
COT 6405 Introduction to Theory 
of Algorithms

Dr. Yao Liu
yliu@cse.usf.edu

http://www.cse.usf.edu/~yliu/

1

mailto:yliu@cse.usf.edu
http://www.cse.usf.edu/~yliu/


About Instructor

• Dr. Yao Liu, Assistant Professor of Computer 
Science and Engineering Department
– http://www.cse.usf.edu/~yliu/

– yliu@cse.usf.edu

– 813-974-1079

– Office: ENB 336

– Office hours: 
• MW 1:30pm – 3:00pm

• Or by appointment
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Prerequisites

• You either passed the following courses 

– COP 4530 Data Structures

– Computer Programming (C/C++)

– COT 3100 Intro to Discrete Structures

• Or you obtained the permission from the 
instructor
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Text

• Required textbook 

– Tom Cormen, Charles Leiserson, Ronald Rivest, and 
Cliff Stein, Introduction to Algorithms, Third 
Edition, MIT Press, ISBN: 978-0-262-03384-8.
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Course Website

• Course website:

– http://www.cse.usf.edu/~yliu/Algorithm/teaching.
html

– For course materials, e.g., slides, homework files, 
lecture notes, etc.

– Will be updated frequently
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Grading Policy

• Homework assignments (20%)

• Midterm 1 (20%)

• Midterm 2 (20%)

• Final Exam (40%)

Please note that all tests and the final exam are closed 
book, closed notes, closed computer, and closed 
smartphones
Online session students must take in-classroom tests.
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Policies on late assignments

• Homework deadlines will be hard.

• Late submission will be accepted with a 15% 
reduction in grade each day they are late by. 

• Once a homework solution is posted or 
discussed in class, submissions will no longer 
be accepted. 
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Make-up Exams

• No make-up exams.

• Exceptions may be made if you are in special 
situations.  You should provide evidences like

– A doctor’s note, which explains why you cannot 
attend the exam on the exam date

– A police’s report, which shows that you meet an 
accident on your way to the exam, or you are in 
some other emergency situations.
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Academic Integrity
• You mush finish your assignments and tests on 

your own. 

• An FF grade will be assigned to a student who 
is caught cheating for this class. 

• Typical cheating behaviors include but are not 
limited to:

– direct and indirect plagiarizing another student’s 
work or online resources.

– modifying incorrect test and homework answers 
for regrading. 
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For Students with Disabilities:

• Reasonable accommodations will be made for 
students with verifiable disabilities. In order to 
take advantage of available accommodations, 
student must identify himself or herself to 
Students with Disabilities Services and provide 
documentation of a disability. 

• http://www.sds.usf.edu/index.asp
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COT 6405 Introduction to Theory of 
Algorithms

Topic 1. A Brief Overview
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Course Focus

• The theoretical study of design and analysis of 
computer algorithms 

– Not about programming, not about math 

– Design: design correct algorithms which minimize 
cost 

• Efficiency is the design criterion 

– Analysis: predict the cost of an algorithm in terms 
of resource and performance
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Basic Goals of Designing Algorithms

• Basic goals for an algorithm

– always correct

– always terminates

• More, we also care about performance

– Tradeoffs between what is possible and what is 
impossible

– We usually have a deadline

• E.g., Computing 24-hour weather forecast within 20 
hours
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What is an Algorithm?

• A well defined computational procedure that

– Takes some values as input and produces some 
values as an output.

• Example: input and output of a sorting 
algorithm

Input: A sequence of numbers {a1, a2, …, an}

Output: a permutation of input sequence such that 
a1 < a2 < … < an 

Instance Input of a problem    {2, 5, 9, 6, 4}

Instance Output of a problem  {2, 4, 5, 6, 9}
158/18/2016



What is an Algorithm? (Cont’d)

• A strategy to solve a problem in a correct and 
efficient way.

– E.g., how to find students that have the same 
birthdays in this classroom?
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Why useful?

• Computers are always limited in the 
computational ability and memory

• Resources are always limited 

• Efficiency is the center of algorithms

• Course Objective

• Learn how to solve a problem in an efficient 
way
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Why study algorithms? Tech. Com.
• Google, 1998

– PageRank

– MapReduce

• Symantec, 1982

– Secure Hash Algorithm

– Endpoint encryption

• Qualcomm, 1995

– Viterbi Algorithm, Andrew Viterbi 

• Match.com, 1993; eharmony.com, chemistry.com

– Dimension matching
18



The List goes on: Why study algorithms?
Their impact is broad and far-reaching

• Internet. Web search, packet routing, distribution. file sharing

• Biology. Human genome project, protein folding.

• Computers. Circuit layout, file system, compilers.

• Computer graphics. Hollywood movies, video games, 3-D

• Security. Cell phones, e-commerce, voting machines.

• Multimedia. CD player, DVD, MP3/4, JPG, DivX, HDTV.

• Transportation. Airline crew scheduling, map routing.

• Physics. N-body simulation, particle collision simulation.

• Social networks. Recommendation algorithms

• Communications. Error correction codes 19



Why study algorithms? (Cont’d)

• Algorithm questions play an important role for 
computer science related job interviews

• Careercup

– http://www.careercup.com/

• Leetcode

– http://leetcode.com/
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Course Goals

• Solving real-word problems in an efficient way
– How to achieve?

• Learn to design, using well known methods

• Implementing algorithms correctly & efficiently 
– Correctness  Arguing correctness

– Efficiency  Analyzing time complexity



What are Commonly used 
algorithms

• Search (sequential, binary)

• Sort (mergesort, heapsort, quicksort, etc.)

• … 

• Traversal algorithms (breadth, depth, etc.)

• Shortest path (Floyd, Dijkstra)

• Spanning tree (Prim, Kruskal)

• Knapsack

• Traveling salesman
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Hard Problems
• We focus on efficient algorithms in this class

• But some problems which we do NOT know any efficient 
solutions  NP-complete problems

– NP: non-deterministic polynomial

• E.g., Traveling-salesman problem, Knapsack,…
– Input: Distance-weighted graph G

– Problem: Find the shortest route to visit all of the vertices exactly once 
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A quiz: the Coin Puzzle

• You have 8 coins which are all the same 
weight, except for one which is slightly heavier 
than the others. You can weigh two piles of 
coins to see which one is heavier (or if they 
are of equal weight).  How can you find the 
heavier coin?

• What is your strategy?
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Math preparation

• Induction
• Logarithm
• Sets
• Permutation and combination
• Limits
• Series
• Probability theory
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Quick Review: Some useful 
formulae
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Some useful formulae (Cont’d)

• You should be familiar with these already. 
Please review them and be sure you 
understand how each can be proved.
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Quick Review: Induction

• What is induction?

• Suppose 

– Statement S(k) is true, for fixed constant k 

• Often k = 0

– If we have S(n) S(n+1) , for all n ≥ k

– Then, S(n) is true, for all n  ≥  k
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Proof By Induction

• Claim: formula S(n) is true, for all n  ≥  k

• Basis:

– Show formula S(n) is true when n = k

• Inductive hypothesis:

– Assume formula S(n) is true, for an arbitrary n > k

• Step:

– Show that formula S(n+1) is true, for all n > k
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Induction Example: Gaussian Closed 
Form

• Prove 1 + 2 + 3 + … + n = n(n+1) / 2
– Basis

• If n = 0, then S(0)= 0 = 0(0+1) / 2

– Inductive hypothesis

• Assume S(n)= 1 + 2 + 3 + … + n = n(n+1) / 2

– Step: show true for (n+1)

S(n+1)= 1 + 2 + …+ n + n+1 = (1 + 2 + …+ n) + (n+1)

= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2 

= (n+1)(n+2)/2 

= (n+1)(n+1 + 1) / 2
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Induction Example: Geometric Closed 
Form

• Prove a0 + a1 + … + an = (an+1 -1)/(a - 1) for all a  1

– Basis: show that a0 = (a0+1 - 1)/(a - 1) 

S(0) = a0 = 1 = (a1 - 1)/(a - 1)

– Inductive hypothesis: S(n) is true

• Assume S(n)= a0 + a1 + … + an = (an+1 - 1)/(a - 1) 

– Step (show S(n+1) is true)

S(n+1) = a0 + a1 +… + an+1 = (a0 + a1 + … + an) + an+1

= (an+1 - 1)/(a - 1) + an+1

= (a(n+1)+1 - 1)/(a - 1)
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The clarification of lg n
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Examples of Algorithms
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Examples of Algorithms(cont’d)

• Number of element comparisons.

• Worst case?

• Best case?

• Average case?
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Examples of Algorithms (Cont’d)
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Examples of Algorithms(cont’d)

• Number of element comparisons.

• Worst case?

• Best case?

• Average case?
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Examples of Algorithms (Cont’d)
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Examples of Algorithms (Cont’d)

for i = 1 to n do

for j = 1 to n do

{

c[i,j] = 0

for k = 1 to n do

c[i,j] = c[i,j] + a[i,k]*b[k,j];

}
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Examples of Algorithms (Cont’d)

• Given n playing cards, sort them in ascending 
order

• Cards are sorted in place.
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Insertion Sort
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for j = 2 to n {

key = A[j];

i = j -1;

While (i > 0) and (A[i] > key) {

A[i+1] = A[i];

i = i – 1;

}

A[i+1] = key;

}



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)

43

        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 



Insertion Sort (cont’d)

• Number of element comparisons.

• Worst case?

• Best case?

• Average case?
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        for j = 2 to n { 
                key = A[j]; 
                i = j -1; 
                While (i > 0) and (A[i] > key) { 
                    A[i+1] = A[i]; 
                    i = i – 1; 
                } 
                A[i+1] = key; 
          } 


