
COT 6405 Introduction to Theory
of Algorithms

Dr. Yao Liu
yliu@cse.usf.edu

http://www.cse.usf.edu/~yliu/

1

mailto:yliu@cse.usf.edu
http://www.cse.usf.edu/~yliu/

About Instructor

• Dr. Yao Liu, Assistant Professor of Computer
Science and Engineering Department
– http://www.cse.usf.edu/~yliu/

– yliu@cse.usf.edu

– 813-974-1079

– Office: ENB 336

– Office hours:
• MW 1:30pm – 3:00pm

• Or by appointment

2

http://www.cse.usf.edu/~yliu/
mailto:yliu@cse.usf.edu

Prerequisites

• You either passed the following courses

– COP 4530 Data Structures

– Computer Programming (C/C++)

– COT 3100 Intro to Discrete Structures

• Or you obtained the permission from the
instructor

3

Text

• Required textbook

– Tom Cormen, Charles Leiserson, Ronald Rivest, and
Cliff Stein, Introduction to Algorithms, Third
Edition, MIT Press, ISBN: 978-0-262-03384-8.

4

Course Website

• Course website:

– http://www.cse.usf.edu/~yliu/Algorithm/teaching.
html

– For course materials, e.g., slides, homework files,
lecture notes, etc.

– Will be updated frequently

5

http://www.cse.usf.edu/~yliu/Algorithm/teaching.html

Grading Policy

• Homework assignments (20%)

• Midterm 1 (20%)

• Midterm 2 (20%)

• Final Exam (40%)

Please note that all tests and the final exam are closed
book, closed notes, closed computer, and closed
smartphones
Online session students must take in-classroom tests.

6

Policies on late assignments

• Homework deadlines will be hard.

• Late submission will be accepted with a 15%
reduction in grade each day they are late by.

• Once a homework solution is posted or
discussed in class, submissions will no longer
be accepted.

78/18/2016

Make-up Exams

• No make-up exams.

• Exceptions may be made if you are in special
situations. You should provide evidences like

– A doctor’s note, which explains why you cannot
attend the exam on the exam date

– A police’s report, which shows that you meet an
accident on your way to the exam, or you are in
some other emergency situations.

88/18/2016

Academic Integrity
• You mush finish your assignments and tests on

your own.

• An FF grade will be assigned to a student who
is caught cheating for this class.

• Typical cheating behaviors include but are not
limited to:

– direct and indirect plagiarizing another student’s
work or online resources.

– modifying incorrect test and homework answers
for regrading.

98/18/2016

For Students with Disabilities:

• Reasonable accommodations will be made for
students with verifiable disabilities. In order to
take advantage of available accommodations,
student must identify himself or herself to
Students with Disabilities Services and provide
documentation of a disability.

• http://www.sds.usf.edu/index.asp

11

http://www.sds.usf.edu/index.asp

COT 6405 Introduction to Theory of
Algorithms

Topic 1. A Brief Overview

8/18/2016 12

Course Focus

• The theoretical study of design and analysis of
computer algorithms

– Not about programming, not about math

– Design: design correct algorithms which minimize
cost

• Efficiency is the design criterion

– Analysis: predict the cost of an algorithm in terms
of resource and performance

13

Basic Goals of Designing Algorithms

• Basic goals for an algorithm

– always correct

– always terminates

• More, we also care about performance

– Tradeoffs between what is possible and what is
impossible

– We usually have a deadline

• E.g., Computing 24-hour weather forecast within 20
hours

14

What is an Algorithm?

• A well defined computational procedure that

– Takes some values as input and produces some
values as an output.

• Example: input and output of a sorting
algorithm

Input: A sequence of numbers {a1, a2, …, an}

Output: a permutation of input sequence such that
a1 < a2 < … < an

Instance Input of a problem {2, 5, 9, 6, 4}

Instance Output of a problem {2, 4, 5, 6, 9}
158/18/2016

What is an Algorithm? (Cont’d)

• A strategy to solve a problem in a correct and
efficient way.

– E.g., how to find students that have the same
birthdays in this classroom?

16

Why useful?

• Computers are always limited in the
computational ability and memory

• Resources are always limited

• Efficiency is the center of algorithms

• Course Objective

• Learn how to solve a problem in an efficient
way

17

Why study algorithms? Tech. Com.
• Google, 1998

– PageRank

– MapReduce

• Symantec, 1982

– Secure Hash Algorithm

– Endpoint encryption

• Qualcomm, 1995

– Viterbi Algorithm, Andrew Viterbi

• Match.com, 1993; eharmony.com, chemistry.com

– Dimension matching
18

The List goes on: Why study algorithms?
Their impact is broad and far-reaching

• Internet. Web search, packet routing, distribution. file sharing

• Biology. Human genome project, protein folding.

• Computers. Circuit layout, file system, compilers.

• Computer graphics. Hollywood movies, video games, 3-D

• Security. Cell phones, e-commerce, voting machines.

• Multimedia. CD player, DVD, MP3/4, JPG, DivX, HDTV.

• Transportation. Airline crew scheduling, map routing.

• Physics. N-body simulation, particle collision simulation.

• Social networks. Recommendation algorithms

• Communications. Error correction codes 19

Why study algorithms? (Cont’d)

• Algorithm questions play an important role for
computer science related job interviews

• Careercup

– http://www.careercup.com/

• Leetcode

– http://leetcode.com/

20

http://www.careercup.com/

21

Course Goals

• Solving real-word problems in an efficient way
– How to achieve?

• Learn to design, using well known methods

• Implementing algorithms correctly & efficiently
– Correctness  Arguing correctness

– Efficiency  Analyzing time complexity

What are Commonly used
algorithms

• Search (sequential, binary)

• Sort (mergesort, heapsort, quicksort, etc.)

• … 

• Traversal algorithms (breadth, depth, etc.)

• Shortest path (Floyd, Dijkstra)

• Spanning tree (Prim, Kruskal)

• Knapsack

• Traveling salesman

22

Hard Problems
• We focus on efficient algorithms in this class

• But some problems which we do NOT know any efficient
solutions  NP-complete problems

– NP: non-deterministic polynomial

• E.g., Traveling-salesman problem, Knapsack,…
– Input: Distance-weighted graph G

– Problem: Find the shortest route to visit all of the vertices exactly once

23

A quiz: the Coin Puzzle

• You have 8 coins which are all the same
weight, except for one which is slightly heavier
than the others. You can weigh two piles of
coins to see which one is heavier (or if they
are of equal weight). How can you find the
heavier coin?

• What is your strategy?

24

Math preparation

• Induction
• Logarithm
• Sets
• Permutation and combination
• Limits
• Series
• Probability theory

25

Quick Review: Some useful
formulae

8/18/2016 26

Some useful formulae (Cont’d)

• You should be familiar with these already.
Please review them and be sure you
understand how each can be proved.

278/18/2016

Quick Review: Induction

• What is induction?

• Suppose

– Statement S(k) is true, for fixed constant k

• Often k = 0

– If we have S(n) S(n+1) , for all n ≥ k

– Then, S(n) is true, for all n ≥ k

28

Proof By Induction

• Claim: formula S(n) is true, for all n ≥ k

• Basis:

– Show formula S(n) is true when n = k

• Inductive hypothesis:

– Assume formula S(n) is true, for an arbitrary n > k

• Step:

– Show that formula S(n+1) is true, for all n > k

29

Induction Example: Gaussian Closed
Form

• Prove 1 + 2 + 3 + … + n = n(n+1) / 2
– Basis

• If n = 0, then S(0)= 0 = 0(0+1) / 2

– Inductive hypothesis

• Assume S(n)= 1 + 2 + 3 + … + n = n(n+1) / 2

– Step: show true for (n+1)

S(n+1)= 1 + 2 + …+ n + n+1 = (1 + 2 + …+ n) + (n+1)

= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2

= (n+1)(n+2)/2

= (n+1)(n+1 + 1) / 2

30

Induction Example: Geometric Closed
Form

• Prove a0 + a1 + … + an = (an+1 -1)/(a - 1) for all a  1

– Basis: show that a0 = (a0+1 - 1)/(a - 1)

S(0) = a0 = 1 = (a1 - 1)/(a - 1)

– Inductive hypothesis: S(n) is true

• Assume S(n)= a0 + a1 + … + an = (an+1 - 1)/(a - 1)

– Step (show S(n+1) is true)

S(n+1) = a0 + a1 +… + an+1 = (a0 + a1 + … + an) + an+1

= (an+1 - 1)/(a - 1) + an+1

= (a(n+1)+1 - 1)/(a - 1)

31

The clarification of lg n

8/18/2016 32

Examples of Algorithms

33

Examples of Algorithms(cont’d)

• Number of element comparisons.

• Worst case?

• Best case?

• Average case?

34

Examples of Algorithms (Cont’d)

35

Examples of Algorithms(cont’d)

• Number of element comparisons.

• Worst case?

• Best case?

• Average case?

36

Examples of Algorithms (Cont’d)

37

Examples of Algorithms (Cont’d)

for i = 1 to n do

for j = 1 to n do

{

c[i,j] = 0

for k = 1 to n do

c[i,j] = c[i,j] + a[i,k]*b[k,j];

}

38

Examples of Algorithms (Cont’d)

• Given n playing cards, sort them in ascending
order

• Cards are sorted in place.

39

Insertion Sort

40

for j = 2 to n {

key = A[j];

i = j -1;

While (i > 0) and (A[i] > key) {

A[i+1] = A[i];

i = i – 1;

}

A[i+1] = key;

}

Insertion Sort (cont’d)

41

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

42

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

43

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

44

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

45

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

46

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

47

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

48

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

49

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

50

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

51

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

52

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

53

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

54

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

Insertion Sort (cont’d)

• Number of element comparisons.

• Worst case?

• Best case?

• Average case?

55

 for j = 2 to n {
 key = A[j];
 i = j -1;
 While (i > 0) and (A[i] > key) {
 A[i+1] = A[i];
 i = i – 1;
 }
 A[i+1] = key;
 }

