
separatesN , eachn ∈ N is conditionally independent from the
remainder of the set and so can be solved individually. The al-
gorithm checks several base cases to see ifn is necessarily true,
necessarily false, or independent ofD; if none of these cases
match, the algorithm is recursively called on the predecessor set
of n.

Other algorithms, includingevalCycle and supporting algo-
rithms for the the handling of cyclic node sets, are omitted here
due to space constraints. Similarly, formal proofs of correctness
for every algorithm have been constructed but cannot be included
here.

Algorithm 2 Pseudocode for computingevalProb(N)

Require: ParameterN , such that
N = {n0, n1, ..., nj} ⊆ GN , such that∀ni ∈ N,φ(n) has
already been evaluated
if φ(N) previously calculatedthen

return φ(N) from table of stored values
end if
{ Find d-separating setD for node setN }

D ←
⋃

m,n∈N

χ(m) ∩ χ(n)

if D = ∅ then
{ No d-separating set, so nodes are independent}

return
∏

n∈N

φ(n)

else
{ Calculate conditional probabilities givenD }

return
∑

D

evalCondProb(D,N) · evalProb(D)

end if
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Algorithm 1 Pseudocode for risk assessment
Identify cyclic subsets
n← GR {Begin with graph root node}
φ(n)← GV

χ(n)← ∅
δ(n)← ∅
U ← GN − n { Initialize set of unevaluated nodes}
while U 6= { } do { some nodes remained unevaluated}

if ∃ n | n ∈ U, ∀p | [p, n] ∈ GE , p 6∈ U then { noden is
ready to be evaluated}

P ← {p | [p, n] ∈ GE} { Predecessors ofn }
if n ∈ GD then

φ(n) = 1− evalProb(P )

χ(n) = {
⋃

p∈P

χ(p)}

δ(n) = {
⋂

p∈P

δ(p)}

if n ∈ GB then
ψ(n, n)← 1

end if
else{ n ∈ GC }

φ(n)← GM [n] · evalProb(P )

χ(n) = (GB ∩ P ) ∪
⋃

p∈P

χ(p)

δ(n) = (GB ∩ P ) ∪
⋃

p∈P

δ(p)

end if
U ← U − n {Mark noden as evaluated}

else{ a cycle is ready for evaluation}
C ← cyclic set ready for evaluation (all non-cyclic
predecessors evaluated)
M ← evalCycle(C)
U ← U \M { Mark node setM as evaluated}

end if
end while

Algorithm 3 Pseudocode for computingevalCondProb(D,N)

Require: ParametersD,N , such that
N = {n0, n1, ..., nj}, N ⊆ GN , |N | ≥ 1, such that∀ni ∈
N,φ(n) has been evaluated
D = {d0, d1, ..., dk}, D ⊆ GN , such thatD d-separates all
n ∈ N
if ψ(D,N) previously calculatedthen

return ψ(D,N) from table of stored values
end if

if |N | > 1 then
return

∏

n∈N

evalCondProb(D, {n})

else if N = {n} then{N contains exactly negative element}
return 1− evalCondProb(D, {n})

else{ N = {n}, soN contains exactly positive element}
J ← {j | j ∈ D} { All positive elements inD }
K ← {k | k ∈ D} { All negative elements inD }

if n ∈ J then
return 1

end if

{ If n or a dominator ofn is negated inD }
if n ∈ K orK ∩ δ(n) 6= ∅ then

return 0
end if

{ If setD does not affect the value ofn }
if D ∩ χ(n) = ∅ then

return φ(n)
end if

P ← {p | ∃n ∈ N, [p, n] ∈ GE} {Predecessors ofN}
if n ∈ GD then

return 1− evalCondProb(D,P )
else{ n ∈ GC }

return GM [n] · evalCondProb(D,P )
end if

end if
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